Глава 4 Колебания

РАВНОВЕСИЕ

В некоторых случаях равновесие очень трудно поддержать — попробуйте пройтись по натянутому канату. В то же время никто не награждает аплодисментами сидящего в кресле-качалке. А ведь он тоже поддерживает свое равновесие.

В чем же разница в этих двух примерах? В каком случае равновесие устанавливается «само собой»?

Условие равновесия как будто бы очевидно. Чтобы тело не смещалось из своего положения, действующие на него силы должны уравновешиваться; иными словами, сумма этих сил должна равняться нулю. Это условие действительно необходимо для равновесия тела, но достаточно ли оно?

На рис. 4.1 изображен профиль горки, которую нетрудно соорудить из картона.



Шарик будет вести себя по-разному в зависимости от того, на какое место горки его положить. В любой точке на склоне горы на шарик будет действовать сила, которая заставит его покатиться вниз. Этой действующей силой является сила тяжести, вернее ее проекция на направление касательной линии к профилю горки, проведенной в точке, которая нас интересует. Понятно поэтому, что чем более пологий склон, тем меньше будет действующая на шарик сила.

Нас прежде всего интересуют те точки, в которых сила тяжести полностью уравновешивается реакцией опоры, а значит результирующая сила, действующая на шарик, равна нулю. Это условие будет соблюдено на вершинах горки и в нижних точках — ложбинках. Касательные к этим точкам горизонтальны, и результирующие силы, действующие на шарик, равны нулю.

Однако на вершинах, несмотря на то, что результирующая сила равна нулю, шарик расположить не удастся, а если и удастся, то мы сразу обнаружим побочную причину этой удачи — трение. Небольшой толчок или легкое дуновение преодолеют силы трения, шарик стронется с места и покатится вниз.

Для гладкого шарика на гладкой горке положением равновесия будут только низкие точки ложбинок. Если толчком или струей воздуха вывести шарик из этого положения, шарик вернется в него сам по себе.

В ложбине, ямке, углублении тело, несомненно, находится в равновесии. Отклонившись от этого положения, тело попадает под действие силы, возвращающей его обратно. В положениях на вершинах горки картина другая: если тело отошло от этого положения, то на него действует не возвращающая, а «удаляющая» сила. Следовательно, результирующая сила, равная нулю, — необходимое, но не достаточное условие устойчивого равновесия.

Равновесие шарика на горке можно рассматривать и с другой точки зрения. Места ложбинок соответствуют минимумам, а места вершин — максимумам потенциальной энергии. Изменению положений, в которых потенциальная энергия минимальна, препятствует закон сохранения энергии. Такое изменение сделало бы кинетическую энергию отрицательной, а это невозможно. Совсем иначе обстоит дело в точках вершин. Уход из этих точек связан с уменьшением потенциальной энергии, а значит, не с уменьшением, а с увеличением кинетической энергии.

Итак, в положении равновесия потенциальная энергия должна иметь минимальное значение по сравнению с ее значениями в соседних точках.

Чем глубже ямка, тем больше устойчивость. Закон сохранения энергии нам известен, поэтому можно сразу сказать, при каких условиях тело выкатится из углубления. Для этого нужно сообщить телу кинетическую энергию, которой хватило бы для поднятия его до борта ямки. Чем яма глубже, тем бóльшая кинетическая энергия нужна для нарушения устойчивого равновесия.


ПРОСТЫЕ КОЛЕБАНИЯ

Если толкнуть шарик, лежащий в углублении, он начнет двигаться в гору, постепенно теряя кинетическую энергию. Когда она будет потеряна полностью, произойдет мгновенная остановка и начнется движение вниз. Теперь уже потенциальная энергия будет переходить в кинетическую. Шарик наберет скорость, проскочит положение равновесия по инерции и опять начнет подъем, только в противоположную сторону. Если трение незначительно, то такое движение «вверх — вниз» может продолжаться очень долго, а в идеальном случае — при отсутствии трения — оно будет длиться вечно.

Таким образом, движения вблизи положения устойчивого равновесия всегда имеют колебательный характер.

