Иммунитет особенно отчетливо проявляется и лучше всего изучен у млекопитающих, хотя те или иные его проявления можно наблюдать и у просто организованных животных. У позвоночных, в первую очередь у теплокровных, иммунитет проявляется в двух видах — образования в крови антител против чужеродных белков и других антигенов и несовместимости клеток одного организма (хозяина — реципиента) с клетками другого организма (донора).
В ответ на введение антигена (ими могут быть не только чужеродные белки, но и другие большие молекулы) через некоторое время (одну-две недели) в крови появляются антитела — особые белки, относящиеся к группе иммуноглобулинов, специфически связывающиеся только с тем антигеном, который вызвал их появление. Каждая молекула антитела имеет два одинаковых активных центра, что позволяет им связывать по две молекулы антигена. Антитела синтезируются в В-лимфоцитах, и приобретенная способность к образованию определенного вида антител (иммунитет) сохраняется в организме годами, часто всю жизнь.
Несовместимость клеток проявляется при пересадках органов и тканей от одного животного (или человека) к другому. Она выражается в отторжении чужеродной ткани через 10–15 дней после трансплантации. Именно этим объясняется неуспех большинства пересадок и замен органов у человека. Чтобы такие трансплантации, например сердца или почки, удались, нужны специальные сродства, подавляющие иммунную систему организма-хозяина. В процессе отторжения участвуют Т-лимфоциты и макрофаги. В то же время пересадки ткани между генетически идентичными животными — однояйцевыми близнецами или чистопородными животными одной линии — удаются, они иммунологически толерантны, т. е. их ткани совместимы. Это означает, что Т-лимфоциты опознают и отторгают лишь клетки с иной генетической природой. Более точный генетический анализ показал, что у мышей есть особая группа генов Н-2, расположенных вместе, которая в основном и отвечает за толерантность или, наоборот, несовместимость при трансплантациях между животными. Если две мыши имеют в участке H-2 идентичные гены, то органы, пересаженные от одного животного к другому, не отторгаются.
Проблема иммунитета состоит в том, чтобы объяснить, каким образом введение чужеродного белка приводит к синтезу специфического вида антител, способных связывать именно данный вид антигена. Поскольку антигенов существует, казалось бы, бесконечное количество, то и антител к ним должно быть также бесконечное множество. Поэтому естественно, что все первые теории иммунитета на протяжении более 50 лет исходили из того, что антитела создаются при прямом участии молекулы антигена, как бы на ее поверхности и приспособительно (комплементарно) к ее строению.
Раскрытие механизмов синтеза белка поставило практически непреодолимые трудности перед такими гипотезами. Ho вот в начале 60-х годов появилась клональная теория австралийского ученого нобелевского лауреата Барнетта, завоевавшая в настоящее время общее признание и объясняющая иммунитет исходной гетерогенностью лимфоцитов, синтезирующих разные виды антител. Следующий шаг — объяснение молекулярно-генетических механизмов гетерогенности лимфоцитов — был сделан в самые последние годы в связи с именем Тонегавы. Иммунитет оказался не только важной биологической и медицинской проблемой, но и исключительной моделью дифференцировки, на которой впервые были показаны закономерные изменения в структуре генома, происходящие в ходе развития.
Принципиальные отличия клональной теории Барнетта от всех предыдущих становятся понятнее, если антиген сравнить с замком, а антитело к нему — с ключом, которое отпирает именно этот замок, выбирая его из множества других. Трудность решения — откуда к каждому «замку» находятся свои «ключи» — состоит прежде всего в том, что количество различных белков практически безгранично (теоретически для белков среднего размера в 300 аминокислот возможно 20300 вариантов молекул). Это число возрастает еще во много раз, так как даже небольшие химические модификации белка, например разные варианты гликозилирования, изменяют их антигенные свойства.
Однако эти астрономические величины имеют чисто теоретическое значение. В действительности активные центры антитела не могут быть комплементарны целой молекуле белка, а всегда лишь какой-то ее части с характерной поверхностью и не очень большой площадью. Эта часть — ее называют детерминантом — образована ограниченным количеством аминокислот (их всего 5–7), взаимное положение которых, правда, зависит от структуры остальной молекулы. Можно думать, что число возможных детерминантов не так велико, как возможное разнообразие белков. По очень приблизительным подсчетам оно может быть порядка 104-106.
