Последние два дня вы чувствовали себя разбитым. Вот и сегодня утром встали с температурой и сухостью во рту. Вы еле передвигаете ноги, будто на них надеты кандалы. «С наступлением осени так бывает. Похоже на недостаток железа», – говорит вам врач. И он наверняка прав, ведь это его работа, а в вашу-то голову уже начали лезть всякие мысли о вирусе, который пересек океаны, чтобы вас заразить. Взволнованный, с колотящимся сердцем, вы идете сдавать кровь на анализ. Двадцать минут спустя игла входит в вашу вену – и пробирка наполняется красно-фиолетовой жидкостью. Вам ее оттенок ни о чем не говорит, а профессионал сразу поймет, что вам не хватает не только железа.
По цвету крови действительно можно многое узнать о ее свойствах и компонентах. Впрочем, не только по цвету, но и по запаху, и даже вкусу! Если глаза – это зеркало души, то вытекающая из тела кровь – окно в наш внутренний мир, в физиологическом смысле конечно. Стоит услышать словосочетание «вытекающая кровь», и мы сразу представляем кого-то, кто порезался или упал в обморок, когда у него брали кровь. Но кровь можно терять, не имея ни внешних, ни внутренних травм! Неспроста есть такое выражение – «пóтом и кровью». Существует физиологическое расстройство, при котором пациент выделяет кровавый пот, оно называется гематидрозом. Долгое время такое расстройство считалось чем-то сродни стигматам. Первый описанный случай гематидроза встречается в Новом Завете (Лк. 22, 44). Кровавым потом сопровождалась одна из Страстей Христовых: перед тем как Иисуса схватили римляне, он испытал сильный стресс, это, вероятно, и спровоцировало кровавый пот. В христианской традиции такое явление связано с праведниками и причисленными к лику блаженных[6]. Описание нескольких случаев гематидроза можно найти и в медицинской литературе последних лет – естественно, факты там изложены вне религиозного контекста. Сегодня выделение крови вместе с потом и слезами уже не толкуют как проявление религиозной экзальтации, теперь это предмет изучения медицины внутренних органов.
Из чего же состоит кровь? Что содержится в нашем «внутреннем море»? В 1987 году режиссер Джо Данте снял фантастический фильм «Внутреннее пространство». В этой картине один доктор уменьшается с помощью волшебной машины и изучает тело пациента, путешествуя внутри его в микроскопической подводной лодке[7]. А если бы мы смогли таким же фантастическим образом погрузиться в океан крови, что бы мы там увидели?
Три основных типа клеток – эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца) и тромбоциты (кровяные пластинки) – составляют 45 % крови. Оставшиеся 55 % – ее жидкая часть, плазма (не путайте с сывороткой крови – плазмой, лишенной в лабораторных условиях факторов свертывания). Сама по себе плазма – это смесь из тысяч разных веществ, в небольших количествах растворенных в соленой воде: от самых простых, к примеру газов или металлов, до имеющих сложное строение, таких как альбумин и иммуноглобулины.
Альбумин – важнейший элемент плазмы, этот белок невозможно синтезировать в лаборатории, и его до сих пор получают из донорской крови, если пациент нуждается в оперативном вмешательстве или находится в реанимации. Для чего нужны белки в плазме? Одни способствуют свертываемости крови при повреждении сосудов и тем самым предотвращают чрезмерную кровопотерю, другие защищают нас от болезнетворных микроорганизмов.
Плазма, переносящая множество разных клеток, предлагает большой набор услуг по доставке – этакий курьер внутри нашего тела. Она выполняет транспортную функцию: доносит куда нужно продукты деятельности собственных клеток и клеток других тканей и органов. Именно так по нашему организму перемещаются, например, гормоны или конечные продукты метаболизма. Кроме того, белки плазмы, такие как альбумин, сопровождают большинство лекарств, попадающих в наше тело, а потом и их производные, когда почки и печень переработают эти медикаменты. Собственно, большинство препаратов, которые мы принимаем перорально или в виде инъекций, начинают действовать не сию секунду, сначала их нужно активировать биологическими ключами (или, скорее, ножницами) – ферментами, они помогают выработать десятки нужных продуктов, воздействующих, к примеру, на боль, тревожность, тошноту, воспаление или опухоли.
