Послушайте, что смертным сделал я…
Число им изобрел
И буквы научил соединять…
Эти слова древнегреческий трагик Эсхил (525–456 гг. до н. э.) приписывал Прометею, похитившему с Олимпа огонь и передавшему его людям. Однако не Прометей был "изобретателем" чисел. Здесь автор философской оратории о благородном титане допустил историческую неточность. Правда, Эсхил мог не знать, что родиной первых в мире цифр и систем счисления был Древний Восток (XX–XVIII вв. до н. э.).
Давно уже исчезли древние государства Востока: Египет, Вавилон, Ассирия, города их были разрушены, а развалины занесены пеплом от пожаров и песком. Но многочисленные археологические раскопки позволили обнаружить останки роскошных дворцов, величественных храмов, добыть письменные тексты на камне, глине, папирусе. Ученые расшифровали письменность древневосточных народов и прочли многие найденные документы.
Заглянем и мы с вами, читатель, в глубь веков — в седую древность, полную таинственных загадок и трагических событий.
…Грабителей было пятеро: каменотес Хапиур, плотник Ирамун, крестьянин Аменсмхеб, гребец Ахаун и раб-нубиец Ахаутинефер.
Вот уже несколько ночей тайком собирались они у скал, в Долине царей, вынашивая план ограбления царской гробницы, где покоились сокровища, превосходящие богатством самые алчные мечты. Стража была подкуплена. Правда, в случае удачи немалую долю сокровищ придется отдать самому Паверо, сановнику, которому был доверен надзор за Долиной царей. Зато в руках шайки имелся точный план коридоров и лабиринтов пирамиды. Под покровом темноты грабители начали рыть подземный ход. После долгих месяцев изнурительной работы он был готов. Сквозь узкую нору злоумышленники проникли в погребальную камеру гробницы. При колеблющемся свете факелов они начали беспорядочно обыскивать ее, собирая сокровища…
Этот детективный сюжет имеет под собой документальную основу: найден древнеегипетский папирус с судебным протоколом допроса грабителей царской гробницы (мы привели их подлинные имена) во время царствования Рамсеса IX.
Заметим, что папирус был наиболее распространенным материалом для письма в Древнем Египте. Покрытый длинной надписью лист папируса свертывали в свиток. К сожалению, из многих дошедших до нас папирусов только два носят математический характер. Но и эти — поистине бесценные для исторической науки — документы дают полное представление о том, как записывали цифры и как считали древние египтяне.
Первый из найденных математический папирус был написан писцом Ахмесом почти три тысячелетия назад (около 1 800 лет до н. э.). В середине прошлого века его приобрел английский собиратель А. Ринд, который передал потом находку Британскому музею в Лондоне. Папирус Ринда (названный так по первому владельцу) содержит 85 задач, описание нумерации и техники счета.
Второй папирус, Московский (его считают на два столетия древнее), содержит 25 задач. Он был приобретен в Египте в конце прошлого века русским востоковедом B.C. Голенищевым и расшифрован в 1930 г. советскими академиками Б.А.Тураевым и В.В. Струве. Сейчас папирус хранится в Государственном музее изобразительных искусств им. А.С. Пушкина в Москве.
Египетские цифры совершенно не похожи на современные: они записывались с помощью специальных знаков — иероглифов. Каждый иероглиф, соответствующий цифре, обозначал какой-либо предмет. Цифр было восемь: единица (мерная палка), десять ("путы" для стреножения коров), сто (мерительная веревка, служившая для обмера полей), тысяча (цветок лотоса), десять тысяч (указательный палец), сто тысяч (лягушка), миллион (удивленный человек), десять миллионов (солнце, вся Вселенная).
Если нужно было записать, например, число 23, то египтяне, писавшие не слева направо, как мы, а справа налево, изображали сначала три иероглифа, соответствующие трем единицам, а затем слева приписывали два иероглифа, соответствующие двум десяткам.
Из математических папирусов ученые узнали также, что древние египтяне умели выполнять четыре математических действия и оперировать с десятичными дробями.
Внимательный читатель заметит, что большие числа в иероглифической записи занимают длинный ряд и перемножать их очень неудобно. Как же поступали в таком случае египтяне?
Давайте заглянем в папирус Ринда, где в задаче под номером 32 разъясняется, как перемножить числа 12 и 12. По-видимому, этот папирус служил учебным пособием в древнеегипетской школе писцов. На приведенном рисунке в левом столбце записаны числа, полученные последовательным удвоением первого сомножителя, а в правом столбце — числа, соответствующие степеням двойки. Удвоение заканчивалось тогда, когда оказывалось возможным набрать второй сомножитель из числа правого столбца. Строки, из которых складывается второй сомножитель (в нашем примере третья и четвертая), отмечались косыми черточками, и результат получался сложением расположенных в этих же строках чисел из левого столбца (т. е. сложением чисел 48 и 96 из третьей и четвертой строк).
Казалось бы, примитивный и малоудобный способ умножения древних египтян представляет собой чисто занимательный факт из истории математики и, может быть, не стоило ему уделять особого внимания, если бы не одно удивительное обстоятельство. Этот затерявшийся в сумеречной дали веков способ умножения спустя тысячелетия вновь возродится и будет почти без изменений использован в современных вычислительных машинах!
О том, что уровень математических знаний египтян был сравнительно высок, наглядно свидетельствуют дожившие до нас фантастические и вместе с тем геометрически строгие сооружения- пирамиды. Архитекторы пирамид (сохранилось имя одного из них — легендарного архитектора и математика Имхотепа) должны были владеть сложными геометрическими расчетами. В упомянутом выше папирусе Ринда задача под номером 57 посвящена определению высоты пирамиды, а в Московском математическом папирусе речь идет о вычислении объема усеченной пирамиды.
Египетские пирамиды до сих пор поражают своим величием и поныне окутаны покровом таинственности и фантастики.
В древности их считали первым из семи чудес света. И для этого есть все основания — чтобы доставить, например, материал для строительства самой высокой пирамиды Хеопса, в современном Египте потребовалось бы в 4 раза больше вагонов, чем всего имеется в стране; этого материала было бы достаточно для строительства города со 100-тысячным населением. Гранитные плиты погребальной камеры пирамиды тщательно отполированы и пригнаны друг к другу так, что между ними не просунешь и волоска. По мнению специалистов, спрессованную каменную массу пирамиды не уничтожила бы даже атомная бомба, сброшенная на Хиросиму. А ведь построена пирамида 4000 лет назад!
Прославленные пирамиды в Гизе имеют единое направление осей и поразительно точно сориентированы относительно сторон света: к примеру, у пирамиды царицы Нефертити отклонение оси от Северного полюса не превышает половины градуса, а пирамида царя Ниусерра сориентирована почти с абсолютной точностью. А ведь известно, что в эпоху пирамид египтяне не знали ни компаса, ни подъемных кранов, ни даже железных инструментов!
На множество вопросов, связанных с пирамидами, все еще не найдены ответы. Некоторым любителям таинственности каменные сооружения казались слишком грандиозными, чтобы их могли возвести древние египтяне. Так рождались гипотезы о всемогущих пришельцах из космоса. И хотя исторические факты неопровержимо доказали, что подлинным творцом пирамид является египетский народ, они и сегодня остаются чудом из чудес!
Если вы попросите кого-нибудь назвать второе чудо света, то одни вспомнят висячие сады Семирамиды, а другие почти наверняка назовут Вавилонскую башню. Но Вавилонской башни не было! Возможно, ее помешало построить знаменитое вавилонское столпотворение? А вот висячие сады в древнем Вавилоне существовали.
Царь Навуходоносор II велел соорудить эти сады для любимейшей своих жен — мидийской принцессы, тосковавшей в пыльном и лишенном зелени Вавилоне по свежему воздуху и шелесту деревьев. Сады (приписываемые по недоразумению ассирийской царице Семирамиде) были четырехъярусными. Своды ярусов опирались на колонны высотой 25 м. На каменных плитах ярусов, залитых асфальтом и покрытых листами свинца, чтобы вода не просачивалась на нижний ярус, был насыпан слой плодородного ила, доставляемого бесконечными караванами с низовьев Евфрата, посажены деревья и экзотические цветы. Издали казалось, что сады как бы висят в воздухе.
При воплощении этого замысла был использован весь опыт строителей и математиков Древнего Вавилонского царства. Вавилоняне обладали высокой математической культурой, что позволило им создать сложную шестидесятеричную систему счисления для целых чисел и дробей. Техника их знала водочерпальное колесо и скользящую по веревке систему ведер, приводимую в движение животными. Раскопки на территории Древнего Вавилона за последние десятилетия дали до сотен тысяч клинописных табличек, среди которых тысячи табличек математического содержания.
Любопытно, что вавилоняне пользовались всего двумя цифрами: 1 и 10. Единицу они "записывали", нажимая палочкой с заостренным ребром на глиняную табличку, которую затем просушивали или иногда обжигали. Получался так называемый прямой клин. Цифра 10 изображалась двумя клиньями, соединенными под углом. С помощью этих двух знаков вавилоняне записывали все числа от 1 до 59, выдавливая на табличке столько клиньев, соединенных под углом (или, короче, "углов"), сколько десятков, и столько прямых клиньев, сколько единиц. Так, для того чтобы записать число 59, нужно было выдавить на табличке пять "углов" и затем 9 прямых клиньев. Однако число 60 снова обозначалась тем же знаком, что и 1, т. е. прямым клином. Так же обозначались числа 602, 603, 604 и т. д. Например, число 65 записывалось следующим образом: к знаку 60 приписывали справа знак 5 и, чтобы не читать все это как 1 + 5 = 6, оставляли между этими знаками промежуток. Позднее был введен разделительный знак — штрих — для пустого места между двумя цифрами.
Вавилоняне никогда не запоминали таблицу умножения, так как это было почти невозможно (попробуйте выучить наизусть таблицу умножения от 1 х 1 до 59 х 59). Поэтому они пользовались при вычислениях готовой таблицей умножения, подобно тому как мы теперь применяем, например, таблицу логарифмов.
Загадки древности… Многие из них не разгаданы и поныне.
Как случилось, что в основание вавилонской системы счисления было положено число 60? Если появление десятеричной системы у египтян ученые объясняют наличием у древнего человека на руках десяти пальцев, то по поводу возникновения системы Древнего Вавилона удовлетворительного объяснения не найдено до сих пор. Мнения историков расходятся — ни одна из выдвинутых гипотез не подтверждается историческими фактами. Вместе с тем следы шестидесятеричной системы в какой-то степени сохранились и до наших дней: мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Так же, как и вавилоняне, окружность мы делим на 360 равных частей — градусов, где один градус равен 60 угловым минутам.
Но нам пора к другой загадке цифр! И здесь предстоит совершить огромный скачок: в пространстве — от Ближнего Востока до Центральной Америки и во времени — почти на три тысячелетия вперед.
…В один из августовских дней 1502 г. знаменитый испанский мореплаватель адмирал Христофор Колумб стоял, задумавшись, на палубе корабля, медленно плывущего вдоль побережья Гондураса. Только что был обнаружен неизвестный ранее клочок суши — остров Гуанаха. Но это не радовало адмирала. Он мечтал открыть одну из тех сказочно богатых стран с многолюдными белокаменными городами и цветущими селениями, которые молва в Европе называла "восточными царствами".
Крики на палубе вывели адмирала из задумчивости. С корабля была замечена большая индейская лодка с навесом из пальмовых листьев, в которой сидели индейцы в изящных ярких рубахах, плащах и юбках из хлопчатобумажной ткани. Христофор Колумб необычайно удивился внешнему виду индейцев: до сих пор испанцам встречались лишь полуголые туземцы с вестиндских островов. Владелец лодки, невысокий стройный туземец с независимым смелым взглядом, показывая рукой на северо-запад, разъяснил, что они пришли с земли "Майям", совершают торговый рейс вокруг Юкатанского полуострова и племя их носит название "майя".
Поверни Колумб назад, на север, через несколько дней он оказался бы буквально в двух шагах от своей мечты и открыл бы новую блестящую цивилизацию в самом сердце гиблых тропических джунглей Центральной Америки. Прямо на север, в нескольких десятках километров от острова Гуанаха лежала обширная и богатая страна, населенная индейцами племени майя. Но истории было угодно распорядиться по-иному: Христофор Колумб повернул на юг и стал медленно удаляться от объекта своих мечтаний.
И хотя мечте Христофора Колумба не суждено было исполниться, он стал первым европейцем, увидевшим обитателей этой загадочной страны!
Только в 1525 г. представителю Европы — гордому и жестокому испанскому конкистадору Эрнандо Кортесу, победителю племени ацтеков, губернатору и генерал-капитану Новой Испании (ныне территории Мексики и Гватемалы), удалось с отрядом испанских солдат попасть в город Тайясаль - столицу одного из крупных государств индейцев-майя. Взору испанских завоевателей открылась потрясающая картина. Среди мрачных тропических джунглей с плотной стеной пальм, опутанных лианами, на острове посреди огромного озера возвышались изящные дворцы и храмы, сверкая на солнце белоснежными стенами. Город пересекали дороги-дамбы, всюду стояли многочисленные стелы с барельефами царей, вычурными иероглифическими надписями, ритуальными сценами из жизни индейцев-майя.
Цивилизация майя (I-Х вв. н. э.) — самая загадочная из всех цивилизаций. Возникшая в негостеприимных и труднодоступных джунглях, опоясанная неприступными пиками вулканов, изолированная от остального мира громадными водными пространствами, она имела самый точный солнечный календарь, сложнейшую иероглифическую письменность, поражала совершенством в архитектуре, живописи и изготовлении керамики. Индейцы-майя выполняли сложные хирургические операции на головном мозге.
Высокий уровень древней американской цивилизации способствовал развитию точных наук — астрономии и математики. Путь движения планеты Венеры майя вычисляли с ошибкой лишь на 14 секунд в год. Раньше индусов и арабов они ввели в математике понятие нуля.