Для изучения колебания, пожалуй, более пригоден маятник, чем шарик, перекатывающийся в ямке. Хотя бы потому, что у маятника легче свести к минимуму трение.

Когда грузик маятника отклонен в крайнее положение, скорость и кинетическая энергия его равны нулю. Потенциальная энергия в этот момент наибольшая. Грузик идет вниз — потенциальная энергия уменьшается и переходит в кинетическую. Значит, и скорость движения возрастает. Когда грузик проходит наинизшее положение, его потенциальная энергия наименьшая и соответственно кинетическая энергия и скорость максимальны. При дальнейшем движении грузик снова поднимается. Теперь скорость убывает, потенциальная энергия возрастает.

Если отвлечься от потерь на трение, то грузик отклонится на такое же расстояние вправо, на какое он первоначально был отклонен влево. Потенциальная энергия перешла в кинетическую, а затем в том же количестве создалась «новая» потенциальная энергия. Мы описали первую половину одного колебания. Вторая половина протекает так же, только грузик движется в обратную сторону.

Колебательное движение является движением повторяющимся, или, как говорят, периодическим. Возвращаясь к исходной точке, грузик каждый раз повторяет свое движение (если не учитывать изменений в результате трения) как в отношении пути, так и в отношении скорости и ускорения. Время, затрачиваемое на одно колебание, т. е. на возвращение в исходную точку, одинаково для первого, второго и всех последующих колебаний. Это время — одна из важнейших характеристик колебания — называется периодом, мы будем обозначать его буквой Т. Через время Т движение повторяется, т. е. через время Т мы всегда найдем колеблющееся тело в том же месте пространства и движущимся в ту же сторону. Через полпериода смещение тела, а также направление движения изменят знак. Так как период Т есть время одного колебания, то число n колебаний в единицу времени будет равно 1/Т.

От чего же зависит период колебания тела, движущегося вблизи положения устойчивого равновесия? В частности, от чего зависит период колебания маятника? Первым поставил и решил этот вопрос Галилей. Формулу периода колебания маятника мы сейчас выведем.

Однако трудно элементарным путем применять законы механики к неравномерно-ускоренному движению. Поэтому, чтобы обойти эту трудность, заставим грузик маятника по колебаться в вертикальной плоскости, а описывать окружность, оставаясь все время на одной высоте. Такое движение создать нетрудно, надо лишь дать начальный толчок отведенному от положения равновесия маятнику точно в направлении, перпендикулярном к радиусу отклонения, и подобрать силу этого толчка.

На рис. 4.2 изображен такой «круговой маятник».



Грузик с массой m движется по кругу. Значит, кроме силы, тяжести mg, на него действует центробежная сила mv2/r, которую мы можем представить и в виде 4π2n2rm. Здесь n — число оборотов в секунду. Поэтому выражение для центробежной силы можно записать и так: m∙4π2r/Т2. Равнодействующая этих двух сил натягивает нить маятника.

На рисунке заштрихованы два подобных треугольника — треугольники сил и расстояний. Отношения соответствующих катетов равны, значит,

mgT2/m∙4π2r = h/r

или

T = 2π∙√(h/g)

От каких же причин зависит период колебания маятника? Если мы производим опыты в одном и том же месте земного шара (g не меняется), то период колебания зависит лишь от разности высот точки подвеса и точки нахождения груза. Масса груза, как и всегда при движениях в поле тяжести, не сказывается на периоде колебания.

Интересно следующее обстоятельство. Мы изучаем движение вблизи положения устойчивого равновесия. При малых же отклонениях разность высот h мы можем заменить длиной маятника l. Легко проверить это. Если длина маятника 1 м, а радиус отклонения 1 см, то

h = √(10 000 — 1) = 99,995 см.

Различие между h и l в 1 % наступит лишь при отклонении в 14 см. Таким образом, период свободных колебаний маятника для не слишком больших отклонений от положения равновесия равен

T = 2π∙√(l/g)

т. е. зависит лишь от длины маятника и значения ускорения свободного падения в том месте, где производится опыт, но не зависит от величины отклонения маятника от положения равновесия.

