Глава V. Феногеография

Феногеография — изучение географического распределения отдельных признаков (как правило, фенов и их комплексов) в пределах ареала вида, проводимое для изучения проблем микроэволюции, внутривидовой систематики и разработки биотехнических мероприятий, Феногеография — это в известном смысле квинтэссенция фенетики: значительная часть фенетических работ направлена на получение феногеографических данных.

Еще в 20-х годах в Москве и Петрограде неоднократно обсуждался вопрос о необходимости изучения генофондов тех видов, которые представляют практический интерес для человека (домашние животные, культурные растения, охотничье-промысловые звери, птицы и рыбы, многие лесные породы, полевые растения дикой флоры и т. д.). Путем к установлению видовых генофондов в то время представлялось изучение географического распределения возможно большего числа различных простых наследственных признаков. Так возникло, с одной стороны, изучение географических центров морфофизиологического многообразия у ряда культурных растений, положенное затем Н. И. Вавиловым в основу теории центров многообразия и происхождения культурных растений (1926), С другой же стороны, родилась первая формулировка нового направления — «геногеографии», которую дал в 1928 г. А. С. Серебровский.

Цель геногеографии — «географически взвешенное» описание генофонда наследственных вариаций в пределах видовых ареалов: составление географических карт распределения частоты встреч возможно большего числа наследственных признаков в пределах ареала вида. В 20-х годах из домашних животных генетически лучше других были изучены домашние куры, в меньшей степени — крупный рогатый скот и лошади, а среди растений — некоторые культурные злаки и бобовые. Именно эти группы и послужили первыми объектами феногеографических исследований.

Н. И. Вавилов с сотрудниками начал грандиозное по масштабам исследование географического распространения различных признаков у злаков и бобовых, а А. С. Серебровский с сотрудниками — изучение геногеографии домашних кур. В то же время под руководством Н. И. Вавилова, Ю. А. Филипченко, Н. К. Кольцова и А. С. Серебровского был организован сбор материала по геногеографии местных пород крупного рогатого скота и лошадей. Работа была частично выполнена в Казахстане при участии Ф. Г. Добржанского.

Потом интерес к этому направлению исследований ослабел (главная причина, видимо, заключалась в том, что нерешенные проблемы генетики отвлекли исследователей от широкого изучения популяций в природе), и в 30—40-х годах появились лишь отдельные работы, касающиеся «распределения мутаций» в природных популяциях. Некоторые из этих работ не потеряли своего значения до настоящего времени, как, например, ставшие классическими работы немецкого биолога К. Циммермана (1935–1939) по распределению мутации simplex на коренных зубах обыкновенной полевки в Европе. На рис. 11 видно закономерное понижение концентрации этого признака от некоего центра, расположенного на севере Средней Европы.

Интерес к феногеографическим работам вспыхнул вновь в последние 15–20 лет, после разработки теории популяционной генетики, в результате развития биохимических методов исследования и лавинообразного нарастания числа работ по изучению неметрических вариаций в природных популяциях.

Несмотря на весьма значительное теперь число работ в этой области за рубежом, наиболее последовательно концепция феногеографии развивается в нашей стране, особенно в работах ученика академика С. С. Шварца В. И. Берегового (1965–1976), выполненных на мелких воробьиных птицах (в основном на роде трясогусок — Motacilla), а также на некоторых рептилиях и насекомых.

Рис. 11. Распространение и концентрация одного из фенов строения зубов обыкновенной полевки на территории Центральной Европы

I — 90 %, II — 70 %, III — 50 %, IV — 30 %, V — 15 %, VI — менее 15%


Рис. 12. Феногеография кур Горного Дагестана 1–4 — фены окраски оперения и формы гребня


Феногеографические методы позволяют решать наиболее сложные задачи при изучении внутривидовой изменчивости — выделение популяций и групп популяций, определение популяционных границ. Другая важная задача феногеографии — изучение действия естественного отбора и других эволюционных факторов (прежде всего — изоляции). Интересными задачами феногеографии являются выявление центров видового многообразия внутри вида и реконструкция исторического развития отдельных частей видового населения и вида в целом (микрофилогенеза). Кроме решения таких эволюционно-теоретических вопросов, феногеография служит важным инструментом при изучении внутривидовой систематики и дает материал для правильной организации ряда промысловых и биотехнических мероприятий. Рассмотрим все эти направления феногеографических исследований.

Как найти границы популяций?

Популяции внутри любого вида отличаются друг от друга по частоте проявления разных аллелей, что внешне должно выражаться в различной концентрации разных фенов. Поэтому, если при исследовании видового населения в природе мы обнаруживаем резкий перепад в частоте каких-либо фенов, можно делать обоснованное предположение о существовании здесь популяционной границы.

Рассмотрим несколько характерных примеров.

На рис. 12 приведен пример первой целенаправленной феногеографической работы: доказана концентрация, фенов в популяциях кур в одном из районов Дагестана, изученная А. С. Серебровским. Здесь в период исследования куры вокруг аулов жили в полудиком состоянии, гнездились в кустарниках, поэтому их можно было рассматривать как модели настоящих природных популяций. Поскольку генетика основных признаков кур в то время уже была известна, А. С. Серебровский использовал результаты генетических исследований и перенес их на природные наблюдения, выделяя фены.

Исследование велось в окрестностях р. Аварское Койсу. Дагестан — страна горных ущелий, иногда в сотни метров глубиной. Аварское Койсу течет в одном из таких ущелий. Ширина ущелья несколько сот метров, но перелететь его куры не могут. Это — серьезный изоляционный барьер. Изоляция между другими изученными группами кур менее значительна. Группировки кур, обитающих на одной стороне реки, сходны по набору аллелей, но резко отличаются по этим показателям от кур, живущих на другом берегу.

Ширина популяционных границ зависит (хотя и не прямо) от степени подвижности организмов. Как правило, у более подвижных животных она больше, чем у малоподвижных, например у моллюсков. В ряде изученных случаев частота фенов полосатости и окраски раковины виноградной улитки в Англии и Франции резко менялась на протяжении всего 20–30 м на сплошном участке, заселенном этим видом.

На рис. 13 показана концентрация фена «краснохвостости» в населении обыкновенных белок в районе Верхней Волги. Как показали исследования И. С. Томашевского, на протяжении нескольких десятков километров частота этого фена резко изменяется, маркируя тем самым реальную природную границу между популяциями. Возможно, что это граница не одной популяции, а целой группы, так как именно здесь проходит граница между подвидами белок.

Множество примеров выделения популяционных границ ныне дает изучение биохимических фенотипов — частоты встречаемости разных изозимов. Стал классическим пример хорошо улавливаемых природных границ между группами популяций домовой мыши в Ютландии (Дания). Данные по двум разным фенам (эстераза 1 и 2) совпадают, хотя гибридная зона в каждом случае (по отношению к той и другой эстеразе) имеет специфическую конфигурацию и широту. Подобная ситуация очень типична. Так, например, гибридная зона между двумя популяциями ящериц (Cnemidoforus tigris), принадлежащих к разным подвидам, в юго-западной части штата Нью-Мехико (США), определяемая по морфологическим фенам чешуйчатости и окраски, составляет около 2 км, а определяемая по биохимическим фенам превышает 40 км.

Интересный пример определения популяционной границы — случай с обыкновенной двухточечной божьей коровкой. Она встречается в двух основных формах — черной и красной. По частоте этих форм различаются разные популяции и группы популяций внутри вида. По наблюдениям С. С. Сергиевского, в 1976–1977 гг. одна из резких границ, между популяциями, определяемая по изменению распространения этих форм, проходит по центральным районам Ленинграда — на протяжении нескольких сот метров.

