Если верить мистеру Ньютону, пространство и время не разговаривали друг с другом, не женились и жили отдельно.
С точки зрения физики скорость света в нашей теории имеет бесконечно большое значение.
Каково это — поймать луч света? Эйнштейну было всего 16 лет, когда он задался этим вопросом, и это стало его первым шагом к величию. К сожалению, он так и не рассказал, что подтолкнуло его в этом направлении, так что нам остаётся лишь строить догадки. Мы знаем, что он сформулировал свой вопрос в начале 1896 года в школе швейцарского городка Арау в 48 километрах к западу от Цюриха, где он жил в семье Винтелеров.
Я представляю себе, как он просыпается от солнечного света, льющегося в комнату через окно мансарды, которую он снимал. Ветер играет листьями липы за стеклом, и они разбивают свет на десятки крошечных солнечных зайчиков, танцующих на стене над его кроватью. Он вытягивает руку и, как ребёнок, пытается поймать пятно света. Его так завораживает пляска солнца на обоях, что он даже забывает, что нужно вставать. Идиллия нарушается стуком в дверь: «Герр Эйнштейн! — это голос Мари Винтелер, симпатичной 18-летней дочки хозяина дома, которая в него немного влюблена. — Папа просит передать вам, что завтрак готов».
Я представляю, как пару часов спустя Эйнштейн сидит за своей партой в просторном классе школы кантона Арау и глядит в окно на реку Аре. Дождь, стучавший по оконному стеклу, прекращается так же быстро, как и начался. Густые облака расходятся, и на сумеречный город падает столб света, превращая его в библейскую иллюстрацию. Там, где солнечные лучи касаются поверхности реки, вода сверкает, как бриллиант. Эйнштейн так зачарован этим зрелищем, что совсем забывает про лекцию (речь в ней идёт о схемах маршрутизации в генераторах переменного тока). И тут его мечты прерывает рёв директора школы доктора Августа Тухшмида: «Герр Эйнштейн! Прошу прощения, что утомил вас. Может быть, в оставшиеся полчаса вы обратите на меня своё драгоценное внимание?».
Вечером того же дня Эйнштейн и Мари Винтелер, держась за руки, бегают по узким улочкам Арау, прыгают по лужам и хохочут взахлёб, как любые подростки. Они промокли насквозь, но их это не волнует. Внезапно они останавливаются, он притягивает её к себе и целует. За её плечом он видит ряд газовых фонарей, светящихся жутковатым зелёным светом. Чем дальше фонари от него, тем меньше они кажутся и тем слабее светят. В маслянисто-чёрных лужах он видит отражения фонарей и полной луны, которая похожа на ещё один фонарь, оторвавшийся от земли и поднявшийся в небо. Он перестаёт целоваться с Мари и смотрит вверх.
— Альберт?
Весь день его завораживал свет, весь день он думал о нём. И весь день его мучал один вопрос: что не так с нашим пониманием света? Ответ на него заключается в самом вопросе, но Эйнштейн ещё не сформулировал его достаточно точно.
Он не слышит, что ему говорит его подруга, потому что в мыслях он находится в четверти миллиона миль[110] отсюда. Свет Луны прошёл именно такое расстояние, прежде чем достиг его глаз. Он пытается представить себе его путь — одинокое путешествие в холодном вакууме на скорости миллиард километров в час, — и его сердце замирает. Внезапно он понимает, какой вопрос нужно задавать на самом деле. Этот вопрос откроет ему двери в совершенно новый мир знаний. Он кажется таким очевидным, что Эйнштейн удивляется, почему не задался им раньше.
— Альберт, о чём ты думаешь?
Ещё до того, как он заговорит, Мари понимает, что сама ни за что бы не придумала ответ. Хотя Эйнштейну всего 16, он уже видит мир не так, как остальные, и мыслит так, как никто никогда не мыслил. Она видела в его комнате учебники, над которыми он просиживал ночи до рассвета, и не поняла ни слова, как будто те были написаны иероглифами. Она не может последовать за ним и проникнуть в его мир. Её настигает понимание: скоро она ему наскучит и он уйдёт. В уголках её глаз появляются слёзы.
— О чём я думаю? — переспрашивает он, как будто очнувшись ото сна.
— Да, — она вытирает глаза рукавом, но он этого не замечает.
— Я думаю, каково это — поймать луч света.[111]
Она закатывает глаза, берёт его за руку и тащит в сторону дома.
— Альберт, ты такой странный.
Разумеется, вся эта история — лишь плод моей фантазии. Но мне так нравится её представлять! К моменту, когда 16-летний Эйнштейн сформулировал свой важнейший вопрос, учёные считали свет волной (такой же, какую можно увидеть на поверхности пруда). Это не совсем очевидно, потому что расстояние между гребнями световой волны очень мало, меньше ширины человеческого волоса. Тем не менее волновая природа света была подтверждена в 1801 году английским физиком Томасом Юнгом в ходе оригинального эксперимента.[112] Но никто до сих пор не знал, что же такое свет.
Всё изменилось в 1863 году, когда шотландский физик Джеймс Клерк Максвелл, проведя огромную теоретическую работу, свёл все электрические и магнитные явления к единому набору изящных формул. Уравнения Максвелла демонстрируют, как изменения в электрическом поле создают магнитное поле и наоборот. Описание этой связи между электричеством и магнетизмом считается третьим величайшим научным объединением после объединения небес и Земли (Ньютоном) и человека с остальным животным миром (Дарвином).[113]
Анализируя свои стройные уравнения, Максвелл заметил кое-что неожиданное. Они предусматривали движение волн сквозь электрические и магнитные поля, заполняющие пустые пространства. К тому же волны двигались вперёд со скоростью света в вакууме. Вывод напрашивался сам собой, хотя и был удивительным. Свет должен представлять собой электромагнитную волну. Максвелл не только нашёл связь между электричеством и магнетизмом, но и добавил к ним свет.[114]
За 20 лет, прошедших с момента обнародования теории Максвелла, учёные добились потрясающих успехов. Немецкий физик Генрих Герц, действуя по указаниям своего шотландского коллеги, создал искусственные электромагнитные волны. В ноябре 1886 года он, используя искровой разряд в качестве передатчика, послал невидимые радиоволны,[115] которые индуцировали электрический ток в катушке с проволокой, стоявшей на другом конце лаборатории и действующей в качестве приёмника.
Наш мир, оплетённый сетью из миллионов невидимых разговоров, которые каждую секунду передаются по воздуху, родился именно в тот день. Американский физик XX века Ричард Фейнман говорил: «В истории человечества (если посмотреть на неё, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электродинамики».[116]
Но, несмотря на все научные триумфы, которые стали возможными благодаря теории Максвелла, она создавала для физиков одну серьёзную проблему. Дело в том, что она совершенно не сочеталась с законами движения, сформулированными Галилеем и Ньютоном.
Волны всегда распространяются в какой-либо среде: морские волны в воде, а звуковые — в воздухе. Гипотетическая среда, в которой движется свет, была названа эфиром.[117] Из факта его существования следовал неизбежный вывод: скорость светового луча, измеряемая наблюдателем, должна зависеть от скорости его движения в эфире. Представьте себе, что вы стоите на палубе яхты. Скорость ветра, бьющего вам в лицо, будет определяться тем, идёт яхта по ветру или против него. Но в уравнениях Максвелла присутствовала некоторая странность. Они никаким образом не ссылались на среду движения света и содержали лишь одно значение скорости светового луча в вакууме. Она была неизменной, постоянной, не зависящей от условий мира, в котором она существует.
Логично было бы предположить, что в расчёты Максвелла вкралась ошибка, которую нужно было найти и исправить. В конце концов, они были всего лишь модной новинкой, в то время как ньютоновские законы движения были сформулированы двумя столетиями ранее и за всё это время никто ни разу не заметил их расхождений с реальностью. Вот тут-то на сцену и вышел Эйнштейн. Его заворожило не только само подтверждение максвелловской теории, полученное Герцем, но и его красота — свойство, которое он считал признаком истинности.
Ньютон говорил, что Платон его друг и Аристотель тоже, но главным своим другом он считает истину. Забавно, что Эйнштейн нашёл в себе силы оспорить постулаты Ньютона именно потому, что был полностью согласен с этим утверждением. Поэтому он и задал себе важнейший вопрос: каково это — поймать луч света?
Согласно Максвеллу, световая волна — это сложная конструкция из электрического и магнитного полей, колеблющихся под прямым углом друг к другу и к направлению движения света. Электрическое поле увеличивается, когда магнитное уменьшается, и наоборот. Распад одного поля генерирует другое, и они сменяют друг друга, создавая самоподдерживающуюся электромагнитную волну.
Мы не будем вдаваться в детали. Достаточно просто представить себе свет как волну, пробегающую по поверхности озера. Если бы мы попытались её остановить, она оказалась бы последовательностью пиков и спадов, застывшей, как на фотографии. Проблема, которую подросток по фамилии Эйнштейн осознал в Арау, состояла в том, что уравнения Максвелла не предусматривали существования неподвижной электромагнитной волны. Если бы нам удалось поймать луч света, произошло бы что-то невероятное, что-то, что согласно законам физики просто не может существовать.
Как разрешить этот парадокс? Эйнштейн понял, что если теория Максвелла верна, то оставался только один способ. Если движение со скоростью света приводило к чему-то невозможному, оно само по себе должно было быть невозможным. Всё просто. Вот только ньютоновские законы позволяют телу двигаться с любой скоростью, и в них ничего не говорится о её ограничениях.
Говорить, что ни одно материальное тело не может двигаться со скоростью света, было очень рискованно. Это означало попытку свергнуть с пьедестала Ньютона, величайшего из когда-либо живших учёных. Без серьёзных доказательств от таких заявлений следовало бы воздержаться. Вот почему Эйнштейн потратил целых девять лет, пытаясь собрать воедино теорию электромагнетизма и ньютоновские законы динамики. Лишь в 1905 году пазл сложился у него в голове.
К этому моменту 26-летний Эйнштейн работал техническим экспертом III класса в Швейцарском федеральном патентном бюро в Берне. Эту должность он получил в 1902 году. Он проживал в двухкомнатной квартире на третьем этаже дома номер 49 по улице Крамгассе вместе со своей женой, сербкой Милевой Марич, и их годовалым сыном Хансом Альбертом. Марич была старше Эйнштейна на четыре года и единственной женщиной в его классе в Швейцарской федеральной политехнической школе в Цюрихе. Их роман вызвал скандал среди их родственников, особенно когда в 1902 году у Марич и Эйнштейна родился внебрачный ребёнок — дочка по имени Лизерль, упоминания о которой встречаются лишь в письмах в Нови Сад и из него, куда Милева уехала рожать. Девочка либо умерла через полтора года, либо была передана на попечительство семье Милевы. Эйнштейн и Марич скрывали её существование от друзей в Швейцарии, поэтому лишь они одни знали правду о судьбе девочки.
Патентная служба спасла Эйнштейну жизнь, за что он оставался ей благодарен до конца дней. Он не сумел получить должность учителя или место в университете, и, как он сам признавался, ему приходилось жить впроголодь. Патентная служба дала ему достаточные доход и респектабельность для того, чтобы в 1903 году жениться на Милеве. Несмотря на то что скорбь от утраты дочери дамокловым мечом нависала над их союзом, Эйнштейн считал время, проведённое в патентной службе, одним из самых счастливых периодов своей жизни.[118]
Работа техническим экспертом III класса не только позволяла ему оплачивать счета, но и давала доступ к последним новинкам эры электричества. Свои знания в области электроприборов он получил в разорившейся отцовской фирме в Милане, занимавшейся электрическим освещением. Тем не менее, работая в своём кабинете на верхнем этаже здания почтовой и торговой администрации, что на улице Генфергасс недалеко от центрального вокзала Берна, он сумел их применить. К радости его начальника Фридриха Халлера, Эйнштейн безошибочно определял даже мельчайшие ошибки в чертежах генераторов, моторов, трансформаторов и других устройств, которые каждый месяц доставляли в патентное бюро. У монотонной работы 48 часов в неделю было своё преимущество — она не занимала его мозг так, как могло бы занять преподавание. У Эйнштейна было много времени на размышления, и он использовал его как следует.
Тысяча девятьсот пятый год попал в анналы науки как «год чудес» Эйнштейна. «Никому ни до, ни после него не удавалось раздвинуть горизонты физики за столь короткий срок, как это сделал Эйнштейн в 1905 году», — писал физик Абрахам Пайс.[119] Никому, кроме, возможно, Исаака Ньютона. Но его «год чудес» длился около 18 месяцев, а Эйнштейн справился всего за три. В период с 17 марта по 30 июня Эйнштейн закончил работу над четырьмя научными трудами такой потрясающей силы, что они полностью изменили всю физическую науку.
Первая работа, которую Эйнштейн называл «очень революционной» и которая в 1921 году принесла ему Нобелевскую премию по физике, ставила под сомнение саму идею света как волны. Эйнштейн предполагал, что атомы излучают или поглощают свет крошечными порциями — квантами.[120] Во второй работе, благодаря которой он получил степень доктора наук в Цюрихском университете, определялись размеры атомов (чьё существование на рубеже веков всё ещё ставилось под сомнение) на основании их диффузии в жидкости.[121] Третья работа описывала необычное движение частиц пыльцы в воде (так называемое броуновское движение, открытое ботаником Робертом Броуном в 1827 году). Эйнштейн предполагал, что оно возникает в результате бомбардировки частиц молекулами воды.[122] Наконец, последняя работа в этой невероятной серии рассказывала о том, как тяжело поймать свет.[123]
Катализатором данного процесса был Мишель Бессо, с которым Эйнштейн увиделся в середине мая 1905 года. Бессо был на шесть лет старше Эйнштейна, и они дружили с 1896 года, когда Эйнштейн получал квалификацию преподавателя в Швейцарской федеральной политехнической школе в Цюрихе, а Бессо работал инженером-механиком в соседнем Винтертуре. Они оба любили музыку (Эйнштейн неплохо играл на скрипке) и познакомились благодаря женщине по имени Селина Капротти из Цюриха, которая по субботам сдавала свой дом для посетителей, собиравшихся, чтобы вместе поиграть на музыкальных инструментах.[124]
Бессо не только советовал Эйнштейну различные книги, но и вёл с ним бесконечные философские дискуссии об основах физики. Но самое главное — он помогал Эйнштейну посмотреть на свои идеи критическим взглядом. Вспоминая майский визит к Бессо, во время которого они касались проблемы неуловимости света, Эйнштейн говорил: «Это был прекрасный день. Мы обсудили все аспекты этой задачи…».[125] Он не упоминал, как долго продолжался разговор, где он происходил и насколько эмоциональной была дискуссия. Но её результат, по словам Эйнштейна, был подобен лучу света в тёмной комнате, осветившему всё и сразу. «Внезапно я понял, в чём кроется проблема!»
Возможно, в тот вечер Эйнштейн рассказал об этом своей жене Милеве. Или он не мог заснуть и, лёжа в постели, мысленно рассматривал проблему со всех сторон, как до него делал Ньютон. Или же он работал за кухонным столом всю ночь до самого утра, заполняя записями одну страницу своего блокнота за другой. У нас нет сведений об этом моменте, потому что Милева, занятая работой по дому, не вела дневник и ни один журналист впоследствии не взял у неё интервью.
Встретившись с Бессо на следующий день, Эйнштейн был так возбуждён, что даже не поздоровался. «Спасибо, — сказал он. — Я наконец решил свою задачу. Для этого мне пришлось проанализировать всю концепцию времени. Я понял, что время не имеет конечного определения и что между временем и скоростью распространения сигнала есть неразрывная связь».[126]
Эйнштейн задумался: если луч света нельзя поймать, что это говорит о скорости света? Попробуем воспользоваться аналогией. Бесконечность в математике — это число больше любого другого числа. Если объект движется с бесконечной скоростью, его невозможно поймать. Тот факт, что свет невозможно поймать, означает, что по каким-то причинам в нашей Вселенной скорость света играет роль бесконечной скорости. Как писал Дуглас Адамс, «ничто не может двигаться быстрее света, за исключением разве что плохих новостей, распространением которых управляет особая физика».[127]
Эта аналогия очень удобна. Если что-то движется с бесконечной скоростью, ваша собственная скорость или направление движения не имеют значения. Ваша скорость будет настолько ничтожной по сравнению со скоростью света, что последняя покажется вам бесконечной. Если объект, движущийся со скоростью света, будет запущен с тела, которое движется по направлению к вам или от вас, то скоростью такого тела можно будет пренебречь по сравнению со скоростью запущенного объекта. Раз скорость света играет в нашей Вселенной роль бесконечной скорости, то она всегда остаётся постоянной, несмотря на скорость её исходной точки или наблюдателя. Скорость света постоянна для всех, вне зависимости от их движения, как и должно быть в соответствии с теорией Максвелла.
Но хватит обобщений, пора перейти к деталям. Как на практике возможно, что любой наблюдатель, с какой бы скоростью он сам ни перемещался, всегда получит одно и то же значение при измерении скорости солнечного луча?
По сути, скорость обозначает расстояние, на которое тело может переместиться за определённое время (представьте себе машину, которая преодолевает 100 километров по шоссе за один час). Если скорость света одинакова для всех, то нужно каким-то образом изменить расстояние и время для каждого.
Эйнштейн понял, что на самом деле человек, проходящий мимо вас, уменьшается в направлении движения, и одновременно замедляется его время, которое показывают его наручные часы. Он как будто бы становится плоским, как блин, и двигается как в замедленной съёмке.[128]
Это уменьшение пространства и замедление времени действуют таким образом, что для каждого из нас, вне зависимости от нашего состояния движения, луч света движется с одинаковой скоростью. Всё это — один огромный заговор Вселенной для поддержания скорости света неизменной.
Разумеется, искривление пространства и времени невозможно заметить, если мимо вас проходит человек или проезжает машина. Вы сможете наблюдать эти странные эффекты лишь в том случае, если какой-нибудь объект пролетит рядом с вами со скоростью, близкой к скорости света. Но свет движется примерно в миллион раз быстрее самолёта Boeing 747, так что ни один предмет на Земле не сможет перемещаться настолько быстро.
И всё-таки расширение времени можно измерить. В 1971 году учёные синхронизировали пару абсолютно точных атомных часов. Одни остались на месте, а вторые отправились в кругосветное путешествие на борту морского лайнера. Когда они вновь воссоединились, экспериментаторы обнаружили между показаниями часов небольшое расхождение. Тот факт, что двигавшиеся часы показывали меньше времени, точно совпадал с предсказаниями Эйнштейна.