Плазма переносит и вирусы, но не все они опасны, некоторые вполне естественны для нашего организма, это так называемые эндогенные вирусы, они помогают иммунной системе нас защищать, – к ним мы вернемся позже. Иногда в плазму попадают паразиты и бактерии, что может грозить инфекционными заболеваниями. Как правило, это происходит после укуса какого-нибудь насекомого в тропических странах. Благодаря плазме кровь также транспортирует растворенную ДНК, носительницу генетической информации. Эта информация заключена в хромосомах, а те, в свою очередь, расположены в клеточных ядрах. И еще один факт. Согласно открытию, сделанному в 2020 году, кровь переносит множество свободных митохондрий, хотя ранее считалось, что эти микроскопические электростанции существуют только внутри клеток.
Есть один недуг, который связан с составом крови, но не имеет отношения к вирусам или паразитам. Он может развиться у кого угодно в альпинистском походе, причем поражает внезапно, словно удар молнии. Речь идет о горной болезни. Возможно, вы с ней сталкивались, если пытались подняться на Монблан или другую вершину. Как сказано в некоторых путеводителях, у 70 % желающих взойти на «крышу» Западной Европы возникают симптомы горной болезни: одышка, головные боли, помутнение сознания и другие. Все начинается с легкого дискомфорта, но как только он возник, нужно немедленно спускаться, иначе ваши испытания в походе не ограничатся снежным бураном – вы можете получить серьезные проблемы со здоровьем. Что же становится причиной горной болезни? Разреженность воздуха, вызывающая недостаток кислорода в крови. Среди альпинистов есть везунчики, которые не подвержены этому недугу. В горах их организмы переходят в режим выживания и компенсируют эту нехватку: они начинают производить больше эритроцитов (учащаются сердцебиение и дыхание), чтобы обеспечить все органы необходимым количеством кислорода.
Эритроциты – второй важный компонент крови. Наш организм производит по сто миллиардов этих клеток в день. Это сравнимо с числом нейронов в нашем мозге! Эритроцит – маленькая двояковогнутая клетка. Она будто сплющена посередине и похожа на пышку, только без дырки. В центре эритроцита нет ядра – отсюда и такая форма. Фактически это своего рода мешок с гемоглобином, макромолекула, переносящая кислород. В каждом эритроците тысячи молекул гемоглобина, которые составляют около 96 % его сухой массы и 35 %, если учитывать воду. Одна молекула гемоглобина может нести до четырех молекул кислорода. Роль вагонов для их перевозки выполняют содержащиеся в гемоглобине атомы железа, с ними-то и связывается кислород.
Это происходит, когда кровь проходит через легкие. Затем в тканях кислород высвобождается, чтобы обеспечить клеточное дыхание и энергию для жизненно необходимых процессов. Состав гемоглобина важен для правильной работы эритроцитов, ведь многие болезни, так называемые гемоглобинопатии, связаны с нарушением синтеза этого белка. Наиболее известные из них – талассемия и серповидноклеточная анемия.
Последняя связана с мутацией гена гемоглобина, которая приводит к изменению одной из составных частей белка – аминокислоты. Если пациент унаследовал от каждого родителя по аномальному аллелю, то он страдает классической формой серповидноклеточной анемии (гемоглобинозом S). Если же аномальный аллель получен лишь от одного из родителей, то такой человек – просто носитель серповидноклеточного признака и, как правило, не имеет симптомов заболевания. При этом его эритроциты обладают повышенной устойчивостью к малярии. Так что носители серповидноклеточного признака, по-видимому, находятся в выгодном положении: они могут передавать по наследству мутировавший ген, который защищает от этой болезни.
Странно и любопытно, что важные для жизнеобеспечения организма вещества слаженно работают, находясь внутри эритроцита, но становятся опасными за пределами его мембраны или при увеличении их количества. Кровь со свободным гемоглобином, тем, который находится вне эритроцитов, нельзя переливать, поскольку этот компонент красных кровяных телец токсичен. Такой гемоглобин появляется при гемолизе – разрушении эритроцитов в сосудах, и, попадая в кровоток, он вызывает серьезные осложнения. Из-за этого попытки сделать гемоглобин медицинским препаратом потерпели неудачу.