Рис. 13. Концентрация фена «краснохвостости» в популяциях обыкновенной белки в верховьях р. Волги 1 — западная популяция, 2 — северная популяция, 3 — изотерма января


Последними из этой серии примеров выделения фенетическими методами популяционных границ в природе приведем два случая, связанные с характером песни у птиц. Сейчас в связи с широким распространением портативных и эффективных способов записи песен число работ в этой области очень велико. Параболические рефлекторы позволяют с высокой точностью записывать голоса отдельных птиц на расстоянии до сотен метров. К югу от г. Аккра на побережье Гвинейского залива резкая граница между группами блестящих нектарниц с резко различными песнями проходила на площади шириной всего в 50 м и оставалась стабильной на протяжении нескольких лет.

Другое популяционное исследование песни касается дроздов-белобровиков в окрестностях г. Осло. На территории в 85 км обитало семь разных групп дроздов с характерными диалектами песни, устойчиво сохраняющимися на протяжении всего периода изучения в течение двух-трех поколений. Выборочное исследование территории в 250 км2 показало, что группы в 10–12 диалектов составляют «супердиалект» — большую группу родственных диалектов, по всей вероятности являющуюся настоящей популяцией.

В природе при определении популяционных границ можно встретить две принципиально разные ситуации. Границы между популяциями могут быть чрезвычайно резкими, легко определяемыми или нечеткими, размытыми, причем популяции связаны целой гаммой постепенных переходов по концентрации отдельных фенов. В последнем случае феногеографические методы помогают выделить только популяционные центры. При этом подходе можно сравнивать произвольно взятые выборки из разных районов и определять, относятся ли они к одной общей популяции (по частоте фенов). Приведу несколько характерных примеров, связанных с изучением окраски.

На спине взрослых самцов гренландских тюленей всегда присутствует яркий черно-белый рисунок, издалека напоминающий крылья (отсюда поморское название этих животных — крыланы). Рисунок всегда различается в деталях. Наши исследования показали, что по частоте проявлений основных типов рисунка (рис. 14) группа гренландских тюленей (Pagophilus groenlandicus), обитающих в водах о-ва Ньюфаундленд, отличается от тех, которые размножаются в водах Гренландского моря (район о-ва Ян-Майен) и в Белом море. Такие статистически достоверные различия в частоте разных типов окраски послужили одним из аргументов в пользу генетической самостоятельности изученных группировок, их различной популяционной принадлежности (что впоследствии хорошо подтвердилось мечением). Другой пример. По частоте белого пятна на груди среди просмотренных 1183 кошек на улицах Парижа выяснено, что здесь живут в диком состоянии по крайней мере три популяции кошек (генетическая обусловленность этого признака окраски давно известна). Подобного рода примеров немало.

Рис. 14. Различные типы окраски (а — е) самцов гренландского тюленя, по концентрации которых обнаружены резкие различия между популяциями


Нет другого существа, так хорошо изученного по форме тела, как человек. В этнической антропологии есть буквально сотни, если не тысячи примеров различий отдельных популяций людей но разным, генетически простым признакам (фенам).

В табл. 4 приведены три таких примера, касающиеся фенов, изучение которых в мире животных пока практически невозможно: способности ощущать вкус фенилтио-мочевины (одни люди не ощущают его вообще, другие считают горьким как хинин); цветовой слепоты, при которой люди (дальтоники) не различают красный и зеленый цвета; частоты рождения дизиготных близнецов (по Дж. Харрисону и др., 1968).

Два следующих примера из этой серии относятся к изучению поведения. Индивидуальная изменчивость пения птиц, о которой уже говорилось выше, была известна натуралистам и любителям очень давно. Давно известны и географические различия в пении птиц. Различаются курские и киевские соловьи, тюрингенские и франкфуртские овсянки, многие другие примеры широко известны еще с XVIII–XIX вв.

Таблица 4.

Фонетическая характеристика (частота признака в %) некоторых популяций человека.

Популяция Ощущение вкуса фенилтио-мочевины Популяция Цветовая слепота Популяция Число дизиготных двоен на 1000 родов
Хинди 33,7 Бельгийцы 8,6 Негры (Нигерия) 39,9
Датчане 32,7 Хинди 8,1
Англичане 31,5 Норвежцы 8,0 Негры (Заир) 18,7
Испанцы 25,6 Норвежцы 8,0
Малайцы 16,0 Шотландцы 7,8 Греки 10,9
Японцы 7,1 Немцы 7,5 Англичане 8,9
Лопари 6,4 Китайцы 6,2 Шведы 8,6
Китайцы 2,0 Мексиканцы 2,3 Итальянцы 8,6
Индейцы(Бразилия) 1,2 Индейцы(США) 2,0 Французы 7,1
Испанцы 5,9
Негры(Заир) 1,7 Японцы 2,7

В средней полосе нашей страны для таких исследований удобен зяблик с его сравнительно простой песней. В одной из работ известный зоолог А. Н. Промптов сравнивал песни зябликов из двух мест Московской области и из Западного Урала. На основании анализа нескольких тысяч песен он установил, что под Звенигородом (70 км от Москвы) чаще встречаются особи с двух- и четырехколенными песнями, тогда как певцы с трехколенными песнями чаще живут вблизи Москвы. На Западном Урале четырехколенные певцы вообще отсутствуют. Зато на Урале значительно чаще, чем в Московской области, во втором колене песни встречаются свистовые варианты; под Москвой в этом колене преобладают трескучие звуки. Наконец, на Урале обнаружены одноколенные варианты песни, никогда не встречавшиеся в Подмосковье. В таком исследовании привлекает чрезвычайная простота: нет необходимости в сложных звукозаписывающих и расшифровывающих установках, достаточно записной книжки и карандаша. Сейчас практически для всех птиц Европы и Северной Америки получены данные по географической изменчивости элементов песни. Существенное преимущество описанных приемов в том, что не надо убивать животных для получения данных по фенофонду и феногеографии.

Итак, все эти примеры показывают два главных пути выделения популяций в природе: либо посредством поиска резких границ, маркируемых заметными перепадами распространенности (концентрации) фенов, либо путем сопоставления фенетических характеристик отдельных групп особей (чтобы проверить, не относятся ли они к различным генетическим группировкам). Естественно, что для детального исследования вполне возможно и сочетание этих двух подходов: сначала в общей форме, чтобы выделить популяции по сравнению групп особей, а затем попытаться найти более резкую природную границу между ними.

Где вид разнообразнее: в центре или на периферии ареала?

Для некоторых достаточно хорошо изученных фенетически видов можно выявить центры видового многообразия тех участков ареала, где представлено большинство изученных фенов. В неоднократно упоминавшихся работах Н. И. Вавилова о центрах происхождения культурных растений выделялись центры внутривидового многообразия. Такие центры определяли район наиболее перспективных поисков новых форм для селекции. Исходя из общих эволюционно-генетических представлений, можно нарисовать гипотетическую схему разнообразия вида в пределах ареала.

Как правило, центр разнообразия фенов соответствует зоне оптимума вида. Эта зона характеризуется сравнительно стабильными по численности и значительными по размеру популяциями. Здесь, поддерживается и проявляется разнообразие фенов, характерное для всего вида. По мере удаления от центра набор оптимальных условий существования уменьшается. Популяции на периферии видового ареала обычно более мелкие, подвержены более значительным колебаниям численности, в большей степени изолированы друг от друга; тут должны резко колебаться векторы отбора. В результате у таких периферических популяций будет обедняться фенофонд (гомозиготизация аллелофонда). У каждой периферической популяции фенофонд будет беднее, чем у любой из центральных популяций. В таких краевых популяциях чаще будут выщепляться редкие фены (скрытые в гетерозиготном состоянии в зоне оптимума). Поэтому сумма фенофондов периферийных популяций может оказаться разнообразнее, чем у центральных популяций. Однако каждая из краевых популяций в отдельности должна быть менее разнообразной фенетически, чем центральная.