Формула T = 2π∙√(l/g) доказана для кругового маятника; а какова же она будет для обыкновенного «плоского»? Оказывается, формула сохраняет свой вид. Доказывать ото строго мы не будем, но обратим внимание на то, что тень грузика, отбрасываемая на стену круговым маятником, колеблется почти так же, как плоский маятник: тень совершает одно колебание как раз за то время, пока шарик опишет окружность.

Использование малых колебаний около положения равновесия позволяет произвести измерение времени с очень большой точностью.

Согласно преданию, Галилей установил независимость периода колебания маятника от амплитуды и массы, наблюдая во время богослужения в соборе за тем, как раскачиваются две огромные люстры.

Итак, период колебания маятника пропорционален корню квадратному из его длины. Так, период колебания метрового маятника в два раза больше периода колебания маятника длиной 25 см. Из формулы периода колебания маятника далее следует, что один и тот же маятник будет колебаться не одинаково быстро на разных земных широтах. По мере продвижения к экватору ускорение свободного падения уменьшается, и период колебания растет.

Период колебания можно измерить с очень большой точностью. Поэтому опыты с маятниками дают возможность очень точно измерять ускорение свободного падения.


РАЗВЕРТКА КОЛЕБАНИЙ

Прикрепим к нижней части грузика маятника мягкий грифелек и подвесим маятник над листом бумаги так, чтобы грифель касался бумаги (рис. 4.3).



Теперь слегка отклоним маятник. Качающийся грифелек прочертит на бумаге небольшой отрезок прямой линии. В середине качания, когда маятник проходит положение равновесия, карандашная линия будет пожирнее, так как в этом положении грифелек сильнее нажимает на бумагу. Если потянуть лист бумаги в направлении, перпендикулярном к плоскости колебания, то прочертится кривая, изображенная на рис. 4.3. Нетрудно сообразить, что получившиеся волночки будут расположены густо, если бумагу тянуть медленно, и редко, если лист бумаги движется со значительной скоростью. Чтобы кривая получилась аккуратной, как на рисунке, нужно, чтобы лист бумаги двигался строго равномерно.

Этим способом мы как бы «развернули» колебания.

Развертывание нужно для того, чтобы сказать, где находился и куда двигался грузик маятника в тот или иной момент времени. Представьте себе, что бумага движется со скоростью 1 см/с с момента, когда маятник находился в крайнем положении, например слева, от средней точки. На нашем графике это начальное положение соответствует точке, помеченной цифрой 1.

Через 1/4 периода маятник будет проходить через среднюю точку. За это время бумага продвинется на число сантиметров, равное 1/4Т — точка 2 на рисунке. Теперь маятник движется вправо, одновременно ползет и бумага. Когда маятник придет в правое крайнее положение, бумага продвинется на число сантиметров, равное 1/2Т, — точка 3 на рисунке. Маятник вновь идет к средней точке и попадает через 3/4Т в положение равновесия — точка 4 на чертеже. Точка 5 завершает полное колебание, и дальше явление повторяется через каждые Т секунд или через каждые Т сантиметров на графике.

Таким образом, вертикальная линия на графике — это шкала смещений точки от положения равновесия, горизонтальная средняя линия — это шкала времени.

Из такого графика легко находятся две величины, исчерпывающим образом характеризующие колебание. Период определяется как расстояние между двумя равнозначными точками, например между двумя ближайшими вершинами. Также сразу измеряется наибольшее смещение точки от положения равновесия. Это смещение называется амплитудой колебания.

Развертка колебания позволяет нам, кроме того, ответить на поставленный выше вопрос: где находится колеблющаяся точка в тот или иной момент времени. Например, где будет колеблющаяся точка через 11 с, если период колебания равен 3 с, а движение началось в крайнем положении слева? Через каждые 3 с колебание начинается с той же точки. Значит, через 9 с тело также будет в крайнем левом положении.