Для записи цифр индейцы-майя использовали три специальных знака. Цифр было всего три: 0, 1 и 5. Единица обозначалась точкой, пятерка — горизонтальной чертой, знак для нуля по своей форме напоминал полузакрытый глаз. Запись чисел производилась следующим образом: когда требовалось написать двойку, ставили две точки, тройку — три точки и т. д.; число 6 изображалось в виде горизонтальной черты (пятерки) и точки (единицы) над ней, число 9 — горизонтальной чертой и четырьмя точками над ней, а число 10 — нарисованными одна над другой горизонтальными чертами, т. е. пятерками.
Как и все письмо майя, числа записывались столбцами, причем снизу вверх, следуя от низших разрядов к высшим.
Знаки во втором разряде имели значения в 20 раз больше, чем в первом, следовательно, запись, например, числа 20 имела вид: над знаком нуля располагался знак для единицы. Число 37 содержало запись числа 17 в младшем разряде и числа 1 в старшем, а число 300 — нуль в младшем разряде и 15 в старшем. Обнаруженное наибольшее число, записанное майя, равно 1 841 641 600.
Из примеров ясно, что майя изобрели систему счисления с основанием 20. Основание — это количество цифр, лежащее в основе той или иной системы счисления. Основание 20 выбрано, очевидно, по числу пальцев на руках и ногах человека. Кроме того, в ней явно просматриваются следы и более древней пятиричной системы (счет пятерками, видимо, по числу пальцев на одной руке).
О математических знаниях майя сохранились различные косвенные свидетельства. Считая гражданский год равным 365 дням, майя исправляли разность между ним и астрономическим годом в 365,242 2 дня подобно тому, как делаем это мы, вводя високосный год. Таким образом, год майя был всего на две десятитысячные доли суток короче астрономического года.
Точность поистине поразительная!
Просуществовав почти тысячу лет, цивилизация майя исчезла так же таинственно, как и возникла. Уже в XVI–XVII вв. европейские колонизаторы могли увидеть лишь руины древних городов, надежно укрытые от посторонних глаз плотным покрывалом джунглей.
Удивительна история цифр! Древние греки, судя по всему, были хорошо знакомы с египетскими и вавилонскими цифрами (вспомните хотя бы великие военные походы Александра Македонского), и тем не менее они ввели в обиход свои цифры. Около 500 г. до н. э. в Милете (греческой малоазийской колонии Ионии) цифры стали обозначать буквами, т. е. каждая буква греческого алфавита была одновременно и цифрой. А чтобы отличить цифры от букв, они снабжались штрихом. Такие обозначения получили все числа от 1 до 10, полные десятки и полные сотни. Для обозначения полных тысяч букв алфавита не хватало, поэтому снова использовались его начальные буквы, но теперь перед ними ставилась запятая.
Были ли удобными такие цифры? Для быстрого действия над ними нужно было помнить наизусть не только таблицы умножения, но и таблицы сложения. Правда, такие таблицы имелись и в готовом виде. Некоторые ученые, занимавшиеся историей математики, считали греческое обозначение цифр очень неудачным. Другие же были убеждены, что подобное обозначение имеет определенные преимущества, которые мы в силу привычки не хотим замечать.
Любопытен и такой факт. С греческими цифрами-буквами были, в свою очередь, хорошо знакомы древние римляне. Однако они (история повторяется!) не переняли у греков обозначение цифр, а создали свою систему нумерации. Нам кажется, что у древних народов уважение к опыту чужеземцев прекрасно уживалось с духом первосоздателей. Ну а система нумерации римлян хорошо знакома сегодня каждому школьнику…
…На одной из людных улиц древнего Рима из-за стен здания с изящными скульптурами у входа до прохожих доносились голоса мальчиков, заучивающих таблицу умножения. Их громкое скандирование "бис бина кватуор" (2x2=4) нередко сопровождалось свистом розг и воплями наказуемого. Трудности юных римлян в постижении азов математики станут понятны, если попытаться перемножить, например, числа 444 и 36, записанные римскими цифрами (CDXLIV и XXXVI). Им не по завидуешь!
Происхождение римских цифр не связано с алфавитом, как это имело место у греков. Цифра 1 (единица) первоначально была вертикальной палочкой; цифра X (десять) — перечеркнутой косо вертикальной палочкой (перечеркивание некоторого числа палочек означало когда-то удесятерение числа): цифра V (пять) — половиной косого креста, т. е. знака для десяти. Обозначения С (сто) и М (тысяча) появились позднее и связаны с начальными буквами латинских названий "centum" (100) и "mille" (1 000). Еще позднее возникли промежуточные знаки L (пятьдесят) и D (пятьсот). Считают, что первый из них первоначально был половиной знака С, а второй — половиной более древнего знака для тысячи.
Мы уже упоминали о том, что с числами, записанными по римской системе, трудно производить арифметические вычисления. Сами римляне использовали для этих целей специальную счетную доску — абак (по-древнееврейски "пыль"), покрытую пылью или песком. На доске проводили черточки, разделяющие ее на колонки, и клали камешки — "калькули" (откуда и произошло слово "калькуляция"). Впоследствии появился более совершенный абак с жетонами вместо камешков и рейками, вдоль которых можно было эти жетоны передвигать. Столь удобный инструмент у римлян переняли многие народы. Мы и сейчас иногда пользуемся счетами римского образца.
Римские цифры широко распространились по свету: в XV в. уже почти вся Западная Европа считала на счетной доске и писала числа римскими цифрами. В XVIII в. их можно было встретить во многих школьных учебниках. Да и в нашей книге вам иногда попадаются римские цифры (в обозначении веков, например).
Кто знает, возможно, мы и до настоящего времени пользовались бы римскими цифрами, если бы не появились… арабские.
История их появления уходит далеко в глубь веков и до конца не ясна. Победное же шествие этих цифр по миру поистине впечатляюще.
В 940 г. во французском городе Оверни родился простолюдин по фамилии Герберт. Будучи очень способным, он получает духовное образование и вскоре достигает высших церковных должностей, а в 59 лет становится папой римским — Сильвестром II. Несмотря на такой высокий церковный сан, Герберт был не чужд светских интересов, увлекался наукой (математикой), любил путешествовать. Во время одного из своих путешествий в Испанию он познакомился с непривычными для европейцев цифрами. Их называли цифрами гобар. Герберта настолько поразили простота и удобство вычислений с помощью гобар, что он изобрел новый тип счетной доски, где на жетонах были изображены новые цифры. До конца дней, а умер он в 1003 г., Герберт через своих многочисленных учеников и последователей, а также, используя свое влияние как папы римского, настойчиво пропагандировал употребление новой счетной доски и новых цифр. В 980–982 гг. он даже написал книгу, которая позднее (в XII в.) была переведена на латинский язык.
Вы, наверно, уже догадались, что речь идет о цифрах, которые мы сегодня называем арабскими. Дело в том, что еще в VIII в. Испания была захвачена западными арабами: они-то и ввели в употребление цифры гобар. Откуда произошло само название "гобар", остается до сих пор неясным. Иногда его связывают с арабским словом ghubar (пыль) и называют эти цифры "пылевыми".
Однако некоторые западные ученые, изучавшие историю математики (например, голландец Ван дер Варден), выдвинули оригинальную гипотезу, согласно которой арабские цифры изобрели… не арабы. Еще в 662 г. сирийский епископ Северус Себокхт, глава Ученой академии на Евфрате, упоминал об "искусном методе индийского счисления при помощи 9 знаков, для восхваления которого нельзя найти слов". С индийскими цифрами был знаком и известный среднеазиатский математик Мухаммед бен Муса аль-Хорезми (т. е. Мухаммед, сын Мусы из Хорезма), живший во второй половине VIII — первой половине IX вв. Аль-Хорезми написал книгу об индийском счете "Арифметика в индийской нумерации". Западные арабы, владевшие большей частью прежнего культурного мира, собирали культурное наследие всех покоренных ими стран, переводили на арабский язык труды ученых Европы и Азии. Были они знакомы и с индийскими цифрами, главным образом через труды среднеазиатских ученых, и в том числе аль-Хорезми. Читателю, вероятно, известно, что от имени аль-Хорезми произошло слово "алгоритм" (от латинского algorithmi).
В Европе первыми оценили преимущество арабских (или индийских?) цифр итальянские купцы. В 1202 г. итальянский купец из Пизы Леонардо, по прозвищу Фибоначчи, впоследствии известный итальянский математик Леонардо Пизанский, составил огромный трактат, излагающий индо-арабскую арифметику, в преимуществе которой он убедился во время коммерческих поездок в арабские страны. Вскоре почти все крупные торговые дома Италии стали употреблять арабские цифры в счетоводстве.
Однако в 1299 г. власти города Флоренция ввели указ, запрещающий их употреблять, объясняя это тем, что арабские цифры легко подделать: из 0 просто сделать 6 или 9. (Как будто этого нельзя сделать и с римскими цифрами.) Изворотливые купцы нашли выход из положения: бухгалтерские книги велись с использованием римских цифр, а черновые расчеты — арабских цифр. Поистине изобретательность деловых людей не знает границ.
Еще не раз власти пытались наложить запрет на арабские цифры. Так было, например, и в 1494 г., когда бургомистр города Франкфурт призывал конторщиков отказаться от их применения. Однако победа арабским цифрам была уже обеспечена: появляются многочисленные учебники и руководства по новой арифметике; торговые города заводят своих учителей, которые обучают работников торговых предприятии индо-арабской арифметике.
В русских городах в начале XVIII в. появились так называемые "цифирные" школы, где обучали арабскому счету. В 1703 г. талантливый педагог первой в России математико-навигационной школы Л.Ф. Магницкий издал свой знаменитый учебник "Арифметика", где использовались арабские цифры.
Арабские цифры не сразу приняли современный вид. Их эволюция начинается с индийских цифр брахми. Цифры 1, 2 и 3 получались из горизонтальных черточек брахми вследствие скорописной их записи. Вообще, форма цифр стабилизировалась только в XV в. в связи с появлением книгопечатания.
К концу XVIII в. арабская система нумерации победила повсеместно. И сейчас значение десяти цифр — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 — понимают все народы в мире.
Сколько лет мне? Двенадцать часов!
Сколько лет мне? Десятки веков!
А. аль-Хамиси
Почему вот уже на протяжении нескольких веков на всем земном шаре пользуются десятью арабскими цифрами, хотя не во все времена и не везде люди имели дело с арабской арифметикой? Прежде чем ответить на этот вопрос, познакомимся с одним замечательным свойством нашей системы счисления — позиционностью.
Изобразим какое-нибудь число, например 777. В нем один и тот же знак "7" участвует 3 раза, но когда он стоит справа, то означает семь единиц, когда в центре — семь десятков, когда слева — семь сотен. Таким образом, при записи числа цифра может иметь начертание одно и то же, а числовые значения — разные, в зависимости от места, позиции, на которой она стоит.
Такой принцип представления чисел называется поместным, или позиционным. Для записи любых сколь угодно больших чисел достаточно десяти цифр!
Каждая позиция, или разряд, числа имеет определенный "вес" (единицы, десятки, сотни и т. д.), поэтому число 777 можно расписать как
777 = 7∙102+ 7∙10 + 7,
т. е. как семь сотен плюс семь десятков и плюс семь единиц, а число, скажем, 4608 — следующим образом:
4608 = 4∙103 + 6∙102 + 0∙10 + 8,
т. е. как четыре тысячи плюс шесть сотен плюс нуль десятков и плюс восемь единиц.
Если призвать на помощь алгебру и вместо чисел записать буквы, то можно получить такую общую форму представления числа:
М = аn∙10n + аn-1∙10n-1 + а1∙10 + a0
или сокращенную — через коэффициенты, если опускать степени числа 10:
М = (аnаn-1…а1a0)
"Мы все учились понемногу", поэтому должны, конечно же, знать, что число 10 является основанием системы счисления. Коэффициенты а0 (число единиц), a1 (число единиц второго разряда, т. е. десятков), а2 (число единиц третьего разряда, т. е. сотен) и т. д. могут принимать значения, не превышающие основания системы: от 0 до 9. Эти коэффициенты можно получить формальным нулем как остатки от последовательного деления числа М на основание системы, т. е. на 10:
Цифры, полученные в остатке и последнем результате деления (они выделены синим цветом), и дают искомое изображение числа в десятичной позиционной системе счисления. Такая формальная процедура, лишенная, вообще говоря, смысла для десятичной системы, незаменима, как мы увидим, для систем с другими основаниями.
Примером непозиционной системы счисления является римская нумерация. Так, в числе II единица в левой позиции имеет "вес", равный 1, а такая же единица в числе IX — "вес", равный минус 1. В числе XXXV (35) цифра X во всех позициях означает одно и то же — 10 единиц.
Основное преимущество позиционных систем счисления — удобство записи чисел и выполнения арифметических операций. Об этом мы узнаём с первого класса школы: сложение и умножение — "столбиком", деление — "углом" (для сравнения попробуйте перемножить римские числа…). По-видимому, в этом и заключена одна из основных причин того, что наша система счисления, будучи позиционной, завоевала столь прочные позиции.
Однако наблюдательный читатель может возразить: ведь две из древних систем счисления — двадцатеричная индейцев-майя и шестидесятеричная древних вавилонян — являются практически совершенными позиционными системами.
Вы правы, читатель. У вавилонян и индейцев-майя существовал позиционный принцип записи чисел. Напомним, что в арифметике майя одно и то же число, записанное в первом и во втором разрядах, отличалось одно от другого в 20 раз (т. е. в число раз, равное основанию системы); у вавилонян же прямой "клин" мог означать и 1, и числа, кратные 60, а одинаковые числа, помещенные в разные разряды, отличались в 60, 602,603 и т. п. число раз.
Более того, в 1665 г. французский математик Б. Паскаль показал, что за основание системы счисления можно принять любое число, а это значит, что каждое число можно представлять в виде комбинации степеней не числа 10, а какого-либо другого целого числа. Выберем, например, число 7:
М = аn∙7n + аn-1∙7n-1 + а1∙7 + a0
Ясно, что значения коэффициентов а0а1….,an должны теперь быть не больше нового основания, т. е. 7: они могут принимать значения от 0 до 6.