Избыток кислорода тоже вреден, особенно для легких. Об этом известно давно, и все же по всему миру открываются бары, где клиентам предлагают подышать высококонцентрированным кислородом. Надо сказать, такие места достаточно популярны в том числе во Франции и по распространенности уступают лишь винным, витаминным (с фруктовыми и овощными соками) и салат-барам, а также суп-кафе. Любители употреблять кислород в виде коктейлей уверены, что в нем сплошная польза: он оздоравливает, придает сил и даже вызывает эйфорию. Однако стоит предупредить, что это небезвредно и опасно для легких. Если здоровый человек несколько часов подышит стопроцентным кислородом, он получит сильнейшее отравление с возможным летальным исходом!
Что касается железа, его атомы не защищены другими молекулами, своего рода телохранителями, поэтому небезопасны для организма: в пероральной форме оно зачастую плохо переносится пациентом, а при внутривенном введении важно, чтобы этот металл не попал за пределы вены, так как это грозит некрозом тканей. В последнее время благодаря некоторым галеновым препаратам[8] железо переносится лучше, и все же его атомы должны быть покрыты сахарами или другими веществами – это позволяет избежать серьезных побочных эффектов.
Гемоглобин содержится не только в эритроцитах. Он встречается в нейронах, в особого типа белых кровяных тельцах – макрофагах, в клетках эпителия легочных альвеол и в почках. Он служит антиоксидантом и регулятором обмена железа. Подобные молекулы обнаружены у многих беспозвоночных, грибов и даже растений. Например, такая разновидность гемоглобина, как легоглобин, он же леггемоглобин, помогает избавляться от кислорода тем микроорганизмам, для которых он губителен, – их жизнедеятельность поддерживают другие вещества. Такие микроорганизмы называют анаэробными. Молекула легоглобина, как и молекула гемоглобина, имеет красный цвет. С 2019 года легоглобин используется в пищевой индустрии в качестве добавки при производстве веганских гамбургеров – он делает их «котлеты» внешне похожими на говяжьи.
Само же красное мясо своим цветом обязано не столько оставшейся в нем крови, сколько белку миоглобину, сходному по строению с гемоглобином. Миоглобин – это богатый железом металлопротеин, его главная функция – не переносить, а хранить кислород. Большинство живых организмов для связывания кислорода используют именно железо, однако в природе встречаются существа, у которых другой металл выполняет эту функцию. В гемолимфе мечехвостов – животных, похожих на небольших крабов, – содержится медь. Кстати, этот реликтовый вид членистоногих с голубой кровью широко используют в биомедицинских исследованиях[9].
Казалось бы, железо – обычный элемент, содержащийся в крови, но на самом деле у него множество тайн. С ним связаны стереотипы, распространение которых следует приостановить. Некоторые еще помнят пресловутое «Ешь шпинат, в нем железо!». Грош цена этому увещеванию из нашего детства: наличие железа в шпинате – миф, который появился благодаря комиксу о моряке Попае[10]. И все-таки железо содержится в пище. Но вопреки другому расхожему мнению, мол, в мясе – сплошное железо, этого металла гораздо больше в некоторых растениях, чем в красном мясе или субпродуктах. Например, в тмине, тимьяне, кунжуте, сое, чечевице, синезеленой водоросли спирулине или – и это прекрасная новость – в какао-бобах. Еще очень богаты железом и весьма полезны мидии, если только вам не показана низкосолевая диета. Между тем железо из красного мяса легко усваивается – отсюда и хорошая репутация этого продукта. Кстати, такому важному делу, как всасывание железа, можно помочь: например, принимать витамин С или завершать прием пищи чем-нибудь кислым, а вот кальций, наоборот, будет помехой.
Усвоить железо, получить от него пользу – непростая задача для организма. Будет ли железо правильно всасываться из желудочно-кишечного тракта, зависит от многих участников процесса. Молекула гепсидина здесь ключевая в прямом и переносном смысле. Гепсидин разрушает транспортеров железа, связываясь с ними в клеточных мембранах, тем самым предотвращает абсорбцию и перемещение этого металла. Гепсидин блокирует экспорт железа из желудочно-кишечного тракта в кровь. И наоборот, без него замóк остается открытым – и желудочно-кишечный тракт может отправлять железо нуждающимся в нем органам. Уровень гепсидина в крови зависит от потребностей костного мозга и наличия в организме воспалительных процессов[11].