Если описанная схема верна, то можно сделать такой вывод: когда исследователь встречает в природе сравнительно малочисленную популяцию с резкими колебаниями численности, где фенетическое разнообразие сравнительно мало, но встречаются редкие фены (по отношению к другим популяциям), можно предполагать, что перед ним периферийная популяция. Именно такими (с пониженной гетерозиготностыо по хорошо учитываемым фенам окраски раковины) оказались изолированные колонии виноградной улитки на самой северной границе ареала вида — в Шотландии. Некоторые из этих популяций были вообще мономорфными по отдельным фенам.

Об этом же по существу говорят данные обстоятельной работы новосибирского зоолога Б. А. Юдина по строению зубов у сибирского крота. В горных районах юга Сибири — наиболее древних участках ареала вида — отклонения от типичного числа зубов встречаются только у 15,1—25,0 % особей, тогда как на периферии ареала изменчивость резко повышена (Томская область до 61,4 %, Забайкалье до 100 %). Следует подчеркнуть, что в полном соответствии с приведенной выше схемой видового разнообразия редчайшие отклонения в строении зубной системы встречены не в центре, а на периферии ареала.

Конечно, приведенная выше схема не охватывает всего природного разнообразия явлений. Зона экологического оптимума вида может не совпадать с географическим центром ареала. Особенно сложная картина возникает в горных районах, где «экологическая периферия» может отстоять от оптимальной зоны всего на несколько сот метров. В подобных условиях резко выраженное многообразие физико-географических условий и связанная с этим изоляция мелких популяций может приводить к обеднению фенофонда (к сильной гомозиготизации) даже в сравнительно благоприятных условиях существования.

Теоретически ясно, что фенетическое разнообразие популяций связано с разнообразием тех природных условий, в которых существует популяция. Но в ряде случаев на имеющихся наборах фенов невозможно выделить какой-то один центр многообразия. Именно это мы наблюдали на обширном материале при изучении прыткой ящерицы. У этого вида в пределах ареала выделяется, по-видимому, несколько центров фенетического многообразия, и в этом случае приходится говорить о полицентризме вида.

Для хозяйственно-важных видов выяснение вопроса о центрах многообразия имеет и практическое значение, теоретически же этот вопрос интересен с точки зрения выяснения основных путей возникновения и развития видов — выяснения путей микрофилогенеза.

Реконструкция микрофилогенеза

Феногеография позволяет не только определять границы популяций и выделять популяционные центры, но и воссоздавать филогенез вида (по отношению к видовому масштабу филогенез точнее называть микрофилогенезом). Ключами для воссоздания микрофилогенеза служат расшифровка «напластований» отдельных фенов и их групп, выделение путей возможной миграции, маркируемых опять-таки либо отдельными фенами, либо (чаще) их комплексами.

Рассмотрение серии примеров, иллюстрирующих фенетический подход для восстановления микрофилогенеза, начнем с антропологических примеров, в которых фенетические данные находят несомненное историческое подтверждение.

Существует четкая граница в Евразии между популяциями с разным (большим и небольшим) числом лопатообразных резцов. Это — граница между монголоидным (большой процент лопатообразных резцов) и негроидноевропеоидным стволами развития вида Homo sapiens. Она маркирует исторические процессы давностью не менее нескольких десятков тысяч лет.

Интересны и «исключения» из общего правила: встречи европеоидного типа соотношения резцов в глубине ареала монголоидной расы. В Восточной Сибири, как показали обширные исследования А. А. Зубова, эти исключения касаются коренного населения Олекминска, Киренска и Витима — первых поселений русских, возникших в процессе освоения этого региона в XVI в. Если же к частоте лопатообразных резцов добавить еще некоторые фены строения зубов (такие, например, как бугорок Корабелли и др.), можно даже установить, из какой губернии Центральной России были родом первые русские переселенцы, основавшие эти города в Сибири!

Аналогичным образом по фенам, маркирующим поток мигрантов, можно восстановить, откуда произошла колония евреев в Индии или колония японцев, живущих уже столетие на Амазонке.

Материалы по концентрации лопатообразных резцов показывают, что не везде и не всегда данные по концентрации фенов расшифровываются достаточно надежно. Пестрота фенетического состава по лопатообразным резцам в Океании требует специального изучения: произошла ли здесь по каким-то генетическим причинам дестабилизация и этот признак утратил свой масштаб расового признака, либо здесь было в древности мощное смешение разных расовых миграционных потоков?

Среди этнографов и антропологов нет единого мнения, как произошло заселение Океании: одни утверждают, что с американского континента, тогда как другие отстаивают точку зрения азиатского происхождения. Частота лопатообразных резцов свидетельствует, что споры идут не напрасно и однозначного решения, видимо, не будет. В данном случае фенетический подход хорош тем, что дает бесстрастное свидетельство эволюционно-генетических процессов, расшифровать которые — дело исследователя.

Следующий пример будет интересен любителям кошек. Генетика кошек изучена сравнительно хорошо, и известно по крайней мере 19 различных аллелей, маркируемых четкими, издалека различными фенами, в том числе 15 аллелей цвета и пятнистости, два аллеля качества шерсти (длинношерстность и короткошерстность) и два аллеля длины хвоста. В десятках различных мест установлена концентрация этих фенов (аллелей). Расселение домашних кошек по Земле в период великих географических открытий шло в основном из Европы. Будучи великолепно приспособленными к полудикому существованию рядом с человеком (в «тени человека»), кошки сравнительно мало подвержены отбору, и, как показывают наблюдения, частота фенов (аллелей) в их популяциях сохраняется весьма стабильной и может служить хорошим маркером потоков генов. Так, например, установлена зависимость сходства в частоте отмеченных фенотипов между популяциями кошек в Чикаго, Сан-Луисе и Лауренсе от направления главной дороги первых английских поселенцев в конце XVII — начале XVIII в., шедших на «дикий Запад» Северной Америки вдоль знаменитой тропы Санта-Фе. Частота фенов популяции кошек в городах штата Техас демонстрирует слияние двух различных по происхождению фенофондов кошек: с севера — английских колонистов, а с юга — испанских завоевателей, шедших из Центральной Америки.

Фенетика и феногеография кошек помогает воссоздать и пути экспансии викингов. Недавно увлеченный исследователь фенетики и генетики кошек американский биолог Э. Тодд показал на основании изучения частоты фенов аборигенных популяций кошек, что викинги осваивали острова при движении на запад в такой последовательности: Шетлендские острова — Оркнейские острова — Внешние Гебриды — о-ва Мэн; затем, несколько, позднее, — Фарерские острова и Исландия. На эти территории викинги, как свидетельствуют фены кошек, попадали также и непосредственно из Скандинавии.

В еще более глубокую древность позволяет заглянуть исследование уже упоминавшегося английского генетика Р. Берри, касающееся строения черепа обыкновенной полевки, живущей на Оркнейских островах. Встреча этой полевки на Оркнейских островах сама по себе удивительна: вся Британия заселена другим близким видом — пашенной полевкой. В то же время остатки обыкновенных полевок найдены уже в самых ранних слоях при раскопках поселений каменного века, которым не менее 6–7 тыс. лет. Из общих зоогеографических рассуждений следовало, что на Оркней обыкновенная полевка должна была бы попасть с ближайших заселенных полевками территорий — с Шетлендских островов, куда эти полевки попали вместе с викингами из Скандинавии. Однако сопоставление по нескольким десяткам фенов черепа оркнейских полевок со скандинавскими показало их значительное различие. Большое сходство неожиданно выявилось с полевками побережья Адриатического моря. Это открытие обрадовало археологов, давно подозревавших о существовании прямых связей между культурами каменного века Северной Британии и строителями мегалитических сооружений Восточного Средиземноморья. Значит, еще в те далекие времена человек вместе с набором попутчиков вроде полевок мог путешествовать по всему морскому пространству Ойкумены.

Два следующих примера также связаны с продвижением человека.