Замедление времени влияет и на астронавтов. Российский физик Игорь Новиков отмечал: «Когда в 1988 году экипаж советской космической станции “Салют” вернулся на Землю после года, проведённого в движении со скоростью восемь километров в секунду, он на сотую долю секунды заглянул в будущее».[129]
Гораздо сильнее расширение времени действует на мюоны, субатомные частицы, которые возникают, когда космические лучи (разогнанные до огромных скоростей ядра атомов из космоса) сталкиваются с молекулами воздуха в верхних слоях атмосферы нашей планеты. Доказательство того, что на скорости, приближённой к скорости света, время замедляется, а пространство сжимается, прямо сейчас может проходить через ваше тело.
Мюоны возникают в атмосфере нашей планеты на высоте 12,5 километра и падают на Землю как субатомный дождь. Особенность мюонов состоит в том, что они распадаются в строго определённый срок. Он очень мал — всего 1,5-миллионная доля секунды. Выходит, максимальная дистанция, которую мюон может пройти в атмосфере, не должна превышать 500 метров, и уж точно ни один мюон не должен достигать поверхности Земли.
Но они достигают.
Причина состоит в том, что мюоны движутся со скоростью, равной 99,92% скорости света. С нашей точки зрения, они проживают всю свою жизнь в режиме замедленной съёмки. Для мюонов время движется в 25 раз медленнее, чем для людей, и поэтому от их зарождения до распада проходит в 25 раз больше времени, и распад происходит уже на Земле.
Разумеется, на эту ситуацию можно посмотреть и с другой точки зрения — самого мюона. Для него время идёт с обычной скоростью, ведь относительно себя самого он (как и вы) неподвижен. Вас же он увидит уменьшающимися по направлению своего движения, вернее, даже нашего движения, ведь с точки зрения мюона это Земля приближается к нему со скоростью 99,92% скорости света. Уменьшаетесь не только вы, но и атмосфера. Она сжимается до 1/25 своей толщины, а значит, у мюона остаётся достаточно времени, чтобы достичь поверхности нашей планеты до начала распада.
С какой бы точки зрения мы ни рассматривали эту ситуацию (с вашей, при которой время мюона замедляется, или с точки зрения мюона, при которой атмосфера становится тоньше), мюон всё равно достигает Земли. В этом и состоит волшебство теории Эйнштейна.
«Время — это самая странная штука во Вселенной, за исключением застёжек-липучек, — говорит американский комик Дейв Берри. — Его нельзя увидеть или потрогать, но зато сантехник может выставить вам за него счёт 75 долларов, и вовсе не обязательно, что он при этом что-то починит».
Осознание того, что движущиеся часы замедляются (этот эффект называют релятивистским замедлением времени), а движущиеся линейки укорачиваются (а этот — лоренцевым сокращением), переворачивает наше представление о реальности.[130] Именно поэтому величайшие физики, жившие в одно время с Эйнштейном и располагавшие теми же фактами, не смогли сделать такие же выводы. Ни у кого, кроме Эйнштейна, не хватило смелости открыто бросить вызов Ньютону.
Будучи прагматиком, Ньютон верил в «абсолютное пространство», существующее как некоторый фон Вселенной, на котором разворачивается космическое представление. Любые две точки пространства соотносятся так же, как две булавки, воткнутые в холст художника.
Но Эйнштейн доказал, что абсолютного пространства не существует.
Помимо абсолютного пространства, Ньютон также верил в постоянное время, которое словно отсчитывали гигантские часы где-то во Вселенной. А раз время абсолютно, то для всего сущего интервал между любыми двумя событиями одинаков.
Эйнштейн же доказал, что такого явления, как абсолютное время, тоже нет. «Я не могу разговаривать с вами о времени, — писал Грэм Грин, — потому что моё время отличается от вашего».
Именно так. Временной интервал одного человека может быть не таким, как у другого, и это же правило верно и для пространственных интервалов. Время и пространство — это всего лишь песок, который пересыпается с места на место, а фундамент нашей Вселенной — это скорость света.
Если вам кажется, что эти рассуждения слишком туманны, то не волнуйтесь — так оно и есть. Эйнштейн начал свой путь к научным открытиям в 16 лет, просто задумавшись о том, можно ли поймать солнечный луч. Это навело его на мысли о том, что в ньютоновских законах движения есть некоторые пробелы, а также на идеи, как их заполнить. Но ему всё ещё нужно было разработать последовательную теорию, основанную не на предположениях, а на фактах, из которой свойства пространства и времени выводились бы максимально ясно. Именно над этим Эйнштейн и работал в течение нескольких недель после знаменательной встречи с Бессо в мае 1905 года.
Эйнштейн построил свою теорию, которую мы знаем как специальную теорию относительности, на двух краеугольных камнях.[131] Первым было утверждение о том, что скорость света не зависит от скорости его источника или наблюдателя. Вторым являлся «принцип относительности».
Ещё Галилей в XVII веке понял, что в движении с постоянной скоростью по прямой что-то не так. Такое движение ничего не меняет. Представьте себе, что вы бросаете своему другу мяч. Неважно, стоите ли вы в поле в 20 шагах от него или находитесь на таком же расстоянии, но на палубе корабля (при условии, что он плывёт ровно). В обоих случаях мяч будет двигаться по воздуху одинаково.
Из этого наблюдения Галилей сделал вывод, что законы движения едины для всех людей, которые движутся с постоянной скоростью относительно друг друга. Иными словами, если бы с помощью транспортёра материи из «Звёздного пути» вас перенесли в корабельную каюту без окон, по броску мяча вы бы не смогли определить, находитесь вы на суше или в море. Говоря научным языком, закон движения, сведённый Ньютоном после смерти Галилея к трём постулатам, инвариантен для движения с постоянной скоростью по прямой линии. Он не сможет подсказать вам, находитесь вы в равномерном движении или нет. Всё потому, что понятие абсолютного движения, то есть движения в отношении абсолютного пространства по Ньютону, совершенно не имеет смысла.
Эйнштейн расширил «галилееву относительность». Согласно его принципу относительности инвариантными относительно равномерного движения являются не только законы движения, но и вообще все законы физики. Иными словами, нельзя провести такой эксперимент (включая и эксперименты с распространением света), который показал бы вам, движетесь вы или нет.
Как мы уже знаем, гипотетической средой, через которую якобы двигалась световая волна и в которой можно было измерить движение, считался эфир. Принцип относительности Эйнштейна позволяет полностью избавиться от этой идеи,[132] показывая, что это всего лишь выдумка, тупик, в который учёные зашли по ошибке, реинкарнация «абсолютного пространства» Ньютона, возникшая в XIX веке. Свету не требуется среда для движения, потому что он представляет собой самоподдерживающуюся волну в электромагнитном поле. Так как абсолютное пространство больше не могло играть роль фона для измерения абсолютной скорости, можно говорить только о скорости относительной. Если мимо вас пролетит самолёт, его пространство в этот момент будет сжиматься, а время — замедляться. Вы можете задаться вопросом, как пилот самолёта будет в эту секунду видеть вас. Правильный ответ — точно так же, как вы видите его. Для него вы будете сжиматься в направлении своего движения и двигаться медленно, как будто вы завязли в патоке. Картина будет совершенно симметрична, потому что важно лишь относительное движение. Вы движетесь относительно пилота, а пилот — относительно вас, и при этом ваши скорости равны (хоть направления и различаются). Эйнштейн шутил на этот счёт: «Когда этот Цюрих останавливается в поезде?».
Итак, Эйнштейну понадобилось всего два принципа для создания своей революционной теории пространства и времени: принцип относительности и принцип постоянства скорости света.[133] Вооружённый этими на вид достаточно простыми идеями, он смог заполнить все недостающие пробелы.
Эйнштейн начал с того, что дал определение времени. Он говорил с детской прямотой и простотой: «Время — это то, что измеряют часы».[134] Осталось лишь понять, что такое часы.
Эйнштейн представил себе самые простые из возможных часов, состоящие из источника света и плоского зеркала на определённом расстоянии от него. Одним делением на часах обозначалось время, необходимое свету, чтобы достичь зеркала, отразиться от него и снова вернуться к источнику.
Теперь вообразите, что такие часы находятся в поезде, который мчит мимо вас. Конечно, чтобы вы могли их увидеть, вам нужно рентгеновское зрение (или прозрачные стенки вагонов), но давайте абстрагируемся от деталей, ведь это всего лишь мысленный эксперимент, который поможет нам усвоить базовые понятия. Важно лишь то, что, пока свет движется к зеркалу и от него, и он, и само зеркало движутся относительно вас вместе со всем поездом. Для вас луч не направлен на зеркало строго вертикально вверх, а образует угол. Соответственно, и к источнику он возвращается под углом. С вашей точки зрения свет не перемещается вверх и вниз, а движется по сторонам равнобедренного треугольника. Ему приходится проходить большее расстояние, а значит, временной интервал, который мы замеряем с помощью этой конструкции, увеличивается. Вот почему движущиеся часы действительно идут медленнее.
С помощью аналогичных геометрических аргументов можно доказать, что с вашей точки зрения линейка, находящаяся в том же поезде, укорачивается в направлении движения.
Если вы думаете, что эти аргументы выглядят искусственными и касаются лишь абстрактных часов и линеек, вспомните, что все атомы, из которых состоит ваше тело, тоже действуют подобным образом. Логика Эйнштейна применима и здесь, и с ней абсолютно невозможно бороться. Все часы (а их работу как раз и проверяют с помощью отражения светового луча) в конечном итоге сводятся к простой конструкции, которую мы только что описали.[135]
Время замедляется, а пространство сжимается везде в зависимости от вашего относительного движения. Ваше время и время другого человека различны,[136] равно как и ваше пространство и пространство других людей. Измерения пространства и времени связаны со скоростью сигнала, то есть световой скоростью. А это значит, что его постоянство имеет огромное значение для нашей реальности.
Для того чтобы написать свою работу, Эйнштейну потребовалось пять недель, и за это время он сбросил ньютоновские взгляды с пьедестала и заменил их собственными. Своему коллеге Йозефу Заутеру из патентного бюро он сказал об этом: «Я не могу описать словами, как я счастлив».[137]
Статья «К электродинамике движущихся тел» была опубликована 28 сентября 1905 года. В конце любой научной работы обычно приводится список трудов других авторов, которые на неё повлияли. Эйнштейн не добавил в этот список ни одной работы. Из других учёных он упомянул только великих физиков Ньютона, Галилея, Клерка Максвелла и Герца, да и то лишь для отсылки к их работам. На самом деле другие учёные действительно никак не повлияли на рассуждения Эйнштейна, по крайней мере в значительной степени. Многие отмечали разрозненные элементы новой картины мира, но никто не видел её во всей полноте. Это был фундаментальный принцип, связавший всё воедино.
И Галлей, и Рен, и Гук подозревали о существовании закона обратных квадратов, но лишь Ньютон, вооружённый точными определениями массы и силы и своими законами движения, смог понять его до конца. Догадки не приносили пользы, пока не появился Ньютон со своим чётким видением всей картины. Именно поэтому и он, и Эйнштейн после него сумели фундаментально изменить человеческие представления о мире.
В работе Эйнштейна отсутствовал не только список ссылок на другие публикации. Обычно авторы научных статей благодарят людей, которые помогли им своими советами или обсуждениями. Но Эйнштейн в своём патентном бюро в Берне был одиночкой, неизвестным в научных кругах. В конце работы он упомянул лишь одного человека, написав: «Моему другу и коллеге Мишелю Бессо, который всегда был рядом во время моей работы над вопросами, поднятыми в этой статье. Я благодарен ему за множество ценных замечаний».
Тот факт, что вся Вселенная построена на фундаменте световой скорости, имеет более далеко идущие последствия, чем различие времени и пространства для разных людей. Всё гораздо серьёзнее. Время одного человека — не то же самое, что время и пространство другого человека, а ваше пространство отличается от пространства и времени другого.
В самой медленной полосе вселенского движения, где проходит наша жизнь, это не очевидно, но вы бы определённо это заметили, если разогнались бы до скорости, близкой к световой. Время и пространство — не просто резина, которую можно растягивать до бесконечности. Они могут переходить друг в друга. Всё потому, что они представляют собой две стороны одного и того же явления: пространства-времени.
Мы привыкли считать, что в пространстве есть три измерения (с востока на запад, с севера на юг и сверху вниз), а во времени — только одно (из прошлого в будущее). Но на самом деле все эти измерения сводятся к одному пространству-времени. Будучи жителями трёхмерного пространства, мы не можем воспринимать четырёхмерное пространство-время во всей его полноте. Вместо этого мы видим лишь тени четырёхмерной реальности. Одну из них отбрасывает время, а ещё три — пространство.
Когда Эйнштейн учился в Швейцарской федеральной политехнической школе, математику ему преподавал профессор по имени Герман Минковский. Известно, что поначалу он называл своего студента «ленивым псом», но потом распознал в нём гения. Кроме того, он понял кое-что, чего сам Эйнштейн поначалу не замечал. Его теория объединила пространство и время. «С этого момента время и пространство сами по себе уйдут в тень, и лишь их союз сможет выжить», — говорил Минковский.
Британский математик и коллега Стивена Хокинга Роджер Пенроуз писал: «Самый главный урок, который даёт нам теория относительности, состоит в том, что концепции времени и пространства нельзя рассматривать независимо друг от друга. Их необходимо сочетать, чтобы получить четырёхмерную картину явления. Теперь мы описываем явления в контексте пространства-времени».[138]
Если пространство-время существует и в нём время имеет общие характеристики с пространством, а пространство — с временем, значит, события, происходящие во Вселенной, можно отобразить растянутыми на четырёхмерной карте, как карта ландшафта растягивается на двумерной. Мы находимся внутри этой карты, и потому время для нас течёт. Но если взглянуть на эту карту снаружи глазами Эйнштейна, мы увидим, что оно неподвижно. На ней сосуществуют все события, от Большого взрыва до гибели Вселенной. Жизнь каждого человека представляет собой цепочку таких событий, или «мировую линию», как говорят физики, и отмечена на карте полосой.
«Вещественный мир не происходит, он просто есть, — писал в 1949 году немецкий физик Герман Вайль. — Часть этого мира оживает лишь для моего взгляда и сознания, движущегося по мировой линии вместе с моим телом; оживает как зыбкая картина пространства, которое постоянно изменяется со временем». Вайль косвенно признаёт, что наше ощущение текущего времени не имеет физического объяснения. Дело только в биологии и в том, как наш мозг воспринимает реальность.[139] «Реальность — это всего лишь иллюзия, пускай и очень упрямая», — говорил Эйнштейн.
Идея о том, что все события сосуществуют на четырёхмерной карте пространства-времени, стала для Эйнштейна некоторым утешением, когда его близкий друг Бессо умер в 1955 году. «Он ушёл из этого странного мира, немного опередив меня, — писал Эйнштейн семье покойного. — Но это ничего не значит. Люди вроде нас, те, кто верит в физику, понимают, что различия между прошлым, настоящим и будущим — это только упрямая иллюзия».
Пространство и время служат основаниями практически для всех концепций физики, и как только выяснилось, что полагаться на них нельзя, это затронуло и множество других физических понятий. Возьмём, к примеру, электрические и магнитные поля. Как время и пространство являются аспектами одного и того же явления, так и электрические и магнитные поля оказались проявлениями одного и того же — электромагнитного поля. На самом деле идея Эйнштейна устранила парадокс в теории Максвелла.
Согласно Максвеллу, если вы движетесь рядом с электрическим зарядом, например электроном, таким образом, что относительно друг друга остаётесь в состоянии покоя, вы ощущаете электрическое поле. Если же электронный заряд движется относительно вас, вы испытываете на себе влияние электрического и магнитного полей. Соответственно, если вы движетесь параллельно движению магнита, вы почувствуете магнитное поле, а если магнит движется относительно вас — магнитное и электрическое поле.
Как это возможно? Почему, если смотреть с одной точки зрения, электрическое или магнитное поле существует, а если с другой, то исчезает? Эйнштейн понял, что ответ может быть только один. Электрическое и магнитное поле — это всего лишь различные проявления одной сущности, электромагнитного поля. Сколько проявлений вы видите, зависит от вашей скорости движения относительно источника электромагнитного поля. Но Эйнштейн не просто показал, что электрическое и магнитное поле — это две стороны одной медали, равно как и пространство и время. Он также продемонстрировал, что масса и энергия тоже являются двумя частями одного целого.[140] Это объединение можно назвать величайшим выводом из теории относительности.
К моменту публикации статьи Эйнштейна об основах относительности 28 сентября 1905 года в журнале Annalen der Physik его редактор получил от Эйнштейна дополнение к статье на трёх страницах. В нём-то[141] и содержалась, вероятно, самая известная физическая формула: E = mc2.
Это был невероятный и неожиданный вывод. Из него следовало, что масса представляет собой всего лишь ещё одну форму энергии наряду со звуковой, тепловой или электрической. Её отличительной особенностью является только максимальная компактность. Формула Эйнштейна, в которой масса тела m умножается на квадрат очень большого числа c, скорости света, показывает нам, что даже небольшая масса содержит в себе огромное количество энергии, E.
Фундаментальная характеристика нашего мира состоит в том, что одна форма энергии может быть конвертирована в другую, скажем, электричество — в свет лампочки или химическая энергия пищи — в кинетическую энергию ваших мышц. И масса-энергия не исключение из этого правила. Её тоже можно превратить в другие типы энергии, например в тепло и свет. Чудовищное доказательство этому было приведено в августе 1945 года в японских городах Хиросима и Нагасаки.
Но формулу E = mc2 можно прочитать и в другом направлении. Не только масса является формой энергии, но и энергия имеет массу. И в данном случае мы говорим обо всех видах энергии. Масса есть у энергии звука, у тепла, у химической энергии и, что самое важное, у энергии кинетической.
Любое тело имеет собственную массу, так называемую массу покоя. Кроме того, оно приобретает массу при движении. Иными словами, если разогнать тело, оно станет более массивным. Когда вы бежите за автобусом, вы весите больше, чем когда ждёте его на остановке. Чашка кофе весит больше, пока напиток в ней горячий, потому что температура — это показатель движения на микроуровне, а молекулы в кофе движутся быстрее, пока кофе не остыл. Разумеется, такой прирост массы можно увидеть, только когда тело движется со скоростью, близкой к скорости света, а в повседневной жизни им можно пренебречь.
Но когда тело набирает разгон и становится более массивным, его труднее сдвинуть с его траектории. Если бы хоть одно материальное тело разогналось до скорости света, оно приобрело бы бесконечную массу, что невозможно. Во Вселенной просто нет столько энергии. Здесь-то и кроется ответ на вопрос, почему нельзя поймать солнечный луч.[142] Одно явление цепляется за другое, и в итоге формируется прекрасное полотно теории Эйнштейна.