Нет нужды поэтому в графике, на котором кривая протянута на несколько периодов, — вполне достаточен чертеж, на котором изображена кривая, соответствующая одному колебанию. Состояние колеблющейся точки через 11 с при периоде 3 с будет такое же, как и через 2 с. Отложив на чертеже 2 см (мы ведь условились, что скорость протягивания бумаги равна 1 см/с, иными " словами, что масштаб чертежа — 1 см равен 1 с), мы увидим, что через 11 с точка находится на пути из крайнего правого положения в положение равновесия. Смещение в этот момент находим из рисунка.

Для нахождения смещения точки, совершающей малые колебания около положения равновесия, не обязательно прибегать к графику. Теория показывает, что в этом случае кривая зависимости смещения от времени представляет собой синусоиду. Если смещение точки обозначить через у, амплитуду через а, период колебания через Т, то значение смещения через время t после начала колебания найдем по формуле

y = α∙sin 2π∙t/T

Колебание, происходящее по такому закону, называется гармоническим. Аргумент синуса равен произведению 2π на t/T. Величина 2π∙t/T называется фазой.

Имея под руками тригонометрические таблицы и зная период и амплитуду, легко вычислить смещение точки и по значению фазы сообразить, в какую сторону точка движется.

Нетрудно вывести формулу колебательного движения, рассматривая движение тени, отбрасываемой на стенку грузиком, движущимся по окружности (рис. 4.4).



Смещения тени мы будем откладывать от среднего положения. В крайних положениях смещение у равняется радиусу круга α. Это амплитуда колебания тени.

Если от среднего положения грузик прошел по окружности угол φ, то его тень отойдет от средней точки на величину α∙sin φ.

Пусть период движения грузика (являющийся, конечно, и периодом колебания тени) есть Т: это значит, что 2π радиан грузик проходит за время Т. Можно составить пропорцию φ/t = 2π/T, где t — время поворота на угол φ.

Таким образом, φ = (2π/T)∙t и y = α∙sin (2π/T)∙t. Это мы и хотели доказать.

Скорость колеблющейся точки также меняется по закону синуса. К такому заключению нас приведет то же рассуждение о движении тени грузика, описывающего окружность. Скорость этого грузика есть вектор неизменной длины v0. Вектор скорости вращается вместе с грузиком. Представим мысленно вектор скорости как материальную стрелку, способную отбрасывать тень. В крайних положениях грузика вектор расположится вдоль луча света и тени не даст. Когда грузик от крайнего положения пройдет по окружности угол θ, то вектор скорости повернется на тот же угол и его проекция будет равна v0∙sin θ. Но по тем же основаниям; что и раньше, θ/t = 2π/T, а значит, мгновенное значение скорости колеблющегося тела

v = v0∙sin (2π/T)∙t

Обратим внимание на то, что в формуле для определения смещения отсчет времени ведется от среднего положения, а в формуле скорости — от крайнего положения. Смещение маятника равно нулю при среднем положении грузика, а скорость колебания — при крайнем положении.

Между амплитудой скорости колебания v0 (иногда говорят — амплитудным значением скорости) и амплитудой смещения имеется простая связь: окружность длиной 2πа грузик описывает за время, равное периоду колебания Т. Таким образом,

v0 = 2πа/T и v = 2πа/T∙sin (2π/T)∙t


СИЛА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ПРИ КОЛЕБАНИЯХ

При всяком колебании около положения равновесия на тело действует сила, «желающая» возвратить тело в положение равновесия. Когда точка удаляется от положения равновесия, сила замедляет движение, когда точка приближается к этому положению, сила ускоряет движение.

Проследим за этой силой на примере маятника (рис. 4.5).



Грузик маятника находится под действием силы тяжести и силы натяжения нити. Разложим силу тяжести на две составляющие — одну, направленную вдоль нити, и другую, идущую перпендикулярно к ней по касательной к траектории. Для движения существенна лишь касательная составляющая силы тяжести. Она-то и есть в этом случае возвращающая сила. Что касается силы, направленной вдоль нити, то она уравновешивается противодействием со стороны гвоздика, на котором висит маятник, и принимать ее в расчет надо лишь тогда, когда нас интересует вопрос, выдержит ли нить тяжесть колеблющегося тела.

