П. Клушанцев КОСМИЧЕСКАЯ РАКЕТА

Что такое космическая ракета? Как она устроена? Как летит? Почему в космосе путешествуют именно на ракетах?

Казалось бы, все это давно и хорошо нам известно. Но давайте на всякий случай проверим себя. Повторим азбуку.

Наша планета Земля покрыта слоем воздуха — атмосферой. У поверхности Земли воздух довольно плотный, густой. Выше — редеет. На высоте в сотни километров он незаметно «сходит на нет», переходит в безвоздушное космическое пространство.

По сравнению с воздухом, в котором мы живем, там пустота. Но, говоря строго научно, все же пустота не полная. Все это пространство пронизано лучами Солнца и звезд, летящими от них осколочками атомов. В нем плавают космические пылинки. Можно встретить метеорит. В окрестностях многих небесных тел ощущаются следы их атмосфер. Поэтому безвоздушное космическое пространство мы не можем называть пустотой. Мы будем называть его просто космосом.

И на Земле, и в космосе действует один и тот же закон всемирного тяготения. По этому закону все предметы притягивают друг друга. Притяжение огромного земного шара очень ощутимо.

Чтобы оторваться от Земли и полететь в космос, нужно прежде всего как-то преодолеть ее притяжение.

Самолет его преодолевает лишь частично. Взлетая, он опирается крыльями на воздух. И не может подняться туда, где воздух сильно разрежен. Тем более в космос, где воздуха нет вообще.

Нельзя залезть по дереву выше самого дерева.

Что же делать? Как «вскарабкаться» в космос? На что опереться там, где ничего нет?

Представим себя великанами огромного роста. Мы стоим на поверхности Земли, и атмосфера нам по пояс. В руках у нас мяч. Выпускаем его из рук — он летит вниз, к Земле. Падает у наших ног.

Теперь бросаем мяч параллельно поверхности Земли. Повинуясь нам, мяч должен лететь над атмосферой, вперед, куда мы его бросили. Но Земля не перестала его тянуть к себе. И, повинуясь ей, он, как и в первый раз, должен лететь вниз. Мяч вынужден повиноваться обоим. И потому летит где-то посередине между двумя направлениями, между «вперед» и «вниз». Путь мяча, его траектория, получается в виде изгибающейся к Земле кривой линии. Мяч идет на снижение, погружается в атмосферу и падает на Землю. Но уже не у наших ног, а где-то поодаль.

Бросим мяч сильнее. Он полетит быстрее. Под действием притяжения Земли он снова начнет заворачивать к ней. Но теперь — более полого.

Бросим мяч еще сильнее. Он полетел так быстро, заворачивать стал так полого, что уже «не успевает» упасть на Землю. Поверхность ее «круглится» под ним, как бы уходит из-под него. Траектория мяча хоть и изгибается в сторону Земли, но недостаточно круто. И получается, что, непрерывно падая к Земле, мяч тем не менее летит вокруг земного шара. Его траектория замкнулась в кольцо, стала орбитой. И мяч теперь будет летать по ней все время. Не переставая падать к Земле. Но и не приближаясь к ней, не ударяясь о нее.

Чтобы так вот вывести мяч на круговую орбиту, нужно бросить его со скоростью 8 километров в секунду! Эту скорость называют круговой, или первой космической.

Любопытно, что скорость эта в полете будет сохраняться сама собой. Полет замедляется, когда что-нибудь мешает лететь. А мячу ничто не мешает. Он летит выше атмосферы, в космосе!

Как можно лететь «по инерции», не останавливаясь? Это трудно понять, потому что мы никогда не жили в космосе. Привыкли к тому, что нас всегда окружает воздух. Мы знаем — комочек ваты, как сильно ни бросай его, не полетит далеко, увязнет в воздухе, остановится, упадет на Землю. В космосе же все предметы летят, не встречая сопротивления. Со скоростью 8 километров в секунду могут рядом лететь и развернутые листы газеты, и чугунные гири, крохотные картонные игрушечные ракеты и самые настоящие стальные космические корабли. Все будут лететь рядом, не отставая и не обгоняя друг друга. Будут одинаково кружиться вокруг Земли.