Представим число 777 в семеричной системе, используя принцип последовательного деления его на основание этой системы:
В результате число 77710 — так оно записано в десятичной системе — можно разложить по степеням основания 7:
(777)10 = 2∙73 + 1∙72 + 6∙7 + 0.
Если опустить степени числа 7, как мы делаем при записи чисел в десятичной системе, то получим семеричную запись этого числа: (2 160)7. Здесь цифра 7 в индексе указывает основание системы.
Действуя аналогичным образом, убедимся, что основание привычной для нас десятичной системы — теперь нам придется писать 1010 — будет изображаться в новой для нас семеричной системе как (13)7. Число (147)10 будет в этой системе "круглым" и равным (300)7. Точно так же (343)10 = (1 000)7,т. е. и это число "круглое". Само основание семеричной системы (7)10 запишется символом (10)7.
Возможно, если бы у человека на руках было не десять, а семь пальцев, то мы бы считали сейчас не десятками, а семерками, и более привычной нам казалась бы семеричная система счисления, в которой сложение выполняется знакомым нам "столбиком" (с переносом единицы в старший разряд, если сумма больше 6), а таблица умножения — даже проще, чем наша.
— Но ведь тогда, — воскликнет все тот же дотошный читатель, — естественно предположить, что до того, как человек пришел к десятичному счислению, он пользовался при счете пальцами одной руки, значит, могло возникнуть и распространиться пятиричное счисление. Догадка не лишена оснований.
В пятиричной позиционной системе всего пять цифр: 0, 1, 2, 3, 4. В ней число 777 будет представляться количеством "пятерок", "двадцатипяток" и т. д.:
(777)10 = 1∙54 + 1∙53 + 1∙52 + 0∙5 + 2 = (11 102)5.
Когда-то пятиричным счислением пользовались (т. е. считали "пятерками") многие народы. Следы этой системы сохранились в римской нумерации: в ней кроме знаков для единицы, десяти, ста, тысячи есть специальные знаки для пяти (V), пятидесяти (L) и пятисот (D).
Еще один след счета "пятерками" можно найти в записи чисел у индейцев племени ацтеков, населявших в XI–XVI вв. территорию Мексики. Единицу они обозначали точкой, двойку — двумя точками и т. д. до пяти. В запись числа 6 входила вертикальная черта, отделявшая пять первых точек от шестой. Ясно, что здесь счет велся группами по пять предметов. Черта отделяла одну такую группу от другой, причем сама черта никакого числа не обозначала.
Вот как описывает счет "пятерками" у жителей Новой Гвинеи известный русский путешественник Н.Н. Миклухо-Маклай:
"Папуас загибает один за другим пальцы руки, причем издает определенный звук, например бе, бе, бе…. Досчитав до пяти, он говорит ибон-бе (рука). Затем он загибает пальцы другой руки, снова повторяет бе, бе…, пока не доходит до ибон-али (две руки). Затем он идет дальше, приговаривая бе, бе…, пока не доходит до самба-бе и самба-али (одна нога, две ноги). Если нужно считать дальше, папуас пользуется пальцами рук и ног кого-нибудь другого".
Если же теперь наш настойчивый читатель сумеет пересчитать большим пальцем левой руки суставы оставшихся четырех пальцев, то, несомненно, заподозрит существование когда-то на заре человечества и двенадцатеричной системы счисления. Он и тут не ошибется! Так, короадосы Бразилии считают по числу суставов на каждом пальце левой руки (без большого) до 12, затем каждый палец правой руки (включая большой) означает 12. Двенадцатеричная система встречается у некоторых племен Центральной Америки.
Еще не так давно был распространен счет по дюжинам (т. е. число 12), дюжинам дюжин — "гроссам", дюжинам гроссов — "массам" для белья, посуды, писчебумажных товаров. Дома у нас сервизы содержат по 12 чашек, 12 блюдец, 12 тарелок.
О широком распространении двенадцатеричной системы свидетельствуют такие факты: мы до сих пор делим год на 12 месяцев; у англичан в системе мер 1 фут равен 12 дюймам, а в денежной системе 1 шиллинг равен 12 пенсам. Число 12 часто встречается также в сказках и легендах (12-главый змей, 12 братьев-разбойников), что говорит о древнем происхождении этой системы счисления.
Посмотрим, как будет представлено в ней число 777. Поскольку в системе должно быть двенадцать цифр, а мы знаем только десять, то придется ввести еще две цифры, обозначив 10, скажем, буквой А, а 11 — буквой Б. Осуществив последовательное деление нашего числа на основание 12, получим
(777)10 = 5∙122 + 4∙12 + 9 = (549)12
Число (35)10 =2∙12 + 11 запишется как (2Б)12, а число (134)10 = 11∙12 + 2 - как (Б2)12, т. е. оно станет двузначным.
Как видите, можно придумать много различных позиционных систем счисления, отличающихся только основаниями. И вес они, вообще говоря, равнозначны: ни одна из них не имеет явных преимуществ перед другой! Так почему же все-таки мы пользуемся именно десятичной системой счисления?
Вряд ли можно дать на этот вопрос исчерпывающий ответ. Одну из причин мы указали - 10 пальцев на руках человека. Возможно, системы с низким основанием (например, пятеричная) оказались менее пригодными, чем десятичная, потому что в них даже сравнительно небольшие числа выражались довольно громоздко. Или, может быть, использование системы с высоким основанием, таких как двадцатеричная или шестидесятеричная, не оправдалось на практике, поскольку требовалось запоминать большое число особых слов - названий низших числительных. Вероятно, поэтому в процессе естественного отбора в подавляющем большинстве случаев выжила система счисления с основанием "средней" величины, т. е. десятичная.
Число 2 - это самое меньшее из чисел, которое можно взять за основание системы счисления. Поэтому в двоичной системе счисления всего две цифры: 0 и 1. С их помощью можно "сосчитать" любые числа. Ведь мы уже убедились в том, что системы счисления с любым основанием равноправны.
Число в двоичной системе запишется так:
M = an∙2n + an-1∙2n-1 + ... + a1∙2 + a0
Если в десятичной системе "вес" каждой позиции (или разряда) числа равен 10 в некоторой степени, то в двоичной системе вместо числа 10 используется число 2. "Веса" первых 13 позиций (разрядов) двоичного числа имеют следующие значения:
Попробуем записать уже привычное нам число (777)10 в двоичной системе счисления. Мы сможем легко сделать это, вспомнив принцип последовательного деления числа на основание системы, в данном случае числа 777 на число 2:
Представляя наше число в виде разложения по степеням двойки и отбрасывая потом при записи сами степени, получаем его запись в двоичной системе:
(777)10 = 1∙29 + 1∙28 + 0∙27 + 0∙26 + 0∙25 + 0∙24 + 1∙23 + 0∙22 + 0∙2 + 1 = (1100001001)2
Итак, в двоичной системе счисления вместо числа 777 приходится писать число 1100001001.
Другой пример: десятичное число (45)10 имеет двоичную запись (101101)2.
При записи числа в десятичной системе каждая позиция занята десятичной цифрой. Аналогично при записи числа в двоичной системе каждая позиция занята двоичной цифрой. В научном мире вместо двух слов "двоичная цифра" употребляют одно слово: "бит". Оно произошло от английского bit, составленного из начальных и конечной букв словосочетания binary digit, что в переводе означает "двоичная цифра". Мы можем сказать, что двоичная запись числа (45)10 содержит шесть бит, а числа (777)10 - десять бит.
С помощью одного бита можно записать только числа 0 и 1, двух бит - числа от 0 до 3, трех бит - числа от 0 до 7, четырех бит — числа от 0 до 115 и т.д.
Чтобы записать числа от 0 до 1000, пот ребуется десять бит. В двоичной системе счисления даже сравнительно небольшое число занимает много позиций.
А как "разгадать", какое десятичное число скрывается под его записью в двоичной системе? Правило простое: под каждым разрядом двоичного числа следует записать его "вес". Те "веса", которые соответствуют единичным разрядам, нужно сложить. Полученная сумма и есть "разгадка". Вот перед нами "загадочное" число 1001011, записанное в двоичной нумерации. Поступаем согласно сказанному выше:
Как видим, заинтересовавшее нас число складывается из единицы, двойки, восьмерки и шестидесяти четырех (1 + 2 + 8 + 64). Очевидно, оно равно 75. Попробуйте самостоятельно определить, какому числу соответствует его двоичная запись 10110011.
Вот и состоялось наше первое знакомство с двоичной системой счисления, начавшей свое победное шествие со второй половины XX в. Но не нужно связывать появление на сцене двоичной арифметики с изобретением электронных вычислительных машин. Использование ее в ЭВМ - только одно из новейших применений двоичной системы. Дело в том, что двоичная система счисления стара, как мир!
Так, в начале прошлого века у вымирающего охотничьего индейского племени абипонов в Аргентине путешественники обнаружили числительные только для 1 - "инитара" и 2 - "иньоака". Число 3 они выражали как "иньоака-инитара".
Австралийские племена, обитавшие в бухте Купера, также имели две цифры и пользовались двоичным счетом: 1 - "гуна", 2 - "баркула", 3 - "баркула-гуна", 4 - "баркула-баркула"...
Не правда ли, это очень напоминает современное двоичное представление чисел. Если слово "гуна" заменить словом "нуль", а слово "баркула" словом "один", то получим современную двоичную последовательность: "нуль" (0), "один" (1), "один-нуль" (10), "один-один" (II).
Еще один пример. У туземцев островов, расположенных в Торресовом проливе (отделяющем Новую Гвинею от Австралии), тоже было всего две цифры - это "урапун" (1) и "окоза" (2). Островитяне считали так: "окоза-урапун" (3), "окоза-окоза" (4), "окоза-окоза-урапун" (5), "окоза-окоза-окоза" (6). И здесь замена слов "урапун" и "окоза" словами "нуль" и "один" позволяет разглядеть своеобразную цепочку двоичных чисел: "нуль" (0), "один" (1), "один-нуль" (10), "один-один" (11), "один-один-нуль" (110), "один-один-один" (111).
Двоичная система счисления существовала в Китае. Говорят, ее изобрел император Фо Ги, который жил в четвертом тысячелетии до нашей эры. Найдена надпись (ее называют табличкой Фо Ги), в которой числа от 0 до 7 обозначались с помощью черточек и пар точек. Черточка означает "1", пара точек - "0".
Миссионеры, посещавшие Китай, познакомили с табличкой императора Фо Ги выдающегося немецкого математика Г.Ф. Лейбница (1646 -1716).
Удивительна судьба этого человека. Сын профессора Лейпцигского университета. В 12 лет изучил латинский язык, увлекся древнегреческим. В 18 лет окончил университет, в котором преподавал его отец. Дипломат, историограф, надворный советник, член Лондонского королевского общества. Почти все время работал при дворах немецких государей, князей и герцогов. Основал в 1700 г. Берлинскую академию наук и стал ее первым президентом. Оказал влияние на развитие наук в России и организацию Петербургской академии. Пожалован Петром I в тайные советники.
Блестящая жизнь и нищая смерть. Старый и больной Лейбниц умирал, забытый всеми. Смерть его не была замечена ни в Берлинской академии наук, ни в Лондонском королевском обществе. Он был похоронен как нищий, а не как гений Германии.
Заслуги Г.Ф. Лейбница перед наукой поистине грандиозны. Его удивительный ум породил большое количество плодотворных идей почти во всех областях человеческих знаний. В физике Лейбниц сформулировал основной закон сохранения кинетической энергии, в математике открыл основные принципы дифференциального и интегрального исчислений. Именно Лейбниц положил начало новой науке - алгебре логики, которая приобрела исключительное значение для создания компьютеров. Он даже сумел построить механическую счетную машину, которая могла складывать, вычитать, умножать целые числа.
Возможно, стремление воплотить в жизнь свои мысли о правилах логики, о механизации и автоматизации мыслительных процессов, о значении игр в теории познания, т. е. о том, что мы сейчас объединяем одним словом "кибернетика", и привело Лейбница к созданию двоичной арифметики. Натолкнуть его на эту идею могла и табличка китайского императора Фо Ги.
Сохранился рисунок Лейбница. Посмотрите, как на нем изображены числа от 0 до 17: правые числа в обеих колонках записаны в десятичной системе, левые - в двоичной. Перед числами 2, 4, 8, 16 поставлены звездочки: так отмечены "веса" двоичных разрядов. Вверху рисунка расположена латинская надпись: "1,2,3,4, 5 и т.д. Для получения всех чисел из нуля достаточно единицы". Внизу рисунка - надпись: "Картина создания. Г(отфрид) Г(ильом) Л(ейбниц). MDC XCVN" (1697 г.).
Кто из нас не зачитывался в юности романом известной писательницы Этель Лилиан Войнич "Овод". Но на сей раз нас будет интересовать не романтический герой произведения, а отец писательницы - замечательный английский математик прошлого века Джордж Буль (1815-1864). В 1854 г. в Лондоне было напечатано его основополагающее сочинение "Исследование законов мысли", которое в основном завершило создание алгебры логики. По имени Буля алгебру логики часто называют булевой.
Двоичная арифметика является частным случаем булевой алгебры. Правила действия над числами, записанными в двоичной системе, выглядят весьма просто. Сложение чисел осуществляется но правилу
0 + 0 = 0, 0 + 1 = 1, 1 + 1 =(10) 2
а вся таблица умножения сводится к четырем простейшим произведениям:
0 x 0 = 0, 1 x 0 = 0, 0 x 1 = 0, 1 x 1 = 1.
Не зря древние египтяне почти 4000 лет назад применяли двоичное умножение для своих громоздких иероглифических чисел!
Давайте воспроизведем снова задачу на умножение чисел 12x12 из математического папируса Ринда, записывая теперь уже числа не иероглифами, а в двоичной системе счисления. Число 12 имеет двоичную запись 1100. Напомним, что египтяне удваивали первый сомножитель (число 12) до тех пор, пока из комбинации степеней двойки не получался второй сомножитель (в нашем случае тоже число 12). Результат умножения они вычисляли путем суммирования определенных строк с записями удваиваемого сомножителя.