Для света, не имеющего массы покоя и способного двигаться на максимальной скорости в нашей Вселенной, время не просто замедляется, а останавливается полностью. Рождение и смерть Вселенной кажутся ему происходящими одновременно. Украинский математик Юрий Иванович Манин говорил: «Единственное, что удерживает нас на месте в пространстве-времени, — это наша масса покоя. Без неё мы двигались бы на скорости света и время и пространство потеряли бы для нас всякий смысл. В мире света нет ни точек пространства, ни мгновений времени. Существа, состоящие из света, жили бы нигде и никогда. Лишь поэзия и математика могут рассуждать о таких вещах».
Специальная теория относительности подвинула в сторону ньютоновскую концепцию абсолютного времени и пространства. Ньютоновская физика оказалась неверным, хотя и поразительно убедительным отображением реальности. Но, несмотря на невероятный успех специальной теории относительности в изменении представлений людей об окружающем мире, у неё были свои недочёты.
Во-первых, она описывала измерение пространства и времени для людей, движущихся с постоянной скоростью относительно друг друга. Только так на них распространяются одинаковые законы физики, а именно одни и те же законы движения и оптики (в частности, постулат о постоянстве скорости света). Проблема в том, что люди редко движутся относительно друг друга с постоянной скоростью. В реальном мире их скорость меняется. Например, машина может притормозить на красный свет, а на зелёный рвануть вперёд. Ракета разгоняется ещё сильнее, пока не приобретёт скорость, необходимую для движения по орбите.
Задача, стоявшая перед Эйнштейном, была ясна. Нужно было понять, как измеряются пространство и время для людей движущихся с различной скоростью относительно друг друга, так чтобы на всех них распространялись одни и те же законы физики. Эти законы должны быть едиными вне зависимости от того, как человек движется: падает, вращается или сидит, вжавшись в кресло, в резко стартующей машине. Специальную теорию относительности нужно было превратить в общую.[143]
В этом желании Эйнштейна не было ничего необычного. Для того чтобы законы физики приобрели универсальный статус, они не должны зависеть от точки зрения наблюдателя. Движемся мы мимо магнита с постоянной скоростью или с ускорением — это не должно играть никакой роли. Закон магнетизма должен оставаться неизменным.
Но у специальной теории относительности были и другие проблемы, помимо ускорения. Например, она не сочеталась с законом всемирного тяготения Ньютона.
По сути, этот закон описывает, как значение силы притяжения меняется при увеличении расстояния до тела, обладающего массой, к примеру Солнца. Это можно переформулировать так: притяжение массивного тела ощущается на любой дистанции мгновенно, а это равнозначно заявлению о том, что гравитация движется со скоростью света. Однако, если верить специальной теории относительности, ничто, даже сила притяжения, не может преодолеть космический потолок скорости, то есть скорость света.
Закон всемирного тяготения Ньютона и специальная теория относительности Эйнштейна вступают в наиболее очевидный конфликт в гипотетическом сценарии, при котором наше Солнце исчезает. Разумеется, подобное событие вряд ли произойдёт! Но если бы это случилось, то, согласно Ньютону, Земля тут же заметила бы это и улетела в космос. Если же верить Эйнштейну, то она спокойно оставалась бы на своём месте в течение того времени, которое требуется солнечному свету, чтобы достигнуть нашей планеты. Лишь через 8,5 минуты мы бы поняли, что Солнца больше нет, — и Земля покинула бы свою орбиту.
Эйнштейн установил, что единственный способ включить скорость света как предел допустимой скорости в закон всемирного тяготения — использовать понятие поля. Оно было введено английским учёным и первооткрывателем электричества Майклом Фарадеем в начале XIX века.[144] Подходя к магниту с куском железа в руках, Фарадей чувствовал, как на металл действует невидимая сила притяжения, которая формирует вокруг магнита силовое поле. Когда же он рассыпал металлическую стружку вокруг магнита, то смог даже разглядеть линии этой силы.
По мнению Фарадея, магнит не влияет с определённой силой непосредственно на кусок железа в его руке. Вместо этого он распространяет вокруг себя магнитное поле, подобно лучу-транспортёру в «Звёздном пути», а это поле, в свою очередь, воздействует на железо. Кажется, будто разница невелика. Но эта гипотеза не только утверждает, что поле существует в физической реальности (в случае с электромагнитным полем проходящая через него вибрация является электромагнитной волной (светом)), но и признаёт, что оно может распространяться с определённой скоростью.[145]
По аналогии с электромагнетизмом Эйнштейну нужно было создать такую теорию, в рамках которой масса была бы источником гравитационного поля, а уже это поле воздействовало бы на другие объекты, обладающие массой. Что самое важное, это поле должно было бы распространяться с определённой скоростью, которая вписывалась бы в космический лимит.
Однако создание теории гравитационного поля, совместимой со специальной теорией относительности, было ещё не самой сложной из задач Эйнштейна. Третья из его проблем была связана с тем, что источником притяжения в ньютоновской теории была масса. Но Эйнштейн уже выявил, что все формы энергии имеют эффективную массу и, следовательно, силу притяжения. Соответственно, конечным источником гравитации должна быть не масса, а энергия.
Эйнштейн почти наверняка осознавал эти недочёты специальной теории относительности после завершения своей статьи в 1905 году. Но решающей стадии его затруднения достигли в октябре 1907 года, когда немецкий физик Йоханнес Штарк предложил ему сделать краткий пересказ его теории для журнала The Yearbook of Radioactivity and Electronics.
В то время Эйнштейн всё ещё работал в патентном бюро, а 1 апреля 1906 года ему даже был присвоен ранг технического инспектора II класса. Трудясь над статьёй после работы, он управился с ней за два месяца и 1 декабря 1907 года передал её Штарку. В первых четырёх разделах приводились базовые идеи специальной теории относительности, а также объяснялось, что она значит для времени, места, массы и энергии. Пятая часть была озаглавлена «Принцип относительности и гравитация».
Пока другие физики изо всех сил пытались понять запутанные идеи специальной теории относительности, Эйнштейн уже понимал, что это только начало. В письме своему другу Конраду Хабихту в конце декабря он признавался, что работает над новой концепцией относительности, хотя пока у него ничего не выходит.[146]
Это были прозорливые слова. Эйнштейну потребуется ещё восемь лет, чтобы включить в свой принцип относительности гравитацию и создать общую теорию относительности. Возможно, это заняло бы у него ещё больше времени, если бы не озарение, которое посетило его, пока он смотрел в окно патентного бюро.
Bais S. Very Special Relativity. — Cambridge, MA: Harvard University Press, 2007.
Einstein A. Relativity: The Special and General Theory. — London: Folio Society, 2004.
Fölsing A. Albert Einstein. — London: Penguin, 1998.
Jaffe B. Michelson and the Speed of Light. — Garden City, NY: Anchor Books, 1960.
Overbye D. Einstein in Love: A Scientific Romance. — London: Viking, 2000.
Pais A. «Subtle is the Lord...»: The Science and the Life of Albert Einstein. — Oxford: Oxford University Press, 1983.
Если физик, наблюдая за птицами, упадёт с обрыва, он не будет волноваться за свой бинокль, ведь тот упадёт вместе с ним.
В каком-то смысле гравитации не существует; планеты и звёзды движутся из-за деформации времени и пространства.
Падающий человек не чувствует собственного веса. Это осознание, посетившее Эйнштейна в 1907 году, стало краеугольным камнем, на котором он построил свою новую революционную теорию гравитации. К сожалению, как и в случае с его идеей о поимке луча света, мы не знаем точных обстоятельств, которые вызвали это осознание. Мы можем лишь предполагать. Нам известно, что в то время Эйнштейн жил и работал в швейцарской столице. Он писал: «Прорыв произошёл неожиданно, когда я сидел за столом в своём патентном бюро в Берне».
Я представляю себе Эйнштейна на рабочем месте читающим последнюю патентную заявку за день:
«47242
Allgemeine Elektricitätgesellschaft, Берлин
Nägeli & Co., Берн
Машина переменного тока».
Он вытирает кончик своей ручки о промокательную бумагу, а затем берёт свежий бланк Швейцарского федерального патентного бюро. Ему достаточно пары секунд, чтобы сформулировать, что он хочет сказать. Затем он быстро пишет: «Пункт 1. Патентная заявка оформлена неверно и неточно».[149]
До пункта 2 он не доходит.
Крик пронизывает его тело, как удар электричества. Эйнштейн вскакивает на ноги и видит, как с черепичной крыши дома напротив срывается рабочий, в отчаянии размахивая руками и неизбежно набирая скорость. За секунду до того, как достичь края крыши и пролететь пять этажей навстречу своей смерти на мостовой улицы Герфенгасс, рабочий успевает схватиться за флагшток. Кажется, что он слишком слаб, чтобы удержать человека, но — чудо из чудес — он лишь гнётся, а не ломается.
Я представляю себе, как Эйнштейн наблюдает за этой драмой, происходящей на крыше бернского Управления почты и телеграфа. Только когда он убеждается, что коллеги оттащили работника от края и он в безопасности, Эйнштейн с облегчением возвращается за свой стол. Его сердце всё ещё сильно бьётся, и ему нужно время, чтобы сосредоточиться на патентной заявке № 47242.
Не слишком ли резко он отозвался о ней? Может быть, на него повлияли горькие воспоминания о том, как когда-то в Мюнхене его отец, владелец компании Elektrotechnische Fabrik J. Einstein & Cie, безуспешно пытался конкурировать с другими предприятиями своей отрасли, включая и AEG, за поставку энергии для освещения городского центра? Нет, он уверен, что дело не в месте, а лишь в объективности. Во втором пункте он аккуратно и более официальным языком описывает все недочёты, которые видит в патентной заявке № 47242. Затем он промакивает записи, откидывается на спинку кресла и с удовлетворением смотрит на пустой поддон для бумаг.
Его босс и спаситель Фридрих Халлер уехал по делам в Цюрих, а его сосед по офису и друг Йозеф Заутер, пользуясь отсутствием начальства, отправился в Беренграбен, чтобы забрать забытый там зонтик, а заодно купить подарок жене на их годовщину. Эйнштейн чувствует укол совести: он ни разу ещё не дарил Милеве подарков по такому поводу.
В кабинете пусто и тихо. Я представляю себе, как Эйнштейн размышляет, откинувшись на спинку кресла. Он вспоминает драматичное событие, свидетелем которого стал, и проигрывает в голове его альтернативные концовки. Рабочий соскальзывает, хватается за флагшток, и тот сгибается под его весом, но удерживает. Рабочий соскальзывает, хватается за флагшток, тот сгибается под его весом, а потом резко разгибается, выбрасывая рабочего в свободный полёт.
Эйнштейн представляет себе, что произошло бы, если бы флагшток не удержал человека, и у него сводит живот. Он хватается за стол и пытается восстановить дыхание. Говорят, что в таких обстоятельствах время замедляется, почти останавливается, и перед глазами падающего человека успевает пролететь вся жизнь. Но что, если падать можно было бы бесконечно?
Он представляет себе падение в месте, где нет ни воздуха, ни ветра, способных остановить его движение. Он падает через время и пространство, через звёзды, небеса и всё, что между ними. Он падает до тех пор, пока не забывает о падении.[150]
Внезапно, как молния, к нему приходит озарение.
Он вскакивает на ноги, отталкивая кресло назад, понимая, что только что нашёл краеугольный камень, на котором можно построить новую реальность. В старости он назовёт это осознание самой радостной мыслью в своей жизни. Всё настолько очевидно, что он смеётся вслух в пустой комнате.
Падающий человек не ощущает своего веса!
Действительно ли Эйнштейн видел падающего с крыши рабочего и это придало ему вдохновения? Или какое-то другое, менее драматичное событие вызвало к жизни эту мысль? Мы можем лишь воображать, но никогда не узнаем. Эйнштейн рассказывал только о том, что однажды, в 1907 году, ему в голову пришла, казалось бы, совершенно невинная идея, которая позволила ему в итоге перевернуть ньютоновские представления о реальности.
Но почему именно мысль о падающем человеке, не чувствующем своего веса, оказалась такой важной? Представьте себе ситуацию.
Человек едет в лифте, как вдруг трос обрывается.[151] Пассажир тут же оказывается в свободном падении. Предположим, всё это время он стоял на весах (да, это не самый реалистичный пример). Только что весы показывали 70 килограммов, а через секунду — уже ноль. Именно это и означает не чувствовать своего веса при падении.
Согласно Ньютону, из-под воздействия гравитации вырваться невозможно, потому что она лишь ослабевает с расстоянием, но никогда не исчезает полностью. Согласно Эйнштейну, гравитацию легко можно обойти. Всё, что для этого нужно, — свободное падение. Гравитация исчезает, и человек теряет свой вес.
Ситуация с падающим человеком аналогична ситуации с человеком, находящимся в открытом космосе вдали от притяжения любой из планет. Таким образом, возникает связь между законом всемирного тяготения и специальной теорией относительности, потому что в обоих описанных случаях действует последняя.
Стрелка на весах в падающем лифте остаётся на нуле, потому что одновременно с тем, как человек падает на весы, весы падают из-под его ног. Иными словами, человек падает с той же скоростью, что и весы, хотя он весит 70 килограммов, а весы — ощутимо меньше.
Тот факт, что все предметы (а не только 70-килограммовые люди и весы) падают под воздействием силы притяжения с одинаковой скоростью, был впервые отмечен Галилеем в XVII веке. Согласно легенде, он сбрасывал тяжёлые и лёгкие предметы с вершины Пизанской башни, и они касались земли одновременно.
На Земле подобные эксперименты усложняет сопротивление воздуха, которое замедляет падение предметов, имеющих большую площадь. Но в 1972 году командир «Аполлона-15» Дейв Скотт повторил опыт Галилея на Луне, где, разумеется, воздуха нет. Он сбросил молоток и перо с одинаковой высоты, и два облачка лунной пыли в месте их падения поднялись одновременно.
Тот факт, что под влиянием силы притяжения все тела падают с одинаковой скоростью, на самом деле достаточно необычен. Представьте себе, что будет, если приложить одинаковую силу к предметам с большой и малой массой, например к полному еды холодильнику и деревянной табуретке. Повседневный опыт подсказывает нам, что ускорение холодильника будет меньше, ведь большую массу сложнее столкнуть с места, чем массу поменьше.[152] Большие массы сильнее сопротивляются движению, то есть имеют большую инерцию. По сути, это сопротивление движению и есть основа понятия «масса».
Странность гравитации состоит в том, что, даже несмотря на большие усилия, которые нужно приложить, чтобы сдвинуть с места большую массу, сила притяжения как будто подстраивается под неё таким образом, что массивный и лёгкий предметы всё равно падают с одинаковой скоростью. Тело, которое в два раза массивнее другого тела, испытывает в два раза большее влияние силы притяжения. Если тело массивнее другого в три раза, то и значение силы притяжения для него тоже будет выше в три раза, и так далее. Сбросьте холодильник и табуретку с вершины Пизанской башни (а ещё лучше на Луне, чтобы не задеть людей и избежать сопротивления воздуха), и они упадут одновременно, как молоток и перо, брошенные Дейвом Скоттом.
Технически сопротивление тела попыткам столкнуть его с места зависит от его инерционной массы mi. И это отражено во втором законе Ньютона, утверждающем, что если тело подвержено воздействию силы F, то его ускорение равняется F/mi. Сила притяжения, влияющая на тело, определяется его гравитационной массой mg.
Тело, инерционная масса которого в два раза больше инерционной массы другого тела, будет в два раза сильнее сопротивляться попыткам сдвинуть его с места. При этом оно падает с той же скоростью, что и тело меньшей массы, так как на него воздействует увеличенная в два раза сила тяжести. Иными словами, сопротивление тела движению, зависящее от инерционной массы, действует синхронно с силой притяжения, зависящей от гравитационной массы. Значит, можно сказать, что гравитационная масса mg и инерционная масса mi идентичны.
Со времён Галилея учёные полагали, что сопротивление тела движению и сила тяжести — это две совершенно разные вещи. И действительно, они не кажутся связанными между собой. Требовалась гениальность Эйнштейна, чтобы понять, что все эти учёные ошибались, а вернее, не видели того, что было прямо у них под носом. Тот факт, что падающий человек не чувствует своего веса (или, иными словами, что все тела под влиянием силы тяжести имеют одинаковое ускорение), может означать лишь одно. Гравитационная масса и инерционная масса — это одно и то же. Гравитация сама по себе является ускорением.
Как уже упоминалось ранее, в 1907 году Эйнштейн знал, что ему нужно расширить свою теорию относительности, чтобы она могла распространяться не только на тела, движущиеся равномерно относительно друг друга, но и на ускоряющиеся предметы. Ему также требовалась новая теория гравитации, так как ньютоновские законы не сочетались с общей теорией относительности. Каким удивительным открытием стало то, что общая теория относительности автоматически являлась и теорией гравитации! Словно кто-то запустил рекламную акцию «Купи одну теорию и получи вторую в подарок».
Требуется некоторое время, чтобы осознать простоту и ценность идеи Эйнштейна. Если сила тяжести и ускорение — это одно и то же, то гравитации не нужно подстраиваться под тела различной массы, чтобы они падали на землю одновременно. Это происходит естественно и автоматически, и вот почему.
Представим себе астронавта, который просыпается в космическом корабле вдали от притяжения Земли или любой другой планеты. Ускорение ракеты составляет 1 g, поэтому его ноги прочно стоят на полу корабля и он может спокойно ходить по нему, как по поверхности Земли.[153] Если в иллюминаторы ничего не видно, то наш астронавт вполне может подумать, что он находится в обычной комнате на своей планете. Эйнштейн пошёл ещё дальше и отметил, что астронавт никак не сможет доказать, на Земле он сейчас или в космосе. На практике оказывается, что гравитация неотличима от ускорения.
Теперь давайте предположим, что наш астронавт (из любопытства или от скуки) решил повторить эксперимент Галилея и Дейва Скотта. Он берёт в руки молоток и перо, поднимает их на высоту своих плеч и отпускает. Они падают с одинаковой скоростью и достигают пола одновременно. Разумеется, астронавт, не знающий, что он на космическом корабле, приписывает это силе тяжести.
Но мы с вами знаем больше. Нам известно, что он сейчас далеко от Земли и других планет. На самом деле, когда он выпустил из рук молоток и перо, они остались неподвижно висеть в воздухе, а пол космического корабля начал двигаться по отношению к ним с ускорением 1 g и одновременно достиг молотка и пера. Иначе и быть не могло.