Первый касается географического распространения некоторых признаков улитки Сереа nemoralis в Северной Америке. Этот вид попал в Новый Свет из Европы только в XIX в. и ныне встречается здесь на огромных территориях вплоть до побережья Тихого океана. Изучение феногеографии (полосатости, цвета раковин и трех биохимических фенов) показало, что все североамериканские популяции можно разделить на две неравные группы: меньшую, которая включает популяции этого вида из штата Виргиния, и большую, включающую все остальные популяции. Сочетание изученных фенов позволило предположить, что виргинские популяции виноградной улитки происходят от итальянских, тогда как все остальное население этого вида в Северной Америке берет начало от североевропейских популяций.

Второй пример тоже касается одного из вселенцев в Северную Америку — кукурузного мотылька, местами сильно вредящего сельскохозяйственным культурам. Один из способов борьбы — привлечение этой бабочки в ловушки с помощью феромонов. Для двух изомеров сильнейшего феромона II-тетрадецинилацетата обнаружили два «феромонных фенотипа»: одни насекомые в популяции были подвержены действию одного изомера, вторые — совершенно не реагировали на этот изомер, но реагировали на другой. По этому признаку было изучено 28 европейских и 14 американских популяций. У популяций из американских штатов Нью-Йорк и Пенсильвания оказались точно такие же феромонные характеристики — по существу физиологические фены, — как у популяции около Болоньи (Италия) и Вагенингена (Нидерланды). Оказывается, в 1909–1914 гг. как раз из этих европейских городов доставляли в Северную Америку большие партии зерна, с которыми и мог попасть туда кукурузный мотылек, стойко сохранивший за прошедшие 70 лет свой фенофонд.

Примеры расшифровки посредством феногеографии исторических событий важны как показатели огромных возможностей феногеографического анализа вообще.

Можно также привести примеры, не связанные с деятельностью человека, — естественных эволюционных процессов и их феногеографической расшифровки.

Финские исследователи изучали распространение четырех фенов сочетания предлобных щитков у живородящей ящерицы (рис. 15). По частоте проявлений разных фенов выяснилось следующее: финские популяции сходны с карельскими и восточноевропейскими, а шведские — с центрально- и западноевропейскими. Такая феногеографическая картина легко расшифровывается в свете сравнительно недавних исторических событий: около 11 тыс. лет назад вся Фенноскандия была под сплошным покровом ледника. По мере таяния ледника и потепления происходило заселение этой территории ящерицами. Фены показывают, что заселение шло из двух разных источников: первого — из Западной и Центральной Европы через существовавший тогда сухопутный перешеек на месте балтийских проливов, а второго — из каких-то центров на юго-востоке Европы, где сохранился этот вид.

Следующий пример значительно меньшего масштаба и касается сопоставления по четырем биохимическим фенам нескольких популяций мышевидных хомячков. Изученные популяции обитают на островах Мексиканского залива и на прилежащих частях материка. На островах фенофонд оказался очень однородным — здесь встречается только один фен из четырех, характерных для этой части ареала. На основании этих данных можно сделать два предположения. Первое предположение говорит о том, что все четыре популяции близки генетически между собой, они все происходят от одного «корня» — небольшой группы, когда-то попавшей на острова.

Откуда могли попасть эти исходные формы на острова? По сходству генофонда хомячков можно сделать вывод, что заселение островов шло не со стороны ближайших прибрежных популяций, а с довольно далеко отстоящей ныне от берега группы популяций, для которых характерно преобладание того же фена. Это — один из возможных ответов. Есть и другой. Набор фенов, или фенооблик, островных популяций и ближайших популяций, от которых они произошли, может отличаться потому, что среди немногих особей (основателей островной популяции) случайно не оказалось представителей, несущих остальные три признака.

Рис. 15. Различные сочетания (С, R, М, T) предлобных щитков у живородящей ящерицы и концентрация формы «М» в европейских популяциях этого вида.

Стрелками показаны предполагаемые пути заселения, цифрами — концентрация формы «М» в %


Второе предположение основано на том, что своеобразный фенооблик островных популяций может быть обусловлен естественным отбором, направленным против носителей иных биохимических аллелей, кроме одного-единственного, обладающего повышенной жизнеспособностью в данных условиях.

Все эти предположения доступны дальнейшей проверке. Надо дополнительно сравнить популяции по другим фенам. Совпадение по одному-двум фенам может быть случайным, но вероятность совпадения по нескольким фенам ничтожно мала и ею можно пренебречь. Другой путь проверки — сравнение условий существования островных популяций как с отдаленной от берега популяцией, сходной по биохимической характеристике, так и с какими-либо другими популяциями на этих и других островах, где сходное направление естественного отбора. Так можно из уравнения с несколькими неизвестными постепенно прийти к желанному уравнению с одним-двумя неизвестными.

Интересный пример касается гавайских дрозофил. (Научная статья американского генетика X. Карсона, посвященная их описанию, называется «Хромосомные следы происхождения видов».) Исследовались частота и характер расположения поперечных дисков (темных участков) в пяти хромосомах 69 видов гавайских дрозофил. Эти типичные дискретные признаки, касающиеся тонкой морфологии хромосом, можно считать морфологическими фенами. Их преимущество в том, что на пути от гена к признаку они находятся «близко» к генам. Все исследованные виды по исчерченности хромосом распределились на три группы, каждая из них включала филогенетически близкие формы. Эти группы, судя по фенетике, происходят от предковых форм, обитавших на о-ве Мауи. Поскольку геологическая история отдельных островов изучена достаточно хорошо, можно в данном случае как бы восстановить ход эволюционного процесса на протяжении нескольких сот тысяч лет. Примененный автором способ сравнения позволил высказать предположение, что несколько видов дрозофил, ныне обитающих на Гавайях, происходят от единственной самки: об этом говорит повторяющееся у всех уникальное сочетание дисков, которое не могло возникнуть независимо у разных особей.

Исследования гавайских дрозофил выполнены, несомненно, под влиянием классических работ по североамериканским дрозофилам, проведенных Ф. Г. Добржанским и А. Стертевантом в 30-х годах. В них показано, что, зная порядок генов в одной из хромосом, можно восстановить порядок и последовательность возникновения серии последовательных инверсий (поворотов на 180° участков внутри хромосомы), каждая из которых характерна для отдельных популяций и групп популяций. Эта работа остается лучшей в мировой литературе по точности и однозначности результатов. Она была выполнена не на фенетическом, а на генетическом уровне — все этапы ее подтверждались многочисленными экспериментами по скрещиванию дрозофил разных популяций.

Рис. 16. Фенетические дистанции между популяциями лесных мышей разных районов Великобритании и соседних стран (в условных единицах)

Пунктиром обозначена граница максимального оледенения, двойным пунктиром — современный ареал доледниковых популяций


Фенетические данные (не столь надежные порознь, как генетические) в совокупности позволяют прийти к хорошо обоснованным микроэволюционным выводам.

Последним из серии примеров, иллюстрирующих феногеографический подход для расшифровки микрофилогенеза, будет пример исследования популяций лесных мышей в Англии. Это одно из наиболее обстоятельных феногеографических исследований было выполнено генетиком Р. Берри. Он изучал 20 фенов черепа у лесных мышей, обитающих в Шотландии и на прилежащих островах. По суммарному коэффициенту сходства была восстановлена история заселения этих островов. История состояла из двух периодов. Первый начался с момента максимального оледенения Европы, когда только самая южная часть современной Англии оставалась свободной ото льда (рис. 16). Именно здесь пережили ледниковое время немногочисленные тогда популяции мышей. По мере отступления ледника на север они стали распространяться к северу, но заняли только юго-восточную часть Англии.

Позднее, через несколько тысяч лет после этих событий, начался второй период истории. На север Шотландии уже в VIII в. приплыли викинги из Норвегии (их путь можно проследить по частоте фенов в популяции кошек), с ними сюда попали и норвежские лесные мыши. Постоянным центром активности викингов стал небольшой островок Ейгг среди Внутренних Гебридских островов. Так показывают и археологические исследования, и фенетические сравнения. Отсюда впоследствии и распространились лесные мыши во всей северной части Англии. Сейчас на большей части страны живут лесные мыши, происходящие из Норвегии; лишь на юго-востоке обитают потомки коренных доледниковых популяций.

