1. Геометрия

Жаль, что уже не увижу деревья, какими видел их раньше.

Представьте, что сейчас ранняя весна, вечерние сумерки, и вы сидите в каком-то малознакомом парке. Что вы увидите, подняв глаза от страницы этой книги? Вероятно, замысловатый узор из светлых и темных силуэтов, вливающихся в шероховатые столбы – стволы деревьев; толстые ветви, ветки потоньше, мелкие прутья; потрепанные обрывки плоскостей – листьев. А еще цветы и траву. Геометрические формы позволяют нам узнавать или, по крайней мере, называть то, что нас окружает.

Мы видим, как зрительно меняются формы, распознаём их движение – наблюдаем, например, как листья и ветки покачиваются от легкого ветерка.

Листья на вершине высокого дерева всё еще освещены солнцем, хотя ствол погружен в темноту. Мы обычно говорим, что тьма спускается, но здесь она как будто поднимается (а если мы придем в парк утром, то увидим, как по стволу дерева спускается рассвет). Геометрия солнца и земли являет во всей простоте то, чего мы раньше не замечали в этом мире.

На протяжении веков художники великолепно чувствовали геометрию. Приведу лишь несколько примеров. А если вы немного покопаетесь в «Гугле», то найдете еще больше.

Построенный в IX, а затем воссозданный в XIII веке дворец Альгамбра в испанской Гранаде – прекрасный образец исламского искусства и архитектуры. Множество декоративных мозаик, включая ту, что приведена ниже, являются замощениями плоскости правильными многоугольниками.



Это фигуры, которыми можно покрыть всю поверхность без наложений и пропусков, поскольку все они соприкасаются друг с другом лишь краями (частично или полностью). Клетки шахматной доски или шестиугольные пчелиные соты – наиболее известные из таких фигур, но есть и другие.

В книге Бранко Грюнбаума[17] и Джоффри Шепарда[18]«Плитки и паттерны» (этот семисотстраничный труд вполне заслуживает эпитета «всеобъемлющий») приводится огромное количество примеров не столько из области искусства, сколько из области математики[19]. Вообще существует семнадцать различных паттернов, обладающих красноречивым названием «группы орнамента». То, что таких паттернов всего семнадцать, было доказано в конце XIX века, но исламские художники знали об этих способах мощения за сотни лет до того, как русский кристаллограф и математик Евграф Фёдоров представил свое доказательство данного тезиса[20]. Иногда художники интуитивно делают открытия, которые математики проверяют и доказывают лишь многие годы спустя.




Взаимодействие геометрии и искусства отражают также подобные треугольники. Из школьных уроков геометрии мы знаем, что два треугольника подобны, если они имеют одинаковую форму, даже если у них разные размеры. Фигура называется самоподобной, если она состоит из элементов, каждый из которых подобен целой фигуре. На верхнем рисунке слева приведена фигура, состоящая из треугольников, расположенных внутри других треугольников, – это треугольник Серпинского, одна из самых известных самоподобных фигур. Чтобы увидеть ее самоподобие, обратите внимание на то, что она состоит из трех частей – нижней левой, нижней правой и центральной верхней, – каждая из которых подобна целому треугольнику. Об этом треугольнике мы поговорим подробнее в третьей главе.

Фракталы (класс фигур, впервые описанных математиком Бенуа Мандельбротом) – фигуры, построенные из частей, среди которых каждая так или иначе подобна целому. Кусочек береговой линии, если его рассматривать вблизи, выглядит так же, как ее большой отрезок с большого расстояния; листочек папоротника выглядит как сам папоротник в миниатюре; двухметровая нить ДНК сворачивается внутри клеточного ядра диаметром примерно в одну миллионную часть ее длины, повторяя один и тот же способ сложения каждый раз в меньшем масштабе. Это фракталы, которые мы наблюдаем в природе. Простейшие фракталы – самоподобные фигуры вроде треугольника Серпинского.

Круглый узор под треугольником на рисунке слева – это плиточный орнамент XIII века в одном из итальянских соборов, представляющий собой шесть фигур, напоминающих изогнутые треугольники Серпинского, окруженные кольцом треугольников поменьше[21]. (Делая данный набросок, я измерил и зарисовал основные элементы, а остальное заполнил на глаз. Это заняло немало времени. Но оригинал вырезался вручную, элемент за элементом, а потом они складывались вместе. Когда я об этом думаю, тот час, что я провел над рисунком, уже не кажется таким долгим.)



Художники размышляли над самоподобием многие века. Почему? Потому что оно часто встречается в природе, а художники внимательно присматриваются к ней.

Более свежим примером использования самоподобия является картина Дали «Лицо войны» (1940), изображающая бесчисленные ужасы гражданской войны в Испании. На картине мы видим лицо, в глазницах которого и во рту заключены другие лица, в чьих глазницах и ртах снова заключены лица, и так далее еще на несколько уровней вглубь. Паттерн очень напоминает треугольник Серпинского – повторение фигур, выстроенных в треугольник, только в данном случае располагающихся наверху слева и справа и внизу посредине. Картина Дали гораздо страшнее, чем мой набросок: по обеим сторонам головы без тела вьются клубки змей[22]

Загрузка...