Этот пример показывает нам, как просто на самом деле объясняется одновременное падение всех массивных объектов, если мы принимаем гравитацию и ускорение за одно целое. Гравитации действительно нет необходимости подстраиваться под каждую массу. Неудивительно, что Эйнштейн назвал эту мысль самой радостной в своей жизни.
Он понял, что сила тяжести отличается от других сил. На самом деле это иллюзия, которая возникает, когда мы ускоряемся и не осознаём этого. Идею того, что гравитация неотличима от ускорения, Эйнштейн сформулировал в своём принципе эквивалентности, который стал основой его теории гравитации.
Но почему мы ошибочно принимаем ускорение за силу тяжести? Эйнштейн понял, что ответ заключается в том, что мы не видим всей картины, как астронавт в своём корабле с закрытыми иллюминаторами. На самом деле мы все живём в искривлённом пространстве-времени. Это требует некоторых объяснений.
Наш астронавт на борту космического корабля без иллюминаторов из любопытства или от скуки решает провести ещё один эксперимент. На этот раз ему потребуется лазерная указка. Он берёт её и кладёт на полку в одном метре от пола. Затем он включает лазер так, чтобы его луч шёл горизонтально, параллельно полу, а на противоположной стене появилась яркая синяя точка. Затем наш астронавт подходит к ней и с удивлением замечает, что расстояние между ней и полом меньше одного метра. Пока луч пересекал комнату, он искривился вниз.[154]
Мы с вами знаем, что ракета движется с ускорением в 1 g. Пока луч двигался через комнату, пол ускорился ему навстречу. Поэтому нет ничего удивительного в том, что отметка от него на стене оказалась ниже. Однако наш изумлённый астронавт полагает, что на него воздействует сила притяжения на поверхности Земли, и делает вывод, что путь света искривился в её присутствии. То есть гравитация может искривлять свет.
Но почему она это делает? Одной из определяющих характеристик света является то, что он всегда движется по кратчайшему пути между двумя точками.
Вообразите себе туриста, которому нужно пройти от одного холма до другого по дикой пересечённой местности. Опытный путешественник выберет самую короткую тропу. Теперь давайте представим, что женщина на лёгком летательном аппарате пролетает над той же местностью. Она может видеть передвижения туриста, потому что на нём заметная одежда, и его путь кажется ей неровным и петляющим.
Этот пример призван проиллюстрировать тот факт, что кратчайшее расстояние между двумя точками не всегда должно быть прямым. Обычно это неровная и петляющая тропа. Иными словами, кривая.
Данное утверждение заставляет нас по-другому посмотреть на ситуацию с астронавтом и его лазером, который изгибается вниз. Единственная ситуация, при которой кривая являлась бы кратчайшим путём, — это если бы пространство космического корабля было искривлено, прямо как ландшафт, по которому путешествует турист.
Гравитация искривляет свет, потому что гравитация — это синоним искривлённого пространства. Более того, она сама является искривлённым пространством. Сложно представить себе теорию, дальше отстоящую от ньютоновских представлений о гравитации.
Пример с космическим кораблём иллюстрирует ускорение по прямой. Но мы уже выяснили, что любое ускорение связано с искривлённым пространством. Представьте себе, к примеру, вращающуюся по кругу карусель.
Любое тело, изменяющее свою скорость или направление движения, считается ускоряющимся. Наша карусель делает именно это. Несмотря на то что естественным движением для каждого её элемента является перемещение по прямой с постоянной скоростью, их постоянно заставляют сходить с этого пути и двигаться по кругу.
Теперь давайте мысленно разложим линейки длиной один метр вокруг карусели и по её диаметру, так чтобы концы линеек касались друг друга. Если диаметр карусели составляет пять метров, нам потребуется пять метровых линеек, чтобы проложить его, и ещё 16, чтобы разложить их по кругу. Каждый школьник знает, что длина окружности диаметром d рассчитывается как π × d.
А сейчас представьте себе, что карусель вращается не просто быстро, а очень быстро, так, что все точки на её периферии перемещаются со скоростью, близкой к скорости света. Если верить специальной теории относительности Эйнштейна, линейки укорачиваются по направлению их движения. Теперь для того, чтобы разложить их по окружности карусели, потребуется 20, или 50, или даже 100 линеек в зависимости от скорости движения. Что касается линеек, которыми выложен диаметр карусели, то они перемещаются перпендикулярно своей длине, а не в её направлении. Соответственно, они не сокращаются, и для того, чтобы выложить радиус карусели, по-прежнему достаточно пяти линеек.
Как же объяснить то, что окружность карусели оказывается гораздо больше чем π × d? Дело в том, что этой формулой описывается только окружность, нанесённая на плоскую поверхность вроде листа бумаги.
Теперь давайте рассмотрим окружность, нарисованную на сфере. Её длина меньше чем π × d. Длина окружности, нанесённой на поверхность, которая искривлена в другую сторону (например, на прогибающуюся вниз батутную сетку), наоборот, будет больше π × d. Таким образом, тот факт, что длина окружности карусели превышает π × d, объясняется просто: пространство, занимаемое каруселью, искривлено.
Итак, какой бы тип ускорения (по прямой линии или по кругу) мы ни рассматривали, результат остаётся прежним. Ускорение связано с искривлённым пространством. А раз гравитация и есть искривлённое пространство, то с помощью ускорения вращения можно имитировать силу тяжести. Этот эффект показан в фильме «Космическая одиссея 2001 года». Космическая станция на земной орбите вращается как огромное колесо, а астронавты могут свободно перемещаться по её окружности, удерживаемые искусственной гравитацией.
Но на самом деле гравитация — это чуть больше, чем просто искривлённое пространство.
В случае специальной теории относительности пространство одного человека становилось временем и пространством другого. Именно это осознание и натолкнуло Германа Минковского на идею, что пространство и время в действительности лишь составляющие одного целого, пространства-времени. Соответственно, сила тяжести искривляет не столько пространство, сколько пространство-время.
Концепция пространства-времени, разработанная Минковским, оказалась ключом к пониманию гравитации, и даже гений Эйнштейна не мог этого предвидеть.
Поскольку гравитация представляет собой искривлённое пространство-время, она играет в игры не только с пространством (например, изгибая пути движения световых лучей), но и со временем.
Представьте себе часы, которые состоят из горизонтального лазерного луча, отражающегося в зеркалах. Каждый раз, когда луч попадает на зеркало, наши часы тикают. Если они располагаются на поверхности Земли, то луч не перемещается между зеркалами по идеально прямой линии, а движется по изогнутому пути, потому что гравитация искривляет свет.
Теперь вообразите себе двое таких часов, при этом второй механизм установлен высоко над землёй. Наземные часы будут испытывать чуть большее влияние силы гравитации, так как они находятся ближе к основной массе Земли. Это значит, что свет, отражающийся от зеркал нижних часов, будет перемещаться по более изогнутому пути, чем в верхних. Чем сильнее искривлена траектория, тем больший путь проделывает свет и тем длиннее промежуток между двумя «делениями» таких часов. Следовательно, наземные часы идут медленнее тех, которые находятся над землёй. Иными словами, в присутствии сильной гравитации время замедляется.[155]
Это означает, что люди на первом этаже любого здания стареют медленнее, чем на последнем, ведь они находятся ближе к основной массе Земли, а значит, на них действует чуть большая сила притяжения. В 2010 году физики из Национального института стандартов и технологий США сумели доказать, что, даже поднявшись на одну ступеньку лестницы, вы начнёте стареть быстрее, чем люди ниже вас.[156] Это почти незаметный эффект, ведь сила притяжения Земли достаточно слаба. Тем не менее его можно измерить с помощью двух высокоточных атомных часов.
Если вы думаете, что этот странный эффект не играет роли в вашей повседневной жизни, задумайтесь ещё раз. Смартфоны и навигационные устройства получают данные от спутников системы глобального позиционирования, которые вращаются по вытянутым орбитам вокруг Земли. На спутниках системы GPS установлены часы, и когда спутники максимально приближаются к нашей планете, эти часы замедляют ход. Если бы ваши электронные устройства не уравновешивали эту задержку, спутники не сумели бы определить ваше местонахождение относительно элементов системы GPS.
Иными словами, многие из нас ежедневно и неосознанно принимают участие в эксперименте для проверки общей теории относительности. Если бы она была неверна, система GPS ошибалась бы на 50 метров каждый день. Но на самом деле за десять лет отклонение составляет всего пять метров, что показывает нам, как точна общая теория относительности.[157]
Замедление времени под воздействием гравитации проявляет себя ещё одним способом. Представим, что наш астронавт на самом деле находится в комнате на Земле, а не на космическом корабле. Он берёт синюю лазерную указку, кладёт её на пол и направляет луч на потолок. И тут происходит нечто необычное. Точка на потолке вовсе не синяя, а красная. Всё потому, что источник света находится ближе к Земле, где гравитация сильнее, а часы идут медленнее. Осцилляция (колебание) света, движущегося к потолку и отражающегося от него, похожа на тиканье часов, а значит, тоже замедлена. Учитывая, что цвет — это всего лишь показатель того, как быстро осциллирует свет, а красный свет вибрирует меньше, чем синий, спектр замедленного света смещается к красному.
На Земле гравитационное красное смещение света, движущегося вверх, крайне мало. Его совершенно точно недостаточно для того, чтобы превратить красный цвет в синий (мне пришлось немного преувеличить). Тем не менее такое смещение можно измерить высокоточными приборами. В ходе одного из таких экспериментов, имевших место в 1959 году, американские учёные Роберт Паунд и Глен Ребка наблюдали гравитационное красное смещение света, движущегося вверх по башне высотой 22,6 метра. Это стоило им немалых усилий, так как смещение на таких небольших расстояниях сложно заметить. Однако его можно легко увидеть в свете белых карликов, плотных звёзд с очень высокой поверхностной гравитацией.
Гравитация воздействует на время, потому что она представляет собой не просто изогнутое пространство. Она — это искривлённое пространство-время, в котором искривление пространства отвечает за изменение пути движения света, а искривление времени — за отстающие часы.
Для того чтобы понять, что мы живём в искривлённом пространстве-времени, которое и является гравитацией, понадобился гений Эйнштейна. До него никто не выдвигал подобного предположения, потому что оно далеко не очевидно.
Вообразите себе расу разумных муравьёв, которые живут на поверхности батута и не могут вырваться из его двумерной плоскости. Муравьи могут двигаться на север, юг, запад и восток, но не имеют представления о третьем измерении, то есть вверх и вниз. Теперь предположите, что на батут кто-то положил шар для боулинга. Муравьи замечают, что, если попытаться перейти с одной стороны батута на другую, их пути искривятся и приведут их к шару. Ситуация требует объяснений, и они их находят. Всё дело в том, что шар их притягивает. Возможно, они даже назовут эту силу притяжения гравитацией.
Но, глядя на батут сверху, из третьего измерения, мы увидим иную картину. Очевидно, что шар для боулинга заставил батут прогнуться, и в поисках кратчайшего пути с одной стороны батута на другую муравьи естественным образом движутся вокруг шара, точно так же, как наш турист по пересечённой местности.[158]
Мы с вами находимся в той же ситуации, что и муравьи. Так как мы живём в трёхмерном мире, мы не в состоянии постичь четырёхмерную реальность, в которой он существует. Солнце создаёт углубление в ткани пространства-времени точно так же, как шар для боулинга — в полотне батута. Поскольку мы не можем этого увидеть, мы приписываем движение Земли вокруг (если быть более точным, по эллипсу) Солнца действию силы, которая направлена от Солнца к Земле. Но на самом деле никакой такой силы, привязывающей нашу планету к Солнцу невидимой резинкой, не существует, как и не существует силы, исходящей от шара для боулинга.
Естественным движением для любого тела является перемещение по самой прямой из возможных траекторий через искривлённое пространство-время. Соответственно, Земля вращается вокруг Солнца, как шарик в рулетке. Американский физик Митио Каку пишет, что «в каком-то смысле гравитации не существует. Планеты и звёзды движутся из-за искривления пространства и времени».[159]
Эта фраза передаёт самую суть теории гравитации Эйнштейна. Американский физик Джон Уилер описывает её так: «Материя указывает пространству-времени, как изогнуться, а изогнутое пространство-время говорит материи, как двигаться». Всё очень просто. На самом деле материю искривляет энергия, ведь масса-энергия — это лишь одна из её форм. Но это уже придирки. Фраза Уилера ёмко передаёт суть общей теории относительности.
Говоря простыми словами, вокруг Земли в пространстве-времени сформировалось углубление. Естественным движением для нас является падение на дно такого углубления, то есть к центру Земли.[160] Но на нашем пути оказывается земная поверхность, которая препятствует этому активному движению. Мы чувствуем гравитацию как восходящую от земли силу.
Различия между ньютоновской и эйнштейновской теорией поражают. Согласно Ньютону, Земля стремится к равномерному движению по прямой, потому что именно это обычно делают тела, обладающие массой. Однако сила притяжения Солнца отклоняет Землю с траектории её естественного инерционного движения и заставляет вращаться по эллиптической орбите вокруг Солнца. Согласно Эйнштейну, Солнце искривляет ткань пространства-времени вокруг себя. Земля стремится двигаться по кратчайшему пути, потому что именно это обычно делают тела, обладающие массой. Однако в искривлённом пространстве-времени такое инерционное движение соответствует перемещению по эллипсу.
Ньютон не показал нам причину того, почему яблоко падает, а только доказал, что на яблоко и на Луну действует одна и та же сила. «Гипотез не измышляю», — писал Ньютон в своих «Началах». Эйнштейн же продемонстрировал нам, почему возникает гравитация. Земля искривляет пространство-время вокруг себя, а яблоко и Луна реагируют на это искривление.
«Предположение, что одно тело может воздействовать на другое на расстоянии, через вакуум и без какой-либо помощи и что таким образом действие силы может передаваться от одного предмета другому, кажется мне таким абсурдным, что ни один человек, который с философской точки зрения обладает способностью мыслить, не может считать его верным», — говорил Ньютон.[161] И это действительно абсурдно. Согласно Эйнштейну, воздействие на расстоянии осуществляется через искривлённое пространство-время. Ньютону бы понравилось это решение.
Ещё сильнее контраст между Ньютоном и Эйнштейном подчёркивают их представления о пространстве и времени. Ньютон считал пространство лишь фоном, на котором разворачиваются события космического масштаба, а время — непрерывным тиканьем вселенских часов. Но если верить Эйнштейну, таких вещей, как абсолютное время и абсолютное пространство, не существует. Пространство и время могут растягиваться и сжиматься и составляют единое целое — пространство-время. Кроме того, материя определяет форму пространства-времени, которая, в свою очередь, задаёт движение материи, изменяющее форму пространства-времени, которая определяет движение материи... Это похоже на очень сложный танец. Вселенная больше не пассивный фон, ведь пространство-время действует само по себе.
Представления Ньютона о пространстве и времени почти наверняка были прагматическими. Он признавал, что пространство можно определить исключительно как расстояние между двумя телами, что оно обязано быть «относительным». Но он также понимал, что с помощью математических инструментов, которыми он располагал, он не смог бы развить эту теорию. Тот факт, что Ньютон считал абсолютное время и абсолютное пространство достаточно хорошими концепциями для объяснения многих явлений во Вселенной, ещё раз доказывает нам его гениальность.
Роль пространства-времени как актёра в огромном космическом представлении наиболее ярко проявляется в гравитационных волнах. Дело в том, что пространство-время колеблется при движении массы, а колебания вызывают волны, как камень, брошенный в пруд. Только в этом случае они расходятся по всей ткани пространства-времени.
Эйнштейн постоянно менял свою точку зрения относительно их существования. В 1916 году он был в нём уверен, потом быстро отказался от этой идеи, а затем вернулся к ней снова в 1936 году. А 14 сентября 2015 года, почти к 100-летнему юбилею предсказания Эйнштейна, гравитационные волны были впервые в истории зарегистрированы на Земле.
Представьте себе, что вы были глухим от рождения, а однажды утром проснулись и обрели слух. Точно так же чувствовали себя в этот момент астрономы. На протяжении всей истории человечества они могли лишь смотреть на Вселенную. Теперь же её можно было услышать.
СМИ любят преувеличивать важность различных явлений, но в данном случае они могли бы с полной уверенностью сказать, что открытие гравитационных волн стало самым важным событием в астрономии с момента изобретения телескопа в 1608 году. Гравитационные волны — это в буквальном смысле голос космоса.
Итак, 14 сентября 2015 года произошло нечто необычное. Во времена, когда самыми сложными организмами на Земле были бактерии, в одной далёкой-далёкой галактике сошлись в смертельном танце две огромные чёрные дыры. Одна из них была в 29 раз больше Солнца, а другая — в 36, и каждая из них двигалась со скоростью, равной половине скорости света. Сделав последний пируэт, они слились в поцелуе, и целых три солнечных массы были уничтожены и превратились в гравитационные волны. Цунами искривлённого пространства-времени помчалось вперёд с такой силой, что на мгновение его выходная мощность в 50 раз превысила мощность всех звёзд во Вселенной.
Пространство-время в миллиард миллиардов миллиардов раз прочнее, чем сталь, поэтому вибрацию в нём может вызвать только очень масштабное космическое событие, как, например, слияние двух чёрных дыр. Но эти волны, как и круги на воде, быстро затухают. Поэтому отголоски волн, которые 14 сентября 2015 года достигли Земли, были очень слабыми.
И тут на сцену вышли LIGO — лазерно-интерферометрические гравитационно-волновые обсерватории (по сути, пара огромных четырёхкилометровых установок, состоящих из лазерных лучей) в Ливингстоне, штат Луизиана, и Хэнфорде, штат Вашингтон.[162] Четырнадцатого сентября 2015 года в 05:51 по летнему восточному времени установки в Ливингстоне, а через 6,9 миллисекунды — и в Хэнфорде удлинились и сократились на 100-миллионную долю диаметра атома.[163] «Сигнал невероятно слаб, но его источник имеет астрономические размеры. Воздействие невероятно слабо, но награда за его обнаружение бесценна», — написала об этом Жанна Левин из Колумбийского университета в Нью-Йорке.[164]
Сотрудники LIGO поняли, что засекли вспышку гравитационных волн, пришедших из космоса, потому что два детектора, отстоящие друг от друга на 2500 километров, зарегистрировали одинаковое воздействие. Это исключало возможность случайного события (например, громкого хлопка дверью в радиусе десяти метров от детектора). Кроме того, физики определили происхождение волн по тому, что их частота сначала увеличивалась, а затем резко обрывалась из-за появления новой чёрной дыры. Результаты наблюдений точно совпадали с предсказаниями Эйнштейна и его общей теорией относительности.