Реконструкция микрофилогенезов большого числа видов позволит получить много интересных данных по особенностям протекания процесса микроэволюции и откроет новые возможности для глубокого понимания особенностей тех или иных видов. Конечно, такая реконструкция будет особенно убедительна при учете достаточно большой совокупности фенов.

Феногеография, структура вида и систематика

Феногеография, несомненно, поможет и в решении некоторых проблем внутривидовой таксономии.

Формально подвид выделяется в том случае, если не менее чем 75 % особей данной группы отличаются по каким-либо признакам от остального состава вида. Подвиды чаще всего выделяются по количественным признакам — интенсивности окраски, размерам и пропорциям, различиям в каких-либо эколого-физиологических процессах (срокам размножения, например), связанным с географической локализацией. Преимущество, конечно, остается за морфологическими признаками, так как систематик хочет знать, к какому подвиду относится тот или иной музейный экземпляр, о котором зачастую ничего, кроме его морфологии и места сбора, не известно.

Фенетический подход на определенном этапе споров о реальности и принципах выделения подвидов «подлил масла в огонь». Чего стоит, например, известный в нашей литературе по описанию Э. Майра (1972) знаменитый пример с саламандрой Plethodon jordanii в Аппалачах. Выделены ареалы отдельных фенов внутри видового ареала. Причем внутри отдельных ареалов не менее чем 95 особей из 100 обладают одним из указанных признаков. Ареалы дискретных признаков окраски (фенов или их комплексов) распределяются внутри ареала вида независимо друг от друга и сочетаются в разных вариантах. Формально по каждому из фенов следует выделять отдельный подвид этого вида саламандр. Но в таком случае одна и та же популяция (хотя в ареале каждого фена, конечно же, находятся многие популяции) должна будет относиться к разным подвидам. Более того, поскольку определенное сочетание фенов также может рассматриваться как таксономический признак, не следует ли выделять в местах перекрывания двух фенов третий подвид, в местах перекрывания трех фенов — четвертый и так далее?

Подвиды должны выражать реальные ступеньки эволюционно-генетической дивергенции, которые может проходить вид в процессе эволюции. Фенетика позволит объективно, а не формально выделять такие ступеньки эволюции.

Подвидами должны называться исторически сложившиеся комплексы популяций, объединенные общностью происхождения, общностью приспособления к сравнительно сходным условиям (хотя, конечно, микроусловия существования каждой популяции будут всегда неповторимыми), общностью фенофонда. Подвиды должны отражать один из высших уровней внутривидовой иерархии. Длительность их существования в среднем должна быть более значительной, чем длительность существования отдельных популяций, стабильность их характеристик также должна быть выше, чем стабильность характеристик Отдельных популяций.

Уже сейчас есть немало примеров, показывающих удивительную стабильность популяционных комплексов. Еще в начале 50-х годов французский исследователь М. Ламотт в фундаментальной работе по изучению фенов полосатости раковины в природных популяциях лесной улитки показал, что изменчивость максимальна в самых мелких популяциях; в популяционных комплексах изменчивость резко сокращается. Ряд таких примеров собран в работах Ю. Г. Рычкова (1969–1977). Приведу один из них, касающийся главного объекта исследований этого ученого — популяционной структуры и фенооблика коренного монголоидного населения Северной Азии. Ю. Г. Рычков и его коллеги на протяжении многих лет исследовали распределение биохимических фенов (группы крови, различные электрофоретические варианты белков сыворотки крови — гаптоглобины, трансферрины), Одного физиологического фена (чувствительность к фенилтиокарбамиду: одни люди ощущают его вкус как очень горький, для других он безвкусен) и на несколько меньшем материале — морфологических фенов строения черепа.

В общей сложности были получены данные по 15 биохимическим, 12 морфологическим и одному физиологическому фенам для 212 популяций. Исследованиями было охвачено до 2 % коренного населения Северной Азии и до 88 % существующих этнических групп. Неизвестно другое исследование, равное этому по степени охвата видового населения на обширной части ареала. Результаты такого исследования имеют важное значение для понимания географической внутривидовой изменчивости. Удалось сравнить все главные современные и предковые (неолитические, обитавшие на той же территории 30–35 тыс. лет назад) популяции аборигенов Северной Азии. Эти группы отделены друг от друга 200–280 поколениями. Несмотря на уникальность каждой отдельной популяции, поражает сходство общего фенофонда неолитических и современных популяционных комплексов. Обработка материала по ряду других видов (моллюскам, рыбам, растениям) позволила показать, что популяции внутри вида образуют сложную систему, тем более стабильную, чем выше уровень иерархии такой системы.

Другой аспект феногеографического анализа структуры вида — более значительное сходство популяций, имеющих общее происхождение (и, как правило, пространственно близких друг к другу). Близкие популяции оказываются сходными по большему числу признаков и различны — по сравнительно редким, немногим.

Положение о более близком филогенетическом родстве пространственно близких популяций не должно приниматься как абсолютное. Процесс эволюции настолько многообразен, что порой территориально близкие группировки особей оказываются ветвями разных микроэволюционных процессов внутри вида (например, описанный выше случай с обыкновенной полевкой у северного побережья Великобритании, попавшей туда с первыми мореплавателями каменного века Восточного Средиземноморья, а не из более близких территорий).

В популяционной и эволюционной биологии часто приходится обращаться к результатам, полученным на дрозофилах, — генетически наиболее изученной группе из всех живущих на Земле организмов. Можно привести результаты одного из самых обстоятельных исследований сравнительного сходства популяций и популяционных комплексов разного иерархического ранга. Речь идет об исследовании, недавно выполненном под руководством одного из учеников Ф. Г. Добржанского, американского генетика Ф. Дж. Айялы.

В группу Drosophila willistonii входят 15 близкородственных видов, эндемиков Южной и Центральной Америки. Были изучены биохимические особенности разных групп дрозофил, определяемые 36 генами. Постоянная проверка на всех этапах работы фенетических данных путем скрещивания разных форм сделала это исследование не фенетическим, как обычно бывает в случае популяционных исследований биохимического фенотипа, а настоящим генетическим. Исследование показало существование по крайней мере пяти иерархических уровней внутри изученной группы видов (популяции — подвиды — «полувиды» — виды-двойники — морфологически несходные виды).

Самый высокий уровень генетического и фенетического сходства (97 %) был найден при сопоставлении генетических характеристик отдельных популяций, самый низкий (35 %) при сравнении по тем же показателям морфологически различных видов (внутри всей группы близкородственных видов).

Эта работа показала, что подвиды — не выдумка систематиков, а исторически сложившиеся комплексы популяций. Они более стабильны и в пространстве и во времени, чем отдельные составляющие их популяции, и обладают определенным уровнем фенетического (отражающего генетическое) сходства — меньшим, чем у двух близких популяций, но заметно большим, чем сходство даже очень близких видов. Из этого следует, что в природе можно искать и выделять признаки подвидового ранга. Фенетика позволяет это сделать, обнаруживая зоны стабилизации и дестабилизации дискретных признаков.

В одной из первых феногеографических работ В. Е. Берегового и Н. Н. Данилова исследовалась окраска глухарей. Оказалось, что на имевшемся материале можно выделить три разные группы глухарей: две на Урале и третью — в европейской части страны. На Урале с юга на север наблюдались постепенные незначительные изменения интенсивности бурой окраски (0,5 балла на 6° широты) до Свердловска. Затем следовала зона крайне быстрого изменения признака (2 балла на 3–4° широты) и начиналась зона его стабильного состояния. Как показал дальнейший анализ, глухари Южного Урала, с одной стороны, и Коми АССР и Северного Урала — с другой, отличались и разной динамикой численности, и размерами тела. Выделенные зоны стабилизации включали не одну, а много популяций глухарей. Быстрая смена фенотипа показывала природную границу между разными комплексами популяций, в данном случае — четкими подвидами.