В прошлом многочисленные теории иммунитета исходили из того, что в организме для каждого нового «замка» — антигена изготовляется новый вид «ключа» — антитело. Оказалось, однако, что в основе иммунитета лежит другой принцип — подбирание подходящего «ключа» из числа уже имеющихся в организме. Действительно, если связка ключей достаточно велика, а требования к точности подгонки не беспредельны, то найти нужный ключ, да обычно и не один, всегда удается.
Клональная теория Барнетта полагает (и это действительно так), что каждый лимфоцит производит только один вид антител и что в организме существует столько видов (клонов) лимфоцитов, сколько видов антител этот организм может производить. По современным подсчетам, число это имеет порядок от одного до десяти миллионов.
Согласно клональной теории, антиген, попавший в организм, случайно встречается с теми, пока немногими, лимфоцитами, которые способны к образованию антител против этого антигена. Некоторые молекулы антител, как бы «образцы продукции», находятся на поверхности таких лимфоцитов, где и происходит их первая встреча с антигеном. Контакт с антигеном, согласно теории, стимулирует данный лимфоцит к активному размножению и синтезу антител, в результате чего образуется большая популяция лимфоцитов одного клона, продуцирующих только один вид антител.
При попадании в организм другого антигена стимулируется размножение другого клона лимфоцитов и соответственно синтез другого вида антител. Так как исходно имеется не менее миллиона видов антител, то каждый новый антиген находит один или более видов антител, которые ему комплементарны и с ним связываются. При этом соответственно активируется размножение новых клонов лимфоцитов.
В принципе антитело может быть комплементарно не к одному, а к ряду антигенов со сходными детерминантами, но практически найти второй антиген (точнее, детерминант) к тому же антителу обычно очень трудно.
Таким образом, в организме — в крови, в лимфоузлах и кроветворных органах — должно содержаться около миллиона различных клонов лимфоцитов, каждый из которых представлен, как правило, очень небольшим количеством, может быть всего сотнями, клеток. Ho организм почти всегда иммунизирован против ряда антигенов, которые посредством инфекции успевают в течение жизни в него попасть. Число таких антигенов, вероятно, не очень велико, может быть десятки или сотни. Te клоны лимфоцитов, которые вырабатывают антитела против этих антигенов, уже успевают размножиться, и число лимфоцитов в каждом таком «работающем» клоне должно быть в миллионы раз выше. Лимфоциты этих относительно немногих клонов составляют значительную долю всей популяции лимфоцитов в организме (у мыши их миллиард, у человека еще в тысячу раз больше).
При попадании в организм нового антигена иммунизация происходит не сразу: на отыскание немногих лимфоцитов «своего» клона, на их размножение и выбрасывание в кровь достаточных количеств антител обычно уходит около двух недель. Этот срок является критическим при многих опасных инфекционных заболеваниях. Если микробы, попавшие в организм, быстро размножаются, а токсины, которые они вырабатывают, очень ядовиты, то организм погибает, не успев создать иммунной защиты. Если же ему удалось прожить с инфекцией хотя бы одну-две недели, то далее образование антител в В-лимфоцитах блокирует токсины, а Т-лимфоциты уничтожают и сами микроорганизмы.
Существует еще одна важная проблема, без решения которой не может быть теории иммунитета, Теория должна ответить на вопросы: почему не вырабатываются антитела к своим собственным белкам? почему лимфоциты не «считают» их антигенами? Клональная теория Барнетта полагает, что все лимфоциты, которые могли бы синтезировать антитела против собственных антигенов, встречаются с ними в раннем постэмбриональном или даже эмбриональном развитии и эта ранняя встреча подавляет размножение подобных лимфоцитов или даже убивает их.
Ho проблему отсутствия антител к своим белкам еще нельзя считать до конца решенной. Она имеет важное значение для понимания того, как организм защищается против появления новых белков, кодируемых своими же генами, например при злокачественных перерождениях клеток.