Давайте взглянем на тему железа шире и обратимся ко временам возникновения жизни на Земле: присутствие этого металла в нашем организме напоминает о том, что мы состоим из звездной пыли. Для астрофизиков все известные элемен-ты во Вселенной – результат ядерного синтеза и сжатия в звездах. Эти небесные тела «сжигают» свои компоненты один за другим: сначала водород, потом гелий, углерод, кислород… пока не дойдет до последнего – железа. Так что в нашей крови циркулирует самый устойчивый во Вселенной химический элемент. В конце своей жизни звезды взрываются и становятся сверхновыми. Тут-то, в результате синтеза и деления ядер, образуются вещества тяжелее железа, такие как свинец, золото или платина.
Без железа, реликта этой космической истории, на Земле не будет жизни, с его помощью создается геомагнитное поле. Железо в красных кровяных тельцах жизненно необходимо млекопитающим, хотя некоторые другие металлы, например цинк или медь, тоже играют важную роль в обмене веществ. Природа создала сложные, исключительной точности системы. Они удовлетворяют потребности организма в микроэлементах, поддерживая запасы, необходимые не только для нормальной доставки кислорода к эритроцитам, но и для исправной работы мышц и мозга.
Железо участвует во многих биохимических процессах. В организме человека его должно быть столько, чтобы удовлетворять основные потребности и восполнять потери, связанные, например, с выведением отмерших клеток пищеварительной системы, шелушением кожи и т. д. В небольших количествах мы теряем железо всю свою жизнь, особенно это касается женщин детородного возраста. Незначительные, невидимые глазу хронические кровотечения бывают в желудочно-кишечном тракте, они возникают по разным причинам, но чаще всего из-за полипов. А вот при заражении кишечника паразитами кровотечения могут оказаться более серьезными.
Одна из причин железодефицита, о которой часто забывают в клиниках, – необоснованные заборы крови для обследования, особенно они опасны для младенцев и пожилых людей, но способны нанести вред и пациентам, получающим определенную интенсивную терапию. С такими больными происходит примерно то же, что с некоторыми донорами, регулярно сдающими кровь: в зависимости от частоты процедуры, они могут терять железа больше, чем получают из желудочно-кишечного тракта. У некоторых доноров, главным образом женщин, недостаток этого металла, вызванный забором крови, не восполняется и приводит к железодефициту, который может сопровождаться другими признаками анемии или обходиться без них.
В организме взрослого человека содержится около 4 г железа. Оно входит в состав гемоглобина (2,5 г), ферритина (1 г) и других белков, например миоглобина. Железо поступает в организм исключительно из пищи, по 10–15 мг в сутки. Но усваивается далеко не всё – приблизительно 1 мг в сутки у взрослого. То, насколько эффективно желудочно-кишечный тракт всасывает железо, зависит прежде всего от запасов этого металла в организме и его молекулярной формы. На поверхности клеток желудочно-кишечного тракта всасывание обеспечивает транспортный белок, который участвует в восстановлении железа (Fe³+ → Fe²+). В клетках эпителия кишечника железо либо накапливается в виде ферритина, либо его оттуда экспортирует другой белок под названием ферропортин, тогда оно снова окисляется (Fe²+ → Fe³+), чтобы быстро соединиться с циркулирующим трансферрином.
Транспортные белки переносят железо по крови в так называемой ионизированной форме, которая делает свободное железо менее токсичным. Определить уровень этого металла в крови довольно трудно. Иногда даже утверждают, что при железодефиците это сделать невозможно. Такое исследование всегда нужно проводить вместе с другими анализами, в частности, следует выяснять уровень ферритина или степень насыщения трансферрина железом. Внутри клеток металл хранится в молекулах ферритина, поэтому по количеству этого белка в плазме можно понять, сколько железа содержится в организме.
Железодефицит – одна из проблем общественного здоровья, и органы здравоохранения занимаются ею многие годы. По оценкам экспертов, четверть населения планеты и почти каждый второй пожилой человек страдают от нехватки железа, а значит, подвержены риску развития анемии. Причины дефицита этого металла разные, но к наиболее частым относят неправильное питание, заражение кишечника паразитами и кровотечения. Последние двадцать лет ученые предлагают культивировать трансгенный рис: один из его генов позволяет синтезировать ферритин, и это могло бы решить проблему с нехваткой железа в нашем питании. Авторы исследования заметили: если такой рис выращивать на богатых железом почвах, то злак вбирает в себя этот металл, который в сочетании с ферритином легко всасывается слизистой желудочно-кишечного тракта. Работы над трансгенным рисом продолжаются, ученые ищут способы обогащать этот базовый продукт питания железом, цинком, витаминами – говоря научным языком, проводится биофортификация. Несмотря на пищевую ценность трансгенного риса, потенциал генетически модифицированных организмов остается предметом горячих споров.