Самое удивительное в этой ситуации то, что прежде теория Эйнштейна проверялась только в условиях очень слабой гравитации (то есть в Солнечной системе), а не вблизи чёрных дыр. Тем не менее она прошла и этот тест. Мировые СМИ сразу же написали, что Эйнштейн был во всём прав. Забавно, но на самом деле он оказался прав и не прав одновременно. Он действительно верно предсказал гравитационные волны, но зря не верил в существование ещё одного своего пророчества — чёрных дыр.
Чёрная дыра окружена воображаемой мембраной, которая обозначает точку невозврата для движущейся по направлению к дыре материи или света. Как по звону можно определить колокол, по звуку этого «горизонта событий» можно вычислить новорождённую чёрную дыру. Раз мы слышали этот звук 14 сентября 2015 года, мы можем быть уверены, что эта дыра существует.[165]
Станции LIGO были созданы в значительной степени благодаря трём людям. Первым из них был Кип Торн из Калифорнийского технологического института, физик-теоретик, который знаменит привычкой одеваться в стиле хиппи, а также множеством пари насчёт чёрных дыр со Стивеном Хокингом (большую часть из которых он выиграл). Вторым — Райнер «Рай» Вайсс, экспериментатор из Массачусетского технологического института, который в 1940-е годы создавал в Нью-Йорке звуковые системы, а сегодня разрабатывает устройства для прослушивания космоса. Вайсс прошёл пешком по всем туннелям LIGO, изгоняя оттуда ос, крыс и прочих непрошеных гостей. Третьего члена этой команды, шотландского физика со сложной и трагической судьбой, звали Рональд Древер.
Невысокий и плотно сбитый человек, носивший свои бумаги с собой в пластиковом пакете из супермаркета и постоянно оставлявший на документах пятна чая и отпечатки жирных пальцев, Древер был гением экспериментальной физики.[166] В то время как Торну нужно было заполнить множество страниц вычислениями, чтобы ответить на какой-либо технический вопрос, Древер умел найти такое же решение с помощью одной простой диаграммы. К сожалению, он был абсолютно неспособен нести ответственность за работу на проекте, и в 1997 году его уволили. Расстроенный этим, он остался жить в Пасадине, неподалёку от Калифорнийского технологического института. Древер был нелюдимым холостяком, друзей в США он не завёл, и в итоге у него развилась деменция. В своей книге «Black Hole Blues» Левин рассказывает печальную историю о том, как сотрудник Калтеха Питер Голдрайх отвёз ничего не понимающего Древера в нью-йоркский аэропорт имени Кеннеди и посадил на самолёт до Глазго, где у него жил брат. Сейчас Древер находится в доме престарелых в Шотландии, и у Нобелевского комитета осталось совсем немного времени, чтобы воздать ему положенные почести.[167]
LIGO — это настоящее технологическое чудо. Каждая установка состоит из двух труб диаметром 1,2 метра, согнутых в виде буквы L. По ним в абсолютном вакууме движутся мегаватты лазерных лучей. В конце каждой трубы свет отражается от 42-килограммового зеркала, подвешенного на стекловолокне толщиной всего в два человеческих волоса. Эти зеркала так хорошо отполированы, что отражают 99,999% света. Легчайшее движение зеркал сигнализирует о прохождении гравитационной волны. Эта система настолько чуткая, что её однажды вывело из строя землетрясение в Китае. «Она может прийти в движение от приливного воздействия небесных тел, проседания земли, слабейшего изменения температуры, квантовых вибраций или давления лазерного луча», — пишет Левин.
Некоторые считают, что LIGO не то, чем кажется. Левин рассказывает, как однажды летел самолётом в Батон-Руж, штат Луизиана, и когда они пролетали над установкой LIGO, его сосед рассказал, что это устройство предназначено для путешествий во времени. «По одной трубе можно попасть в будущее, а вторая отбрасывает тебя в прошлое», — сообщил он со знанием дела.
Благодаря успеху LIGO в 2016 году перед нами открылась новая эра астрономии. Мы похожи на глухого, к которому только что вернулся слух, но который пока что не умеет пользоваться им в полной мере. Он услышал дальний отголосок грома, но ему ещё предстоит познакомиться с такими звуками, как пение птиц, музыка или плач ребёнка. Кто знает, какое звучание Вселенной откроется нам в будущем благодаря LIGO и иным экспериментам с гравитационными волнами?
Несмотря на то что о регистрации гравитационных волн было официально заявлено 11 февраля 2016 года, что вызвало огромный восторг в научной среде, к тому моменту учёные уже располагали косвенными данными, подтверждающими их существование. Данные поступили от двойного пульсара под названием PSR B1913+16. В этой системе две нейтронные звезды с очень большой плотностью вращаются по спирали вокруг друг друга и в связи с этим теряют орбитальную энергию.
Нейтронная звезда формируется после взрыва массивной звезды в конце её жизненного цикла. В то время как внешние слои звезды стремительно расширяются в пространстве (мы называем это взрывом сверхновой), её ядро схлопывается, создавая очень плотную нейтронную звезду — как если бы вся масса нашего Солнца была сконцентрирована в объекте величиной с Эверест (см. дополнительную информацию о нейтронных звёздах в разделе «Нейтронные звёзды» главы 7).
Одна из нейтронных звёзд в системе PSR B1913+16 является пульсаром. Она стремительно вращается, выбрасывая в космос пучки радиоволн, как маяк. Внимательно понаблюдав за этой системой, американские астрономы Рассел Халс и Джозеф Тейлор обнаружили, что звёзды теряют орбитальную энергию точно с такой же скоростью, с которой они бы двигались, если бы излучали гравитационные волны. За это открытие Халс и Тейлор в 1993 году получили Нобелевскую премию по физике.
Для того чтобы превратить свою догадку о материи, которая искривляет пространство-время, и о пространстве-времени, которое представляет собой гравитацию, в теорию, Эйнштейну пришлось иметь дело со сложной математикой искривлённого пространства. К сожалению, во время учёбы в Высшей технической школе в Цюрихе он прогуливал лекции по математике, предпочитая возиться с батареями и конденсаторами в университетской лаборатории. Как говорил сам Эйнштейн, это была ошибка, которую он осознал слишком поздно.[168]
К счастью, у него был давний друг Марсель Гроссман, который учился на один курс старше его в той же Высшей технической школе и изучал математику. Именно благодаря контактам отца Гроссмана Эйнштейн и получил работу мечты в бернском патентном бюро. Но самое главное, Гроссман разбирался в геометрии искривлённых пространств, а значит, мог научить Эйнштейна всему, что ему требовалось для выражения своих революционных идей о гравитации и пространстве-времени.
В этой области работали несколько математиков, самыми известными из которых были жившие в XIX веке Карл Фридрих Гаусс и Бернхард Риман. До них геометрия рассматривалась лишь как наука о фигурах на плоскости, основателем которой был древнегреческий математик Евклид.[169] В своих «Началах», написанных в III веке до нашей эры, он перечислил пять очевидных истин о прямых и углах. Используя эти аксиомы как основание для своих логических построений, он создал множество теорем, например теорему о том, что сумма всех углов треугольника составляет 180 градусов.
Пятый постулат Евклида гласит, что параллельные линии никогда не пересекаются. Гаусс и Риман расширили этот постулат, включив в него геометрию объёмных тел, например сфер. Если нарисовать на сфере две параллельные линии, поднимающиеся вверх от экватора, то они сойдутся на Северном полюсе.
Работа над описанием гравитации как искривлённого пространства-времени (то есть, по сути, над её обобщением) заняла у Эйнштейна целых восемь лет. За это время он успел переехать из Цюриха в Берлин.
Эйнштейн родился в Ульме на юге Германии, но в 1896 году в возрасте 20 лет отказался от немецкого гражданства из-за отвращения к царившему на его родине милитаризму. Несмотря на это, когда ему предложили пост в университете в Берлине, он согласился, и Берлин стал его домом с 1914 года до прихода Гитлера к власти в 1933 году. После этого евреям стало слишком опасно оставаться в Германии, и Эйнштейн эмигрировал в США.
В Берлин его заманили Макс Планк и Вальтер Нернст. Эти два светоча немецкой (да и всемирной) науки однажды приехали в Цюрих с предложением, от которого Эйнштейн не мог отказаться: получить прибыльное место профессора в Берлинском университете без чтения лекций студентам. Берлин быстро превращался в центр научного мира, и возможность ежедневно общаться с лучшими учёными планеты была крайне привлекательна для человека, который многие годы провёл в своего рода интеллектуальном отшельничестве в Швейцарском патентном бюро. Кроме того, отъезд помог ему освободиться от уз тяготящего его брака.
Пока Эйнштейн поднимался всё выше и выше на интеллектуальный Олимп, Милеву затягивали быт и воспитание детей. Уже этого одного было достаточно, чтобы посеять неприязнь между супругами, но в довершение всего Эйнштейн оказался совершенно не приспособлен к семейной жизни. Он был не в состоянии сочетать глубокую концентрацию, необходимую для фундаментальных научных открытий, с повседневными обязанностями или межличностными отношениями.
Ньютон избавил себя от этих проблем, оставшись холостяком. Насколько нам известно, близких привязанностей у него тоже не было. Эйнштейн же, как он ни кичился своей исключительностью, поступил в соответствии с традицией и женился на Милеве, так как этого требовали обстоятельства. Через некоторое время она забеременела и родила ребёнка, которого быстро отправили в Сербию к её семье. Скорбь от разлуки с малышкой, чьё существование пара скрывала даже от друзей, должна была оказывать большое давление на их брак. В свою бытность наивными студентами Швейцарской федеральной политехнической школы Милева и Эйнштейн мечтали, как будут жить в счастливом союзе, но реальность оказалась непохожей на их фантазии.
Из Цюриха в Берлин Эйнштейн ехал извилистым маршрутом, чтобы посетить своих друзей-учёных по всей Европе. В столицу Пруссии он прибыл лишь в апреле 1914 года, а вскоре к нему приехала и его семья. Но уже к началу июля его отношения с Милевой окончательно испортились, и она вернулась в Цюрих вместе с детьми. Хотя развелись они только в 1919 году, их брак распался пятью годами ранее.
В Берлине Эйнштейн вернулся к отношениям со своей кузиной Эльзой, с которой несколько лет назад у него случился роман. Эльза, разведённая женщина без особых перспектив, была готова заниматься домом и готовкой, а также соглашалась на то, чего не могла принять Милева. В обмен на статус спутницы известного человека она не чувствовала себя вправе требовать, чтобы он уделил ей своё внимание или время.
Эйнштейн вёл себя ужасно по отношению к Милеве. Тем не менее он плакал, когда его жена и двое сыновей садились на поезд в Цюрих. Вернувшись в свою пустую квартиру в районе Далем, он сел за стол и начал работать. Ему удалось воплотить своё главное желание: начать жизнь, свободную от бытовых проблем и семейных обязанностей. Друг Эйнштейна Янош Плеш описывал его так: «Он спит, пока его не разбудят, отправляется в постель, когда ему велят, голодает, пока ему не принесут поесть, и ест до тех пор, пока его не остановят».
Эйнштейн верил, что наконец-то обрёл покой. Но эта уверенность была ошибочной.
Всего за несколько недель Германия и её союзники развязали войну с Россией, Британской империей и Францией. Эйнштейн был шокирован, но ещё сильнее его ужасало то, что его друзья-учёные буквально за одну ночь превратились в жаждущую крови толпу. «Весь наш хвалёный технологический прогресс и цивилизацию в целом можно сравнить с топором в руках патологического преступника», — говорил он.[170]
Больше всего Эйнштейна расстраивало поведение химика Фрица Габера, его близкого друга. Габер пытался помирить его с Милевой и даже провожал семью Эйнштейна на поезд до Цюриха вместе с ним. Теперь же он превратил свою лабораторию в военную фабрику, где создавались ядовитые газы для уничтожения молодых ребят в окопах по всей Европе.[171]
Отстранённость Эйнштейна от реальности разрушила его брак, но она же помогла ему в ужасное военное время. Закрывшись в своём кабинете в институте Габера, окружённый химиками, которые превратились в убийц, он уходил с головой в мир физики и, в частности, теории гравитации.
Первые лекции, посвящённые своей новой теории, Эйнштейн прочёл в Прусской академии в октябре 1914 года. Он всё ещё не успел её завершить, но был достаточно в ней уверен, чтобы заявить, что Исаак Ньютон был не прав и что геометрия искривлённого пространства-времени критически важна для понимания гравитации. С тем же успехом он мог бы говорить с аудиторией на марсианском языке. Эйнштейн был сверхновой во вселенной физики, но к нему не отнеслись хоть сколько-нибудь серьёзно. Однако Эйнштейна это не смутило. Он вернулся в свой кабинет, закрыл дверь и принялся за работу.
Ещё через год, в конце 1915-го, наступил кульминационный момент.
Прочесть несколько лекций в Гёттингенском университете Эйнштейна пригласил величайший немецкий математик того времени. Давид Гилберт стал всемирно известен в 1900 году, когда выделил 23 сложнейшие проблемы математической науки, задав вектор её развития в XX веке.
Поскольку коллеги игнорировали Эйнштейна в Берлине, он ухватился за возможность быть выслушанным в Гёттингене. В конце июня – начале июля 1915 года он прочитал там шесть лекций о своей теории гравитации. Своей аудитории он сказал, что его расчёты трансформации гравитации в геометрию были в основном верны, хотя это и не полностью соответствовало действительности. В частности, его теория гравитации была несовместима с одним из ключевых положений его же собственной специальной теории относительности 1905 года: о том, что наблюдатели, движущиеся равномерно относительно друг друга, должны видеть действие одинаковых законов физики. Ещё одна проблема состояла в том, что новая теория неправильно рассчитывала орбиту Меркурия.
Гилберт был уверен, что Эйнштейн находится на верном пути, и тот вернулся в Берлин в приподнятом настроении. Но к концу сентября радость сменилась ужасом.
В отличие от многих математиков Гилберт очень интересовался физикой. Именно поэтому в первую очередь он и пригласил Эйнштейна в Гёттинген. Интерес к физике побудил его попытаться исправить те проблемы, которые Эйнштейн описал в своей лекции. Забросив всю свою работу, он начал разрабатывать теорию гравитации, которая была бы совместима со специальной теорией относительности. После восьми лет одинокого труда у Эйнштейна появился конкурент, да ещё и наделённый исключительными способностями к математике.
Ситуация ещё больше ухудшилась, когда к концу сентября Эйнштейн осознал: нестыковки со специальной теорией относительности и неспособность рассчитать орбиту Меркурия — это не просто детали, как ему казалось, а фундаментальные проблемы. В частности, наблюдатели, вращающиеся относительно друг друга, будут видеть разные законы физики в действии, а это неправильно. С его теорией гравитации очевидно было что-то не в порядке.
Эйнштейн был глубоко подавлен, и его можно было понять. Он мог легко сломаться под гнётом проблем, но печаль очень быстро переросла в ярость. Он не мог допустить, чтобы другой человек прославился, использовав результаты его восьмилетнего труда. Эйнштейн не был готов сдаться без борьбы.
К началу октября свершилось чудо — Эйнштейн понял, в каком направлении ему следует двигаться. Американский физик Ричард Фейнман говорил: «Хороший учёный много работает, чтобы допустить все возможные ошибки перед тем, как найти правильный ответ».[172] Таким учёным и был Эйнштейн. В попытках создать свою теорию гравитации он совершил все мыслимые ошибки. Но гений состоит в том, чтобы уметь найти тропинку даже в самой кромешной темноте.
Выйдя из этой темноты на свет, Эйнштейн работал как одержимый в течение шести недель. Часто он забывал поесть и поспать. В дальнейшем он рассказывал, что в этот период испытал самое большое умственное напряжение в своей жизни.
К началу ноября работа была почти завершена. Эйнштейну не хватало лишь уравнения для описания гравитационного поля. Но откладывать уже было нельзя.
За несколько месяцев до этого Эйнштейн обязался представить свою теорию, прочитав ряд лекций в Прусской академии. Когда он давал это обещание, ему казалось, что его теория достаточно разработана, но теперь понимал, что она не завершена. Тем не менее нужно было действовать, потому что время работало против него. Ему всего лишь нужно было достичь финиша раньше Гилберта.
Эйнштейн должен был читать лекции по одной в неделю в течение четырёх недель. На первое выступление он сумел найти достаточно материала, а вот дальше действовал по наитию. В течение всех последующих недель он лихорадочно пытался закончить задачу, на решение которой у него ушло восемь лет, и в конце каждой недели выходил к аудитории в Прусской академии и читал лекцию о своих вчерашних результатах.
Всё это время соперник дышал ему в затылок. Из писем, которые Гилберт писал Эйнштейну, было понятно, что он нащупал более или менее правильный путь, и это подталкивало Эйнштейна вперёд.
В своей первой лекции, прочитанной 4 ноября, Эйнштейн не делал никаких предсказаний. Но теперь его теория избавилась от внутренних противоречий и стала совместимой с общей теорией относительности. Как будто для того, чтобы специально подчеркнуть это, Эйнштейн сумел доказать, что ньютоновская теория гравитации представляет собой лишь приближённый вариант его собственной теории для небольшого искривления пространства-времени.[173] Впервые за всё время работы над теорией гравитации она начинала выглядеть убедительно.
Через две недели, 18 ноября 1915 года, Эйнштейн впервые озвучил предсказание, основанное на своей теории. Он рассчитал значение гравитационного поля Солнца, что позволило не только вычислить искривление света, но и, что гораздо важнее, предсказать прецессию перигелия Меркурия.
В Рождественский сочельник 1907 года, окончив анализ специальной теории относительности, Эйнштейн написал своему цюрихскому другу Конраду Хабихту: «Я надеюсь объяснить непонятные до сих пор вековые колебания перигелийного расстояния Меркурия».[174] В тот раз у него не вышло это сделать. Тем не менее это письмо показывает, что Эйнштейн уже тогда верил: это малозаметное явление на самом деле указывает на фундаментальную ошибку теории гравитации Ньютона.
Меркурий — самая близкая к Солнцу планета, а это значит, что ему приходится иметь дело с самым искривлённым пространством-временем в Солнечной системе. Соответственно, именно на Меркурий искривление пространства-времени имеет наибольшее воздействие.
В 1905 году Эйнштейн открыл, что все формы энергии имеют эффективную массу. А значит, все они должны порождать силу тяготения. При этом одной из форм энергии является гравитационная энергия, то есть энергия самого искривлённого пространства-времени. Удивительно, но искривлённое пространство-время не только само по себе является гравитацией, но и выступает как источник дополнительной гравитации. Гравитация порождает саму себя!