Обозначим через х величину смещения грузика. Перемещение происходит по дуге, но мы ведь условились изучать колебания вблизи положения равновесия. Поэтому мы не делаем различия между смещением по дуге и отклонением груза от вертикали. Рассмотрим два подобных треугольника. Отношение соответствующих катетов равно отношению гипотенуз, т. е.

F/x = mg/l

или

F = (mg/I)∙х.

Величина mg/l во время колебания не меняется. Эту постоянную величину мы обозначим буквой k, тогда возвращающая сила F = k∙x. Мы приходим к следующему важному выводу: возвращающая сила прямо пропорциональна смещению колеблющейся точки от положения равновесия. Возвращающая сила максимальна в крайних положениях колеблющегося тела. Когда тело проходит среднюю точку, сила обращается в нуль и меняет свой знак или, иными словами, свое направление. Пока тело смещено вправо, сила направлена влево, и наоборот.

Маятник служит простейшим примером колеблющегося тела. Однако мы заинтересованы в том, чтобы формулы и законы, которые мы находим, можно было бы распространить на любые колебания.

Период колебания маятника был выражен через его длину. Такая формула годится лишь для маятника. Но мы можем выразить период свободных колебаний через постоянную возвращающей силы k. Так как k = mg/l, то l/g = m/k, и, следовательно*

T = 2π∙√(m/k)

Эта формула распространяется на все случаи колебания, так как любое свободное колебание происходит под действием возвращающей силы.

Выразим теперь потенциальную энергию маятника через смещение из положения равновесия х. Потенциальная энергия грузика, когда он проходит низшую точку, может быть принята за нуль, и отсчет высоты подъема следует вести от этой точки. Обозначив буквой h разность высот точки подвеса и положения отклонившегося груза, запишем выражение потенциальной энергии: U = mg∙(lh) или, пользуясь формулой разности квадратов,


Но, как видно из рисунка, l2h2 = x2, x и h различаются весьма мало, и поэтому вместо l + h можно подставить 2l. Тогда U = (mg/2l)∙x2 или

U = k∙x2/2

Потенциальная энергия колеблющегося тела пропорциональна квадрату смещения тела из положения равновесия.

Проверим правильность выведенной формулы. Потеря потенциальной энергии должна равняться работе возвращающей силы. Рассмотрим^ два положения тела — x2 и x1. Разность потенциальных энергий


Но разность, квадратов можно записать как произведение суммы на разность. Значит,


Но x2x1 есть путь, пройденный телом, kх1 и kх2 — значения возвращающей силы в начале и в конце движения, а (kх1 + kх2)/2 равно средней силе.

Наша формула привела нас к правильному результату: потеря потенциальной энергии равна произведенной работе.


КОЛЕБАНИЯ ПРУЖИН

Легко заставить колебаться шарик, подвесив его на пружину. Закрепим один конец пружины и оттянем шарик (рис. 4.6).



В растянутом состоянии пружина находится, пока мы оттягиваем шарик рукой. Если отпустить руку, пружина будет сокращаться, и шарик начнет движение к положению равновесия. Так же, как и маятник, пружина приходит в состояние покоя не сразу. По инерции будет пройдено положение равновесия, и пружина начнет сжиматься. Движение шарика замедляется и в какой-то момент он останавливается, чтобы тут же начать движение в обратную сторону. Возникает колебание с теми же типичными признаками, с которыми мы ознакомились, изучая маятник.

При отсутствии трения колебание продолжалось бы без конца. При наличии трения колебания затухают, и при этом тем быстрее, чем больше трение.

Зачастую роли пружины и маятника аналогичны. И та, и другой служат для поддержания постоянства периода в часах. Точный ход современных пружинных часов обеспечивается колебательным движением маленького махового колеса-баланса. В колебание его приводит пружина, которая свертывается и развертывается десятки тысяч раз в сутки.

У шарика на нитке роль возвращающей силы играла касательная составляющая силы тяжести. У шарика на пружине возвращающей силой является сила упругости сжатой или растянутой пружины. Таким образом, величина упругой силы прямо пропорциональна смещению: F = k∙x.