Занесем в таблицу результаты многократного удвоения числа 12 и соответствующие им степени двойки. А чтобы можно было легко разобраться с двоичными числами, приведем "веса" всех используемых разрядов:
В правом столбце второй сомножитель получается при суммировании двух последних строк (это видно из анализа "весов" единичных разрядов, входящих в сумму). Значит, результат следует получить, суммируя (с учетом переноса единицы в старшие разряды) две последние строки левого столбца. "Веса" единичных разрядов этой суммы показывают, что произведение чисел равно 144.
И снова неожиданность, да еще какая: мы выполнили умножение, ничего не умножая, а только суммируя! Так поступают и современные компьютеры: они анализируют "веса" единичных разрядов одного из сомножителей и "узнают", какие строки, полученные последовательным удвоением другого сомножителя, нужно складывать. Заметим, что операция удвоения числа в вычислительной машине самая простая из всех операций: она заключается, как видно из таблицы, в сдвиге записи двоичного числа влево на одну позицию.
Итак, у десятичных цифр появился серьезный конкурент - двоичные цифры 0 и 1, которыми "предпочитают пользоваться" компьютеры. Да и не только они!
Еще 15 лет назад на Международной выставке роботов в Японии посетители могли увидеть изящного робота-музы канта, напоминающего средневекового рыцаря, закованного в латы, который с помощью электронного глаза читал ноты и переворачивал рукой нотные страницы. Его пальцы могли нажимать на клавиши электронного органа до 50 раз в секунду. Он мог исполнять любое произведение - от Баха до музыки битлзов.
"Начинку" робота составляли главный компьютер и 50 управляемых им микрокомпьютеров, ведающих всеми суставами и пальцами. Но ведь любой компьютер - и микроминиатюрный, занимающий всего один кристалл, и гигантский, размещаемый в большом зале, - оперирует только с двоичными цифрами. Значит, и интеллектуальные роботы (а среди них и шахматисты, и штангисты, и няньки для детей, и даже актеры) "предпочитают" пользоваться двоичными цифрами.
Но, что самое удивительное, робот-музыкант, "зная" только цифры 0 и 1, способен читать нотную запись, понимать человеческую речь и отвечать осмысленными фразами. Как все это происходит? Какими "магическими" свойствами обладают цифры 0 и 1, позволяющие выразить и нотную запись, и человеческую речь, и звуки бессмертной музыки? Об этом и пойдет речь в следующих главах.
Варкалось. Хливкие шорьки
Пырялись по наве.
И хрюкотали зелюки.
Как мюмзики в мове.
Л. Kэролл
Это строки стихотворения "Бармаглот" из знакомой всем веселой детской книжки "Алиса в Зазеркалье". Если предложить разным людям "распознать", какую конкретную информацию несут в себе эти строки, то вариантов будет столько, сколько и людей, пытающихся их расшифровать. В них не заложено никакого смысла! Это знаменитые "Джабберуокки" (что-то вроде бессмыслицы) — математика и логика Льюиса Кэрролла.
А вот такая фраза:
аеефикцыге рмчии,
на первый взгляд кажется еще более бессмысленной, чем "Джабберуокки". Однако она как раз содержит в себе вполне определенную информацию. В этой записи мы зашифровали название первой части нашей книги "Магические цифры" путем перестановки в нем букв.
Правило перестановки может быть, конечно, любым. Однако, чтобы прочесть исходный текст, нужно сделать правило легко запоминаемым. Мы осуществили перестановку следующим образом. Сначала записали шифруемый текст в квадратную таблицу под ключевым словом "шифр":
Затем пронумеровали столбцы в соответствии с очередностью появления букв слова "шифр" в алфавите (например, буква "и" идет по алфавиту раньше буквы "р" и остальных букв слова "шифр", поэтому второму столбцу присвоен номер 1, четвертому — номер 2 и т. д.). И наконец, переписали буквы всех столбцов в соответствии с присвоенными номерами,т. е. сначала буквы столбца под номером 1, затем под номером 2 и т. д. Читатели из интереса могут придумать какой-нибудь другой способ шифровки.
Способы буквенного шифрования текстов (или еще говорят "кодирования") известны очень давно. Так, знаменитый в истории римский диктатор Гай Юлий Цезарь для тайной переписки со своими сторонниками среди римских политиков применял такой способ кодирования: сдвигал весь алфавит на определенное число букв влево или вправо. Если каждую букву текста "Магические цифры" заменить предшествующей буквой алфавита (при этом букве "а" предшествует буква "я"), то получится фраза
лявзцдризд хзупъ,
зашифрованная кодом Цезаря.
Однако чаще всего буквенные тексты шифруют с помощью цифр, т. е. цифровым кодом, что, возможно, связано со стремлением сделать сообщение недоступным для тех, кому оно не предназначено. Вот пример цифрового кодирования текста.
Попробуйте расшифровать следующую запись:
301 033 020 016 052 402 163 502 230 403.
Вы, наверное, уже догадались, что приведенным набором цифр представлена все та же фраза "Магические цифры". Цифровой ее код получен так. Буквы русского алфавита были расположены в прямоугольной таблице 4x8 произвольным образом:
Затем каждая буква была заменена двумя цифрами: соответствующими номерами строки и столбца. Группирование же цифр по три в шифрованной записи было сделано лишь для того, чтобы сбить с толку дешифровальщика, т. е. вас, читатель.
На первый раз, думаем, это удалось.
В приведенном примере алфавит из 32 символов (букв) был заменен алфавитом из десяти символов (цифр). Такое положение справедливо и в общем случае: любой алфавит, состоящий из конечного числа каких-либо символов, можно заменить алфавитом из других символов, причем новых символов может быть существенно меньше.
По-видимому, одним из первых, кто понял это, был Фрэнсис Бэкон — лорд-канцлер Англии, барон Веруламский и виконт Сент-Обланский.
Ф. Бэкон являлся не только высшим должностным лицом в английском государстве XVII в. Потомкам он больше известен как родоначальник английского материализма, оказавший огромное влияние на развитие науки и философии. Его перу принадлежат бессмертные страницы философских трудов "Новый органон" и "О принципах и началах", в которых звучит гимн всепобеждающей мощи разума, но одновременно описываются "враги" разума — "идолы" (или "призраки рода", "пещеры", "рынка", "театра"), приводящие его к заблуждению.
Но вернемся к проблеме шифрования. Так вот, лорд и философ Ф. Бэкон был первым, кто понял, что для кодирования любых текстов достаточно… двух символов. Все гениальное просто, нужно только догадаться. Бэкон занимался проблемами криптографии (тайнописи) и использовал в своих шифрах двоичный код. В коде Ф. Бэкона каждая буква заменялась кодовым словом, составленным комбинацией из пяти символов 0 и L: например, буква "р" заменялась словом 0L0L0, буква "т" — словом LL00L. Этот код уместно называть 5-разрядным двоичным кодом, а комбинацию символов 0 и L типа LL00L — 5-разрядным кодовым словом.
Нам неизвестна таблица кодов Бэкона, но мы можем сами, раз принцип известен, придумать какой-либо двоичный код.
Давайте в последней таблице, с помощью которой кодировали фразу "Магические цифры" (см. с. 31), десятичные номера строк и столбцов запишем в двоичной системе счисления:
Будем, как и раньше, заменять буквы номерами строк и столбцов, на пересечении которых они стоят, но номерами, представленными двоичными числами. Тогда буквенный текст "Магические цифры" в 5-разрядном двоичном коде примет следующий вид:
Еще раз обращаем ваше внимание на то, что буквы в таблице размещены произвольно, порядок нумерации строк и столбцов также может быть каким угодно. Поэтому можно придумать множество кодов, отображающих буквы выбранного алфавита 5-разрядной комбинацией цифр 0 и 1. Такую комбинацию будем называть, как и в коде Бэкона, двоичным кодовым словом. К примеру, букве "м" соответствует двоичное кодовое слово 11000.
Важно другое. Если двоичное кодовое слово состоит из пяти разрядов (т. е. содержит пять бит), то всевозможных комбинаций цифр 0 и 1 в таком слове будет 25 = 32. Значит, 5-разрядными двоичными словами можно закодировать алфавит, число букв (или других знаков) которого не превышает 32. Если же исходный алфавит содержит большее число знаков, двоичные слова должны содержать большее число разрядов (бит). Так, словами из шести бит удается заменить 26 = 64 буквы и знака; словами, содержащими семь бит, — 2 7 = 128 букв и знаков; словами из восьми бит — 28 = 256 букв и знаков и т. д.
В десятом томе "Всеобщей истории" древнегреческого историка Полибия (ок. 201–120 гг. до н. э.) описан способ передачи сообщений на расстояние с помощью факелов (факельный телеграф[1]), изобретенный александрийскими учеными Клеоксеном и Демоклитом. Попробуем, не вникая в суть описанного Полибием изобретения, сами построить факельную систему передачи сообщений.
Имеющиеся в нашем распоряжении световые сигналы не отличаются разнообразием: горящий факел может быть поднят для передачи сообщения вверх или опущен вниз и спрятан за укрытие. Таким образом, налицо всего два состояния — 1, когда горящий факел поднят для передачи сообщения, и 0, когда он опущен. В греческом алфавите 24 буквы. Чтобы представить эти буквы двоичным кодом, потребуется пять разрядов (бит), так как 24 = 16, а 25 =32. А это значит, что для технической реализации системы передачи сообщений нам понадобятся пять факелов. Составим кодовую таблицу:
Чтобы яснее различать, когда факелы подняты, а когда убраны, спроектируем стену с зубцами, между которыми имеется пять промежутков (проемов). В промежутки будут вставляться горящие факелы в соответствии с двоичным кодом.
Допустим, нам надо передать слово ОМЕГА (так называется буква Q греческого алфавита). Каждой последовательно "зажигаемой" букве будет соответствовать определенная 5-разрядная двоичная комбинация:
Это означает, что при передаче буквы О горящие факелы должны быть выставлены в первом и четвертом промежутках стены, буквы М — во втором, третьем и пятом промежутках и, наконец, буквы Е — только в третьем, а буквы Г — только в четвергом промежутках. При передаче же буквы А ни один из факелов не должен выставляться.
Для четкой работы факельного телеграфа необходимо придумать специальные сигналы, извещающие о начале и конце передачи (например, помахать факелом).
Теперь обратимся к трудам историка Полибия и посмотрим, как спроектировали факельную систему передачи сообщений Клеоксен и Демоклит. Древнегреческие ученые положили в основу своей системы иной код. Все буквы алфавита они поместили в таблицу 5х5, а номера строк и столбцов закодировали следующими двумя одинаковыми 5-разрядными двоичными кодами:
Передача каждой буквы у Клеоксена и Демоклита осуществлялась двумя 5-разрядными двоичными словами. Например, код слова ОМЕГА имел бы в этой системе вид:
Почему александрийцы выбрали именно такой код? Ведь для технической реализации этой системы кодирования приходилось строить две (а не одну, как у нас) стены с зубцами. Да только потому, что количество факелов на одной из стен сразу же указывало номер строки, а количество факелов на другой стене — номер столбца таблицы, на пересечении которых стояла буква. Факельный телеграф, изобретенный александрийскими учеными Клеоксеном и Демоклитом и описанный греческим историком Полибием, использовался без существенных изменений на протяжении многих веков. В Римской империи факельный телеграф применяли для передачи сообщений по цепочке сигнальных стен.
Итак, есть два проекта факельного телеграфа. Их различие обусловлено выбором разных систем кодирования сообщений.
Чей же проект лучше: наш или Клеоксена и Демоклита?
Сравнение показывает, что, во-первых, наш проект проще (сейчас бы сказали: имеет меньшую сложность), так как вместо двух стен нужно строить только одну, а вместо десяти — только пять. Во-вторых, наш проект дешевле (по современному — имеет лучшие экономические показатели: меньшие капитальные затраты на сооружение стен, меньшие эксплуатационные расходы на замену сгоревших факелов, т. е. имеет, вообще говоря, меньшую стоимость).
Еще один показатель качества работы системы связи — время, или скорость, передачи сообщения. В нашем проекте передача и прием факельных сигналов производятся быстрее, так как факелов всего пять, однако у александрийских инженеров быстрее осуществляется декодирование принятых сообщений (оно проще). Так что, вероятно, время передачи сообщения (вместе с кодированием и декодированием) будет в обоих проектах примерно одинаковым.
Так что же, наш проект лучше? Не будем спешить с выводами. Иногда один недостаток может свести на нет десятки преимуществ. Дело в том, что при приеме кодированного сообщения может произойти ошибка и тот или иной символ будет распознан неверно. Ошибка при приеме сообщения может произойти как из-за наличия помех при передаче (плохой видимости вследствие дождя, тумана; посторонних факельных огней, сбивающих с толку наблюдателей за стенами), так и из-за искажений в аппаратуре на приемной стороне (оптических дефектов в зрительном приборе, с помощью которого наблюдают за факелами; и наконец, плохого зрения у наблюдателей). Таким образом, речь идет о способности системы противостоять действию помех, т. е. о помехоустойчивости системы передачи сообщений.
Если сообщением является слово ОМЕГА, то по каналу связи нашего факельного телеграфа передается код:
При наличии указанных выше помех и искажений наблюдатель на приемной станции может не различить, например, в каком проеме передающей стены (третьем или четвертом) выставлен факел при передаче букв Е и Г. Точно так же возможны и другие ошибки.
В факельном же телеграфе Клеоксена и Демоклита не нужно разглядывать, в каком проеме стены выставлен факел: достаточно просто подсчитать количество горящих над стеной факелов. Такой способ приема сообщений более надежный, и поэтому появление ошибки в их системе менее вероятно. Говоря современным языком, помехоустойчивость факельной системы передачи сообщений, разработанной древними специалистами, выше, чем у системы передачи, разработанной нами, современными специалистами. Но за повышение помехоустойчивости Клеоксену и Демоклиту пришлось "платить" высокую цену: возросли сложность и стоимость системы передачи.
Таким образом, однозначно ответить на вопрос, чей проект лучше и кто выбрал более удачный способ кодирования сообщений, не удается. Все зависит от того, что нужно в конечном счете получить от системы передачи сообщений: минимальную сложность, минимальную стоимость, максимальную скорость, минимальную вероятность ошибки и т. д. Часто пытаются найти компромисс между этими противоречивыми требованиями.
