Испанские колонизаторы, хлынувшие в поисках легкой наживы в начале XVI века в Перу, Мексику, Чили, испытывали огромные страдания от болотной лихорадки. Лучшие европейские врачи были бессильны в борьбе с этой мучительной и изнуряющей болезнью. В то же время местные лекари успешно лечили индейцев, заболевших малярией, корой неизвестного европейцам дерева.
Первой европейской женщиной, получившей исцеление от коры экзотического дерева в 1638 г., была графиня Цинхона, супруга тогдашнего вице-короля Перу. В честь Цинхоны его назвали «хинхона», или «хина». Хинная кора впоследствии спасла жизнь многим европейцам.
Кора высоких стройных деревьев, издали несколько напоминающих нашу ольху, явилась ценнейшим противомалярийным лекарством для народов всего мира. Перуанское правительство получало значительные доходы от экспорта хинной коры за океан. Был издан декрет, запрещающий вывозить из страны деревца, черенки, семена этого дерева. Но европейцам удалось вывезти его семена. Хинное дерево стали разводить во многих тропических странах — Мексике, Индонезии, Новой Зеландии и др. Добыча хинной коры составляла свыше 500 тыс. кг в год.
Хинная кора привлекла внимание не только медиков, нашедших в ней эффективного союзника для борьбы с малярией, но и химиков, стремившихся разгадать ее тайны. Изучив состав коры, они обнаружили в ней органическое вещество — хинин, которое собственно и излечивает малярию.
Большой спрос на хинин побудил химиков заняться изысканием способов искусственного получения этого ценного лекарства.
В начале 50-х гг. прошлого века профессор Лондонского химического колледжа дал задание своему студенту Вильяму Перкину синтезировать хинин. При выполнении поручения он использовал анилин (открытый в 1842 г. русским химиком Н. Н. Зининым), который обрабатывал разными солями и щелочами. Однажды при нагревании анилина совместно с серной кислотой и хроматом калия к концу опыта на дне колбы образовалась густая смолистая масса, плотно приставшая к стеклу. Студент стал отмывать эту массу спиртом и вдруг спирт окрасился в пурпурный цвет. Такую же окраску приобрела и шерстяная пряжа, опущенная в колбу. Так, в поисках хинина был открыт первый анилиновый краситель — мовеин.
Неудача лондонского студента не обескуражила химиков. Попытки синтезировать хинин, хотя и безуспешно, продолжались еще почти три четверти столетия, и лишь в 1931 г. был синтезирован гидрохинин, незначительно отличающийся по составу от хинина.
Казалось, у хинной коры появился опасный соперник, и монополии природного хинина в борьбе с малярией пришел конец. Но вскоре выяснилось, что получение синтетических препаратов обходится дорого. Однако эти исследования помогли установить строение хинина и дали толчок к созданию новых синтетических антималярийных лекарств.
В состав молекулы хинина входит хинолиновое кольцо. Это навело химиков на мысль синтезировать ряд хинолиновых соединений и испытать их в качестве антималярийных препаратов. Одно из них, синтезированное в 1924 г. немецким химиком Шулеманом и названное плазмохинином, оказалось более эффективным, чем природный хинин. У некоторых больных лечение хинином вызывает головные боли, тошноту, шум в ушах. Иногда хининовая интоксикация проявляется еще резче: у больного кружится голова, подкашиваются ноги, учащенно бьется сердце. Плазмохинин и другие синтетические противомалярийные средства не вызывают этих симптомов.
В Советском Союзе в 30-х гг. синтезирован ценный противомалярийный препарат плазмоцид. В 1932 г. советские химики синтезировали акрихин — еще более сильное лекарственное средство, уже через 3–5 дней убивающее возбудителей малярии. Акрихина для полного курса лечения требуется в 7–8 раз меньше, чем хинина.
Наш век принес химикам и медикам еще одну блистательную победу. Появились соперники и у обитателя Южной Америки — кокаина, завезенного в Европу лишь спустя сто лет после знакомства европейцев с хинином.
С незапамятных времен растет в Боливии и Перу кустарник кока. Местные жители с давних пор жуют его листья, которые утоляют голод, снимают усталость и поддерживают хорошее настроение.
В 40-х гг. прошлого века кокой заинтересовались химики. После многочисленных безуспешных попыток им удалось выделить из листьев вещество, названное кокаином. Фармакологи вскоре обнаружили у него необыкновенные свойства. При попадании кокаина в кровь возбуждаются некоторые центры головного мозга при одновременном угнетании других.