Иммунитет осуществляется лимфоцитами, которые, как и все клетки крови, образуются из одного источника — стволовых клеток крови в костном мозге и селезенке. Начальным этапом образования лимфоцитов являются полустволовые клетки — предшественники лимфоидных клеток, которые затем дифференцируются в лимфоциты двух типов — T- и В-клетки. Дифференцировка Т-клеток происходит в зобной железе — тимусе, куда они мигрируют из костного мозга. В тимусе образуется несколько разновидностей Т-клеток, которые выходят в кровь и становятся киллерами (убийцами), хелперами (помощниками) и супрессорами (подавителями). Функция Т-клеток-киллеров состоит в том, чтобы опознать чужеродную клетку и убить ее.
Т-клетки образуют клоны, различающиеся по их способности опознавать чужеродные клетки. Это происходит потому, что Т-клетки каждого клона по своей поверхности несут молекулы какого-то одного типа антител. Когда в организм попадают чужие клетки, антигены, находящиеся на их поверхности, взаимодействуют с антителами поверхности различных Т-клеток. Среди многих разных Т-клеток находятся и те, чьи антитела способны связываться с антигеном чужой клетки. Когда такая встреча происходит, Т-клетки этого клона быстро размножаются и убивают те чужеродные клетки, которые индуцировали их размножение. Механизм «убийства» до конца неизвестен, но Т-киллеры нарушают у чужеродной клетки проницаемость ее мембраны, что и приводит к ее гибели.
Роль В-лимфоцитов иная. Они не только синтезируют иммуноглобулины, но и выделяют их в кровь. Если Т-клетки в основном участвуют в защите организма от чужих клеток, то В-клетки защищают организм от чужих молекул.
Таким образом, иммунную защиту осуществляют специфические лимфоциты, которые надо различать по нескольким параметрам. Главный из них состоит в «выборе» одного типа иммуноглобулинов. Этот выбор происходит задолго до встречи с антигеном, где-то в начале дифференцировки лимфоцитов, и осуществляется на генном уровне (мы рассмотрим его в следующих разделах). Затем происходит разделение на два пути дифференцировки — на T- и В-лимфоциты с их различным назначением. И наконец, Т-клетки подразделяются на типы клеток с различной функцией (киллеры, хелперы и т. д.). Пути дифференцировки и механизмы действия лимфоцитов еще не вполне понятны.
В последние годы получило большое развитие искусственное создание опухолевых клеток, производящих антитела одной антигенной специфичности, или, иначе, моноклональные антитела. Такие клетки называют гибридомами, так как их получают путем соматической гибридизации опухолевых (миэломных) клеток с В-лимфоцитами, синтезирующими антитела. Это обеспечивает неограниченное размножение таких клеток в культуре. Схематично метод состоит в том, чтобы гибридизировать миэломные клетки с лимфоцитами от мыши, иммунизированной определенным антигеном. Далее гибридные клетки расселяют с тем, чтобы вырастить из каждой отдельный клон. Антитела, производимые каждым клоном, испытывают на их связывание с интересующим нас антигеном. Так как мышь была иммунизирована, то определенная часть гибридных клонов производит антитела к выбранному антигену. Каждый такой клон производит антитела только одного вида, и получать их можно в любом количестве, так как, приобретя опухолевые свойства, гибридные клетки легко размножаются в культуре. Моноклональные антитела сейчас начинают широко использовать не только в научных целях. Изучается возможность применять их для лечения таких, например, заболеваний, как рак. Метод может стать основой для промышленного получения моноклональных антител против различных заболеваний.
Молекула антитела — иммуноглобулина (ИГ) состоит из четырех полипептидных цепей — двух одинаковых больших (тяжелых) и двух одинаковых меньших (легких), связанных друг с другом S — S-мостиками. Специфичность взаимодействия молекулы ИГ с антигеном создается уникальностью самих цепей — тяжелой нелегкой, а также их уникальным сочетанием. Иначе говоря, сложная молекула ИГ узнает «свой» антиген благодаря деталям строения, которыми данный вид ИГ отличается от ИГ других видов (хотя каждая молекула ИГ содержит две тяжелые и две легкие цепи с похожим, но не тождественным строением). Упрощая дело, можно сказать, что миллион вариантов ИГ получается как произведение тысячи вариантов легких цепей на тысячу вариантов тяжелых цепей.