Другой пример использования фенов для выделения подвидов касается особенностей строения второго нижнего коренного зуба одного из видов мышевидных хомячков Северной Америки. Этот вид обитает на территории Мексики и южных районов США. По целому ряду традиционных морфологических признаков (размерам и пропорциям тела и черепа) и по кариологическим признакам (числу плеч хромосом) выделялись три сложных популяционных комплекса. Эти комплексы оказались хорошо различимыми по фенам строения второго нижнего зуба. Американский зоолог П. Шмидли, описавший в 1965 г. этот случай, замечает, что он мог по одному лишь этому зубу, без учета множества остальных таксономических признаков, безошибочно выделить любой экземпляр из одного популяционного комплекса и о высокой (но не 100 %-ной) степенью достоверности выделять зверьков из других комплексов. По совокупности всех признаков животным из первого комплекса был дан видовой статут, тогда как два других комплекса популяций были выделены как четкие подвиды внутри другого вида.

Конечно, не во всех случаях изучения внутривидовой изменчивости феногеографическими методами можно ожидать выявления четких подвидов — исторически сложившихся и отличающихся от соседних комплексов популяций. Этого трудно ожидать, во-первых, потому, что не у всех видов население эволюционно дифференцировано на подвиды, а во-вторых, потому, что исследователю не всегда попадутся на глаза фены, маркирующие именно группы эволюционно близких популяций. Задача систематика, пользующегося феногеографическими методами, сводится к тому, чтобы найти фены в концентрации, достаточной для отделения данной группы от соседних, и отражающие определенный этап филогенеза, а не возникшие независимо в разных частях ареала вида.

Одна из интересных проблем внутривидовой таксономии — проблема «сетчатого родства». На внутривидовом уровне значительно чаще, чем на видовом, должны встречаться ситуации полифилетического происхождения отдельных групп популяций вплоть до подвидов и «полувидов». Для исследования таких ситуаций особенно удобны фены, касающиеся строения хромосомного аппарата: они могут точно указать на пути и последовательность перестройки генотипа. Для североамериканского грызуна мешетчатого гофера, 29 подвидов которого населяют штаты Калифорнию, Аризону, Нью-Мехико и мексиканские штаты Сонору и Синалоа, известно более 40 вариантов строения кариотипа. По присутствию разного числа пар различных типов аутосом (не половых хромосом) выделяются как отдельные популяции, так и целые комплексы популяций, иногда совпадающие с подвидами. Интересно, что по сходству хромосомных наборов можно выделить «первичные» и «вторичные» подвиды и выдвинуть обоснованные предположения о полифилетическом происхождении некоторых из них.

Во внутривидовой таксономии существует много проблем, решение которых связано с развитием фенетических методов популяционного исследования. Сколько уровней внутривидовой иерархии целесообразно выделять между собственно популяционным и видовым уровнями? Есть ли различие в числе таких уровней в разных группах животного и растительного мира? Вопросов такого рода немало, и они могут быть решены только при накоплении данных в области фенетики природных популяций.

Естественный отбор и феногеография

Изучение естественного отбора — одна из важнейших задач в изучении микроэволюции. Без глубокого понимания действия этого единственного направленного эволюционного фактора ни о каком переходе к управляемой эволюции не может быть и речи. Точных же примеров, вскрывающих действие отбора, известно пока чрезвычайно мало — число их не превышает нескольких десятков.

Феногеография дает в руки исследователя удобное орудие для изучения отбора. Достаточно напомнить вошедший в школьные учебники пример с распространением меланистической формы березовой пяденицы в Англии — явление индустриального меланизма, вскрытое и проанализированное прежде всего на феногеографической основе. Другим классическим примером действия отбора, в котором феногеография сыграла не последнее место, следует считать случай с расшифровкой поддержания высокого уровня заболеваемости серповидно-клеточной анемией в некоторых районах Африки, — как раз в тех районах, где распространена малярия. Ген серповидно-клеточности смертелен в гомозиготном состоянии и, казалось бы, должен стать редким в популяции. Однако в гетерозиготном состоянии этот ген определяет устойчивость к заболеванию малярией — другому страшному бичу многих районов Африки. Отбор поддерживает определенную частоту смертоносного гена серповидно-клеточности в популяциях потому, что тем самым уменьшатся потери популяций от другой смертельной болезни. И серповидно-клеточность, и устойчивость к малярии можно рассматривать как своеобразные физиологические фены.

Приведу некоторые новые примеры выявления действия отбора с помощью феногеографии. Изучение наземной улитки Сереа vindobonensis в горных долинах Югославии, проведенное в конце 60-х годов английским генетиком Дж. Джонсоном, показало необычное распределение фенов бесполосных и полосатых раковин. Оказалось, что фен бесполосости встречается на хорошо прогреваемых склонах, тогда как улитки с темными раковинами (которые, как показали эксперименты, лучше выживают в холоде и способны лучше утилизировать солнечную энергию) занимают самые холодные склоны (рис. 17).

Рис. 17. Распределение бесполосных и полосатых раковин наземного моллюска в одной из долин Югославии

Черный цвет — встречаемость особей с темными раковинами, обитающих на самых холодных склонах


На другом виде этого же рода — улитке Сереа nemoralis были проведены феногеографические исследования, вскрывшие действие отбора. Когда концентрацию желтых раковин нанесли на карту Европы, оказалось, что существует прямая зависимость между частотой желтых форм и средней летней температурой. В экспериментах было выявлено, что желтые морфы по сравнению с более темными обладают пониженной выживаемостью в холодных условиях.

Из всех хорошо проанализированных работ по изучению связи географической изменчивости с действием отбора следует одно общее заключение: везде, где обнаруживается действие естественного отбора, существуют четкие клинальные изменения по типичным фенам — дискретным признакам.

Нутрия, обитающая на п-ове Флорида, обнаруживает четкую клинальную изменчивость по палевой и темной окраске: процент палевых особей в популяциях очень высок на севере района и очень мал на юге. Непосредственная причина такого изменения окраски пока неизвестна, но можно быть уверенным, что главный механизм клинальной изменчивости — направленное действие отбора, связанное с какими-то изменениями градиентов условий существования. Еще более крутую клину[21] описал М. Магомедмирзаев по изменению доли красных и коричневых семян в соцветиях солнцецвета иволистного на расстоянии 250 км по западному побережью Каспийского моря. Эколого-физиологический анализ показал связь коричневосеменной формы с большей ксерофильностью — приспособленностью к более сухим условиям обитания, что, видимо, и определило картину современного распространения этих двух фенов на данном участке ареала.

Два других примера касаются птиц Северной Атлантики. Большой поморник обитает практически по всем удобным местам побережий Северного, Норвежского, Гренландского и Баренцева морей. У него встречаются два цветовых фена — темная и палевая окраски. Процент палевых птиц очень мал на юге ареала и достигает 100 % на севере. Исследование показало, что палевая форма быстрее достигает половой зрелости: обладает повышенной агрессивностью. (Это важно для успешного питания, так как значительную часть своей добычи птицы отнимают у мелких морских чаек, что определило даже латинское название вида — parasiticus.) Однако в спаривании темные самцы имеют больше успеха. Наконец, темные самцы более жизнеспособны в условиях умеренного климата, а палевые в условиях арктических морей. Сложное сочетание всех этих преимуществ и определяет возникновение типичного сбалансированного полиморфизма — ни одна из форм не имеет решающего преимущества перед другой на большей части ареала (кроме Гренландии, где полностью отсутствует темная форма).

Другим примером служит распространение фена «очковости» у тонкоклювой кайры (Uria aagle). Этот фен выражается в появлении темного кольца вокруг глаз, соединенного через клюв тонкой темной полоской. В самой южной колонии вида — на побережье Португалии — «очковые» кайры не встречаются, но к северу число таких птиц увеличивается и достигает максимума в субарктических районах. Сравнительно мало известно о направлениях отбора, поддерживающих такую клинальную изменчивость. Вскрытие этих конкретных направлений отбора — дело физиологов, экологов, этологов. Феногеография в данном случае выступает в виде компаса, стрелка которого показывает на те ситуации в природе, в которых ясно прослеживается влияние отбора.