Человек, принявший небольшую дозу кокаина, начинает много говорить, жестикулировать, чувствует потребность двигаться. В 1879 г. русским фармакологом В. К. Анрепом у кокаина была замечена еще одна особенность — способность оказывать анестезирующее действие при введении его растворов под кожу. Новый анестетик был впервые применен при операциях на глазах русским офтальмологом И. Н. Кацауровым и венским врачом К. Келлером.
Позднее кокаин стали использовать и хирурги, применяя его вместо обычного наркоза.
Кокаин легко проникает через поверхностные слои неповрежденных слизистых оболочек. При попадании капель раствора кокаина на слизистую оболочку носа теряется обоняние, на язык — способность ощущать горькое или сладкое, соленое или кислое.
На первых порах применение кокаина вызвало бурные восторги у медиков и их пациентов. Атаки на боль завершились быстро и успешно. Вскоре, однако, выявились его существенные недостатки. Он оказался очень ядовитым, что исключало возможность введения его в организм в количестве, необходимом для полного обезболивания. Введение же небольших доз препарата внутрь приводит в приятное благодушное настроение и слегка возбужденное состояние. Поэтому у некоторых людей появлялось пристрастие к кокаину, приводившее нередко к трагическим последствиям, выражавшимся в привычке к препарату — наркомании.
Если невозможно лишить природный кокаин его отрицательного воздействия, то нужно создать такое вещество, которое обладало бы его достоинствами, но не имело бы его недостатков. На помощь пришли химики.
В 1861 г. выдающийся русский химик А. М. Бутлеров создал теорию строения органических соединений, которая помогла исследователям не только объяснить свойства уже известных тогда соединений в соответствии с их строением, т. е. порядком расположения и взаимной связью атомов, но и предсказать новые свойства.
Молекула — отнюдь не случайное и не произвольное сочетание атомов, а стройное архитектурное сооружение, в котором каждый атом занимает определенное место. Следовательно, подбирая подобные по структуре молекулы, можно получить соединения с близкими и сходными свойствами. Тринадцать лет упорного труда затратил немецкий ученый Эйнгор на поиски заменителя кокаина, который годился бы для местной анестезии, но не был бы ядовит. В 1905 г. им был получен новокаин, который быстро занял ключевые позиции в местном обезболивании. Сколько пациентов он избавил от страданий при удалении зубов! Через 5—10 минут после инъекции раствора новокаина в десну боль уже утихает. С его помощью стало возможным безболезненно совершать самые сложные хирургические операции.
Некоторые врачи рекомендуют инъекции новокаина при язвенной болезни и бронхиальной астме, гипертонической болезни, эндартериите. Лауреат Ленинской премии проф. Ф. Г. Углов успешно использовал его для разработанной им методике лечения стенокардии. Предложенная им новокаиновая блокада оказывает благотворное влияние на состояние нервной системы и уменьшает спазмы сосудов сердца.
Существует мнение, что универсальным действием новокаин обязан способности оказывать при всасывании в кровь тормозящее влияние на различные отделы нервной системы. Однако в основном новокаин применяют для местного обезболивания.
Поиски ученых привели к открытию новых анестетиков — зарубежного ксикаина и советского тримекаина. Они оказывают более сильное и более продолжительное анестезирующее действие, относительно малотоксичны и не вызывают раздражения тканей.
Аналоги природных анестетиков в течение многих лет синтезировали в Институте химических наук Академии наук Казахской ССР. Эти работы привели к созданию нового местнообезболивающего препарата алмакаина, названного в честь города Алма-Аты. Алмакаин во много раз активнее кокаина и не обладает наркотическими свойствами.
Среди обезболивающих средств, которыми широко пользуется современная медицина, почетное место занимает морфин — действующее вещество опия, получаемого из снотворного мака. Лечебные свойства опия — застывшего млечного сока мака — были известны еще за несколько тысяч лет до нашей эры в Китае и Вавилонии. Древние медики рекомендовали его при бессоннице, прописывали при кишечных расстройствах.
В 1806 г. молодой аптекарский ученик (ему было тогда 20 лет) француз Фридрих Сертюрнер выделил из опия белый кристаллический порошок. Он проверил действие препарата на собаках, подмешивая к пище немного порошка. Все собаки тут же засыпали и их невозможно было расшевелить.
Морфин, названный им так в честь древнегреческого бога сна Морфея, вскоре стал широко применяться для устранения сильных болевых ощущений — при различных травмах, инфарктах миокарда и т. п. Морфин снижает болевую чувствительность при сохранении сознания. Подобно кокаину, он может вызвать болезненное пристрастие к нему — наркоманию. Поэтому врачи не прописывают морфин пациентам при хронических болях.