Но вернемся к мячу. Бросим его еще сильнее. Например, со скоростью 10 километров в секунду. Что с ним станет?


Орбиты ракет при различных начальных скоростях.


При такой скорости траектория еще более распрямится. Мяч начнет удаляться от Земли. Потом снизит скорость, плавно повернет назад к Земле. И, приближаясь к ней, разгонится как раз до той скорости, с какой мы его отправляли в полет, до десяти километров в секунду. С этой скоростью он промчится мимо нас и унесется дальше. Все повторится сначала. Снова подъем с замедлением, поворот, падение с разгоном. Мяч этот тоже никогда не упадет на Землю. Он тоже вышел на орбиту. Но уже не круговую, а эллиптическую.

Мяч, брошенный со скоростью 11.1 километра в секунду, «дотянет» до самой Луны и только там повернет обратно. А при скорости 11.2 километра в секунду уже вообще не вернется к Земле, уйдет бродить по Солнечной системе. Скорость 11,2 километра в секунду называется второй космической.

Итак, удержаться в космосе можно только с помощью большой скорости.

Как же разогнаться хотя бы до первой космической скорости, до восьми километров в секунду?

Скорость автомобиля на хорошем шоссе не превышает 40 метров в секунду. Скорость самолета ТУ-104 не более 250 метров в секунду. А нам нужно двигаться со скоростью 8000 метров в секунду! Лететь в тридцать с лишним раз быстрее самолета! Мчаться с такой скоростью в воздухе вообще невозможно. Воздух «не пускает». Он становится на нашем пути непробиваемой стеной.

Вот почему мы тогда, представляя себя великанами, «высунулись по пояс» из атмосферы в космос. Воздух нам мешал.

Но чудес не бывает. Великанов нет. А «высунуться» все же надо. Как быть? Построить башню высотой в сотни километров — смешно и думать. Надо найти способ медленно, «не спеша», пройти сквозь густой воздух в космос. И только там, где уже ничто не мешает, «по хорошей дороге» разогнаться до нужной скорости.

Одним словом, чтобы удержаться в космосе, надо разогнаться. А чтобы разогнаться, надо сперва добраться до космоса и удержаться там.

Чтобы удержаться — разогнаться! Чтобы разогнаться — удержаться!

Выход из этого заколдованного круга подсказал людям в свое время наш замечательный русский ученый Константин Эдуардович Циолковский. Для выхода в космос и разгона в нем годится только ракета. О ней и пойдет дальше наш разговор.

Ракета не имеет ни крыльев, ни пропеллеров. Она может в полете ни на что не опираться. Для разгона ей не нужно ни от чего отталкиваться. Она может двигаться и в воздухе, и в космосе. В воздухе медленнее, в космосе быстрее. Она движется реактивным способом. Что это значит? Приведем старый, но очень хороший пример.

Берег тихого озера. В двух метрах от берега стоит лодка. Носом направлена в озеро. На корме лодки стоит паренек, хочет прыгнуть на берег. Присел, поднатужился, со всей силы прыгнул… и благополучно «приземлился» на берегу. А лодка… тронулась с места и тихо поплыла от берега.

Что получилось? Когда паренек прыгал, ноги его сработали как пружина, которая была сжата, а потом распрямилась. Эта «пружина» одним концом толкнула человека на берег. Другим — лодку в озеро. Лодка и человек оттолкнулись друг ох друга. Лодка поплыла, как говорят, благодаря отдаче, или реакции. Это и есть реактивный способ движения.


Схема многоступенчатой ракеты.

Отдача нам хорошо известна. Вспомните, например, как стреляет пушка. При выстреле снаряд вылетает из ствола вперед, а сама пушка при этом резко откатывается назад. Почему? Да все потому же. Порох внутри ствола пушки, сгорая, превращается в раскаленные газы. Стремясь вырваться, они давят изнутри на все стенки, готовы разорвать ствол пушки на куски. Они выталкивают артиллерийский снаряд и, расширяясь, работают тоже как пружина — «бросают в разные стороны» пушку и снаряд. Только снаряд полегче, и его удается отбросить на много километров. Пушка же потяжелее, и ее удается лишь немного откатить назад.