Последним из серии примеров, показывающих возможности феногеографии для выявления в природных популяциях процессов естественного отбора, может послужить замечательный пример клинальной изменчивости моли (Amates glareosa) на Шетлендских островах, расположенных у северного побережья Англии.

Изучение этой ночной бабочки было проведено английским генетиком Г. Кеттлевелом, который в 50-х годах успешно исследовал индустриальный меланизм насекомых, в частности знаменитую березовую пяденицу. У моли встречаются две формы — серая и темная, меланистическая. На архипелаге, протянувшемся на 136 км, на севере существуют только меланистические популяции, на юге — почти полностью свободные от меланистов. Нанесенные на график изменения частоты меланистов показали резкий перерыв клинальной изменчивости в одном из районов главного острова — там, где проходит небольшая долина. Здесь на протяжении 13 км концентрация меланистической формы изменяется на 35 % (что соответствует в среднем 2,7 % на каждый километр), по всему остальному архипелагу она меняется в среднем в пять раз медленнее. Так феногеография указала на самое интересное место для дальнейших исследований. Такие исследования были организованы и проведены в окрестностях долины с вересковыми пустошами и редкими полями на известняковых склонах.

На этом можно и заключить описание этого случая, поскольку дальше для расшифровки природной ситуации потребовались не феногеографические, а обстоятельные эколого-генетические исследования. На обеих сторонах долины шириной всего в 1–3 км выпускали меченых бабочек и определяли, как они разлетаются от мест выпуска. Оказалось, что отдельные особи часто улетают на расстояние свыше полутора километров. Всего здесь было помечено и выпущено 1682 бабочки, из них поймано — 65. Несмотря на то что постоянные ветры во время эксперимента дули так, что должны были бы переносить бабочек с одной стороны долины на другую, была найдена только одна бабочка, перелетевшая на противоположную сторону долины.

Эксперимент показал, что долина является реальной преградой в передвижении бабочек. До сих пор непонятно, в чем тут дело. Непонятно и адаптивное значение потемнения бабочек на севере архипелага. Есть несколько предположений, в частности, о преимуществе покровительственной окраски темных форм в условиях более длительного северного светового дня. Об этом говорит и тот факт, что в желудках мелких чаек на севере архипелага было найдено 20,7 % светлых форм, тогда как в местной природной популяции светлых форм было всего 2,7 %. К этому надо добавить, что обнаружилась разница в продолжительности существования в природе особей местного происхождения и привезенных из других мест и выпущенных в данном месте. Так, например, по данным одного эксперимента длительность жизни местных бабочек составила 3,4 дня, а «привозные» — как темные, так и светлые формы — жили почти на день меньше. Известная английская пословица «East or West, home is best» оправдывается здесь как нельзя лучше!

Исследования этой бабочки показали, что клинальная изменчивость обеспечивается не равномерным потоком мигрантов при наличии градиента природных условий, а каждая клина представляет собой множество мелких, частично изолированных популяционных островков с изменяющимися в зависимости от микроусловий микронаправлениями естественного отбора. На больших пространствах микронаправления могут складываться в заметные макрофеногеографические изменения.

В целом феногеография дает широкие возможности для изучения естественного отбора — этого во многом еще таинственного ключевого фактора эволюционного процесса. Главная роль, которую играет при этом феногеография, — роль «указателя» на ситуации, которые перспективны для изучения с целью выявления направления и давления отбора. Возможно, что в ряде случаев феногеография и непосредственно поможет определить направления естественного отбора. Это можно сделать посредством выявления, например, корреляции в распространении какого-либо фена или группы фенов с распространениями каких-либо факторов среды. Эти факторы среды могут быть абиотическими (температура, влажность и т. п.), но могут быть и биотическими — связанными с другими организмами. Например, была обнаружена тесная связь между распространенностью фена семи боковых крупных чешуй у колюшки и наличием в водоеме хищных рыб. Некоторые фены у прыткой ящерицы в своем распространении совпадают с ареалом рябины в Евразии. Задача дальнейших экологических исследований — выяснить существо этой связи, но само ее существование вскрывается именно феногеографическим подходом.

Феногеография как путь выявления действия эволюционных факторов

Среди других эволюционных факторов, кроме более подробно рассмотренного выше естественного отбора, феногеография в ряде случаев позволяет судить о действии волн численности в их ярком частном проявлении — «эффекте основателя».

В Восточной Англии между берегом канала Нью-Бедфорд и идущей вдоль канала автодорогой тянется на протяжении нескольких километров поросший густой травой склон шириной в 20–30 м. Этот биотоп обильно населен виноградной улиткой. Наводнение 1948 г. смыло все старое население моллюсков, но уже через три года моллюски заселили все эти удобные местообитания вновь. Исследование концентрации желтых раковин, проведенное в 1952 г. выборочно, через 200 м, показало пеструю картину: разные, даже близко расположенные группы резко различались по частоте этого фена. Значение желтой окраски раковин явно адаптивно в определенных местообитаниях (покровительственная окраска эффективна при визуальном отборе хищниками), но, видимо, окраска достаточно безразлична в данных условиях.

Пеструю феногеографическую картину 1952 г. можно объяснить только «эффектом основателя» при заселении свободного биотопа. Интересно, что повторное исследование, проведенное через 19 лет (через три-четыре поколения моллюсков), не показало ни малейших различий в частоте распределения фенов. Сходный случай влияния эффекта основателя проявился и при освоении этим же видом моллюсков совершенно новых территорий, недавно осушенных в датских польдерах у г. Гронингена.

Гораздо труднее выделить с помощью феногеографии действие изоляции как эволюционного фактора. На первый взгляд это кажется весьма странным: какими же другими, как не географическими, приемами надо выделять действие такого пространственного в первую очередь фактора, как изоляция? Однако не случайно точных данных по действию изоляции в природных популяциях очень мало: во-первых, весьма трудно вычленить действие изоляции от действия других факторов эволюции, а во-вторых, масштаб действия изоляции обычно несравним с масштабом жизни исследователей: изоляция может действовать непрерывно на протяжении сотен и тысяч поколений, то ослабляясь, то усиливаясь.

Улитка Сереа nemoralis — широко распространенный вид, один из наиболее изученных эволюционистами. Она образует четкие популяции, малоподвижна (средний радиус индивидуальной активности не превышает несколько десятков метров), обладает рядом четких, генетически просто детерминированных и легко учитываемых признаков-фенов. Но каково же было удивление ученых, обнаруживших эту крупную и малоподвижную улитку на куполе собора Св. Петра в Риме! Попасть она туда могла либо при сильном порыве ветра, либо была принесена птицами. В том и другом случае радиус индивидуальной активности именно этой особи превышал средние радиусы активности вида в сотни раз. Популяционные же генетические эксперименты, равно как и модели изоляции в генетических процессах, показывают, что даже небольшой обмен генотипами (в общем даже единичные проценты) способен нивелировать генетические различия между первоначально различными популяциями.

Третий эволюционный фактор, действие которого было бы интересно выяснить с применением феногеографических методов, — мутационный процесс. Методика здесь может быть следующей. Если при распределении фенов будет встречена концентрация редких, необычных фенов в каком-то определенном участке ареала, можно предполагать здесь интенсивный мутационный процесс. Конечно, до точного доказательства еще далеко; можно лишь предполагать, что путь доказательства будет состоять, как и обычно в биологии, в переводе уравнений со многими неизвестными в уравнения со все меньшим и меньшим их числом.