Структура ИГ сейчас изучена во всех деталях. Задача была очень трудной из-за того, что обычно в крови одновременно находится множество различных ИГ (каждая в малом количестве) и получить чистый препарат казалось невозможным. «Помогло» несчастье. У некоторых людей, больных особой формой лейкоза — миэломой, патологически размножается один клон лимфоцитов, производящий в очень большом количестве какой-либо один вид антител. Исследование однородных препаратов ИГ, полученных от таких больных, позволило детально изучить, что общего и что разного у разных видов молекул ИГ.
Особенность каждого варианта полипептидной цепи создается, как всегда, в белках за счет их первичной структуры, т. е. последовательности аминокислот. Каждая легкая цепь ИГ состоит из двух примерно равных частей — вариабельной (V) и константной (C), содержащих по 110–120 аминокислот. Константные части легких цепей могут быть двух типов — каппа и лямбда. Вариабельную же часть легких цепей в разных ИГ представляют около 1000 разных вариантов последовательностей аминокислот.
Тяжелые цепи ИГ тоже состоят из вариабельной части и константной, но гораздо большего размера. Вариабельные части тяжелой цепи также имеют около тысячи разных вариантов. Ho и вариабельные части ИГ отличаются друг от друга не по всей длине, а имеют несколько совсем коротких (6—10 аминокислот) гипервариабельных участков, которые в разных ИГ имеют совсем различный порядок аминокислот.
Участок, связывающий вариабельную и константную части, благодаря высокому содержанию в нем аминокислоты — пролина обладает повышенной подвижностью, что, очевидно, играет важную роль при связывании антитела с антигеном. Этот «пограничный» участок молекулы называют соединительным и обозначают буквой «джей» (J).
Инактивация антигенов антителами становится возможной не только из-за того, что вариабельные концы тяжелой и легкой цепей образуют специфический антиген-опознающий центр. He менее важно и то, что молекула ИГ содержит по две тяжелые и легкие цепи и у нее имеется два одинаковых центра. Благодаря этому одна молекула ИГ соединяется с двумя молекулами антитела, точнее, с ее детерминантами. В пробирке при достаточных концентрациях антител и комплементарных к ним ИГ образуются нерастворимые большие комплексы, которые выпадают в осадок.
Теперь мы можем рассмотреть, как создаются антитела, т. е. каким образом достигается такое их исходное разнообразие и, в частности, почему клетки одного клона лимфоцитов синтезируют только один вид иммуноглобулинов.
Прежде всего мы должны рассмотреть, как организованы гены ИГ у будущих лимфоцитов до того, как эти клетки стали отличаться друг от друга, т. е. до того, как образовались разные их клоны. Очевидно, что так же организованы гены ИГ и у всех других клеток организма, у тех, которые дифференцируются в иных направлениях и никогда не станут лимфоцитами.