Возьмем теперь обычную маленькую пороховую ракету, которая уже сотни лет используется для фейерверков. Это картонная трубка, закрытая с одной стороны. Внутри — порох. Если его поджечь, он горит, превращаясь в раскаленные газы. Вырываясь через открытый конец трубки, они себя отбрасывают назад, а ракету вперед. И толкают ее так сильно, что она летит к небу.

Пороховые ракеты существуют давно. Но для больших, космических ракет порох, оказывается, не всегда удобен. Прежде всего — порох вовсе не самое сильное взрывчатое вещество. Спирт или керосин, например, если их мелко разбрызгать и смешать с капельками жидкого кислорода, взрываются посильнее пороха. Такие жидкости имеют общее название — горючее. А жидкий кислород или заменяющие его жидкости, содержащие много кислорода, называются окислителем. Горючее и окислитель вместе образуют ракетное топливо.

Современный жидкостный ракетный двигатель, или, сокращенно, ЖРД — это очень прочная, стальная, напоминающая бутылку камера сгорания. Ее горловина с раструбом — сопло. В камеру по трубкам в большом количестве непрерывно впрыскиваются горючее и окислитель. Происходит бурное горение. Бушует пламя. Раскаленные газы с невероятной силой и громким ревом вырываются через сопло наружу. Вырываясь, отталкивают камеру в обратную сторону. Камера закреплена на ракете, и получается, что газы толкают ракету. Струя газов направлена назад, и поэтому ракета летит вперед.

Современная большая ракета выглядит так. Внизу, в ее хвосте, стоят двигатели, один или несколько. Выше почти все свободное место занимают баки с топливом. Наверху, в головке ракеты, помещают то, ради чего она летит. То, что она должна «доставить по адресу». В космических ракетах это может быть какой-нибудь спутник, который надо вывести на орбиту, или космический корабль с космонавтами.

Саму ракету называют ракетой-носителем. А спутник или корабль — полезной нагрузкой.

Итак, мы как будто нашли выход из заколдованного круга. Имеем ракету с жидкостным ракетным двигателем. Двигаясь реактивным способом, она может «тихим ходом» пройти сквозь плотную атмосферу, выйти в космос и там разогнаться до нужной скорости.

Первая же трудность, с которой столкнулись ракетостроители, — это нехватка топлива. Ракетные двигатели нарочно делают очень «прожорливыми», чтобы они быстрее сжигали топливо, изготовляли и выбрасывали назад как можно больше газов. Но… ракета не успеет набрать и половины необходимой скорости, как топливо в баках кончится. И это несмотря на то, что мы заполнили топливом буквально всю внутренность ракеты. Сделать ракету крупнее, чтобы поместилось больше топлива? Не поможет. На разгон крупной, более тяжелой ракеты уйдет больше топлива, и никакой выгоды не получится.

Из этого неприятного положения выход тоже подсказал Циолковский. Он посоветовал делать ракеты многоступенчатыми.

Берем несколько ракет разного размера. Их называют ступенями — первая, вторая, третья. Ставим одну на другую. Внизу самую большую. На нее — поменьше. Сверху — самую маленькую, с полезной нагрузкой в головке. Это трехступенчатая ракета. Но может быть ступеней и больше.

При взлете разгон начинает первая, самая мощная ступень. Израсходовав свое топливо, она отделяется и падает обратно на Землю. Ракета избавляется от лишней тяжести. Начинает работать вторая ступень, продолжая разгон. На ней двигатели стоят поменьше, более легкие, и топливо они расходуют экономнее. Отработав, вторая ступень тоже отделяется, передавая эстафету третьей. Той уже совсем легко. Она и заканчивает разгон.

Все космические ракеты — многоступенчатые.

Следующий вопрос — как лучше всего ракете выходить в космос? Может быть, подобно самолету, разбежаться по бетонной дорожке, оторваться от Земли и, постепенно набирая высоту, подняться в безвоздушное пространство?