Коэффициент к имеет в данном случае другой смысл. Теперь это жесткость пружины. Жесткая пружина — это та, которую трудно растянуть или сжать. Именно такой смысл и имеет коэффициент k. Из формулы ясно: k равно силе, необходимой для растяжения или сжатия пружины на единицу длины.

Зная жесткость пружины и массу подвешенного к ней груза, мы найдем при помощи формулы T = 2π∙√(m/k) период свободного колебания. Например, груз с массой 10 г на пружине с жесткостью 105 дин/см (это довольно жесткая пружина — стограммовая гиря растянет ее на 1 см) будет совершать колебания с периодом T = 6,28∙10-2 с. В одну секунду будет происходить 16 колебаний.

Чем мягче пружина, тем медленнее происходит колебание. В том же направлении влияет и увеличение массы груза.

Применим к шарику на пружинке закон сохранения энергии.

Мы знаем, что для маятника сумма кинетической и потенциальной энергий K + U не изменяется

К + U сохраняется.

Значения К и U для маятника нам известны. Закон сохранения энергии говорит, что

(mv2/2) + (kx2/2) сохраняется

Но то же самое верно и для шарика на пружинке.

Вывод, который мы неизбежно должны сделать, весьма интересен.

Кроме потенциальной энергии, с которой мы познакомились раньше, существует, таким образом, потенциальная энергия и другого рода. Первая называется потенциальной энергией тяготения. Если бы пружина была расположена горизонтально, то потенциальная энергия тяготения во время колебания, конечно, не менялась бы. Новая потенциальная энергия, обнаруженная нами, называется потенциальной энергией упругости. В нашем случае она и равна 2/2, т. е зависит от жесткости пружины и прямо пропорциональна квадрату величины сжатия или растяжения.

Сохраняющаяся неизменной полная энергия колебаний может быть записана в виде Е = ka2/2, или Е = mv02/2.

Величины а и v0, входящие в последние формулы, представляют собой максимальные значения, которые принимают смещение и скорость во время колебания, — это амплитудные значения смещения и скорости. Происхождение этих формул вполне понятно. В крайнем положении, когда х = а, кинетическая энергия колебания равна нулю и полная энергия равна значению потенциальной энергии. В среднем положении смещение точки от положения равновесия, а следовательно, и потенциальная энергия равны нулю, скорость в этот момент максимальна, v = v0 и полная энергия равна кинетической.

Учение о колебаниях — обширный раздел физики. С маятниками и пружинками довольно часто приходится иметь дело. Но, конечно, этим не исчерпывается список тел, колебания которых приходится изучать. Колеблются фундаменты, на которых установлены машины, могут прийти в колебание мосты, части зданий, балки, провода высокого напряжения. Звук — это колебания воздуха.

Мы перечислили некоторые примеры механических колебаний. Однако понятие колебания может быть отнесено не только к механическим смещениям тел или частиц от положения равновесия. Во многих электрических явлениях мы тоже сталкиваемся с колебаниями, причем эти колебания происходят по законам, очень похожим на те, которые мы рассмотрели выше. Учение о колебаниях пронизывает все области физики.


БОЛЕЕ СЛОЖНЫЕ КОЛЕБАНИЯ

То, что говорилось до сих пор, относится к колебаниям вблизи положения равновесия, происходящим под действием возвращающей силы, величина которой прямо пропорциональна смещению точки от положения равновесия. Такие колебания происходят по закону синуса. Они называются гармоническими. Период гармонических колебаний не зависит от амплитуды.

Значительно сложнее колебания с большим размахом. Такие колебания происходят уже не по закону синуса, а развертка их дает более сложные кривые, различные для разных колеблющихся систем. Период перестает быть характерным свойством колебания и начинает зависеть от амплитуды.

Трение существенно изменяет любые колебания. При наличии трения колебания постепенно затухают. Чем сильнее трение, тем затухание происходит быстрее. Попробуйте заставить колебаться маятник, погруженный в воду. Вряд ли удастся добиться, чтобы этот маятник совершил больше одного-двух колебаний. Если погрузить маятник в очень вязкую среду, то колебания может и вовсе не быть. Отклоненный маятник просто вернется в положение равновесия. На рис. 4.7. показан типичный график затухающего колебания. По вертикали отложено отклонение от положения равновесия, а по горизонтали — время. Амплитуда (максимальный размах) затухающего колебания уменьшается с каждым колебанием.