Пока, пожалуй, нет ни одного хорошо проанализированного примера связи мутационного процесса с видимыми фенами, но в принципе такая связь должна существовать, и найти ее в природе — интересная задача будущих исследований. Главное направление таких исследований — поиски центров необычных фенов и дальнейшее вычленение возможного действия естественного отбора, волн численности, изоляции и результатов объединения одинаковых аллелей в одном генотипе при повышенной вероятности спаривания родственных особей (действие гомозиготизации).

Методы феногеографии

Главный метод феногеографии — сопоставление фенофондов. Его можно провести двумя путями — на карте и без нее. В обоих случаях анализ производится двумя способами: по одному фену либо сразу по комплексу фенов. Часто сопоставление по одному фену предшествует последующему анализу комплекса фенов, но порой оно может представлять самостоятельный микроэволюционный интерес.

В случае сопоставления по одному фену на карту наносится либо концентрация данного фена в разных точках исследования, либо просто отмечается факт присутствия данного фена в этой части ареала. В зависимости от задач исследования и то и другое изображение может оказаться одинаково удобным.

На рис. 18 показано изученное Н. В. Тимофеевым-Ресовским распространение фена, определяющего слияние пятен на надкрыльях растительноядной божьей коровки. Видно, что этот фен занимает большую часть внутри ареала вида и обладает как бы собственным ареалом. При таком подходе нас интересует сам факт распространенности фена в пределах ареала вида, а не та или иная его частота. На таких картах можно обнаружить адаптивные границы распространенности фенов, найти корреляции в распространении фена с какими-либо факторами среды и т. д.

Рис. 18. Распространение фена слияния пятен на надкрыльях (крупные черные точки) у растительноядной божьей коровки Epilachna chrisomelina в Средиземноморье


Примером подобной работы может служить исследование по распределению фена меланизма у хомяков на Украине, выполненное в конце 30-х годов известным советским генетиком С. М. Гершензоном. Ученому удалось выяснить, что распространение меланизма связано с повышенной влажностью местообитаний. Однако чаще, чем факт простого присутствия или отсутствия данного фена в том или ином участке ареала, в исследованиях анализируется распространенность этого фена. Выше упоминался широко известный в мировой литературе случай распространения мутации (фена) simplex в строении зубов обыкновенной полевки в Средней Европе. Из зоны с повышенной концентрацией этого фена в Ютландии во все стороны происходит как бы растекание признаков с постепенно понижающейся концентрацией этого фена. На рис. 19 показано распределение в пределах ареала прыткой ящерицы фена прерывистой полосы по центру спины. Видно, что зоны повышенной концентрации фена довольно четко отделены от зон пониженной концентрации. Проявляются как будто определенные границы его пониженной или повышенной концентрации. На аналогичных картах, составляемых для прыткой ящерицы по другим фенам, есть очень интересные границы: для одних фенов р. Волга, например, является непреодолимой преградой; другие фены в высокой концентрации встречаются на ее западном берегу и в очень низкой концентрации — на восточном. Для некоторых же фенов как будто и не существует такой преграды, как Волга.

Рис. 19. Распределение фена «прерывистая полоса на спине» (черный сектор) на большей части ареала прыткой ящерицы


Выше не раз подчеркивалось, что не всякий анализ единственного фена окажется содержательным и интересным уже потому, что каждый фен обладает определенным масштабом, в котором и проявится его закономерное распределение. Наглядным примером служит распределение фена желтой окраски раковины у виноградной улитки, вскрытое в работах английского генетика Дж. Джонса в 1974–1978 гг. Оказалось, что в масштабе участка протяженностью в пять километров распределение желтых раковин случайно, в масштабе территории площадью 22 500 км2 также не прослеживается каких-либо закономерностей. Случайным оказывается и распределение фена в масштабах всей Великобритании. Однако в масштабе Европы распределение фена желтой окраски оказывается клинальным, т. е. подверженным отбору и явно адаптивным.

Прежде чем рассмотреть пути сопоставления фенофондов по многим фенам, надо сделать одно отступление в область инженерной психологии. Выше говорилось о том, что оптимальным для одновременного восприятия человеческим глазом является число разнородных знаков, не превышающее девяти. Это обстоятельство надо иметь в виду при нанесении на карту нескольких фенов одновременно. Лучше всего, если на карте будет не более семи разных значков, иначе карта будет трудно читаема.

Оказывается, что разные методы кодирования признаков также резко различаются по эффективности зрительного восприятия. Отдельные фены на карте можно обозначить цифрами, буквами или значками разной конфигурации (треугольник, квадрат, ромб, круг и т. д.), но можно, наконец, изображать фены различным цветом. Эксперименты показали, что для определения места какого-либо фена на карте эффективнее всего использовать цвет.

При анализе одного или нескольких фенов их можно наносить на карту без учета степени концентрации, но наиболее распространено изображение нескольких фенов с учетом их концентрации. Концентрацию можно показать величиной значка, густотой расположения символов на карте или — если наносятся частоты признаков, в сумме составляющие 100 %,— вариантами секториальных графиков. Если же требуется дать сопоставление нескольких независимых признаков из разных групп фенов, несомненно, лучшим является метод изображения «розой ветров».

Последним большим направлением в методике фенографических исследований можно рассматривать вычисление обобщенного фенетического показателя. Наиболее распространено в современных зарубежных работах, пожалуй, сравнение отдельных популяций и групп по так называемым коэффициентам сходства. Полученные данные могут сравниваться непосредственно на карте, в таблицах или служить основанием для построения дендрограмм, изображающих фенетическое сходство исследуемых группировок. Этот метод дает очень хорошие результаты и заслуживает широкого распространения в отечественных работах.

Другой, пока мало распространенный метод сравнения по обобщенному показателю — простой метод балльного сравнения. Он успешно применяется в случаях выявления каких-то промежуточных форм между уже известными двумя или более крайними формами. Характерный результат этого метода— выявление гибридных зон между подвидами, «полувидами» и видами. Сущность метода можно проиллюстрировать на примере обстоятельного исследования двух «полувидов» американской иволги, проведенного американским зоологом Дж. Райзингом.

На Атлантическом побережье Северной Америки обитает балтиморская иволга, на Тихоокеанском — иволга Буллока, по центральной части континента с юга на север проходит широкая гибридная зона между этими «полувидами». Признаки окраски были разбиты на девять отдельных групп (окраска лба, шеи, ушной области, горла и т. д.). В каждую группу входило от трех до пяти дискретных вариантов окраски — фенов, расположенных в порядке увеличения значения условного балла для каждого фена от признаков типичной балтиморской иволги, принимаемых за 0, до признаков, характерных для иволги Буллока. Выявляющаяся изменчивость суммарного балла окраски всех признаков показывает широкую зону гибридизации, носящую характер клинальной изменчивости и коррелирующую с величиной осадков. Аналогичные сопоставления можно делать и без карты, в виде таблицы.

* * *

Не случайно рассказ о феногеографии оказался самым длинным в этой книжке. Феногеография действительно является одним из самых главных разделов фенетики, так как позволяет ставить и решать наиболее сложные проблемы популяционного исследования, начиная от поиска популяционных границ и кончая восстановлением хода эволюции — изучением микрофилогенеза вида. Важное значение должна иметь феногеография для правильной организации многих промыслов и ряда биотехнических мероприятий. Знание точного распространения хозяйственно важных признаков в пределах ареала вида — надежная основа для планирования биотехнических мероприятий. Хороший пример такого рода — восстановление численности соболя в нашей стране: оно проводилось посредством отлова и выпуска в подходящие местообитания соболей из лучших кряжей (популяций и групп популяций, характеризующихся исключительно удачным набором хозяйственно важных признаков — темной окраской, густотой меха, крупными размерами зверьков).

Важное значение имеет феногеография и при решении главного вопроса внутривидовой систематики: целесообразно или нецелесообразно выделять какие-то группы популяций в качестве отдельных подвидов.

Наконец, велико значение феногеографии для развития теории микроэволюции: изучения механизмов формообразования, пространственных тенденций в развитии внутривидовой изменчивости, образования центров многообразия, клинальной изменчивости и т. п.

Загрузка...