Теперь перенесемся в первую половину XIX в. Этот период ознаменовался рождением электрического телеграфа. Рассказ о нем начнем с изобретения первого в мире пишущего елеграфа.
…1832 год. Известный американский художник, профессор живописи, первый президент национальной Академии художеств Самюэл Финли Морзе возвращался из Европы в Америку на пароходе "Салли".
Разнообразие в длительное и скучное путешествие внес молодой английский физик Ч. Джексон, с которым Морзе познакомился на борту парохода. Увлекательные беседы молодого физика об электричестве и показанные им опыты с магнитной стрелкой произвели на Морзе сильное впечатление. И, возможно, именно во время этих бесед у него возникли идеи, с блеском реализованные через 5 лет в конструкции первого в мире пишущего телеграфа. Во всяком случае, сходя с парохода, Морзе попросил капитана запомнить этот день, ибо был уверен, что тот еще услышит о гениальном изобретении на борту парохода.
Все эти 5 лет были для Морзе мучительными. Он забросил профессию художника и находился в очень стесненном материальном положении. К тому же он овдовел, на его руках осталось трое детей. Приходилось подрабатывать, давая частные уроки рисунка. Иногда в доме буквально нечего было есть. Положение улучшилось, когда Морзе получил кафедру рисунка в Нью-Йоркском университете. Целыми днями он теперь пропадал в университетской мастерской (возился там в рваном фартуке, грязный, с испачканными руками, вызывая возмущение у своих коллег, уважаемых профессоров).
Идея Морзе была действительно гениальной и, как все гениальное, очень простой. Он придумал принципиально новый код для передачи буквенных и цифровых сообщений — знаменитые "точки" и "тире". Этот код известен под названием азбуки Морзе и используется до настоящего времени. Рассказывают, что, создавая свой код, Морзе отправился в ближайшую типографию и подсчитал число литер в наборных кассах. Буквы, для которых литер в этих кассах было припасено больше, он сопоставил с более короткими кодовыми комбинациями (ведь они встречаются чаще), а буквы, для которых литер в кассах было мало — с более длинными кодовыми комбинациями. Например, буква Е кодируется в его азбуке одним знаком (точкой), буква Т — тоже одним знаком (тире), А — двумя знаками (точкой и тире), а Я — четырьмя знаками (точкой, тире, точкой, тире).
Телеграфный код Морзе показан на рисунке. Его можно представить в знакомой нам двоичной форме. Для этого точку обозначим 1, тире 111. Символ 0 будем использовать как элемент, отделяющий точку от тире, точку от точки, тире от тире.
Совокупность символов 000 будем применять для отделения одной кодовой комбинации от другой. В таких обозначениях слово ОМЕГА, которое мы передавали по факельному телеграфу, будет иметь следующую двоичную запись кода Морзе:
Колы, в которых различным буквам соответствуют кодовые комбинации с неодинаковым (неравным) числом разрядов (битов), называются неравномерными. Код Морзе относится к таким неравномерным кодам.
В электрическом телеграфе, так же как и в факельном, передаче подлежат буквы или какие-нибудь другие знаки. Эти буквы и знаки являются сообщениями. С помощью каких же материальных носителей сообщения переносятся в пространстве?
Если в факельном телеграфе в качестве материального носителя используется свет горящих факелов (т. е. электромагнитное излучение с длиной волны в несколько микрон), то в электрическом телеграфе материальным носителем сообщений стал электрический ток.
Самюэл Морзе публично продемонстрировал свою конструкцию электрического телеграфа 4 сентября 1837 г. в здании Нью-Йоркского университета. Принцип действия этого аппарата теперь знает, наверное, каждый школьник. На передающей стороне Морзе использовал телеграфный ключ, изобретенный ранее русским ученым, академиком Петербургской академии наук Б.С. Якоби, а на приемной стороне — электромагнит. При нажатии на ключ замыкалась электрическая цепь, соединенная с приемной станцией, и в цепи начинал протекать ток. В приемнике под его действием срабатывал электромагнит: он притягивал якорь с пишущим механизмом (карандашом или красящим колесиком) к равномерно протягиваемой бумажной ленте. Если ключ нажимали в течение короткого времени, то на ленте появлялась точка, если немного дольше — тире.
Обратите внимание на то, что ток в цепи (или в линии связи) имел в результате форму импульсов: коротких — при передаче точки, длинных — при передаче тире. Таким образом совершилось чудесное превращение: двоичные цифры 0 и 1 превратились в импульсы электрического тока, причем наличию импульса определенной длительности соответствует цифра 1, а отсутствию импульса — цифра 0. Такая материализация сообщения позволяет использовать для его хранения, передачи и обработки мощнейший арсенал средств электроники и радиотехники.
Неравномерный код Морзе очень трудно было использовать для создания буквопечатающих телеграфных аппаратов. Поэтому французский механик Жан М.Э. Бодо предложил в 1874 г. равномерный код, в котором каждая буква и знак представлялись 5-разрядным двоичным кодом (подобным тому, какой мы с вами применили в факельном телеграфе). Напомним, что 5-разрядный двоичный код позволяет перевести в набор цифр 0 и 1 только 25 = 32 буквы или знака. В русском алфавите как раз 33 буквы, но ведь надо еще обеспечить передачу десяти цифр, а также знаков препинания.
В 1855 г. американский физик Дейвид Юз предложил оригинальную идею, позволяющую оставить число разрядов в кодовой комбинации равным пяти и в то же время значительно увеличить число кодируемых знаков.
Он разделил все знаки сообщения на группы — регистры — подобно тому, как это сделано в современных пишущих машинках. Чтобы напечатать, например, заглавную букву, нужно предварительно нажать на соответствующую клавишу — каретка приподнимется и отпечатает заглавную букву, расположенную на литере выше строчной.
Код Бодо с введением регистров был положен в основу всех кодов, принятых в дальнейшем в качестве международных. На приведенном рисунке показан вариант 5-разрядного двоичного международного кода МТК-2, введенного в действие с 1932 г.
В этом коде знакомое нам слово ОМЕГА будет выглядеть так:
Однако при обмене сообщениями между ЭВМ 5-разрядного двоичного кода даже с тремя регистрами оказалось недостаточно, поскольку он позволяет перевести в двоичные цифры 0 и 1 около 90 букв, цифр и знаков, в то время как требуется более 200 знаков и символов (в их числе и специальных математических знаков и символов, понятных ЭВМ). В результате в 1966 г. был разработан 7-разрядный двоичный международный код МТК-5, позволяющий перевести в цифры 0 и 1 размещенные в двух регистрах 256 прописных и строчных букв русского и латинского алфавитов, цифры, знаки препинания и специальные символы. Вот как в этом коде записывается слово ОМЕГА:
Три последних разряда, одинаковые для всех букв, означают код регистра, который в данном случае показывает, что все буквы расположены в русском регистре. По коду регистра каретка печатающей машинки на приемной стороне устанавливается в соответствующее положение, при котором бумаги коснется литера нужной буквы.
Современный телеграфный аппарат, предназначенный для перевода букв, цифр и знаков сначала в последовательность цифр 0 и 1, а затем в последовательность импульсов электрического тока, конечно, значительно отличается от аппарата Морзе. Он имеет клавиатуру типа пишущей машинки и может печатать буквы на бумажной ленте или непосредственно на листе бумаги, намотанной на рулон.
Чтобы понять, каким образом буква или знак в современном аппарате преобразуется в 5-разрядный двоичный код, нужно представить себе пять таких же ключей, как в аппарате Морзе. Замкнутому положению ключа соответствует 1, разомкнутому — 0. Нажатие клавиши, скажем, с буквой М приводит к замыканию одних ключей и размыканию других в соответствии с двоичным кодом этой буквы: 00111. Специальный распределительный механизм поочередно подключает ключи к линии, и в ней либо появляется импульс тока, если ключ был замкнут (передача цифры 1), либо он отсутствует, если ключ был разомкнут (передача цифры 0).
Для декодирования приходящей с линии двоичной комбинации нужен электромагнит, который притянет якорь (т. е. зарегистрирует 1), если из линии поступил импульс, или оставит якорь в прежнем положении (т. е. зарегистрирует 0), если импульс в линии отсутствует. С помощью специального сложного электромеханического устройства каждые пять колебаний якоря (по числу цифр 0 и 1 в 5-разрядном двоичном кодовом слове) фиксируются и на основании набранной комбинации печатается та или иная буква.
У читателя могут возникнуть вопросы: как ориентироваться в таком многообразии двоичных кодов и какой из них выбрать?
Частично мы затрагивали этот вопрос, когда обсуждали проекты факельного телеграфа. В теории кодирования, а это сравнительно новый и достаточно сложный раздел математики, разработано множество двоичных кодов, выполняющих различные функции. Так, существуют коды, которые дают возможность обнаружить ошибку, возникшую в принятой комбинации из-за воздействия в линии связи помех, а также коды, позволяющие не только обнаружить, но даже исправить ошибочно принятый символ. Разработчик сложной аппаратуры цифровой связи должен знать возможности кодов и уметь выбирать нужный код.
Мы не будем останавливаться подробно на этих кодах и выяснять, каким образом удается обнаруживать и даже исправлять ошибку без участия человека. Об этом пойдет разговор позже. Сейчас же мы задержимся на одном весьма любопытном способе кодирования сообщений.
Предположим, вам необходимо зашифровать особо секретный текст. Покажем, как выбрать код, чтобы сообщение стало недоступным для расшифровки. Примем, что особо секретным текстом является слово ОМЕГА. Мы уже знаем, как оно представляется 5-разрядным двоичным международным кодом МТК-2 (см. с. 40). Выберем теперь совершенно произвольную (случайную) комбинацию 0 и 1 (назовем ее ключом) и сложим эту двоичную комбинацию с двоичным кодом слова ОМЕГА. Но сложение будем производить не по обычным правилам двоичной арифметики, когда сумма двух единиц дает единицу следующего разряда (см. с. 26), а по правилам:
т. е. без переноса суммы двух единиц в старший разряд. (Знак "плюс в кружочке" не даст спутать это правило с рассмотренным ранее на с. 26.) Такое сложение называется "поразрядным", или "по модулю 2".
Итак, произведем шифрование нашего секретного текста:
Если кто-нибудь попытается расшифровать засекреченный текст, пользуясь кодом МТК-2, то в результате получится непонятное слово "айвыш". Это слово (а точнее, соответствующая ему комбинация цифр 0 и 1) передается по линии связи.
Для восстановления исходного текста нужно принятую последовательность 0 и 1 снова "поразрядно" сложить с тем же случайным ключом:
Случайный ключ для каждого сообщения нужно выбирать новый, тогда возможность дешифровки секретного текста кем-либо посторонним будет исключена. Действительно, если известна лишь сумма с = а + b, то невозможно найти одно слагаемое, не зная другого.
Технически реализовать указанное засекречивающее устройство несложно, поскольку сумматоры "по модулю 2" разработаны и выпускаются в виде типовых микросхем для устройств связи и компьютеров.
Прошло вот уже более 150 лет со дня изобретения электрического телеграфа. И хотя телеграфные аппараты все это время непрерывно совершенствовались, до сих пор незыблемым остается один принцип: буквы, десятичные цифры, другие знаки и символы представляются с помощью всего двух цифр — 0 и 1, которые затем материализуются в виде импульсов электрического тока, распространяемых по проводам или в пространстве.
Этот принцип используется не только в телеграфии. В диалоге человека с компьютером, первый с помощью клавиатуры выполняет аналогичную операцию: переводит буквы, цифры и другие знаки в хорошо "понимаемый" компьютером двоичный код и затем в серию импульсов электрического тока, передаваемых по кабелю связи в компьютер.
— Может, сам, когда спала я.
Ты в комод без спросу лазил?
Может, вытащил закладку
Ты из святцев для потехи?
— Нет, в комод я твой не лазил.
Не таскал твоей закладки.
А. Н. Плещеев
Пожалуй, немногие знают сегодня значение слов "комод" и "святцы". Между тем, в не столь далекие времена единственными печатными источниками информации в домах простых людей были книги религиозного содержания. И хранили их в самом надежном месте: прочном деревянном шкафу — комоде.
Неужели в век стремительного развития науки и техники шкафы так и останутся единственным хранилищем печатного слова? Поспешим успокоить читателя. Не в будущем, а уже в настоящем на смену громоздким книжным "бабушкиным комодам" пришли миниатюрные "электронные шкафчики".
Но прежде чем говорить об информационной емкости такого "электронного шкафа" и предсказывать его будущее, познакомимся с тем, как устроены его "полки" и как "укладывается" на них текст, состоящий из букв, слов, предложений.
В главе "Искусство шифрования" описано чудесное превращение буквенного текста в закодированную последовательность цифр, как десятичных (0, 1, 2…., 9), так и двоичных (0 и 1). Запоминать же и хранить цифры намного проще, чем буквы и слова, хотя бы потому, что цифр существенно меньше.
Сколько раз, пользуясь услугами такси, мы, прежде чем расплатиться с водителем, бросаем взгляд на счетчик. Между тем счетчик такси как раз и является простейшим механическим устройством для запоминания и хранения цифровой информации. Она записывается в него автоматически без участия водителя или пассажира в зависимости от пройденного машиной расстояния. При остановке такси информация в счетчике сохраняется как угодно долго. Водитель такси может "стереть" ее, повернув специально предназначенный для этого ключ, и подготовить счетчик для автоматической записи последующей информации.
Автолюбителям хорошо знаком несложный прибор, который крепится на присоске в кабине машины и позволяет "запомнить", сколько бензина залито в бак или сколько километров пути пройдено, скажем, к моменту очередной поездки. Следует только установить, вращая зубчатые колесики, необходимые цифры в окошечках прибора. Ясно, что этот прибор — простейшая механическая память. "Запись" новой информации и "стирание" старой осуществляются в приборе "вручную". Запоминание цифры происходит за счет установки зубчатого колесика в нужном положении, а индикация хранящейся в памяти цифровой информации производится путем выставления при вращении колесика соответствующей цифры в окошечке.