РЕЗОНАНС

Ребенка посадили на качели. Он не достает ногами до земли. Чтобы раскачать его, можно, конечно, высоко поднять качели и потом отпустить. Но это довольно тяжело, да в этом и нет необходимости: достаточно слегка толкать качели в такт колебаниям, и через короткое время качели сильно раскачаются.

Для того чтобы раскачать тело, надо действовать в такт колебаниям. Иначе говоря, надо сделать так, чтобы толчки происходили с тем же периодом, что и собственные колебания тела. В подобных случаях говорят о резонансе.

Явление резонанса, широко распространенное в природе и технике, заслуживает внимательного рассмотрения.

Очень занятное и своеобразное явление резонанса вы можете наблюдать, если сделаете следующее приспособление. Протяните горизонтальную нить и подвесьте на нее три маятника (рис. 4.8) — два коротких одинаковой длины и один подлиннее. Теперь отклоните и отпустите один из коротких маятников. Через несколько секунд вы увидите, как другой маятник, такой же длины, постепенно тоже начинает колебаться. Еще несколько секунд — и второй короткий маятник раскачается, так что уже нельзя будет узнать, какой из двух начал движение первым.



В чем дело? Маятники одинаковой длины имеют одинаковые собственные периоды колебаний. Первый маятник раскачивает второй. Колебания передаются от одного к другому через связывающую их нить. Да, но ведь на нитке висит еще один маятник, другой длины. А что будет с ним? С ним ничего не произойдет. Период этого маятника другой, и короткому маятнику не удастся его раскачать. Третий маятник будет присутствовать при интересном явлении «переливания» энергии от одного маятника к другому, не принимая в этом никакого участия.

С явлениями механического резонанса сталкивался нередко каждый из нас. Может быть, вы только не обращали на него внимания. Хотя иногда резонанс бывает очень надоедливым. Мимо ваших окон проехал трамвай, а в буфете зазвенела посуда. В чем дело? Колебания почвы передались зданию, а с ним вместе и полу вашей комнаты, пришел в колебание буфет и посуда в нем. Так далеко и через столько предметов распространилось колебание. Это произошло благодаря резонансу. Внешние колебания попали в резонанс с собственными колебаниями тел. Почти любое дребезжание, которое мы слышим в комнате, на заводе, в автомашине, происходит благодаря резонансу.

Явление резонанса, как, впрочем, многие явления, может быть и полезным и вредным.

Машина стоит на фундаменте. Мерно, с определенным периодом, ходят ее движущиеся части. Представьте, что этот период совпадает с собственным периодом фундамента. Что получится? Фундамент довольно быстро раскачается, и дело может кончиться плохо.

Известен такой факт. В Петербурге по мосту шла в ногу рота солдат. Мост рухнул. По делу началось следствие. Казалось, не было оснований беспокоиться за судьбу моста и людей: сколько раз на этом мосту, собирались толпы людей, медленно проезжали тяжелые повозки, во много раз превышавшие вес роты солдат.

Но под действием тяжести мост прогибается на незначительную величину. Несравнимо большего прогиба можно достигнуть, если мост раскачать. Резонансная амплитуда колебания может быть в тысячи раз больше, чем смещение под действием такой же неподвижной нагрузки. Именно это и показало следствие — собственный период колебания моста совпадал с периодом обычного строевого шага.

Поэтому, когда воинское подразделение переходит мост, дается команда идти вольно. Если движение людей не будет согласованным, то явление резонанса не наступит, и мост не раскачается. Впрочем, этот несчастный случай инженеры хорошо запомнили. При проектировании мостов они стараются сделать так, чтобы период свободных колебаний моста был далек от периода строевого шага.

Так же точно поступают и конструкторы фундаментов для машин. Они стараются сделать фундамент таким, чтобы его период колебаний лежал подальше от периода колебаний движущихся частей машины.

Загрузка...