Это невыгодно. Слишком долго придется лететь в воздухе. Путь через плотные слои атмосферы надо по возможности сократить. Поэтому, как вы, наверное, заметили, все космические ракеты, куда бы они потом ни летели, взлетают всегда прямо вверх. И только в разреженном воздухе постепенно заворачивают в нужную сторону. Такой взлет в смысле расхода топлива самый экономный.

Многоступенчатые ракеты выводят полезный груз на орбиту. Но какой ценой? Посудите сами. Чтобы вывести на околоземную орбиту одну тонну, нужно сжечь несколько десятков тонн топлива! Для груза в 10 тонн — сотни тонн. Американская ракета «Сатурн-5», выводящая на околоземную орбиту 130 тонн, сама весит 3000 тонн!

И едва ли не самое огорчительное — мы еще не умеем возвращать на Землю ракеты-носители. Сделав свое дело, разогнав полезную нагрузку, они отделяются и… падают. Разбиваются о Землю или тонут в океане. Второй раз мы их не можем использовать.

Представьте себе, что пассажирский самолет строился бы только для одного рейса. Невероятно! А вот ракеты, которые стоят дороже самолетов, строят только для одного полета. Поэтому вывод на орбиту каждого спутника или космического корабля обходится очень дорого.

Но мы отвлеклись.

Далеко не всегда наша задача — только вывести полезную нагрузку на круговую околоземную орбиту. Гораздо чаще ставится более сложное задание. Например, доставить полезную нагрузку на Луну. А иногда и вернуть ее оттуда обратно. В этом случае после выхода на круговую орбиту ракета должна совершить еще много разных «маневров». И все они требуют расхода топлива.

Вот и поговорим теперь об этих маневрах.

Самолет летит носом вперед, потому что ему нужно острым носом разрезать воздух. А ракете, после того как она вышла в безвоздушное пространство, разрезать нечего. На ее пути ничего нет. И потому ракета в космосе после выключения двигателя может лететь в любом положении — и кормой вперед, и кувыркаясь. Если во время такого полета снова ненадолго включить двигатель, он толкнет ракету. И тут все зависит от того, куда нацелен нос ракеты. Если вперед — двигатель подтолкнет ракету, и она полетит быстрее. Если назад — двигатель попридержит, притормозит ее, и она полетит медленнее. Если ракета глядела носом вбок — двигатель толкнет ее в сторону, и она, не меняя скорости, изменит направление своего полета.

Один и тот же двигатель может делать с ракетой все что угодно. Разгонять, тормозить, поворачивать. Все зависит от того, как мы перед включением двигателя нацелим, или ориентируем ракету.

На ракете, где-нибудь в хвосте, стоят маленькие реактивные двигатели ориентации. Они направлены соплами в разные стороны. Включая и выключая их, можно подталкивать хвост ракеты вверх-вниз, вправо-влево и таким образом поворачивать ракету. Ориентировать ее носом в любую сторону.

Представим себе, что нам нужно слетать на Луну и вернуться. Какие для этого потребуются маневры?

Прежде всего мы выходим на круговую орбиту около Земли. Здесь можно передохнуть, выключив двигатель. Не расходуя ни грамма драгоценного топлива, ракета будет «молча» ходить вокруг Земли, пока мы не решим лететь дальше.

Чтобы добраться до Луны, надо с круговой орбиты перейти на сильно вытянутую эллиптическую.

Ориентируем ракету носом вперед и включаем двигатель. Он начинает нас разгонять. Как только скорость немного превысит 11 километров в секунду, выключаем двигатель. Ракета пошла по новой орбите.

Надо сказать, что «попасть в цель» в космосе очень трудно. Если бы Земля и Луна стояли неподвижно, а летать в космосе можно было бы по прямым линиям, дело было бы простое. Нацелился — и лети, держа цель все время «по курсу», как это делают капитаны морских кораблей и летчики. Там и скорость не имеет значения. Раньше или позже прибудешь на место, какая разница. Все равно цель, «порт назначения», никуда не денется.