Если воспользоваться шифровальной таблицей на с. 31 и закодировать слово "омега", получится следующий десятичный код: 06 30 16 33 10. Чтобы запомнить данное слово, потребуется механическая "память" из десяти зубчатых колесиков. Для запоминания же любой из десяти цифр каждое колесико должно иметь десять зубцов и принимать десять фиксированных положений.
В факельном, а позднее электрическом телеграфе каждая буква слова ОМЕГА заменялась 5-разрядным двоичным кодом, например: 00011 00111 10000 01011 11000. Теперь число зубчатых колесиков в механической памяти возрастет до 25. Вместе с тем каждое колесико будет иметь всего два фиксированных положения: одно из них будет "помнить" цифру 0, другое — цифру 1.
В повседневной жизни мы на каждом шагу встречаемся с механическим устройством памяти, имеющим два фиксированных положения. Выключая или включая свет, мы устанавливаем выключатель в одно из фиксированных положений. Можно выключенное состояние сопоставить с цифрой 0, а включенное — с цифрой 1. Незажженная или горящая лампочка указывает, в каком состоянии (0 или 1) находится выключатель.
Группа из пяти выключателей с лампочками позволяет "запомнить" только одну букву, представленную в 5-разрядном двоичном коде. Для запоминания слова из пяти букв (например, ОМЕГА) потребуется уже пять таких групп. "Набрав" на выключателях нужное слово, можно отключить общий рубильник, при этом информация в такой электрической памяти не исчезнет: она сохранится в положениях выключателей. Стоит только включить общий рубильник и можно прочитать на индикаторах (лампочках) текстовую информацию, записанную с помощью "магических" цифр 0 и 1.
Очевидно, хранить текст в устройстве, собранном из сотен (не говоря уже о тысячах и десятках тысяч) выключателей и лампочек по меньшей мере неразумно. Нужна "память" более простая и удобная в пользовании. В телеграфии, например, в качестве памяти для хранения текстов телеграмм с давних пор использовалась… бумага. Только не обычная бумага, а узкая бумажная лента — перфолента. Каждая буква отображается на ней 5-разрядным двоичным кодом, при этом цифрам 1 соответствуют дырочки (отверстия) на перфоленте, цифрам 0 — отсутствие таких дырочек.
Любопытно, что идея перфорации родилась вовсе не в связи с развитием телеграфной техники, хотя, как вы помните, Ж. Бодо предложил свой двоичный код еще в 1874 г.
…В 1879 г. в статистическое управление при Министерстве внутренних дел США был принят на работу 19-летний выпускник Горной школы Колумбийского университета Герман Холлерит. Ему была поручена обработка информации по результатам переписи 1880 г. Однажды в поезде внимание Холлерита привлекли действия кондуктора, который с помощью компостера заносил в бланк данные о пассажирах. Это и натолкнуло его на мысль разработать перфокарты — специальные картонные карточки стандартного размера, на них числа представлялись в виде системы отверстий. Таким образом можно было хранить и затем механически обрабатывать статистические данные для переписи населения. В 1884 г. Холлерит обратился за патентом на свою "машину для переписи населения", содержащую клавишный перфоратор. В общей сложности он получил более 30 патентов. В 1890 г. бюро переписи США использовало машину Холлерита для переписи населения Америки. В 1897 г. ее купила для тех же целей царская Россия…
Но вернемся к перфоленте. Отверстия на ней пробиваются сразу на пяти перфорированных дорожках (маленькие отверстия на ведущей дорожке служат для протягивания ленты) с помощью специальных штифтов, называемых пуансонами. Управляют процессом перфорации (т.e. решают, пробивать или не пробивать отверстие) электромагниты: если, скажем, с телеграфного аппарата на электромагниты поступает комбинация импульсов, соответствующая двоичному слову 00011 (буква О), то на перфоленте будут пробиты отверстия только на двух последних дорожках.
Перфоленты использовались и в некоторых типах ЭВМ для хранения текстов программ. Хотя такая "бумажная" память очень дешевая, она в то же время и очень непрочная, легко повреждается, ошибки на ней практически невозможно исправить.
"Запись" информации на перфоленту (т. е. пробивание дырочек) осуществляется крайне медленно: не более 150 букв в секунду. Так, для "перевода" на перфоленту, например, 30 томов Александра Дюма потребуется более 50 часов. Правда, "читать" информацию на перфоленте можно гораздо быстрее (до 1500 букв в секунду), если вместо системы механических контактов (замыкающихся при наличии в дорожке отверстия) использовать более быстродействующее фотосчитывающее устройство. В нем луч от источника света, проходя через отверстие в перфоленте, попадает на фотоэлемент и создает в его цепи ток. При этом появляется возможность почти в 10 раз ускорить протяжку ленты.
Заметим, кстати, что длина перфоленты с текстом произведений А. Дюма будет составлять всего-навсего… 150 км!
Принципиально новые возможности для хранения текстовой информации открыла электроника.
…Однажды научный консультант первой в мире радиотехнической фирмы "Маркони" некто Джон Амброз Флеминг стоял в своей лаборатории и задумчиво смотрел на лампу накаливания с угольной нитью, как вдруг его осенила блестящая догадка: раскаленная нить лампы выбрасывает из себя электроны. — А что если добавить в лампу второй электрод и подключить его к положительному полюсу батареи? — рассуждал Д. Флеминг. — Ведь тогда весь поток электронов устремится к положительному электроду и образует электрический ток…
Так была изобретена первая электронная лампа — диод. Электрод, соединенный с положительным полюсом батареи, назвали анодом, а раскаленную нить — катодом. Чтобы цепь тока была замкнута, Флеминг соединил катод с отрицательным полюсом батареи.
Описанные события случились в 1904 г. С тех пор без диодов не обходится ни одно радиотехническое или вычислительное устройство.
Заметим, если поменять местами полюса батареи (т. е. к аноду подключить отрицательный, а к катоду — положительный), то ток через диод протекать не будет. "Переполюсовали" батарею еще раз — снова появился ток. Нельзя ли использовать эту особенность диода для запоминания цифр 0 и 1: протекает ток (диод открыт) — состояние " 1", нет тока (диод закрыт) — состояние "0"?
Давайте сконструируем электронную память на ламповых диодах для хранения знакомого нам слова ОМЕГА. Пусть в нашем распоряжении имеются пять горизонтальных и пять вертикальных проводов. В местах пересечения провода изолируются, так что электрических соединений там нет. В вертикальные провода включим лампочки. Другие концы лампочек соединим вместе и подключим к отрицательному полюсу батареи. Лампочки будут служить индикаторами: если в каких-то разрядах кодового слова имеются единицы, лампочки этих разрядов (на рисунке все разряды занумерованы от 0 до 4) должны гореть.
Чтобы запомнить букву О, двоичный код которой 00011, включим между первым горизонтальным проводом и вертикальными проводами под номерами 3 и 4 диоды. Аноды обоих диодов соединим с горизонтальным проводом, катод одного из них — с вертикальным проводом 3, катод второго — с вертикальным проводом 4. Если теперь подключить к первому горизонтальному проводу положительный полюс батареи, то оба диода под действием положительного напряжения откроются и через каждый из них потечет ток.
Первая цепь, по которой пойдет ток: положительный полюс батареи, диод, лампочка 3, отрицательный полюс батареи. Под действием протекающего тока лампочка 3 загорится. Вторая цепь аналогична первой, но образована она будет другим диодом и лампочкой 4. Таким образом, лампочки (первые три из них не горят, а две последние горят) высветят двоичный код буквы О.
Легко сделать вывод, что в конструируемой электронной памяти диоды применяются только для запоминания 1 и подключаются к тем вертикальным проводам (их называют разрядными шинами), которые соответствуют разрядам двоичных слов, содержащим 1.
Как видим, чтобы запомнить 0 в тех или иных разрядах, вовсе не обязательно включать диоды в обратных направлениях: можно вполне обойтись вообще без диодов.
Для запоминания буквы М горизонтальный провод должен быть соединен диодами со второй, третьей и четвертой вертикальными шинами (так как код буквы М — 00111). Если теперь положительный полюс батареи отключить от первой горизонтальной шины и подключить ко второй горизонтальной шине, то будут светиться лампочки во втором, третьем и четвертом разрядах.
Аналогичным образом запоминаются остальные буквы слова ОМЕГА.
Следует иметь в виду, что после того, как диоды будут припаяны к соответствующим шинам, информация в электронную память будет записана "навечно". Разумеется, если только не выйдут из строя сами диоды или батареи. Записанную в память информацию можно многократно "читать" на лампочках, подключая поочередно к каждой горизонтальной шине положительный полюс батареи.
Наверное, все видели электронные лампы и представляют себе их размеры. Если выполнить электронную память на ламповых диодах для хранения в ней хотя бы десятка слов, то ее размеры будут сравнимы с размерами телевизора. Ясно, что для запоминания всех слов из упомянутых 30 томов А. Дюма пришлось бы строить память с пятиэтажный дом. Заметим, что в первой в мире электронно-вычислительной машине ЭНИАК, разработанной учеными из Пенсильванского университета Джоном Мокли и Дж. Преспером Эккертом и вступившей в строй в 1946 г., было использовано 18 000 электронных ламп!
Конечно, сейчас никто не будет строить устройства памяти на ламповых диодах. И даже на диодах из полупроводников.
Развитие микроэлектроники привело к появлению больших интегральных схем (БИС), у которых на поверхности полупроводникового кристалла площадью всего в несколько десятков квадратных миллиметров создают сотни тысяч микроскопических областей, обладающих свойствами диодов и соединенных между собой необходимым образом.
Современное устройство памяти выполняется в виде стандартных микросхем БИС. Однако принцип его работы точно такой же, как у описанного выше устройства на лампах Флеминга.
Также имеются набор горизонтальных (адресных) проводов (шин) и набор вертикальных (разрядных) проводов. Число разрядных проводов чаще всего равно 8 или 16. Число адресных проводов обычно составляет несколько тысяч (а иногда десятки и сотни тысяч).
Как и прежде, наличие 1 в разрядах двоичных кодовых слов определяется диодами, подсоединенными между горизонтальными и вертикальными проводами. Для индикации записанной информации к разрядным (вертикальным) шинам можно подключить так называемые светодиоды (под действием протекающего тока они излучают свет) или другие, специально выпускаемые промышленностью, индикаторы. Наконец, можно вывести двоичный код на экран дисплея.
Для прочтения информации, хранящейся в памяти, следует, как и раньше, подать положительное напряжение на один из адресных (горизонтальных) проводов.
Как же "записывается" информация в микросхему? В процессе изготовления микросхемы с помощью специальных масок учитывают распределение горизонтальных и вертикальных проводов, а также наличие или отсутствие диодов, включенных между этими проводами. Таким образом, память на БИС выпускается с уже записанной в ней информацией.
А что делать, если пользователь хочет сам записать в память какую-то информацию? Такая возможность существует. Промышленностью выпускается память на БИС, в которой ничего не записано. В ней диоды расположены во всех без исключения точках пересечения вертикальных и горизонтальных проводов. Но последовательно с каждым диодом включен плавкий предохранитель. Если создать сравнительно большую разность напряжений между теми вертикальным и горизонтальным проводами, где не должно быть диода, то плавкий предохранитель перегорит и диод окажется отключенным. Отключая таким путем те или иные диоды, осуществляют запись 0 в требуемые разряды. Диоды, оставшиеся подключенными, соответствуют 1.
До сих пор речь шла об устройствах памяти, куда запись двоичной информации может производиться однократно. Они получили название постоянных запоминающих устройств (ПЗУ). Выпускаются ПЗУ в виде стандартных микросхем. Вообразите себе их размеры: в спичечном коробке помещается несколько микросхем. Объем памяти — это количество 0 и 1, которые могут быть записаны в память. Мы уже упоминали ранее о том, что двоичная цифра (0 и 1) получила название "бит". Поэтому объем памяти измеряется обычно в битах. Например, объем памяти, сконструированной нами на ламповых диодах, равен 25 битам. Объем памяти современной микросхемы ПЗУ может колебаться от сотен до сотен тысяч бит. По данным одного из проспектов американской выставки в Москве фирмой IBM сконструировано ПЗУ с объемом памяти в 1 млн бит, а фирма "Intel corporation" разработала интегральную микросхему, в которой на кристаллике со стороной менее 38 мм можно хранить свыше 30 млрд (3∙1010) бит информации. Для сравнения укажем, что если перевести в двоичный код текст всех 30 томов произведений А. Дюма, то объем их информации составит всего 3∙108 бит. Представляете, в "электронном шкафчике" размерами меньше спичечного коробка… 3 000 подобных томов! Хорош "бабушкин комод".
Читатель, вероятно, обратил внимание на то, что для считывания из ПЗУ записанной в строке информации необходимо выбирать один среди сотен тысяч горизонтальных адресных проводов. Не может же микросхема содержать столько выводов!
Вновь на помощь нам приходят "магические" цифры 0 и 1. Если представить все номера горизонтальных шин двоичными кодами, то для записи десятичных чисел, например, от 0 до 10 000 потребуется всего 14 бит (поскольку 213 = 9192, а 214 = 18384).
Так, 1024-я горизонтальная шина будет иметь двоичный код 00010000000000, а 500-я — код 01001111101100. Двоичный код номера горизонтальной шины называется адресом.
Проблема выбора требуемой строки решается в устройстве, называемом дешифратором. Он имеет очень много (в нашем примере 10 000) выходов и мало (в нашем примере 14) входов.
Дешифратор подключает положительное напряжение от батареи к тому из своих выходов, двоичный код (адрес) которого установлен на его входах. Изготовление таких дешифраторов не вызывает особых трудностей: они "встраиваются" прямо в микросхему ПЗУ. Таким образом, микросхема ПЗУ даже с очень большим (до миллиона бит) объемом памяти будет иметь не более двух десятков выводов, соединенных с разрядными шинами, и несколько выводов для подачи в ПЗУ различных управляющих сигналов (например, сигнала, разрешающего считывание). Современные микросхемы выпускаются в корпусах, содержащих до 40 выводов (поэтому их иногда называют "сороконожками").