Соответственно, рядом с Солнцем гравитация окажется сильнее, чем предсказывал Ньютон, и на неё не будет распространяться закон обратных квадратов.
Величайшим триумфом Ньютона было доказательство того, что тело, подчиняющееся закону обратных квадратов, движется по эллиптической орбите. Из этого можно сделать вывод, что если закон обратных квадратов не распространяется на тело, то и его орбита не является эллиптической. Вместо этого она имеет форму эллипса, который постоянно осуществляет прецессию, то есть постоянно меняет свою ориентацию в пространстве, придавая орбите розетковидную форму.
Эйнштейн рассчитал орбиту Меркурия. Согласно его теории прецессия орбиты происходит из-за воздействия искривлённого пространства-времени вблизи Солнца. Значение этой прецессии составляет 43 секунды дуги каждые 100 лет.
Именно эта необычная прецессия уже полвека занимала умы астрономов, и именно она натолкнула Леверье на мысли о существовании планеты Вулкан.
Разумеется, никакого Вулкана на самом деле нет. Аномальное движение Меркурия вовсе не указывало астрономам на существование ещё одной планеты, скрытой за светом Солнца, а подтверждало нечто невообразимое. Оказывается, Исаак Ньютон ошибался.
«Теория полностью соответствует результатам наблюдений», — заключил Эйнштейн в конце лекции, на которой он представил Прусской академии результаты расчётов орбиты Меркурия. Ему удалось перевернуть с ног на голову всю физику последних 200 лет и доказать, что величайший из когда-либо живших учёных был не прав, но он смог не выказать своих истинных чувств. Его переполняли эмоции, он был вне себя от восторга,[175] а его сердце было готово выскочить из груди.[176]
Физики могут исписывать доски бесчисленными формулами, но нужно приложить усилия, чтобы поверить, что природа действительно живёт по открытым ими законам. Когда это подтверждается, учёные часто оказываются шокированы.
После восьми лет упорного труда Эйнштейн наконец добрался до вершины, а туман, окутывавший каждый его шаг, рассеялся. Перед ним открылся залитый солнечным светом пейзаж, который не видел ещё ни один человек до него. Эйнштейн говорил: «Много лет ты ищешь истину во мраке, истину, которую чувствуешь, но не можешь объяснить. Ты стремишься к ней всеми силами, переживаешь бесконечные периоды уверенности и разочарования, и наконец наступает ясность. Подобное ощущение может понять лишь тот, кто пережил всё это».[177]
На самом деле Эйнштейн был не единственным учёным, предположившим, что необычное движение Меркурия можно объяснить тем, что рядом с Солнцем сила притяжения несколько выше, чем предполагает закон Ньютона. В конце XIX века американский астроном Саймон Ньюком,[178] отмечал, что эта аномалия могла бы быть устранена, если бы сила притяжения ослабевала не в соответствии с законом обратных квадратов, то есть не во второй степени, а в степени 2,0000001612.[179]
Такое изменение испортило бы элегантную простоту закона Ньютона, но даже если Природа выбирает не самый красивый вариант, нам остаётся лишь согласиться с ним. Идея Ньюкома потерпела неудачу лишь потому, что, хотя его запутанный закон притяжения и объяснял движение Меркурия, он не мог описать движение Луны.
Объяснение Эйнштейна было применимо и к Меркурию, и к Луне. Вблизи Солнца, обладающего огромной массой, пространство-время было достаточно искривлено, чтобы вызвать заметную аномалию движения. Ближе к Земле пространство-время искривляется меньше, так что мы не видим ничего необычного в движении Луны.
История повторялась. Хендрик Лоренц и Джордж Фицджеральд предполагали, что длина тела укорачивается, когда оно движется со скоростью, близкой к световой, но не смогли это фундаментально обосновать. А Эйнштейну это удалось. Точно так же и Ньюком предположил, что сила гравитации вблизи Солнца должна быть немного выше той, что предполагал Ньютон, но не сумел дать этому факту фундаментальное (а в данном случае даже верное) обоснование. В отличие от Эйнштейна.
Давление со стороны Гилберта, постоянно дышавшего Эйнштейну в затылок, дало положительный эффект. В течение недели, предшествовавшей его последней, четвёртой лекции, после восьми лет упорного труда практически в последнюю секунду Эйнштейн достиг своей цели. Двадцать пятого ноября 1915 года, застегнув пальто на все пуговицы, чтобы не чувствовать холода, он прошёл по улице Унтер-ден-Линден до Прусской академии и написал на доске перед аудиторией уравнение:
Gμν = 8πGTμν / c4.
Так звучит закон гравитации, распространяющийся на все тела вне зависимости от движения или покоя. В этой короткой последовательности цифр заключается вся общая теория относительности. Американский научно-популярный писатель Деннис Овербай назвал его «уравнением, которое управляет Вселенной».[180]
Это уравнение Эйнштейна записано в очень короткой форме. Как Тардис из «Доктора Кто», изнутри оно больше, чем снаружи. Левая его часть представляет собой таблицу с цифрами 4×4, называемую тензором кривизны, которая полностью описывает кривизну пространства-времени. В правой части находится ещё одна таблица с цифрами 4×4, которая называется энергетическим тензором напряжений и сводит воедино все «источники гравитации».[181]
Тот факт, что с каждой стороны уравнения находятся таблицы 4×4, означает, что на самом деле это не одно уравнение, а целых 16. Использовав аргумент симметрии, Эйнштейн сумел уменьшить их количество до десяти. Но тем не менее он противопоставил целых десять уравнений единому уравнению Ньютона.
Эйнштейновские уравнения гравитационного поля задают искривлённое пространство-время, которое возникает при любом распределении массы-энергии. По сути, они представляют собой математическое отражение фразы Джона Уилера: «Материя заставляет пространство-время искривляться, а искривлённое пространство-время говорит ей, как нужно двигаться». Обнаружить гравитационное поле, соответствующее всем десяти уравнениям, очень трудно — настолько, что, если кому-то это удаётся, поле называют его именем.
Уравнения поля Эйнштейна общековариантны, то есть независимы от точки зрения наблюдателя (или, если говорить более научным языком, они сохраняют форму вне зависимости от системы координат, в которой они выражаются). В этом и состоит их красота, которая стоила Эйнштейну большой крови и слёз.
Но эта теория отличалась от той, которую он собирался создать в 1907 году. Его целью было обобщить специальную теорию относительности, поняв, как нужно изменить значения пространства и времени для наблюдателей, ускоряющихся (движущихся с переменной скоростью) относительно друг друга, таким образом, чтобы на них распространялись общие физические законы. По сути, Эйнштейн заменил ньютоновскую теорию гравитации новым усовершенствованным вариантом, а не разработал новую, посвящённую ускоряющимся наблюдателям. Это один из примеров счастливых случайностей, встречающихся в мире науки.
В тот самый момент, когда Эйнштейн выводил мелом на доске своё уравнение, в Европе набирала обороты мировая война. В 1915 году уже применялись газы, душившие, отравлявшие и обжигавшие солдат по обе стороны фронта, цеппелины уже сбрасывали бомбы на британские города, а лайнер «Лузитания» уже затонул у побережья Ирландии после попадания торпеды, унёсшей жизни 1198 человек.
Но, несмотря на нарастающие ужасы войны, учёные из враждующих стран продолжали поддерживать контакт. Через несколько недель после публикации общей теории относительности копии работы Эйнштейна были переданы в Нидерланды, а из них — в Англию. И невзирая на то, что война унесла десять миллионов жизней и навсегда подорвала здоровье ещё стольких же людей, именно англичанин сумел подтвердить ключевую догадку Эйнштейна, подняв немецкого учёного на высшую ступень научного пьедестала. Это произошло в год перемирия, 11 ноября 1918 года.[182]
Кембриджский учёный Артур Стэнли Эддингтон получил контрабандный экземпляр работы Эйнштейна от голландского астронома Виллема де Ситтера в Лейдене. Будучи успешным популяризатором науки, он стал основным проводником идей Эйнштейна в англоязычном мире. Когда в 1919 году его спросили, правда ли, что общую теорию относительности могут понять всего три человека в мире, он (возможно, несколько нескромно) ответил: «Да? А кто третий?».
Эддингтон сосредоточился на идее Эйнштейна о том, что сила гравитации Солнца искривляет свет. Эйнштейн открыл этот эффект в 1907 году, когда заканчивал работу над статьёй о специальной теории относительности и уже раздумывал о создании такой теории гравитации, которая, в отличие от ньютоновской, отражала бы его новое видение пространства, времени, массы и энергии.
Согласно специальной теории относительности вся энергия, включая световую, имеет эффективную массу.[183] Соответственно, такое массивное тело, как Солнце, должно притягивать к себе свет так же, как оно притягивает материю. Если бы этот эффект удалось увидеть, эйнштейновская теория гравитации получила бы серьёзное подтверждение.
Однако к тому моменту, когда Эйнштейн закончил работу над общей теорией гравитации, он уже осознавал, что гравитация искривляет свет гораздо слабее, чем он предполагал в 1907 году.
Давайте вернёмся к нашему астронавту в ракете с затемнёнными иллюминаторами, имеющей ускорение 1 g и находящейся вдали от каких-либо планет, а значит, не испытывающей на себе их гравитации. Поскольку ноги космонавта притягиваются к полу, а все предметы падают с одинаковой скоростью вне зависимости от их массы, он никак не сможет определить, что движется в космосе, а не стоит на Земле.
Хотя на самом деле это не совсем так. Есть один способ.
Земля круглая, а это значит, что все тела падают по направлению к её центру. Если два предмета бросить на противоположных сторонах земного шара, например в Британии и Новой Зеландии, они будут падать в противоположных направлениях. Но где бы мы ни бросили два предмета, их пути обязательно пересекутся в какой-то момент движения к центру Земли.
А вот астронавт в ракете увидит кое-что другое. Если он будет наблюдать за падением двух объектов с помощью достаточно точного измерительного прибора, он обнаружит, что их пути не сходятся, а всегда остаются параллельными. Благодаря этому он поймёт, что не находится на Земле.
Удивительно, но это не опровергает эйнштейновскую теорию гравитации. Принцип эквивалентности, на котором строится вся общая теория относительности, указывает на то, что гравитация и ускорение должны быть неразличимы локально, то есть в ограниченной области пространства.
Но тот факт, что вблизи крупных небесных тел, таких как Земля и Солнце, пути движения падающих предметов сходятся, имеет значение для движения луча света. Рядом с такими телами (в отличие от ракеты нашего астронавта) свет искривляется в два раза сильнее, чем можно ожидать.
Телом, максимально искривляющим путь света, в нашей системе является Солнце, масса которого составляет 99,8% от её совокупной массы. Эйнштейн понял: чтобы увидеть этот эффект, нужно выбрать далёкую звезду, свет которой проходит мимо солнечного диска по пути к Земле в том месте, где ткань пространства-времени прогибается наиболее сильно. Путь такого света искривится, как тропинка, по которой идёт путешественник в холмистой местности. То есть для наблюдателя с Земли звезда перейдёт на другое место на небе.
Звёзды, которые находятся в непосредственной близости от Солнца, невозможно увидеть из-за его сияния, как нельзя заметить светлячка в свете автомобильных фар. Эти звёзды становятся доступными для наблюдения лишь в одном случае: когда солнечный диск закрывает Луна. При полном затмении мир погружается во мрак, и на несколько минут на дневном небе появляются звёзды.
Полные солнечные затмения можно наблюдать на нашей планете в разных местах каждые несколько лет. Но то положение Солнца, Луны и Земли, которое было необходимо Эйнштейну, можно наблюдать лишь в одной узкой полосе земной поверхности. Соответственно, шансы увидеть полное затмение в конкретном месте в конкретное время очень малы — примерно один раз в 350 лет.
Удачным образом 24 августа 1914 года полное солнечное затмение можно было наблюдать в Крыму, который находится не так далеко от Германии. Поэтому в Крым была организована экспедиция немецких учёных под руководством Эрвина Фройндлиха, астронома, которого глубоко впечатлили идеи Эйнштейна. Девятнадцатого июля Фройндлих с двумя помощниками и четырьмя телескопами отбыл из Берлина. Но это было не лучшее время для визита в Россию.
Возможно, Фройндлих слышал о том, что за три недели до этого в Сараево от пули сербского националиста погиб австрийский эрцгерцог Франц Фердинанд. Но, как и большинство жителей Европы, он не понимал, что за чудовищную машину запустил этот выстрел Гаврило Принципа. Первого августа Российская империя объявила войну Германии, а через три дня к ней присоединилась Великобритания.
Всего за одну ночь Фройндлих и его спутники превратились из гостей России в её врагов. Их оборудование конфисковали, а сами они оказались в тюрьме. Полное затмение они пропустили, но небо над Крымом в тот день всё равно было затянуто облаками. Правда, они недолго оставались в беде. В ходе одного из первых обменов пленными в Первой мировой войне их отпустили взамен на освобождение русских офицеров, и к концу сентября они вернулись в Берлин.
Для Эйнштейна обстоятельства складывались достаточно удачно, и не только потому, что Фройндлих был его другом. Дело в том, что, если бы тому удалось измерить отклонение звёздного света вблизи Солнца, полученные значения не совпали бы с предположениями Эйнштейна. В 1914 году он всё ещё верил, что такое отклонение должно составить 0,87 секунды дуги (это число он получил в 1911 году), в то время как в 1915 году в соответствии с общей теорией относительности было получено другое значение — 1,7 секунды дуги.[184]
Но Первая мировая война закончилась, и 29 мая 1919 года произошло очередное полное солнечное затмение. Эддингтон со своим ассистентом отправился наблюдать его на Принсипи, небольшой остров вулканического происхождения в Гвинейском заливе у берегов Западной Африки. Погодные условия в день затмения были далеки от идеальных — с утра начался тропический ливень, но к середине дня он затих. Эддингтон и его ассистент с ужасом наблюдали, как облака то расходились, то снова появлялись, в то время как лунный диск медленно закрывал Солнце. Им оставалось лишь продолжать наблюдение и надеяться на лучшее.
Из 16 снимков, сделанных Эддингтоном, лишь на шести Солнце не закрывали облака. Из них четыре оказалось невозможно проявить в жарком тропическом климате Принсипи, поэтому их пришлось отложить до возвращения в Англию. Из оставшихся двух только на одном звёздное небо получилось достаточно ясным, чтобы Эддингтон мог провести свои измерения.
Но этого было достаточно.
Третьего июня Эддингтон сравнил расположение звёзд, сфотографированных во время полного затмения, с их расположением на снимках, которые были сделаны в то же самое время в Гринвиче. Это была сложная процедура, потому что одна секунда дуги соответствовала на фотографиях всего 1/16 миллиметра. Но Эддингтон принял этот вызов и не только провёл измерения, но и перепроверил их.
Сомнений не было. Звёзды, расположенные близко к Солнцу, сместились на 1,61 ± 0,3 секунды дуги. Эти цифры лишь на волосок отличались от тех, которые предсказал Эйнштейн.
Эддингтон вспоминал об этом моменте как о самом важном событии своей жизни. Он доказал истинность общей теории относительности. Ньютон оказался не прав, и 40-летний немецкий физик потеснил его с Олимпа. Эддингтон даже сложил в честь этого двустишие
One thing at least is certain, light has weight
Light rays, when near the Sun, do not go straight.[185]
Забавно, что экспедиция 1914 года провалилась из-за человека по фамилии Принцип, а экспедиция 1919 года добилась успеха на острове Принсипи.
Эйнштейн был болен, когда ему доставили телеграмму от его друга Хенрика Лоренца. В ней не говорилось напрямую о подтверждении общей теории относительности, но она, вероятно, передавала суть краткого послания, которое Эддингтон отправил с Принсипи в Англию: «Сквозь облака. Надеюсь на успех. Эддингтон».
Но и этого было достаточно. «Я знал, что прав!» — воскликнул Эйнштейн.[186]
Это и правда было так. Эйнштейн не только был самоуверенным, но и свято верил в то, что фундаментальные законы природы должны быть элегантными и красивыми. Уравнения общей теории относительности, вне всяких сомнений, подходили под это определение.
Некоторое время спустя один студент спросил учёного: «А что, если бы Эддингтон не подтвердил Ваше предположение?».
«Тогда мне было бы искренне жаль Творца», — ответил Эйнштейн.[187]
Седьмого ноября 1919 года на двенадцатой странице лондонской газеты Times вышла статья под тройным заголовком
РЕВОЛЮЦИЯ В НАУКЕ
===
Новая теория Вселенной
===
Ньютон повержен
Это был отчётный доклад с прошедшего накануне заседания Королевского общества и Королевского астрономического общества. Всего за одну ночь Эйнштейн превратился в суперзвезду. Его славу можно было сравнить с мировой популярностью Чарли Чаплина (во время своего визита в Лос-Анджелес он даже останавливался в доме Чаплина и его жены).[188] Эйнштейн был так знаменит, что, когда в 1947 году Эдит Пиаф впервые приехала в США и на пресс-конференции её спросили, с кем она больше всего хотела бы встретиться на американской земле, она без колебаний ответила: «С Эйнштейном. Надеюсь, вы дадите мне его номер телефона».[189]
Во время первого визита Эйнштейна в Лондон в 1921 году он жил у биолога Дж. Б. С. Холдейна. Шумиха вокруг этого факта была такой, как будто у него остановились Beatles в полном составе. Дочь Холдейна была настолько взволнована, что упала в обморок, стоило Эйнштейну переступить порог.[190]
Утром, перед тем как прочесть лекцию в Лондоне, Эйнштейн прогулялся от дома Холдейна до Вестминстерского аббатства. Он остановился у ниши напротив хора, где находится мраморное надгробие его великого предшественника — Исаака Ньютона.
И Ньютон, и Эйнштейн создали свои теории гравитации, наблюдая за падающими телами. В падающем яблоке Ньютон разглядел падение Луны и благодаря этому объединил землю с небесами. А падение человека с крыши навело Эйнштейна на мысль о том, что сила притяжения — это всего лишь иллюзия. Оба они знали, каково это — в одиночку путешествовать по волнам мысли. «Для него природа была открытой книгой, которую он читал без всяких затруднений», — говорил Эйнштейн. Он бы отдал всё за встречу с Ньютоном. Пускай тот умер два столетия назад, но Эйнштейн понимал ход его мыслей лучше, чем кто-либо.
Итак, в руках у Эйнштейна оказался самый мощный инструмент в истории физики — общая теория относительности. Но даже гении могут ошибаться. Удивительно, но он упустил из вида несколько самых важных выводов из своей теории. Эти выводы — существование чёрных дыр и теория Большого взрыва — показывают, что, хотя Эйнштейн и сделал огромный шаг вперёд по сравнению с Ньютоном, его суждения тоже не были безошибочными.