Гены легких цепей расположены в двух разных хромосомах, а гены тяжелых — в третьей. Каждая из них в диплоидной клетке, естественно, представлена парой гомологичных хромосом. Это в принципе создает возможность для образования в одной клетке не одного, а двух видов легких цепей (каппа- и лямбда-типа), а с учетом возможных различий гомологичных хромосом и пары хромосом с генами тяжелых цепей — восьми видов ИГ. Фактически же в одном лимфоците всегда образуется только один вид ИГ. Это достигается путем так называемого аллельного исключения. Если в ИГ-продуцирующих клетках перестраивается и затем активируется ген легкой цепи каппа в первой хромосоме, то гены легких цепей каппа в гомологичной хромосоме не перестраиваются и не активируются, а как бы исключаются из состава генов данной клетки — родоначальницы клопа. Такое же исключение происходит и во всех потомках этой клетки, т. е. во всем клопе. Если в данном лимфоците активируется ген каппа-цепи в одной из хромосом, то не включаются и оба гена лямбда-цепей в другой паре хромосом. Наоборот, включение одного из лямбда-генов выключает тем самым оба каппа-гена. В итоге из четырех возможных активным в лимфоците остается только один ген легких цепей. Аналогичным образом активируется ген тяжелой цепи только в одной из двух гомологичных хромосом. В другой гомологичной хромосоме аллельный ген тяжелой цепи исключается. Благодаря аллельному исключению достигается то, что в клетках каждого клона работают только два гена ИГ — одной легкой цепи (каппа или лямбда) и одной тяжелой — и каждый лимфоцит продуцирует только один вид антител. Механизм аллельного исключения неизвестен. Он представляет в генетике один из очень немногих примеров такого рода,
«Ген» каждой цепи ИГ представляет собой сложную многокомпонентную систему, располагающуюся вдоль хромосомы на значительное расстояние, в десятки тысяч пар оснований (килобаз). Называть эту систему одним геном было бы так же неверно, как и считать ее десятком или сотней генов. Это именно система, состоящая из множества вариабельных и нескольких константных последовательностей, которые собираются в один ген иммуноглобулина только, в результате довольно сложных преобразований, которые происходят при появлении первых лимфоцитов, еще в эмбриогенезе.
Система гена легких цепей каппа состоит из следующих компонентов (рассматривая их в порядке считывания слева направо). В начале системы (слева) находится большая группа участков ДНК, кодирующих вариабельную часть гена. Каждый из них содержит 291 пару нуклеотидов и кодирует соответственно 97 аминокислот. Всего таких участков около трехсот. Далее (правее) через значительное расстояние (около 2700 пар нуклеотидов) находится группа небольших участков «джей» (их четыре или пять), кодирующих по 13 аминокислот, соединяющих вариабельную и константную части ИГ. Наконец, дальше (еще правее) располагается участок, кодирующий константную часть ИГ.
Во время дифференцировки лимфоцитов в одной из хромосом, несущих систему каппа-гена легких цепей, происходит сближение одного из вариабельных участков (V) с одним из участков «джей» (J) и с участком, кодирующим константную часть гена (С). Пока не до конца ясно, каков конкретный механизм сближения: это может быть делеция, т. е. выбрасывание части ДНК так, что одна из F-последовательностей оказывается рядом с одним из J. Ho может быть это и транспозиция, т. е. перенос одной из V к одному из J. Важно то, что процесс этот случаен и рядом с любой из V (их 300) может оказаться любая из J (их 4). В итоге создаются комбинации, общее возможное число которых нетрудно подсчитать: 300 × 4 = 1200. Это число и означает количество теоретически возможных вариантов каппа-гена легких цепей. В лямбда-генах такой принципиальной перестройки не происходит, но самих этих генов у мыши 20 и если в лимфоците образуется легкая лямбда-цепь, то одна из двадцати возможных.
Приблизительно так же, как и каппа-ген, устроена и система гена тяжелых цепей. Различия состоят в том, что число вариабельных участков там меньше-(около 120), но зато между ними и «джей» находится еще 20 вариантов элемента D. Кроме того, в систему гена тяжелой цепи входит не один, а несколько константных участков, от которых, однако, антиген-узнающая специфичность антител не зависит. При случайном сближении элементов V, J и D (путем делеции ДНК между ними или путем их транспозиции) теоретически возможно следующее количество вариантов: 120V × 20D × 4J = 9600.
В итоге в лимфоците случайным образом создаются два гена — для легких и для тяжелых цепей. Так как в молекуле ИГ (антитела) свойства центра связывания антигена определяются вариабельными частями и легкой и тяжелой цепей совместно, то в принципе число вариантов строения такого центра равно числу возможных сочетаний и превышает десять миллионов: 1200 × 9600 = 11,5 · 108. Действительно ли число возможных вариантов так велико, как это представляется из этих расчетов, точно пока неизвестно. Полагают, что оно несколько меньше.
Механизм делений, или транспозиций, также неизвестен, но подобный процесс определенно происходит, так как еще в первых работах Тонегавы было показано, что строение гена ИГ в лимфоците отличается от строения этого участка в ДНК недифференцированной или иначе дифференцированной клетки. Пока это единственный известный случай, когда в ходе дифференцировки происходит непременная, хотя и случайная перестройка генома. Что же касается деталей и точных механизмов такой перестройки, то на них сейчас обращено внимание стольких квалифицированных исследователей, что решение проблемы — это вопрос только времени.