В нашу эпоху появились заменители морфина — текодин, фенадон, лидол и фентанил. Фентанил, синтезированный в 1963 г., обладает в 200 раз более сильным, но менее продолжительным обезболивающим действием, чем морфин.
Среди алкалоидов, содержащихся в млечном соке мака, заслуженным признанием у фармакологов и врачей пользуется папаверин.
В наше время резко увеличились сердечно-сосудистые заболевания и особенно гипертоническая болезнь. Из небольшого числа лекарств, которыми располагали до 40-х гг. медики для понижения артериального давления, одним из эффективных был папаверин. Однако получаемый, как и морфин, из опия, он довольно дорог.
Вот почему начались поиски путей создания синтетических препаратов, сходных по строению с папаверином. Известный советский фармаколог профессор С. В. Аничков высказал предположение, что подобные препараты должны расслаблять мускулатуру кровеносных сосудов и тем самым снижать артериальное давление.
В 1948 г. ленинградские химики синтезировали вещество, которое не уступало папаверину по своим лечебным свойствам. Его назвали дибазолом. Дибазол стали применять при стенокардии, кишечной и почечной коликах, гипертонических кризах.
Познакомившись с дибазолом, медики стали внимательно его изучать. Уже спустя несколько лет выяснилось, что он может помочь при лечении заболеваний периферической нервной системы. Оказалось, что дибазол способствует улучшению проведения нервных импульсов. Эксперименты на животных показали возможность использования дибазола при травматическом шоке.
Многим больным гипертонической болезнью помогает другой алкалоид — резерпин, выделенный из раувольфии змеиной. Корни этого растения, названного в честь немецкого ботаника и путешественника XVI века Леонардо Раувольфа, применялись более тысячи лет назад индусами для лечения психических расстройств, эпилепсии и некоторых других заболеваний.
Среди лекарств, подавляющих болезненную чувствительность и утоляющих боль, широким признанием у врачей и пациентов пользуются анальгетики — анальгин, пирамидон, амидопирин, фенацетин. Их принимают при головной и суставной болях, рекомендуют при колите и радикулите.
Хотя анальгетики лишь обезболивают, а не излечивают человека от болезней, фармацевтические фирмы капиталистических стран рекламируют их как панацею от всех болезней.
По статистике, больше всего употребляют анальгетики австралийцы — 60 г в год на человека, в Дании, Бельгии и Швейцарии более чем в два раза меньше — по 25 г, в Англии и Шотландии — 12, в США — 10 и в Канаде — по 7 г.
Чрезмерное употребление анальгетиков нередко вызывает заболевание нефритом. В Австралии зарегистрировано 1425 случаев на миллион человек, в Дании — 50, в Бельгии — 25. Чаще всего к нефриту приводит злоупотребление таблетками аспирина, фенацетина и кофеина. Больные, принимающие в день по 5–6 таблеток, уже через две-три недели не чувствуют облегчения от боли. Наоборот, у многих усиливается головная боль, появляется раздражительность, нередко наблюдается нарушение работы почек.
Еще в 1922 г. немецкий врач В. Шульц высказал предположение, что избыток пирамидона в организме вызывает изменения в крови. Позднее было установлено, что даже небольшие его дозы вызывают у больных с повышенной чувствительностью резкое уменьшение числа лейкоцитов в крови. А это, в свою очередь, может быть причиной развития воспаления легких или ангины.
Неумеренное потребление анальгина иногда вызывает аллергические явления. Следует проявлять осторожность, и при приеме снотворных и успокаивающих средств. Например, даже небольшая доза паральдегида через 10–15 минут вызывает крепкий сон. Еще сильнее действует хлораль (уксусный альдегид, в молекуле которого все три атома водорода замещены хлором). Прием больших доз этих препаратов может привести к смертельному исходу.
Медики рекомендуют пациентам более мягкие и безвредные успокоительные и снотворные средства. Однако при длительном употреблении к ним привыкают. Желание испытать снова и снова ощущение спокойствия переходит в привычку. Причем, если больной перестает даже на один день принимать эти средства, он чувствует тревогу и беспокойство. Следует избегать продолжительного применения подобных препаратов и всегда пользоваться ими только по указанию врача.
В конце 1856 г. Вильям Перкин, синтезировавший вместо хинина мовеин, открыл первую фабрику искусственных красителей. Мовеин стал модной краской. Прекрасно окрашенные шерсть и шелк не меняли цвета при стирке и не выгорали на солнце.