В космосе все не так. Попасть с Земли в Луну — это примерно то же самое, что, быстро вращаясь на карусели, попасть мячиком в летящую птицу. Посудите сами. Земля, с которой мы взлетаем, вращается. Луна — наш «порт назначения» — тоже не стоит на месте, летит вокруг Земли, пролетая километр за каждую секунду. Кроме того, ракета наша летит не по прямой линии, а по эллиптической орбите, постепенно замедляя свое движение. Ее скорость лишь в начале была одиннадцать с лишним километров в секунду, а потом из-за притяжения Земли стала уменьшаться. И лететь надо долго, несколько суток. И при этом вокруг нет никаких ориентиров. Нет никакой дороги. Нет и не может быть никакой карты, потому что на карту нечего было бы наносить — ничего кругом нет. Одна чернота. Только далеко-далеко звезды. Они и над нами, и под нами, со всех сторон. И мы должны так рассчитать направление своего полета и его скорость, чтобы в конце пути прийти в намеченное место пространства одновременно с Луной. Ошибемся в скорости — опоздаем на «свидание», Луна ждать нас не будет.

Чтобы, несмотря на все эти трудности, дойти до цели, на Земле и на ракете стоят сложнейшие приборы. На Земле работают электронно-вычислительные машины, трудятся сотни наблюдателей, вычислителей, ученых и инженеров.

И, несмотря на все это, мы все же в пути раз-другой проверяем, правильно ли мы летим. Если немного отклонились, проводим, как говорят, коррекцию траектории. Для этого ориентируем ракету носом в нужную сторону, включаем на несколько секунд двигатель. Он чуть толкнет ракету, подправит ее полет. И дальше она уже летит как надо.

К Луне подходить тоже непросто. Во-первых, надо лететь так, как будто мы намерены «промазать» мимо Луны. Во-вторых, лететь «кормой вперед». Как только ракета поравнялась с Луной, включаем ненадолго двигатель. Он притормаживает нас. Под действием притяжения Луны мы заворачиваем в ее сторону и начинаем ходить вокруг нее по круговой орбите. Здесь можно снова немного передохнуть. Затем приступаем к посадке. Снова ориентируем ракету «кормой вперед» и еще раз ненадолго включаем двигатель. Скорость уменьшается, и мы начинаем падать на Луну. Недалеко от поверхности Луны снова включаем двигатель. Он начинает сдерживать наше падение. Надо так рассчитать, чтобы двигатель полностью погасил скорость и остановил нас перед самой посадкой. Тогда мы мягко, без удара опустимся на Луну.

Возвращение с Луны уже идет знакомым порядком. Сперва взлетаем на круговую, окололунную орбиту. Потом увеличиваем скорость и переходим на вытянутую эллиптическую орбиту, по которой идем к Земле. Вот только посадка на Землю происходит не так, как посадка на Луну. Земля окружена атмосферой, и можно для торможения использовать сопротивление воздуха.

Однако отвесно врезаться в атмосферу нельзя. От слишком резкого торможения ракета вспыхнет, сгорит, развалится на куски. Поэтому мы нацеливаем ее так, чтобы она вошла в атмосферу «вкось». В этом случае она погружается в плотные слои атмосферы не так быстро. Скорость наша снижается плавно. На высоте нескольких километров раскрывается парашют — и мы дома. Вот сколько маневров требует полет к Луне.

Для экономии топлива конструкторы и здесь используют многоступенчатость. Например, наши ракеты, которые мягко садились на Луну и потом привозили оттуда образцы лунного грунта, имели пять ступеней. Три — для взлета с Земли и полета к Луне. Четвертую — для посадки на Луну. И пятую — для возвращения на Землю.

Все, что мы говорили до сих пор, была, так сказать, теория. Теперь совершим мысленно экскурсию на космодром. Посмотрим, как это все выглядит на практике.

Строят ракеты на заводах. Всюду, где возможно, используют самые легкие и самые прочные материалы. Для облегчения ракеты стараются все ее механизмы и всю аппаратуру, стоящую на ней, делать как можно более «портативными». Легче получится ракета — больше можно взять с собой топлива, увеличить полезную нагрузку.