Зачем кровь переносит кислород? Нам кажется, без него нет жизни. Тем не менее она зародилась без этого элемента. Фактически в течение полутора миллиардов лет на Земле не было кислорода, но примерно 2,4–3 миллиарда лет назад он вдруг возник, сначала в океанах, а потом и в атмосфере. Долгое время его появление оставалось загадкой, ответ на которую нашли совсем недавно: три миллиарда лет назад уже жили примитивные микроорганизмы под названием цианобактерии, и вдруг они принялись вырабатывать большое количество кислорода (геологи называют этот переходный период в истории Земли великой кислородной катастрофой). Живые организмы вышли на сушу и прекрасно приспособились к этому газу. Кислородное дыхание стало необходимым условием для производства энергии. Собственно, углеводы, как и жиры, «сжигаются» при участии кислорода, и эта химическая реакция приводит к образованию воды, углекислого газа и энергии. Это основная реакция, которая происходит в «батарейке» – нашем теле.
Кислород должен циркулировать во всех органах – только тогда он будет выполнять роль топлива. Чтобы наши клетки не страдали от недостатка этого газа, в организме постоянно активируются сложнейшие физиологические механизмы. Частота дыхания и пульса, объем крови, выбрасываемой с каждым сокращением сердечной мышцы, количество эритроцитов – все эти показатели могут резко меняться в экстренной ситуации.
Внезапно может возрастать число красных кровяных телец у некоторых животных, например у борзых: когда им надо ускорить бег, их селезенка сжимается и количество эритроцитов значительно увеличивается. Говоря о животных, надо развенчать один стереотип. Со времен Аристотеля, предложившего классификацию живых существ, в основе которой лежит деление на холодных и теплых, различают так называемых теплокровных животных (млекопитающие и птицы) и холоднокровных (все остальные). Не утратило ли такое деление свою актуальность? Во-первых, оно предполагает, что у всех животных есть кровь, однако это не так. Многие примитивные животные ее лишены. Во-вторых, кровь вовсе не влияет на температуру тела, а реагирует на ее изменения, помогает ее поддерживать. Кстати, в царстве животных есть абсолютно разные, порой хитроумные способы сохранять необходимую температуру тела (термогенез): проживание группами (пчелы, императорские пингвины), волосяной покров (белый медведь) или перья, толщина жира, использование солнечного тепла. Ящерицы, сидя на стене под солнечными лучами, добиваются температуры тела в 40 °C и выше, при этом, согласно классификации, они считаются холоднокровными. В завершение экскурса о животных обратим внимание, что живые существа регулируют температуру тела по-разному. У птиц и млекопитающих она не слишком зависит от внешних факторов: благодаря различным тонко настроенным механизмам им удается поддерживать относительно стабильную температуру тела. И в этом процессе участвует не только кровь. Несмотря на очевидные различия между теплокровными и холоднокровными, не стоит забывать, что некоторые впадающие в спячку млекопитающие способны понижать свою температуру для экономии энергии. А у рыб, живущих в очень холодных водах или мигрирующих туда, в разных органах может поддерживаться разная температура.
Вернемся к уровню кислорода в нашем организме. Каким образом он контролируется? Для этого есть особые молекулы, так называемые факторы регуляции: в обычных условиях, когда кислорода достаточно, они разрушаются, а при его нехватке – нет. Создается дисбаланс, который, как ни странно, позволяет клетке приспособиться к условиям недостатка кислорода и уцелеть. Это похоже на движение обратного маятника, который корректирует направление выстрела[12]. Именно таким отклонением объясняется рост концентрации в плазме эритропоэтина – гормона, который контролирует выработку красных кровяных телец при нехватке кислорода. В ответ на низкий уровень этого газа (гипоксию) число эритроцитов увеличивается в разы, что улучшает его транспортировку. Эту особенность организма используют спортсмены мирового уровня: они тренируются на высоте в условиях разреженного воздуха, чтобы увеличить объем циркулирующей крови и повысить способность мышц утилизировать кислород после спуска с высоты.