Химики разных стран стали настойчиво искать способы изготовления красителей из анилина, нафталина, антрацена и других веществ, получаемых из каменноугольной смолы.
Вскоре был получен новый анилиновый краситель, окрашивающий ткани в ярко-красный цвет. За сходство окраски с цветком фуксии он был назван фуксином. Прошло еще несколько лет и появились малахитовый зеленый и метилвиолет, из которого делают обыкновенные чернила. В 1869 г. химики праздновали новую победу: из антрацена был получен ализарин, который в течение тысячелетий добывал человек из корней марены.
Расцвет анилинокрасочной химии и появление теории крашения новыми красителями побудили медиков заняться исследованиями распределения искусственных красителей. Известный немецкий ученый Эрлих, изучавший процессы накопления и фармакологического действия красителей в организме, в 1902 г., подводя итоги своим многолетним экспериментам, писал: «Краска имеет сродство к большинству тканей и органов, причем чаще всего же таким образом, что определенный орган окрашен особенно сильно». Следовательно, нужно подбирать такие вещества в качестве лекарств, которые обладают сродством к тому или иному органу. Только в этом случае будет достигнуто эффективное лечебное действие. Исходя из этого принципа, Эрлих еще в 1891 г. предлагал лечить малярию метиленовым синим, который хорошо окрашивает плазмодии.
Испытывая уже известные тогда красители бензидинового ряда в качестве лекарств, он синтезировал новый краситель — трипановый красный. Это был первый в истории препарат, полученный с заранее заданными физическими и химическими свойствами путем изменения структуры молекулы исходного вещества. Появление в ней лишней группы атомов (сульфоксильной) увеличивало растворимость и всасываемость препарата тканями.
Этот первый успех стал знаменательной вехой в развитии нового направления в медицине — химиотерапии. В 1908 г. произошло еще одно событие, которому суждено было сыграть важную роль в создании, по выражению Эрлиха, «волшебных пуль» — антимикробных препаратов. Французский химик Гельмо синтезировал новое соединение — сульфаниламид. Им вскоре заинтересовались химики, занимающиеся поисками новых красителей. Оказалось, что благодаря наличию аминогруппы сульфаниламид стал родоначальником новой группы красителей — азокрасок, которые давали прочную окраску.
Прошло, однако, почти четверть века, прежде чем азокрасители привлекли внимание, медиков. В 1935 г. Домагк, развивая идеи Эрлиха, поставил ряд опытов по изучению антибактерицидного действия одного из азокрасителей — сульфаниламида ортохризоина, или пронтозила, названного позднее красным стрептоцидом. Результаты превзошли все ожидания. Пронтозил уничтожал многие опасные бактерии, особенно стрептококки, в организме человека. Это выдающееся открытие, за которое Домагку в 1939 г. была присуждена Нобелевская премия, стало началом систематического и победоносного наступления на инфекционные болезни.
В течение нескольких последующих лет были синтезированы тысячи новых сульфаниламидных препаратов. Их насчитывается более 10 тысяч. Наиболее широкую известность получили стрептоцид, норсульфазол, фталазол, сульфадимезин и др.
Попадая в организм, сульфаниламидные препараты оказывают сильное бактериостатическое действие, подавляют рост микробов и препятствуют их размножению. Это позволяет защитным силам нашего организма успешно бороться с возбудителями инфекции. В чем заключается механизм действия сульфаниламидных препаратов? Согласно теории Вуда и Филдса, он обусловлен сходством молекул сульфаниламидных препаратов и парааминобензойной кислоты, необходимой для жизнедеятельности микробов.
Сульфаниламидные препараты блокируют биохимические системы бактерий, препятствуя тем самым связыванию парааминобензойной кислоты, что приводит к нарушению обменных процессов у микробов и вызывает остановку их роста и размножения. При введении больному достаточно большой дозы сульфаниламидного препарата микробная клетка захватывает его вместо парааминобензойной кислоты и прекращает рост. Если же доза лекарства недостаточна, то микробы вырабатывают устойчивость к нему.
Различные сульфаниламидные препараты действуют с разной скоростью: молекулы одних быстрее проникают через оболочку бактерий, замещая парааминобензойную кислоту, а молекулы других — медленнее. Так, стрептоцид и норсульфазол всасываются быстро и уже в течение 1–2 ч создают в крови концентрации, подавляющие размножение микробов, тогда как фталазол оказывает лечебное действие лишь спустя несколько часов.
Семья сульфаниламидных препаратов постоянно растет. В лабораториях Института химических наук Академии наук КазССР исходным материалом для получения сульфаниламидов являются смоляные кислоты, которые входят в состав живичной канифоли. Синтезировано уже более 40 препаратов, подавляющих рост микроорганизмов.