Выше мы говорили, что система гена тяжелых цепей содержит не один, а несколько константных частей. Действительно, по ходу дифферепцировки лимфоцита в нем происходит смена этих частей. Сначала в состав гена входит только ближайшая константная часть и синтезируется антитело класса М, которое располагается на поверхности лимфоцита и является как бы выставкой, образцом его продукции. Если антиген окажется комплементарным этому образцу, то их соединение стимулирует лимфоцит к размножению и синтезу антител следующего класса (используется следующая константная часть класса G). Эти антитела уже секретируются в кровь и создают иммунитет.
Так, в результате преобразований в относительно небольшой части генома создается более миллиона различных клонов лимфоцитов, способных создавать иммунитет практически против любого антигена, случайно или искусственно попавшего в организм. Количество этих клонов намного превышает общее число генов. Оно, конечно, никак не могло быть получено «обычным путем», т. е. за счет наличия в геноме многих различных генов иммуноглобулинов и включения одного из них. Перестройка генов для образования разных антител — еще один пример того, что эволюция способна создавать такие «чудеса», которые не может предугадать ничья фантазия. Биологический смысл появления в эволюции подобного механизма очевиден — создание большого и случайного разнообразия за счет относительно небольшого участка ДНК.
Можно ли ожидать, что механизм, подобный этому, встретится и в других дифференцировках? Подобный механизм может оказаться целесообразным только там, где существенна не определенность, а разнообразие, даже случайное. Может быть, мы встретимся с чем-то подобным при изучении связей между отдельными нервными клетками мозга. А может быть, нечто похожее происходит при образовании пятнистой окраски, там, где положение пятен должно быть случайным. А может быть, перестройка генетической системы синтеза ИГ — это уникальный механизм и мы не встретим его больше нигде.
Схема образования молекулы иммуноглобулина (ИГ)
Системы генов легких (слева) и тяжелых (справа) цепей ИГ расположены в разных хромосомах и состоят из отделенных друг от друга участков ДНК, кодирующих разные части молекулы ИГ: L — лидерную последовательность, V — вариабельные части ИГ, D — участок ИГ, увеличивающий разнообразие V-части тяжелых цепей, J — соединительную часть и С — константные части молекулы ИГ (в тяжелых цепях их несколько классов). В эмбриональных клетках-предшественниках лимфоцитов ДНК содержит много генов для V-участков ИГ (для легких каппа-цепей их 300, для тяжелых цепей их 120), несколько последовательностей для D-участков (около 20) и четыре-пять последовательностей для J-участков (I). При дифференцировке (созревании) лимфоцитов происходит перемещение и исключение генетического материала, в результате чего создаются гены ИГ зрелых лимфоцитов (II). В них оказываются сближенными по одному из V-, D- и J-генов и ген константной части (С). Выбор V-, D-, J-участков при соэревании лимфоцитов происходит случайно. В результате создается один составной ген ИГ. При экспрессии генов ИГ в зрелом лимфоците транскрибируются пре-мРНК (III), которые теряют некодирующие белок интроны и становятся молекулами мРНК (IV). С них транслируются легкие и тяжелые полипептиды — пре-ИГ (V), содержащие на одном конце лидерную последовательность аминокислот, необходимую для прохождения полипептида через мембраны. После процессинга пре-ИГ образуются готовые субъединицы ИГ (VI), которые собираются в молекулу ИГ, состоящую ив двух одинаковых легких и двух одинаковых тяжелых субъединиц (VII). При созревании одного эмбрионального предшественника лимфоцитов (I → II) возникает уникальное сочетание V-и J-участков легких цепей и V-, D- и J-участков тяжелых цепей. Эта клетка дает начало клону лимфоцитов, синтезирующих только один вид ИГ, отличающийся от ИГ лимфоцитов других клонов. СЦ — специальные центры, образованные между вариабельными частями легких и тяжелых цепей ИГ, в которых происходит связывание ИГ с антигеном