Einstein A. Relativity: The Special and General Theory. — London: Folio Society, 2004.
Fölsing A. Albert Einstein. — London: Penguin, 1998.
Levenson T. Einstein in Berlin. — New York: Bantam Books, 2003.
Levenson T. The Hunt for Vulcan... And how Albert Einstein destroyed a planet, discovered relativity and deciphered the Universe. — London: Head of Zeus, 2015.
Levin J. Black Hole Blues. — London: The Bodley Head, 2016.
Overbye D. Einstein in Love: A Scientific Romance. — London: Viking, 2000.
Pais A. «Subtle is the Lord...»: The Science and the Life of Albert Einstein. — Oxford: Oxford University Press, 1983.
В течение многих лет наша с Пенроузом работа имела катастрофические последствия для науки. Мы показали, что, если общая теория относительности Эйнштейна была верна, началом Вселенной должна была быть сингулярность. А это означало, что наука не могла предсказать, когда начнётся образование новой Вселенной.
Чёрные дыры показывают нам, что пространство можно смять, как бумагу, до невероятно маленькой точки, что время можно погасить, как пламя, и что законы физики, которые мы считали священными и неизменными, таковыми не являются.
В феврале 1916 года Эйнштейну пришла необычная посылка от солдата с Восточного фронта. Карл Шварцшильд работал директором Астрофизической обсерватории в Потсдаме, недалеко от Берлина. Но с началом войны в 1914 году в порыве патриотизма он бросил всё и ушёл на фронт добровольцем. За те 18 месяцев, которые он провёл в кайзеровской армии, Шварцшильд успел побывать управляющим метеорологической станцией в Бельгии, занимался расчётом траекторий снарядов в артиллерийской батарее во Франции, а потом оказался в России.
Несмотря на военную службу, Шварцшильд нашёл время на то, чтобы написать несколько научных работ. Две из них были посвящены эйнштейновской теории гравитации, с которой Шварцшильд ознакомился вскоре после её публикации в конце 1915 года. Удивительным было то, что за столь короткий срок он сумел развить некоторые идеи Эйнштейна.
Уравнения общей относительности очень сложны. Например, они включают десять уравнений, которые Эйнштейн вывел только для описания закона обратных квадратов. Из-за этой сложности рассчитать форму пространства-времени вблизи реально существующего тела очень тяжело. Но Шварцшильд сделал несколько упрощающих предположений, которые придали эйнштейновским уравнениям более простую и управляемую форму и позволили Шварцшильду решить их.
Решение Шварцшильда описывало форму искривлённого пространства-времени вблизи локализованной массы, например звезды. Эйнштейн был поражён. «Я не ожидал, что кто-то сумеет сформулировать настолько простое решение этой задачи», — писал он Шварцшильду.
В частности, Шварцшильд продемонстрировал, что, если достаточное количество массы сжать до небольшого объёма, пространство-время искривится настолько, что превратится в бездонный колодец. Его стены будут такими крутыми, что любой луч света, пытающийся выбраться из него, в конце концов лишится всей своей энергии и погибнет. А без света такой участок пространства-времени окажется чернее ночи.
Шварцшильд не придумал названия для своего открытия. Его предложит американский физик Джон Уилер только в 1967 году. Но сегодня вряд ли можно найти человека, который не знает выражения «чёрная дыра».[193] Именно её и описал Шварцшильд в своём решении.[194]
Судьба Шварцшильда была трагической. Вместе с армией он оказался на территории России, где у него развился пемфигус, редкое и опасное аутоиммунное заболевание (болезнь, при которой иммунная система начинает атаковать здоровые ткани организма). При пемфигусе на коже и слизистой рта, носа и горла, а также на половых органах и анусе появляются болезненные волдыри. Причина возникновения этой болезни неизвестна, хотя считается, что её могут вызывать факторы наследственности и среды. Лекарства от неё тоже не существует, хотя современные препараты с кортикостероидами позволяют облегчить симптомы. Если в волдырь попадает инфекция, она быстро проникает в кровь и распространяется по всему телу. Именно это произошло со Шварцшильдом. В марте 1916 года его отправили с фронта в Берлин, но всего через два месяца, 11 мая, он умер. Ему было 42 года.
Чёрные дыры Шварцшильда имеют так называемый горизонт событий. Материя или свет, пересекающий его, больше не могут вырваться назад. Измерив горизонт событий, можно понять размер чёрной дыры. Для того чтобы в неё превратилось наше Солнце, ему нужно сжаться до сферы радиусом три километра. Для Земли «радиус Шварцшильда» составил бы всего два сантиметра. К счастью для нас, ни Земля, ни Солнце не имеют достаточной массы, чтобы однажды превратиться в чёрные дыры под влиянием собственной гравитации.
Но если очень массивная звезда сколлапсирует в пределах своего горизонта событий (то есть пропадёт из виду для всей остальной Вселенной), гравитация продолжит сжимать её до тех пор, пока от звезды не останется лишь крошечная точка. После исчезновения звезды на её месте окажется лишь бездонный колодец из искривлённого пространства-времени. «Чёрные дыры — это самые совершенные макроскопические объекты во Вселенной, ведь они состоят только из времени и пространства», — говорил лауреат Нобелевской премии из Индии Субраманьян Чандрасекар.[195]
В центре чёрной дыры материя, из которой состояла звезда, сжимается до бесконечной плотности, а искривлённость пространства и времени и сила гравитации принимают бесконечно высокие значения.[196] Как говорил американский драматург и писатель Стивен Райт, «чёрные дыры — это места, где Бог разделил на ноль». Появление такой сингулярности в любой теории означает, что она больше не имеет отношения к реальности.
Комментируя работу Шварцшильда о чёрных дырах, Эйнштейн сказал: «Если бы эти результаты были верны, это означало бы настоящую катастрофу». И ни Эйнштейн, ни даже сам Шварцшильд ни на секунду не верили в их подлинность. Ни одному из них не приходила в голову мысль, что уравнение для чёрных дыр может описывать реально существующие во Вселенной объекты.
Те немногие, которые поверили в это, тоже не особо волновались. Запасы энергии в любой звезде конечны, и когда энергия заканчивается, свечение звёзды погасает и звезда начинает коллапсировать под воздействием гравитации. Но наверняка должна существовать какая-то сила, которая останавливает этот процесс. Природа просто не может допустить существования такой жуткой вещи, как сингулярность.
Оказалось, что подобная сила действительно существует. Она была обнаружена благодаря квантовой теории, описывающей странный микроскопический мир атомов и составляющих их элементов.[197]
Квантовая теория возникла в начале XX века, но математическую базу под неё подвели лишь в середине 1920-х годов. Согласно этой теории, мельчайшие составляющие материи ведут себя одновременно как локализованные частицы (похожие на крошечные бильярдные шары) и как распространяющиеся волны (как рябь на поверхности пруда). Этот корпускулярно-волновой дуализм является причиной множества странных и удивительных явлений. Например, когда одна частица может находиться в двух местах одновременно. Кроме того, он играет важную роль в том, что в конце своего жизненного цикла звёзды утрачивают энергию.[198]
Когда звёздное топливо перестаёт толкать материю, из которой состоит звезда, в разные стороны, гравитация железной рукой сжимает её примерно до размеров нашей планеты. Такой белый карлик примерно в 100 раз меньше и в миллион раз плотнее, чем Солнце. Это последняя фаза существования всех звёзд, включая и нашу. Кубик такой материи размером с кусок сахара будет весить как автомобиль, и при такой высочайшей плотности электроны окажутся очень близко друг к другу.
Волна, зажатая в небольшом пространстве, становится более резкой и отрывистой. Если речь идёт о квантовых волнах, это значит, что частица начинает двигаться быстрее (или, строго говоря, приобретает больший импульс). Так формулируется знаменитый принцип неопределённости Гейзенберга. Согласно ему, когда электроны оказываются плотно прижатыми друг к другу внутри белого карлика, их скорости очень сильно увеличиваются.
Этот квантовый эффект имеет для белых карликов огромные последствия. Но существует и ещё одно явление того же порядка, объяснить которое немного сложнее.[199] Ещё одним последствием корпускулярно-волнового дуализма является разделение всех составляющих материи на две группы: бозоны, которые любят большие компании, и фермионы, которые предпочитают жить поодиночке. Фермионы, к которым относится и электрон, действуют в соответствии с принципом Паули, который гласит, что два фермиона не могут одновременно находиться в одном и том же квантовом состоянии.[200]
Для электронов внутри белого карлика это означает, что две соседние частицы имеют различную скорость. Если скорость одной из них определяется принципом неопределённости Гейзенберга, то скорость соседней должна быть выше (как показывает практика, в два раза). Соответственно, соседняя с ней частица будет иметь в три раза бо́льшую скорость и так далее.
Представьте себе лестницу, где каждая ступень соответствует всё большей и большей скорости. Согласно принципу Паули каждую ступеньку может занимать только один электрон (на самом деле два, но это уже совсем другая история).[201] Принцип Паули утверждает, что электроны в белом карлике имеют невероятно высокие скорости, значительно превышающие те, которые предполагает принцип неопределённости Гейзенберга. Именно это стремительное движение электронов внутри звезды и противодействует сжатию под влиянием гравитации. Воздействие так называемого вырождения электронов поддерживает белый карлик в стабильном состоянии и не даёт ему схлопнуться до размеров меньше земных.[202]
Итак, вот как обстояло положение дел в конце 1920-х годов. На выручку умирающим звёздам пришла квантовая теория, остановившая их падение в чёрные дыры с зияющей сингулярностью в самом сердце. Всё было под контролем. Всё было хорошо.
Вернее, лишь казалось.
В августе 1930 года 19-летний индус поднялся в Бомбее на палубу корабля, направлявшегося в Англию. Целью его путешествия был Кембриджский университет. Я уже цитировал раньше его замечание о совершенстве чёрных дыр. Звали его Субраманьян Чандрасекар, и он был гением математики.
Плавание началось при плохой погоде, и корабль шёл на вполовину меньшей скорости, чем нужно. Но у Адена появилось солнце, а когда судно проходило через Суэцкий канал, Чандрасекар даже смог выйти из каюты, в которой находился почти всё время из-за морской болезни.
Представляю, как странно он выглядел, выходя на палубу с огромной стопкой книг по квантовой теории и астрофизике. Вспотев, еле добравшись до шезлонгов, он сваливает книги на один из них и сам в изнеможении падает на другой. Соотечественники, прогуливающиеся мимо, бросают на него удивлённые взгляды. За всё плавание он ни разу не пытался заговорить с ними и знает, что его считают нелюдимым, а может, и заносчивым. Но ему нет до этого дела. Наконец-то у него есть время, чтобы спокойно подумать. За бортом проплывают пески Синайского полуострова, ветер пустыни обжигает ему лицо, а он размышляет о белых карликах. Голова Чандрасекара занята одним вопросом: являются ли электроны в белом карлике релятивистскими? Закопавшись с головой в книги и бумаги, он создаёт формулу, которая объединит звёздную материю с квантовым поведением электронов при крайне высокой плотности. Он играет всеми известными ему значениями, пока наконец правильная комбинация не даёт ему ответ. Он проверяет его снова и снова, но сомнений нет. Электроны внутри белого карлика должны двигаться со скоростью, превышающей половину скорости света. На таких скоростях должны возникать явления, предусмотренные специальной теорией относительности. Говоря научным языком, эти электроны должны быть релятивистскими.
Мы говорим о невероятных скоростях: более 150 000 километров в секунду. Но для Чандрасекара самым важным было не это. Квантовой теории оказалось недостаточно для понимания белых карликов. Чтобы теория была правильной, в неё нужно было включить специальную теорию относительности.
Ночью всё небо было усыпано звёздами, но никому из пассажиров не приходило в голову, что странный молодой человек, увлечённый своими записями настолько, что иногда забывал поесть, прямо сейчас рассчитывает, что происходит внутри этих звёзд. Его тело оставалось на палубе корабля, но его дух витал сейчас где-то в космосе среди умирающих солнц.
У Чандрасекара ушло совсем немного времени на то, чтобы разработать релятивистскую теорию белых карликов. Так же быстро он открыл и ещё одно явление, неожиданное и необычное, если не сказать пугающее.
Чем большей массой обладает белый карлик, тем сильнее гравитация сжимает электроны внутри него и тем быстрее они движутся. Однако теория относительности Эйнштейна устанавливает предел скорости их движения — скорость света. Когда электроны достигают космического предела скорости, они становятся всё более и более массивными и набирать скорость им оказывается всё труднее и труднее. Здесь-то и возникает проблема. Именно постоянное движение электронов препятствует тому, что гравитация сожмёт звезду в одну точку. Если же под давлением гравитации электроны постепенно снижают свою скорость, то и сопротивление гравитации уменьшается. Молодой индийский математик, лежащий на шезлонге на палубе корабля и глядящий в небо, видел в нём надвигающуюся катастрофу, словно огни поезда, мчащегося прямо на него.
Белый карлик, в котором электроны сдерживают напор гравитации, похож на бейсбольный мяч, сжатый рукой игрока. Но когда порог массы оказывается преодолён, всё изменяется. Вместо мяча в ладони бейсболиста оказывается шарик зефира.
Чандрасекар проводил свои расчёты снова и снова, проверяя и перепроверяя их, ища в них ошибку. Но её не было. Если к концу жизни звезды её масса превышает массу Солнца более чем в 1,4 раза, давления от вырождения электронов оказывается недостаточно. Под воздействием гравитации происходит катастрофическое сжатие, и никакая сила во Вселенной не может его остановить. Ужасающей сингулярности нельзя избежать.
Ещё через два года, в 1932 году, английский физик Джеймс Чедвик обнаружил частицу, равную по массе положительно заряженному протону, но не имеющую электрического заряда. Открытый им нейтрон дополнил структуру атома. Отрицательно заряженные электроны вращаются вокруг очень плотного ядра, которое состоит из протонов и нейтронов и составляет 99,9% атомной массы. Исключение составляет атом водорода, самого лёгкого элемента, ядро которого содержит лишь один протон.
Открытие Чедвика имело огромные последствия для понимания процессов в звёздах, масса которых превышает «предел Чандрасекара», то есть 1,4 солнечной массы. Да, их внутренности действительно превращаются в мягкий зефир, а гравитация сжимает их до бесконечно малого состояния. Но это не всё, что происходит в подобных звёздах. В какой-то момент электроны оказываются вжатыми в ядра, где они вступают в реакцию с протонами и образуют нейтроны.
Нейтроны, как и электроны, являются фермионами, а нейтронный газ, так же как и электронный, даёт звезде достаточно сил для сопротивления гравитации. Но нейтроны гораздо меньше атомов, поэтому вместо белого карлика размером с планету Земля появляется клубок нейтронов размером с Эверест. Материал, из которого состоит этот нейтрон, будет таким плотным, что кубик его размером с кусок сахара будет весить столько же, сколько всё человечество, вместе взятое.
В 1940-х годах британский астроном Фред Хойл предположил, что единственным возможным источником энергии для появления сверхновой (звёздной вспышки, такой яркой, что она может затмить свет галактики из 100 миллиардов звёзд) является гравитационная энергия, высвобождающаяся в тот момент, когда обычная звезда превращается в нейтронную. Но обнаружить нейтронные звёзды удалось лишь в 1967 году, когда выпускница Кембриджа Джоселин Белл открыла первый пульсар.[203]
Несмотря на то что «давление вырождения электронов» стабилизирует нейтронные звёзды и не даёт им сколлапсировать под воздействием гравитации, у таких звёзд имеется та же ахиллесова пята, что и у белых карликов. Это релятивистские звёзды — частицы, из которых они состоят, движутся почти со скоростью света. Соответственно, после преодоления какого-то предела массы даже вещество нейтронной звезды начинает размягчаться.
Физика нейтронов, которые удерживают вместе ядерные силы, гораздо более сложна, чем физика электронов, которые взаимодействуют за счёт электромагнитных сил. Поэтому максимальная масса нейтронной звезды определена не так точно, как предел Чандрасекара. Впервые её рассчитал российский физик Лев Ландау в 1932 году, и считается, что она в три раза превышает массу Солнца. Если звезда проходит этот порог, то никакая сила во Вселенной не может спасти её от коллапса и превращения в сингулярность.
Установление пороговой массы не имело бы смысла, если бы во Вселенной не было звёзд в три или более раза тяжелее Солнца. Но такие звёзды, конечно же, существуют. Масса некоторых из них превышает солнечную в 100 раз. Подобные звёзды крайне нестабильны, и на них часто происходят массивные потрясения, приводящие к объёмным выбросам вещества в космос. Но даже после таких «конвульсий» к моменту, когда звёздного топлива в них больше не остаётся, они всё равно обычно оказываются гораздо тяжелее Солнца, а значит, коллапса и формирования чёрной дыры избежать невозможно.
Это факт, который мы знаем наверняка. В 1971 году спутник NASA под названием «Uhuru» обнаружил первого кандидата на роль чёрной дыры: звезду Лебедь Х-1. На данный момент только в нашей Галактике известно несколько десятков чёрных дыр звёздной массы. Кроме того, наблюдения с помощью телескопа «Хаббл» подтвердили, что в сердце почти каждой галактики во Вселенной имеется гигантская чёрная дыра. Некоторые из них весят в 50 миллиардов раз больше Солнца, в то время как Стрелец А*, центр Млечного Пути, находящийся от нас в 27 000 световых лет, имеет массу, лишь в 4,3 раза превышающую солнечную. Происхождение таких сверхмассивных чёрных дыр остаётся загадкой для современной астрофизики.
Но чёрные дыры, поместившие сингулярность в самое сердце общей теории относительности, были не единственной проблемой для теории гравитации Эйнштейна. Существовала и ещё одна — Большой взрыв.
Общая теория относительности описывает, как материя (или, если говорить более обобщённо, энергия) искривляет ткань пространства-времени. Эйнштейн никогда не боялся по-настоящему масштабных задач, поэтому в 1917 году он применил свою теорию к самому большому из известных ему скоплений материи — всей Вселенной.
Гравитация управляет макромиром, потому что существует всего один тип массы, и она всегда притягивает другую массу. Поэтому, несмотря на то что сила притяжения — одна из самых слабых в природе, её воздействие нарастает по мере увеличения массы, и уже на планетарном уровне гравитация становится непреодолимой и превалирует над всеми прочими фундаментальными силами. Как писал Терри Пратчетт, «гравитация — это привычка, от которой не так-то легко избавиться».[204] В отличие от гравитации сильные и слабые ядерные силы действуют лишь на очень малых расстояниях, а электромагнитные силы не ограничены в пространстве, но зато гасятся на больших дистанциях из-за существования двух типов электрического заряда.