Почти полвека сахарный диабет лечат инсулином, полученным экстракцией поджелудочных желез различных животных. Он принес исцеление миллионам больных, заменяя природный гормон, выделяемый в организме поджелудочной железой. И все же есть у него один большой недостаток: его нужно вводить с помощью инъекций. А нельзя ли укол заменить таблетками? Помогли, как это нередко бывало в истории великих открытий, случай и наблюдательность.
В 1942 г. французский врач Жанбон решил испытать на больных брюшным тифом только что появившийся сульфаниламидный препарат 2254Р, очень сходный по своему строению с красным стрептоцидом. Препарат оказался действенным, но у некоторых пациентов наблюдались странные явления: сильный голод, слабость, сердцебиение, а иногда и тяжелые нервные расстройства. Такие же симптомы Жанбон наблюдал ранее у больных диабетом, которым давали инсулин. Сделав анализ крови пациентов, он заметил, что новый препарат, подобно инсулину, снижал количество сахара в крови.
В том же году, другой французский врач — специалист по диабету — Лубатье начинает проверку действия этого препарата на собаках. Опыты дали обнадеживающие результаты и привлекли внимание врачей и фармакологов.
В 1955 г. из нескольких сот препаратов были отобраны два: 2254Р и В-55 (синонимы букарбан, надизан, карбутамид) и переданы для испытаний в клиники. Для лечения сахарного диабета сейчас пользуются многими сульфаниламидными препаратами. Среди них бутамид, орабет, адебит и др.
В настоящее время в различных странах проводятся интенсивные исследования по внедрению в производство синтетического способа получения инсулина, а также по применению его для лечения сахарного диабета в виде таблеток.
У многих народов еще в древности больным лихорадкой давали настой из ивовой коры. Химики изучили ее состав и выделили органическое вещество — салицин, названный так от латинского слова «саликс» — ива. Из салицина приготовляли салициловую кислоту. Теперь ее получают на заводах из фенола, содержащегося в каменноугольной смоле, или окислением бензола.
Производные салициловой кислоты (салицилат натрия, салициламид, ацетилсалициловая кислота) снижают температуру тела. Жаропонижающее действие этих препаратов объясняется тем, что они ослабляют возбудимость центров за счет расширения кожных сосудов и сильного потоотделения. Они оказывают также обезболивающее и противовоспалительное действие, поэтому применяются при лечении ревматизма, ревматоидных артритов, подагры и др. Некоторые препараты (фенилсалицилат) употребляются в качестве противомикробных средств при воспалительных заболеваниях кишечника и мочевыводящих путей.
Достижения современной химии позволяют получать много ценных продуктов из отходов производства. Химики научились синтезировать лекарства не только из каменноугольной смолы, но и из хлопковой шелухи, лузги от подсолнечника, кукурузных початков и др. Открытия ученых часто находили применение только через многие годы. Так, однажды немецкий химик Деберейнер решил получить муравьиную кислоту из сахара. Для этого он смешал сахар с диоксидом марганца и обработал смесь крепкой серной кислотой. После перегонки ученый обнаружил в приемнике густую маслянистую жидкость желтого цвета. Новый продукт был назван искусственным муравьиным маслом. Спустя восемь лет, в 1840 г., английский химик Джон Стенхауз получил сходное вещество из опилок и кукурузных початков.
Желтое масло заинтересовало многих ученых. Его пытались получить из разнообразных пищевых продуктов: пшеничных и овсяных зерен, отрубей. Наконец, английский химик Джордж Фауно выделил желтоватую маслянистую жидкость из отрубей и назвал ее фурфуролом, что в переводе с латинского означает «масло из отрубей». Однако прошло почти сто лет, прежде чем фурфурол нашел промышленное применение. Теперь трудно перечислить все отрасли народного хозяйства, где применяется фурфурол. В нефтяной промышленности им пользуются для очистки смазочных масел, в пищевой — для очистки жиров. Нужен он в производстве канифоли, лаков, синтетических волокон, пластмасс. Из фурфурола получают фумаровую кислоту, которая заменяет лимонную в кондитерском производстве.
Заинтересовались им и фармакологи. Поиски привели к открытию нитрофурановых соединений, обладающих противомикробными свойствами. Нитрофурановые соединения получаются нитрованием фурфурола. Латвийские ученые разработали новые способы нитрования фурфурола, которые дали возможность наладить производство ценных лекарств: фурацилина, фурадонина, фуразолидона и др.