На космодром ракету привозят по частям. В большом монтажно-испытательном корпусе ее собирают. Потом особый кран — установщик — в лежачем положении везет ракету, пустую, без топлива, на стартовую площадку. Там он поднимает ее и ставит в вертикальное положение. Со всех сторон ракету обхватывают четыре опоры стартовой системы, чтобы она не упала от порывов ветра. Потом подводят к ней фермы обслуживания с балконами, чтобы техники, готовящие ракету к старту, могли подобраться к любому ее месту. Подводят заправочную мачту со шлангами, через которые в ракету заливают топливо, и кабель-мачту с электрическими кабелями для проверки всех механизмов и приборов ракеты перед полетом.

Космические ракеты огромны. Самая первая наша космическая ракета «Восток» и то имела высоту 38 метров, с десятиэтажный дом. А самая большая американская шестиступенчатая ракета «Сатурн-5», которая доставляла американских космонавтов на Луну, имела высоту больше ста метров. Поперечник ее у основания 10 метров.

Когда все проверено и заливка топлива закончена, фермы обслуживания, заправочную мачту и кабель-мачту отводят.

И вот старт! По сигналу с командного пункта начинает работать автоматика. Она подает в камеры сгорания топливо. Включает зажигание. Топливо воспламеняется. Двигатели начинают быстро набирать мощность, все сильнее давят снизу на ракету. Когда наконец они набирают полную мощность и приподнимают ракету, опоры откидываются, освобождают ракету, и она с оглушительным ревом, как бы на огненном столбе, уходит в небо.

Управление полетом ракеты производится частично автоматически, частично по радио с Земли. А если ракета несет на себе космический корабль с космонавтами, то управлять могут и они сами.

Для связи с ракетой по всему земному шару размещены радиостанции. Ведь ракета ходит вокруг планеты, и может возникнуть необходимость связаться с ней как раз тогда, когда она будет «на той стороне Земли».

Ракетная техника, несмотря на свою молодость, показывает нам чудеса совершенства. Ракеты летали на Луну и возвращались обратно. Летали за сотни миллионов километров на Венеру и Марс, совершая там мягкие посадки. Пилотируемые космические корабли выполняли в космосе сложнейшие маневры. Сотни самых различных спутников выведены в космос ракетами.

Что будет дальше?

На путях, ведущих в космические дали, много трудностей.

Для путешествия человека, скажем, на Марс нам нужна была бы ракета совершенно невероятных, чудовищных размеров. Больше грандиозных океанских кораблей, весом в десятки тысяч тонн! О постройке такой ракеты нечего и думать.

На первое время, при полетах к ближайшим планетам, может помочь стыковка в космосе. Огромные космические корабли «дальнего плавания» можно строить разборными, из отдельных звеньев. С помощью сравнительно небольших ракет выводить эти звенья на одну и ту же «монтажную» орбиту около Земли и там состыковывать. Так можно в космосе собрать корабль, который будет даже крупнее ракет, по частям поднимавших его в космос. Технически это возможно даже сегодня.

Впрочем, стыковка облегчает завоевание космоса ненамного. Гораздо больше даст освоение новых ракетных двигателей. Тоже реактивных, но менее прожорливых, чем теперешние, жидкостные. Посещение планет нашей Солнечной системы резко двинется вперед после освоения двигателей электрических и атомных. Однако наступит время, когда станут необходимы полеты к другим звездам, в другие солнечные системы И тогда снова потребуется новая техника. Возможно, к тому времени ученые и инженеры сумеют построить фотонные ракеты. «Огненной струей» у них будет невероятно мощный луч света. При ничтожном расходе вещества такие ракеты смогут разгоняться до скоростей в сотни тысяч километров в секунду!

Космическая техника никогда не перестанет развиваться. Человек будет ставить перед собой все новые и новые цели. Для их достижения — придумывать все более совершенные ракеты. А создав их — ставить еще более величественные цели!

Многие из вас, ребята, наверняка, посвятят себя завоеванию космоса. Успехов вам на этом интереснейшем пути!

Загрузка...