Гравитация — словно космический Купидон, пытающийся собрать воедино все одинокие частицы материи во Вселенной. С начала времён, когда материю разнесло Большим взрывом по всем уголкам космоса, гравитация стала её клубом одиноких сердец. Дэн Симмонс замечал: «Любовь встроена в самую структуру Вселенной в виде материи и силы притяжения».[205]
Применив свою теорию гравитации ко Вселенной, Эйнштейн создал космологию, то есть науку о происхождении, развитии и судьбе космоса. Но кое в чём он ошибся. Как и Ньютон до него, он верил, что Вселенная всегда была неизменной и навечно такой останется. Идея статичной Вселенной была крайне притягательной, ведь в таком случае у неё не было ни начала, ни конца, а значит, не стоило и задумываться о её возникновении.
Проблема состояла в том, что уравнения Эйнштейна описывали динамичное пространство-время, которое просто не могло находиться в состоянии покоя. Чтобы исправить этот недочёт, Эйнштейн предположил, что пустое пространство содержит энергию, искривляющую его вне зависимости от присутствия материи. Это искривление, которое он назвал космологической постоянной, представляет собой постоянную отталкивающую силу пустого пространства. Несмотря на то что все тела во Вселенной влияют друг на друга с силой притяжения, отталкивающая сила её нивелирует. И вуаля — мы получаем статичную Вселенную.
В 1930 году главный последователь Эйнштейна, физик Артур Эддингтон, продемонстрировал, что эта гипотеза неверна. Она была нестабильна, словно карандаш, стоящий вертикально. Одно легчайшее движение — и всё обрушится. Вселенная, которую описывал Эйнштейн, балансировала на грани между расширением и коллапсом, и любой толчок мог её опрокинуть.
Но хотя Эйнштейн и упустил суть своих уравнений, говорящих о том, что Вселенная должна находиться в движении, от некоторых его коллег она не укрылась. Чтобы упростить уравнения и сделать их пригодными для решения, Эйнштейну пришлось предположить, что плотность материи во Вселенной всегда остаётся неизменной. Но в тот же год, когда он опубликовал это предположение, Виллем де Ситтер, голландский учёный, читавший ещё первые, контрабандой вывезенные из страны экземпляры работ Эйнштейна, попробовал применить теорию относительности ко всей Вселенной самостоятельно. В отличие от Эйнштейна он не настаивал на неизменной плотности материи и старался смотреть на получившиеся результаты более открыто. Де Ситтер выявил, что Вселенная, в которой действует теория Эйнштейна, должна расширяться. Если поместить в такую Вселенную две частицы, то из-за расширения расстояние между ними будет медленно увеличиваться.
Проблема со Вселенной де Ситтера состояла в том, что она была пустой. В ней не было ничего, кроме расширяющегося пространства-времени. Соответственно, его теория не описывала реальную Вселенную, в которой мы живём (но зато показывала, какого джинна выпустил из бутылки Эйнштейн: пространство-время оказалось динамичным и существующим независимо от материи).
Но в 1922 году российский математик Александр Фридман открыл целый класс Вселенных, допускаемых теорией Эйнштейна. Некоторые из них расширялись, некоторые сжимались, и все содержали материю. Ещё через пять лет «развивающиеся» Вселенные Фридмана были повторно обнаружены католическим священником из Бельгии по имени Жорж Леметр. Сегодня большинство людей знает Вселенные Фридмана–Леметра под их более простым названием — Вселенные Большого взрыва.[206]
Разумеется, существование таких Вселенных было известно учёным лишь теоретически. Но в 1920-х годах ситуация изменилась благодаря американскому астроному по имени Эдвин Хаббл. Для начала он открыл галактики.
Эйнштейну и его коллегам мешало то, что они не знали, из чего состоит Вселенная. В начале XX века уже было известно, что Солнце относится к огромному скоплению звёзд, называемому Млечным Путём. Кроме того, по всему космосу были разбросаны мириады других «спиральных туманностей». Вопрос был лишь в том, что они собой представляют: облака светящегося газа, входящие в Млечный Путь, или другие скопления звёзд, находящиеся так далеко от нашей Галактики, что их сияние сливается воедино?
В 1923 году Хаббл сумел ответить на этот вопрос с помощью 100-дюймового[207] телескопа Хокера, самого большого из подобных аппаратов на Земле, установленного в обсерватории Маунт-Вилсон в Южной Калифорнии. Хаббл направил его на туманность Андромеды и сумел не просто рассмотреть отдельные звёзды, но и выделить из них звёзды особого типа — их свет становился то ярче, то слабее, помогая определить расстояние до них. Эти звёзды, названные цефеидами, убедительно доказали, что туманность Андромеды (а значит, и все прочие спиральные туманности) находится на огромном расстоянии от Млечного Пути.[208]
Так Хаббл открыл, что базовыми элементами Вселенной являются галактики. Наш Млечный Путь, насчитывающий 100 миллиардов звёзд, — это всего лишь одна галактика из примерно двух триллионов.[209]
Затем Хаббл решил измерить скорость движения галактик, продолжив труд ещё одного сотрудника обсерватории Маунт-Вилсон Милтона Хьюмасона.[210] К 1929 году Хаббл провёл достаточно измерений, чтобы заявить о необычном открытии. Почти все галактики не приближались к Млечному Пути, а удалялись от него. При этом, чем дальше от нашей Галактики они находились, тем быстрее двигались. Хаббл понял, что Вселенная расширяется. Удивительно, но гипотеза о Большом взрыве, выдвинутая Фридманом и Леметром на основании теории гравитации Эйнштейна, описывала реальные события.
Но одно дело — открыть, что Вселенная расширяется, и совсем другое — понять, что означает данный факт. Для этого к собственному открытию нужно отнестись серьёзно, а учёным частенько сложно поверить, что их запутанные математические уравнения имеют непосредственное отношение к реальности.
В конце 1930-х годов американский физик украинского происхождения Георгий Гамов задумался о расширении Вселенной по другим причинам. Он пытался найти источник происхождения всех существующих в природе химических элементов.
Таблица Менделеева насчитывает 92 элемента — от самого лёгкого, водорода, до самого тяжёлого, урана. Гамов полагал, что Вселенная началась с водорода (самого простого кирпичика в космическом конструкторе Lego), а все прочие элементы постепенно происходили от него. Но для этого потребовалась бы огромная печь, температура в которой доходила бы до многих миллиардов градусов.[211]
Звёзды не казались Гамову подходящими кандидатами на эту роль (тут он ошибался),[212] и он начал поиски другого источника. Именно в этот момент он и представил себе, что будет, если проиграть расширение Вселенной задом наперёд. Через какое-то время (сегодня нам известно, что оно составляет 13,82 миллиарда лет) вся материя во Вселенной окажется сжатой до минимального объёма. Тогда-то и должно было произойти рождение Вселенной — Большой взрыв.
Если сжимать материю, она начинает нагреваться (об этом знает каждый, кто пытался накачать колёса велосипеда с помощью насоса). Гамов понял, что температура при Большом взрыве должна была быть огромной. Это был огненный шар, взрыв атомной бомбы.
Не все химические элементы могли быть созданы в гипотетической печи Гамова.[213] Но, ошибаясь, Гамов одновременно был прав — такое часто случается в науке. Тот факт, что Вселенная расширяется, означает, что она родилась из огненного взрыва. Поразмыслив, Гамов понял и вот что: жар от этого взрыва ещё не должен был остыть.
Свет и тепло от обычного взрыва, например от шашки динамита или даже атомной бомбы, рассеиваются, и через час, или день, или неделю от них не остаётся и следа. Но, кроме Вселенной, не существует ничего, а значит, жа́ру от Большого взрыва просто некуда было деться. Соответственно, его ещё можно зафиксировать, пускай за 13,82 миллиарда лет Вселенная и успела несколько остыть. Из видимого света излучение Большого взрыва должно было превратиться в радиоволны. Расчёты Гамова показали, что 99,9% фотонов (частиц света) во Вселенной должно приходиться на это «остаточное свечение».
Но каждый физик, будь это даже сам Эйнштейн, совершает ошибки. Ошибка Гамова состояла в том, что он полагал, будто остаточное излучение Большого взрыва невозможно зарегистрировать в современной Вселенной. Однако двое его студентов понимали, что это не так. Ральф Альфер и Роберт Херман выяснили, что такое излучение должно иметь две довольно заметные характеристики. Во-первых, оно должно исходить из любой точки на небе с одинаковой интенсивностью, а во-вторых, если говорить научным языком, оно должно обладать «спектром чёрного тела».[214]
Альфер и Херман опубликовали свои предположения в международном научном журнале Nature в 1948 году, но их статья осталась незамеченной. Кроме того, когда они поинтересовались у радиоастрономов, могут ли те зафиксировать остаточное излучение Большого взрыва, ответ был отрицательным (и неверным).
Перенесёмся в 1965 год. Двоим радиоастрономам из американской телефонной компании AT&T передали в пользование огромную рупорную антенну в Холмделе, Нью-Джерси. Она использовалась в ранних экспериментах с первыми спутниками связи, «Echo-1» и «Telstar». Арно Пензиас и Роберт Уилсон хотели использовать антенну для астрономических наблюдений, но, куда бы они её ни направляли, они постоянно слышали белый шум.[215]
Сначала они решили, что источником шума является расположенный неподалёку Нью-Йорк, но, когда антенну повернули в другую сторону, звук не изменился. Затем Пензиас и Уилсон предположили, что шум исходит откуда-то из Солнечной системы, но шли месяцы, Земля вращалась вокруг Солнца, а изменений так и не происходило. Следующей версией учёных были ядерные испытания в атмосфере, из-за которых в её верхние слои были выброшены электроны, генерирующие радиоволны. Но шло время, а звук не стихал.
Затем Пензиас и Уилсон обратили внимание на пару голубей, гнездившуюся внутри рупора антенны. Оказалось, что вся внутренняя часть антенны покрыта «белым диэлектрическим материалом», более известным как птичий помёт. Может быть, загадочный шум возникал из-за него? Пензиас и Уилсон поймали голубей и вымыли антенну, но аномалия никуда не делась.
Наконец, один из коллег рассказал Пензиасу, что учёные из расположенного поблизости Принстонского университета занимаются поисками реликтового теплового излучения молодой Вселенной. Удивительно, но им с Уилсоном удалось совершенно случайно совершить одно из самых важных открытий в космологии со времён модели расширяющейся Вселенной Хаббла. Они обнаружили остаточное излучение, а значит, подтвердили теорию Большого взрыва.
Это было одно из величайших событий в истории науки. Теперь физики знали наверняка, что Вселенная не существовала вечно. У неё было начало, новый день без дня вчерашнего. В 1978 году Пензиас и Уилсон получили Нобелевскую премию по физике за открытие фонового космического излучения.
Почему время постоянно движется в одном направлении? Почему люди стареют, а не молодеют, яйца разбиваются, а не собираются из осколков, а дворцы рассыпаются в прах, а не возникают из него? Это одна из загадок нашей Вселенной, и, чтобы разгадать её, нам нужно вернуться к моменту Большого взрыва.
Все события, которые я перечислил выше, представляют собой трансформацию чего-то упорядоченного в нечто неупорядоченное. Однако существует множество способов, которыми можно разбить яйцо (лишить его упорядоченности), и лишь одно состояние, в котором яйцо пребывает в порядке. Второй закон термодинамики гласит, что энтропия (неупорядоченность) может лишь нарастать. Превращение разбитого яйца в целое возможно в принципе, но в значительной степени невероятно.
Но если направление времени связано с постепенным исчезновением порядка во Вселенной, значит, в прошлом, в частности в момент Большого взрыва, она должна была быть более упорядоченной. Это создаёт проблему для физиков, потому что упорядоченность — это крайне невероятное состояние. Если верить Ларри Шульману из Университета Кларксон, штат Нью-Йорк,[216] в решении этой задачи может помочь гравитация.
Изначально Вселенная представляла собой раскалённый шар, материя в котором была распределена равномерно. Это состояние было неупорядоченным. Но примерно через 380 000 лет с момента своего возникновения температура шара снизилась достаточно для того, чтобы электроны могли вступить во взаимодействие с ядрами и сформировать первые атомы. Свободные электроны очень активно взаимодействуют с фотонами, а электроны в атомах — нет. В тот момент на каждый электрон приходилось примерно десять миллиардов фотонов. Соответственно, до формирования атомов фотоны просто разрывали материю и гравитация не могла собрать её воедино. А вот после того, как возникли атомы, это стало возможным. Именно гравитация «включила» Вселенную. Частицы материи увеличивались в размерах до тех пор, пока не сформировали скопления галактик, которые мы можем наблюдать и сегодня.
Для материи, подверженной воздействию гравитации, самым естественным состоянием является группирование в объекты вроде звёзд и галактик. Но, как уже говорилось выше, в возрасте 380 000 лет материя во Вселенной была распределена равномерно, а вероятность её пребывания в таком состоянии крайне низка. «Включение» гравитации перевело Вселенную в иное состояние, которое и требовалось для того, чтобы «стрела времени» полетела в нужном направлении.
В этом объяснении есть кое-что удивительное: судя по всему, непосредственно до и сразу после рубежа 380 000 лет («эпохи последнего рассеяния») Вселенная выглядела почти одинаково. Разница состояла лишь в том, что гравитация стала всемогущей. Но с гравитационной точки зрения Вселенная перешла из вероятного состояния в невероятное. Аналогично Шульману об этом рассуждал и британский физик Роджер Пенроуз.
Открытие реликтового излучения Пензиасом и Уилсоном заставило физиков задаться множеством вопросов. Вселенная началась с Большого взрыва, но что это было за событие? Что его вызвало? Что происходило до него? Отвечать на них никому не хотелось, поэтому большинство астрономов, включая и самих Пензиаса и Уилсона, предпочитали теорию вечной и стационарной Вселенной.
Существовала и ещё одна проблема, затрагивавшая самую суть общей теории относительности. Если мысленно прокрутить расширение Вселенной назад, как предлагал Гамов, можно увидеть, что она будет становиться ещё плотнее и ещё горячее, а пространство-время будет всё сильнее и сильнее искривляться. В итоге всё сведётся к бесконечности, к ещё одной ужасной сингулярности, пускай и временно́й, а не пространственной, как чёрная дыра.
Итак, в теории Эйнштейна появился второй пробел. Из нарядного платья общая теория относительности превращалась в лохмотья, побитые молью.
Но для неё всё ещё оставалась надежда.[217] Сингулярности не были неизбежными — из них существовал выход.
Даже если гравитация превращает внутренности умирающей звезды в зефир, его поверхность не становится идеально гладкой. То тут, то там возникают бугры. Чем плотнее сжимается звезда, тем более очевидными оказываются эти неровности. Иными словами, коллапсирующая звезда не идеально симметрична и не все её части в какой-то момент сольются в одну точку с невероятной плотностью. Некоторые останутся за её пределами, а значит, сингулярность не сформируется и теория Эйнштейна сможет продержаться ещё какое-то время.
Принцип, работающий для чёрных дыр, может быть верным и для Большого взрыва. Если материя неравномерно распределена по Вселенной, значит, в более плотном её состоянии эти неровности были ещё более явно заметны. При сжатии они точно так же не сойдутся в одной точке, и ужасающая сингулярность снова не возникнет. Эйнштейновская теория будет работать, а значит, можно будет проследить историю Вселенной до периода, предшествовавшего Большому взрыву. Возможно, например, что она какое-то время коллапсировала до крошечной точки, которая затем взорвалась.
Здесь на сцену выходят британские физики Стивен Хокинг и Роджер Пенроуз. В своих научных трудах в 1965–1970 годах они сфокусировались на том, можно ли избежать сингулярности в теории Большого взрыва и чёрных дыр. В ходе исследований они разработали несколько впечатляющих теорем о сингулярности. Самая важная из них демонстрирует, что при соблюдении большого количества общих и вполне возможных условий сингулярности в чёрных дырах и при Большом взрыве были неизбежны. Они формировались вне зависимости от того, по какому сценарию сжималась Вселенная или коллапсировала звезда.
Это была неприятная правда, но от неё некуда было деться. Теория гравитации Эйнштейна сама вела себя к разрушению. Хотя она верно предсказала искривление света, прецессию перигелия Меркурия и замедление времени при сильной гравитации, она также описала и сингулярности, а они не имеют смысла. На чёрных дырах и рождении Вселенной она сломалась. «Если мы не можем понять, что произошло в сингулярности, из которой мы возникли, значит, мы не знаем ничего о физике частиц», — говорит Нил Турок из института «Периметр» в Уотерлу, Канада.
Тот факт, что теория гравитации Эйнштейна неприменима для сингулярностей, может означать лишь одно: это всего лишь упрощённая версия другой, более глубокой и точной теории.
Двумя величайшими достижениями физики XX века являются теория гравитации Эйнштейна (общая теория относительности) и квантовая теория.[218] Каждая из них идеально прошла все возможные экспериментальные проверки и наблюдения и каждая занимает почётное первое место в своей отрасли науки. Общая теория относительности описывает огромные объекты вроде звёзд и всей Вселенной, в то время как квантовая теория касается мельчайших тел — атомов и их составляющих.[219] Но в сингулярности (в сердце чёрной дыры или в момент Большого взрыва) огромные массы материи сжимаются до размеров меньше атома. Соответственно, чтобы понять, что происходит в чёрных дырах, и пролить свет на происхождение Вселенной, нужно объединить эти две теории и создать квантовую теорию гравитации. Так называют ту самую глубокую и точную теорию, которую ищут физики.
Уже в 1916 году Эйнштейн понял, что квантовая теория, хотя и считавшаяся в тот момент последним словом природы (во что он не верил), требует некоторых правок в соответствии с теорией относительности. Он писал: «Из-за внутриатомного движения электронов атомы должны испускать не только электромагнитную, но и гравитационную энергию, пускай и крайне слабую. Так как этого, скорее всего, на самом деле не происходит, квантовой теории нужно будет изменить не только максвелловские законы термодинамики, но и новую теорию гравитации».[220]
Для того чтобы понять, насколько сложно свести две теории воедино, нужно сначала поговорить о странностях квантовой теории и её фундаментальных отличиях от общей теории относительности…
Fölsing A. Albert Einstein. — London: Penguin, 1998.
Levenson T. Einstein in Berlin. — New York: Bantam Books, 2003.
Levenson T. The Hunt for Vulcan... And how Albert Einstein destroyed a planet, discovered relativity and deciphered the Universe. — London: Head of Zeus, 2015.
Miller A. Empire of the Stars: Friendship, betrayal and obsession in the quest for black holes. — London: Little Brown, 2005.