Почему кровь багряного цвета? Из-за гемоглобина, переносчика кислорода. Гемоглобин позвоночных поглощает любые световые волны, кроме самой длинной – красной. Однако у этого основного цвета есть полутона. В сущности, кровь обладает спектром оттенков синего и красного. Внутри тела она меняет свой цвет в зависимости от уровня насыщения кислородом и может быть черной, темно- или светло-синей, ярко-красной. Оттенок зависит от количества эритроцитов в плазме. Кровь выходит из сердца богатая кислородом, красная, а после того, как пройдет по организму и отдаст кислород тканям, она возвращается в сердце темно-синей или черной.
Плазма же обычно желтая, желто-оранжевая, оранжевая или красноватая. При некоторых обстоятельствах у нее бывает необычный цвет: синий, сине-зеленый, зеленый, красный, розовый, черный и даже белый. Такие странные цвета говорят о болезнях или о наличии в плазме красителей, которые вводят, чтобы визуализировать лимфатические сосуды в диагностических целях или проконтролировать прием определенных лекарств[13] (и даже продуктов питания). Врачи-трансфузиологи прекрасно знают, что тромбоцитарная масса, взятая у женщин, принимающих оральные контрацептивы, зеленоватого цвета (его придает препарату присутствующая в нем плазма). Такой оттенок концентрата тромбоцитов не раз озадачивал медицинских работников и пугал пациентов, которым заранее не разъясняли, отчего получается такой цвет.
Если кто-нибудь порежется и испачкает кровью пол, вы сразу по цвету и вязкости поймете, что это за пятна. А с закрытыми глазами догадаетесь? Конечно! Ведь у крови характерный запах, который присутствует на скотобойнях и в мясных лавках. Запах крови возбуждает животных: об охотничьих собаках говорят, что они учуяли кровь раненого зверя и не успокоятся, пока его не загонят, к тому же они знают – потом из забитой и выпотрошенной дичи им достанется требуха. Других, например акул, запах крови привлекает. Большая белая акула, если верить распространенному убеждению, может почувствовать каплю крови за сотни метров. Запах крови может одурманивать или, наоборот, вызывать отвращение. Он стойкий и пугающий: животные, которых ведут на бойню, чувствуют и боятся его. А еще этот запах с металлическим оттенком действует на зверей, как призыв к драке.
Не только животные ощущают запах крови. Его прекрасно распознают и медицинские работники! К тому же они легко различают его нюансы. Едва войдя в палату, они понимают, сочится ли у пациента кровь из поврежденной артерии (красная, насыщенная кислородом) или выделяется с калом (черная); специфический запах крови, выходящей со стулом (мелена) или со рвотой, совсем не похож на тот металлический, присущий чистой крови. Стало быть, опытный медик по виду и запаху крови определит, что пошаливает в организме пациента. Надо сказать, у людей, как и у животных, запах крови в какой-то мере ассоциируется со смертью.
Если кровь раздражает обонятельные рецепторы, можно предположить, что она это проделывает и со вкусовыми. У этой жизненно важной жидкости характерный металлический привкус, который каждый знает по собственному опыту, ведь все мы зализывали ранки, прикусывали язык, нам удаляли зубы, у нас шла носом кровь, затекая в горло. Еще не так давно вкус крови помогал ставить диагноз. Сколько же случаев диабета выявили в девятнадцатом и начале двадцатого века по ее сладкому вкусу! Тогда врачам приходилось применять специфические приемы. Стоит отметить, представления о санитарной безопасности с тех пор изменились.
Наверняка вы не раз ели блюда с кровью. Кровь животных, как и наша, имеет особый вкус, и он отличается в зависимости от того, свернувшаяся это кровь в почти сырой отбивной из красного мяса или прошедшая долгую термическую обработку, например, в кровяной колбасе. К блюдам с жареной кровью относятся по-разному: одни любят, другие нет. Отражая наши пищевые привычки, слово «кровь» вошло в кулинарную лексику («утка с кровью», «соус из крови» и т. п.), существуют даже книги рецептов, целиком посвященные блюдам с этим ингредиентомI *