Описанная память имеет один существенный недостаток: в ней нельзя стирать информацию и записывать новую. Можно только выбросить микросхему с ненужной информацией.
Согласитесь, не слишком удобно.
Какой же должна быть память, чтобы вместо одних комбинаций 0 и 1 в нее можно было легко помещать другие комбинации этих цифр? Интуитивно ясно, что вся память должна состоять из отдельных ячеек, причем в каждую из них можно было бы свободно записать либо 0, либо 1. Значит, ячейка памяти — это устройство, которое по сигналам "записать 0" и "записать 1"принимает одно из двух состояний: 0 и 1.
Принцип работы ячейки памяти поясняет рисунок, на котором в качестве элементов, обеспечивающих два устойчивых состояния, использованы электромеханические реле — электромагниты со специальными контактами.
Контакты реле 1 "дублируют" кнопку "Запись 0" и, когда через электромагнит данного реле ток не протекает, остаются замкнутыми. Но благодаря этому ток имеет возможность течь через электромагнит реле 2. Якорь этого реле, следовательно, притянется к электромагниту и своим штифтом будет поддерживать в разомкнутом состоянии контакты, дублирующие кнопку "Запись 1". Ясно, что цепь тока, в которую включен левый электромагнит, будет разорвана и ток через электромагнит протекать не сможет. Лампочка, также включенная в эту цепь, гореть не будет. Примем, как и раньше, что ячейка памяти находится в состоянии "0". В нем она может находиться как угодно долго, пока мы сами не захотим его изменить. Но сколько бы мы ни нажимали на кнопку "Запись 0", состояние ячейки памяти не изменится, поскольку кнопка "Запись 0" все время находится как бы в "нажатом" положении благодаря замкнутым контактам реле 1.
Иное дело, если нажать кнопку "Запись 1". Тогда замкнется цепь левого электромагнита; через него и лампочку потечет ток; лампочка загорится, т. е. ячейка памяти перейдет в состояние "1". Удержать ячейку памяти в данном состоянии можно, только обеспечив постоянное протекание тока через лампу и левый электромагнит. Это осуществляется автоматически: при протекании тока через реле 1 его якорь притянется к электромагниту и будет поддерживать контакты в разомкнутом состоянии. Тем самым оборвется цепь тока через правый электромагнит. Якорь реле 2 под действием пружины "отлипнет" от электромагнита и перестанет размыкать контакты, дублирующие кнопку "Запись 1". Теперь смело отпускайте кнопку — цепь тока через левый электромагнит и лампу не разорвется, она будет существовать благодаря замкнутым контактам реле 2.
Ячейка памяти будет находиться в состоянии "1" до тех пор, пока мы не нажмем снова на кнопку "Запись 0". Цепочка рассуждений нам уже известна: при этом сработает реле 2 и отключит ток в лампе и реле 1; обесточенное реле 1 отпустит свои контакты и тем самым обеспечит протекание тока через реле 2, которое, в свою очередь, "поддерживает" реле 1 в обесточенном состоянии. Надеемся, вы уже настолько освоились, что не запутались.
Нажимая любую из кнопок "Запись 0" или "Запись 1", можно записать в ячейку памяти цифры 0 или 1, стирая автоматически старую запись. Пара электромеханических реле используется в ячейке для "поддержания" друг друга в том состоянии, которое было определено нажатием соответствующей кнопки.
Устройства, которые могут находиться в одном из двух устойчивых состояний и способны скачком переключаться из одного состояния в другое при внешнем воздействии, получили название триггеров (от английского trigger — спусковой крючок огнестрельного оружия).
Триггерные ячейки памяти выполняются, конечно же, не на электромеханических реле. К помощи последних мы прибегли лишь для более простой и наглядной иллюстрации принципа работы такой памяти. Чтобы познакомиться с современными ячейками памяти, вернемся вновь к истории зарождения электроники.
…В 1912 г. американская полиция арестовала группу мошенников, пытавшихся распродать акции своей фирмы, не выпускавшей никакой продукции. Основатель фирмы утверждал на суде, что он владеет устройством (по мнению специалистов, странным и совершенно ни к чему не пригодным), которое в будущем позволит обмениваться человеческими голосами через Атлантический океан (что, по общему мнению, было сущей нелепицей!). Этим человеком был доктор физики Ли де Форест, а странным устройством являлось его гениальное изобретение — вторая "волшебная" лампа. Спустя почти полвека, а точнее в 1956 г., за это изобретение Ли де Форест будет удостоен высшей награды Франции — ордена Почетного легиона.
Ли де Форест предложил ввести в хорошо известную всем лампу Флеминга еще один дополнительный электрод в виде сетки и расположить его между анодом и катодом. Именно этот третий электрод и вызвал революцию в радиотехнике: оказалось, что небольшие изменения напряжения на сетке вызывали значительно большие изменения тока в цепи анода. Электронные лампы с тремя электродами (триоды) стали применяться для усиления очень слабых радиосигналов.
Кроме того, появилась возможность полностью останавливать поток электронов, подавая на сетку отрицательное напряжение: электроны, обладая отрицательным зарядом, отталкивались от отрицательно заряженной сетки. Тока в цепи анода в этом случае не было и лампа оказывалась запертой. И наоборот, подавая на сетку положительное напряжение, удавалось максимально увеличить скорость потока электронов и получить максимальный ток в цепи анода. Лампа в этом случае оказывалась полностью открытой.
Свойство триода быть полностью открытым или закрытым позволило построить триггерные ячейки памяти, в которых каждый из двух триодов управлял сеткой другого — тем самым поддерживалось устойчивое состояние триггера.
Впервые идея создания электронного триода была высказана еще в 1906 г. Фостером. С тех пор этот год и считается датой рождения трехэлектродной лампы. Потребовалось более 40 лет, чтобы на смену громоздким, поглощающим много энергии и выделяющим большое количество тепла, дорогим и ненадежным электронным лампам пришли более экономичные и более миниатюрные приборы.
В 1947 г. сотрудники лаборатории компании "Белл" Уильям Шокли, Джон Бардин и Уолтер Бретони изобрели транзистор, выполнявший те же функции, что и электронный триод, но использовавший свойства полупроводников. Триггерные ячейки памяти на лампах спали повсеместно заменяться триггерными ячейками, выполненными на транзисторах.
Первую интегральную микросхему с ячейками памяти на транзисторах разработали уже в конце 50-х годов два американских инженера: Дж. Килби из компании "Texas instruments" и Роберт Нойс, основавший впоследствии корпорацию "Intel".
Первоначально интегральные микросхемы состояли только из нескольких транзисторных ячеек памяти, однако техника развивалась столь стремительно, что сначала десятки, а затем сотни транзисторов стали размещать на пластинке кремния размером всего лишь с ноготь. Современные микросхемы содержат миллиарды запоминающих ячеек.
Триггерные ячейки памяти объединяются в матричную структуру, т. е. размещаются по строкам и столбцам. Подобная память получила название оперативной (ОЗУ — оперативное запоминающее устройство), поскольку в нее можно по ходу записывать новую информацию взамен старой.
Итак, мы постарались в доступной форме рассказать читателям о чудесных "электронных шкафчиках", способных хранить текст, "переведенный" на язык цифр 0 и 1. Это замечательное изобретение XX в., позволяющее решить, казалось бы, неразрешимые проблемы.
Последние несколько десятилетий породили проблему "лавины" — растущего скачком объема научной информации.
Научного работника ошеломляют открытия и заключения, сделанные тысячами других специалистов и появляющиеся с такой скоростью, что их невозможно ни осознать, ни тем более запомнить. Действительно, в мире ежеминутно выходит в свет несколько тысяч печатных страниц научных текстов. Ежечасно регистрируются сотни изобретений и открытий. Ежедневно начинают выходить два новых научных журнала. На одного специалиста приходится ежедневно около 100 печатных листов изданий, которые ему следовало бы знать и которые он, естественно, узнать никогда и ни при каких условиях не сможет — ведь для этого ему пришлось бы прочитывать в день свыше 1 600 печатных страниц текста.
Замеченная учеными тенденция получила название "информационного взрыва". Как же сделать так, чтобы специалисты не отставали от развития своих областей? Как добиться, чтобы они могли своевременно получать специфическую и чрезвычайно важную для них информацию?
Выход из этого информационного кризиса ученые нашли в создании "электронных библиотек" или "банков информации". В них могут храниться материалы библиографического характера (перечни статей на различные темы, их краткие рефераты), справочные данные (например, экономической статистики), наконец, полные тексты статей и других печатных материалов.
Электронная библиотека содержит несколько так называемых банков данных. Ожидается, что в дальнейшем они будут располагать несколькими триллионами единиц информации.
Становится все более очевидным, что довольно скоро наступят такие времена, когда термины "электронная книга" и "электронная библиотека" станут столь же привычными, как и термин "телефонный аппарат".
Книги, энциклопедии, журналы, газеты и т. д. — это один из ценнейших и колоссальнейших источников информации. Но всего лишь один из многих. Оглянитесь вокруг. Сколько источников информации нас окружают! И всю эту информацию надо уметь хранить и передавать. По силам ли это человеку? Об этом и пойдет речь дальше.
— С какого же времени? Когда взят город?
— Сию же ночь, — на этот самый день.
— Да кто ж так скоро передал известие?
Огонь: сперва — пылающая Ида.
А от нее, один вслед за другим.
До Аргоса сигнальные костры.
…
Вот как мне передал известье муж.
Эсхил
Эти строки повествуют об одном из древних способов передачи информации — с помощью цепочки зажигаемых один за другим сигнальных костров.
Сразу же возникает несколько вопросов: кто "произвел" эту информацию? Кому она "адресована"? Какое количество информации передано? Какова ее ценность? Эти вопросы могут возникнуть у того, кто не знаком с произведением Эсхила и в приведенном отрывке не нашел на них ответа. Но эти же вопросы могут возникнуть и у специалистов, занимающихся изучением такого феномена, как ИНФОРМАЦИЯ.
В последние десятилетия в научной литературе замелькали термины: "информология", "информатика", "кибернетическая теория информации", "теория систем передачи информации" и т. п. В настоящее время изучением информации занято большое число ученых разных направлений. Не имея возможности подробно останавливаться на каждой из перечисленных наук, коснемся лишь основных их направлений.
Информология — это наука об общих закономерностях производства, передачи и потребления информации независимо от источников и характера последней.
Предметом изучения информатики являются информационные процессы в социальной и в первую очередь научно-технической среде. Мы уже упоминали ранее об "информационном взрыве". Для обуздания пылающего, по образному выражению специалистов, "информационного вулкана" создается мощная "индустрия" обработки информации в виде банков данных, электронных библиотек и т. п., опирающаяся на развитие вычислительных машин. Сейчас информатика трактуется часто как "информация плюс автоматика".
Кибернетическая теория информации берет свое начало от работ Норберта Винера и Клода Шеннона, опубликованных независимо друг от друга в 1948 г. Вот круг проблем, которыми она занимается: как использовать информацию для управления объектами, процессами и даже обществом; как защитить информацию от искажений, передавая и храня ее в условиях помех; как измерить количество информации.
Наконец, теория систем передачи информации указывает способы построения конкретных систем передачи, методы преобразования в них информации, технологию проектирования сетей, предназначенных для передачи информации.
Мы не будем утомлять читателя перечислением всех характеристик информации. Это удел специальных брошюр и книг. Иногда, правда, нам придется по ходу изложения, рассматривать отдельные интересующие нас свойства информации.
Вернемся теперь к приведенному в эпиграфе отрывку из трагедии Эсхила. Сигнальными кострами воспользовался аргосский царь Агамемнон, чтобы сообщить о взятии им после десятилетней осады города Трои. Предназначалась данная информация только одному человеку — его жене Клитемнестре.
Говоря научным языком, "размах циркуляции" (термин из информологии) этой информации минимальный, так как она передана от индивида к индивиду и больше никуда не распространяется.
Можно ли что-нибудь сказать о количестве и ценности информации, переданной Агамемноном? Подсчитать количество информации в сообщении "кострового телеграфа" несложно: свет костра не виден — состояние "0", костер запылал — состояние "1". Таким образом, пламя костра несет 1 бит информации, т. е. самое минимальное ее количество.
С ценностью же дело обстоит сложнее. Одно и то же сообщение для одного потребителя может представлять большую ценность, а для другого — никакой. Сообщение Агамемнона было для Клитемнестры, по-видимому, достаточно ценным, поскольку неверная супруга использовала эту информацию, чтобы заблаговременно спланировать убийство возвращающегося из похода мужа. Как видите, иногда даже весьма скромная информация может цениться на вес золота!
Совсем по-иному обстоит дело, если смотреть на произведение Эсхила как на бессмертный памятник древней истории и литературы. Здесь уже можно говорить о максимальном "размахе циркуляции": ведь с этим памятником старины на протяжении многих веков соприкасались и историки, и филологи, и литераторы, и, наконец, самые широкие слои читателей. Ценность же подобной информации для человечества подчас даже трудно определить — она поистине бесценна.
Информация, которую несли костры Агамемнона, преодолела небольшое пространство от города Трои до города Аргоса. Информация, которую несет произведение Эсхила, преодолела века!
Известно много примеров того, как информация, "лежавшая" без движения много веков в руинах древних городов и поселений, доходила позже до потомков. Так, найденные при археологических раскопках глиняные сосуды позволили по их форме и росписи керамики установить время и место изготовления, узнать о торговых связях народов. Археологи помогли восстановить историю первобытного общества, историю Древнего Востока и пополнить многие другие разделы прошлого.
Из истории первобытного общества мы знакомы с ископаемым человеком. Даже представляем его внешность: заросший волосами, с сильно нависающими надбровными дугами, с резко выдающимися вперед, как у обезьяны, челюстями. Но ведь никто из живущих на земле ни сто, ни тысячу, ни даже десять тысяч лет назад не видел ни синантропа, ни неандертальца, ни хотя бы кроманьонца. Почему же мы так хорошо их себе представляем?
Откуда современный человек получил эту информацию? Оказывается, что вся необходимая информация была заложена… в черепе. Еще в XVIII в. французский палеонтолог Жорж Кювье (1769–1832) обнаружил, что по форме зуба или кости конечности ископаемого животного можно определить характерные особенности скелета и описать его внешний вид. Позднее, в 30-х годах нашего столетия, советскому ученому-антропологу, археологу и скульптору М.М. Герасимову (1907–1970) удалось найти закономерности соотношений между рельефом черепа и формой мягких тканей. Это дало возможность по строению костей носа, орбит глаз, челюстей восстанавливать индивидуальный портрет как современного, так и ископаемого человека. Герасимов создал по черепам около 200 портретов древних людей разных эпох и целую галерею документальных портретов исторических деятелей: знаменитого астронома средневековья Улугбека, адмирала Ф.Ф. Ушакова, царя Ивана Грозного, поэта Фридриха Шиллера и многих других.
Информация может передаваться от поколения к поколению не только в виде археологических, исторических и литературных находок. Сейчас речь пойдет о так называемой генетической информации. Составной частью живой клетки являются молекулы дезоксирибонуклеиновых кислот (ДНК). В этих молекулах есть особые участки — гены. В них записывается наследственная информация — из поколения в поколение, из века в век. Гены определяют особенности развития живого организма (растения, животного, человека) в течение всей его жизни. Известны случаи, когда человек, совсем не похожий на родителей, был в то же время "вылитой копией" деда или даже прадеда. По наследству переходят и некоторые болезни человека.
Гены хранят колоссальный объем информации. Если каждый ген принять за букву, то ДНК — это текст наследственной программы человека, содержащий кроме самой новейшей информации и следы древних текстов, берущих свое начало в глубине тысячелетий. (Знать бы, что сохранилось от этих древних текстов, в каком виде они дошли до нас?)
Так вот, если собрать вместе тексты ДНК всех людей, населяющих сегодня Землю, и развернуть в одну строку, то они растянулся на десяток миллиардов километров. Это диаметр всей Солнечной системы! Вместе с тем, если эти тексты плотно упаковать, их объем будет не больше капли воды. Невероятно, но факт.
Все многообразие окружающей нас информации ученые назвали "информационной сферой", или инфосферой. Удивителен и порой еще таинствен ее мир! Известно, что человек воспринимает информацию посредством органов чувств: зрения, слуха, осязания, обоняния. А как обмениваются информацией животные, рыбы, птицы, насекомые? Скажем, когда разговаривают между собой муравьи, они ударяют друг друга по усикам, причем при различных сообщениях возникают определенные ответы. Быть может, по принципу: каков вопрос — таков и ответ? Ученые выяснили, что обыкновенная сельдь обладает голосом. Правда, испускает она звуки очень тихие. Поэтому точнее будет сказать, что сельди "переговариваются шепотом".
А пчелы, например, общаются друг с другом посредством "телодвижения". Когда пчела-сборщица находит богатую добычу, она начинает свой "танец". Характер танца указывает, где искать добычу.
Многое в "информационном" поведении представителей фауны до сих пор остается загадкой для ученых. Как находят птицы дорогу при дальних перелетах? Почему они обладают способностью ориентироваться по заметным точкам (повороту реки, горам), по расположению солнца — днем, луны и звезд — ночью? Ведь у некоторых птиц сначала отлетают молодые, а затем старые особи, и молодым никто дорогу на зимовку не показывает.
Каким путем медузы задолго узнают о приближении шторма и поэтому заблаговременно стремятся уйти на глубину, спасая свою жизнь?
Каким образом пиявки "научились" довольно точно предсказывать погоду? Перед хорошей погодой они спокойно лежат на дне банки с водой или неторопливо плавают, перед сильным ветром — беспокойно снуют взад и вперед, перед дождем — висят вертикально одна возле другой, сильно высунувшись из воды, перед грозой — судорожно извиваются и присасываются к стеклу над водой или даже к стеклянной крышке банки.
Почему пауки перед заморозками начинают энергично плести паутину? Рассказывают, что этот долгосрочный прогноз использовали в 1794 г. французские войска на территории Голландии, когда голландцы затопили с помощью шлюзов поля и дороги так, что по ним было невозможно передвигаться. Поведение паука заставило французов дождаться крепких морозов и вступить по льду в голландский город Утрехт.
Продолжим нашу экскурсию по инфосфере. С появлением на Земле "гомосапиенса" (человека разумного) возникло и стало развиваться человеческое общество. Вместе с ним нарождалась и прочно занимала необжитые еще места в инфосфере новая информация — социальная.
На заре становления человеческого общества общение между людьми было весьма скудным. Воткнутая в землю ветка указывала, в каком направлении и на какое расстояние ушли люди.
Особо положенные камни предупреждали о появлении врагов. Зарубки на палках или деревьях сообщали об охотничьей добыче и пр. Существовала и примитивная передача сигналов на расстояние. Сообщения, закодированные в виде определенного числа выкриков или ударов барабана с изменяющимся ритмом, содержали ту или иную информацию.
Одному из величайших изобретений нашей цивилизации — письменности — пришлось преодолеть долгий, длиной в тысячелетия путь от первых наскальных рисунков до современных развитых языков. Сегодня человек, вооруженный такими мощными средствами общения, как письмо и речь, активно влияет на протекание информационных процессов в обществе. Ежедневно сотни миллионов людей пишут друг другу письма, посылают телеграммы, звонят по телефону. Ежедневно на нас обрушиваются потоки информации из газет, журналов, художественных, научных и популярных книг и статей, из кинофильмов, театральных спектаклей. Ежедневно на многих волнах ведутся радиопередачи, по нескольким каналам вещает телевидение.
Ежедневно мы сталкиваемся с массой деловой, производственной, экономической, статистической и другой информации.
Лавина информации! А если добавить к ней огромный объем информации, вылавливаемой из сети Internet, кажется, нет никакой возможности разобраться в этом информационном хаосе.
Информация, циркулирующая в человеческом обществе, или, как ее называют, социальная информация, в последние десятилетия стала предметом глубоких исследований ученых.
Выделяют три вида социальной информации: личную, связанную с теми или иными событиями в личной жизни людей; специальную, к которой относится деловая, производственная, экономическая, учетно-статистическая, научно-техническая и другая информация; и массовую, распространяемую через газеты, журналы, радую, телевидение, интернет и т. п.).
По мнению специалистов, 80–90 % информации человек воспринимает с помощью органов зрения, 10–20 % — органами слуха и только 1–2 %-органами осязания и обоняния. По-видимому, этими особенностями человеческого организма и объясняется тот факт, что основными формами существования всех видов информации в обществе являются: буквенные или цифровые тексты, устная речь и музыка, чертежи, рисунки и фотографии, подвижные изображения, т. е. те, которые связаны со зрительным и слуховым каналами приема информации.
Выше было рассказано, как цифровой или буквенный текст заменяется последовательностью нулей и единиц и как удается сохранить его в электронной памяти. Более того, в этот же "сухой" набор цифр 0 и 1 можно превратить и доверительную беседу с другом, и эмоциональный репортаж о футбольном матче, и волнующую музыку Бетховена, и поражающее воображение полотно Леонардо да Винчи "Джоконда". Кроме того, эта информация может быть законсервирована на долгие годы в миниатюрной микросхеме. И, что самое поразительное, при воспроизведении информации ничего не будет утрачено, и мы вновь уловим знакомые интонации в речи друга, почувствуем эмоциональное состояние комментатора футбольного матча и ощутим накал спортивной борьбы, получим наслаждение от виртуозного исполнения любимого музыкального произведения, испытаем трепет от соприкосновения с бессмертным творением художника.
Нам остается только распахнуть дверь еще в одну "лабораторию чудес"!
Я взвесил звук.
Измерил и расчислил.
В загадку слова хитростью проник
И умное злодейство я замыслил -
Предать железу свой живой язык.
А. Журавлев
Мерный шум прибоя, протяжный гудок парохода, ласковое щебетанье птиц, оглушающий рев двигателей самолета, чарующие звуки музыки — мир вокруг нас наполнен самыми разнообразными звуками. Но самым удивительным феноменом природы является, пожалуй, звук человеческого голоса. Он может принимать самую неожиданную эмоциональную окраску. Мы ясно различаем, когда человек говорит с мрачными или веселыми интонациями в голосе. Голос бывает вкрадчивый и ехидный, ликующий и уверенный, испуганный и робкий…
Наши знаменитые оперные певцы И. Архипова, В. Атлантов, Е. Образцова способны с помощью звуков голоса выражать самые тончайшие оттенки человеческой души: пылкую страсть, глубокую скорбь, нежную любовь… Мы часто говорим: "чарующие звуки", "серебристый голос", и никто из нас не удивляется этим определениям.
Как же "переложить" живую человеческую речь на язык "бесстрастных" нулей и единиц, сохранив при этом богатое разнообразие красок человеческого голоса, всю гамму человеческих эмоций? А "цифровая" музыка? Сможет ли по-прежнему волновать слушателей "Лунная соната" Бетховена, извлеченная в цифровом виде из миниатюрной микросхемы, хотя и носящей громкое имя Большой Интегральной Схемы? Чтобы разобраться в том, можно ли "предать железу свой живой язык", нам необходимо кратко познакомиться с физикой и физиологией звука.
Проще начать с колебания струны. Вы тронули струну, она стала вибрировать и своим движением то сжимать, то разряжать окружающий воздух, или, другими словами, то повышать, то понижать его давление. Слои воздуха повышенного и пониженного давления начали разбегаться во все стороны от колеблющегося тела. Образовалась звуковая волна. Нечто похожее мы наблюдаем, когда бросаем камни в воду и смотрим на расходящиеся кругами волны. Гребни этих волн можно сравнить с областью сжатого воздуха, впадины — с областью разреженного воздуха.
Давайте отвлечемся немного от темы и проделаем такой опыт. Подвесим на достаточно длинной и тонкой нити кулечек с песком, предварительно проделав в нем отверстие. Вы узнали, наверное, в этом самодельном сооружении обычный маятник. Выведем его из состояния равновесия, толкнув в сторону, и остановим, когда он совершит одно колебание. Сначала маятник максимально отклонится в одну сторону, затем пройдет через точку покоя и на такую же величину отклонится в другую сторону и, наконец, вернется в точку покоя. Струя песка, высыпающегося из кулечка, прочертит прямую линию, указав размах колебания. Если во время колебания маятника равномерно протягивать под ним лист бумаги, то получим на бумаге кривую, которая называется (вспомним школьный курс тригонометрии) синусоидой.
Предположим, что колебание маятника длилось одну секунду. Тогда, предоставив маятнику возможность свободно колебаться после первого толчка, мы бы сказали, что он колеблется с частотой 1 герц. Если за одну секунду маятник совершит два колебания, то говорят, что он колеблется с частотой 2 герца и т. д. Единица частоты колебания получила свое название в честь великого немецкого ученого Генриха Герца (1857–1894) и обозначается сокращенно Гц.
Вернемся к колеблющейся струне, излучающей звуковую волну. Попробуем поставить на пути звуковой волны пластину и непрерывно измерять давление, оказываемое на нее волной. При приближении к пластине области сжатого воздуха давление на нее увеличивается по сравнению с атмосферным. Но вот степень сжатия воздуха постепенно уменьшается — это к пластине подходит область разреженного воздуха. Давление на пластину становится меньше атмосферного. Построив график изменения со временем звукового давления на пластину, с удивлением обнаруживаем, что он повторяет график колебания маятника, т. е. на бумаге будет вычерчена та же синусоида.
Правда, струна колеблется намного быстрее: в секунду она совершит не одно-два, а десятки и сотни колебаний. Например, самая толстая (басовая) струна рояля, "обладающая" самым низким звуком, колеблется при ударе на клавишу с частотой 27 Гц. Струны гитары издают более высокие звуки, они совершают колебания с частотами от 144 Гц (самая толстая струна) до 576 Гц (самая тонкая струна). Наиболее высокую частоту колебаний звука в оркестре (9000 Гц) имеет флейта-пикколо.
Вам приходилось когда-нибудь в погожий весенний день наблюдать за показаниями температуры на городском световом табло? Уже ласково светит солнце, хотя в воздухе еще прохладно. Вот краешек солнца закрыла тучка, и температура чуть понизилась. Тучка прошла — и вновь стало теплее. Дуновение ветра также заставляет "скакать" цифры на электронном табло. Если через очень короткие промежутки времени (скажем, через 1 с) наносить значения температуры воздуха на график, то получим множество точек, отражающих изменения температуры. Таким образом, имеем дело не с непрерывной кривой изменения температуры, а лишь с ее значениями, отсчитанными через определенные промежутки времени. По сути говоря, мы описали некоторый непрерывный процесс последовательностью десятичных цифр.
От десятичной системы счисления легко перейти к двоичной системе счисления (см. главу "Внимание: конкурент!"). И пусть нас не смущает, что температура выражается не целым числом. Можно просто-напросто не обращать внимания на запятую, отделяющую десятые доли градуса, и записывать в двоичной форме, например, не число 15,6 °C, а число 156: ведь знаем же мы, в конце концов, что температура воздуха не может выражаться ни числом 1,56 (так как она высвечивается на табло с точностью до десятых долей градуса), ни числом 156.
Невыясненным остался вопрос, как часто следует брать отсчетные значения непрерывной кривой, чтобы отследить все ее изменения. Так, при более длительных промежутках времени между наблюдениями за температурой воздуха не удастся отследить все ее быстрые изменения.
Давление звуковой волны, распространяющейся от струны, изменяется во времени по закону синусоиды. Чтобы отследить все ее изменения, очевидно, достаточно брать отсчетные значения в моменты, соответствующие максимумам и минимумам синусоиды, т. е. с частотой, превышающей, по крайней мере, вдвое частоту звукового колебания. Например, если струна совершает 20 колебаний в секунду (частота 20 Гц), максимальное звуковое давление будет наблюдаться через каждую 1/20 с, т. е. через 50 мс. (Напомним, что 1 с = 1 000 мс = 1 000000 мкс = 1 000000000 нс.) Максимумы и минимумы кривой звукового давления разделены интервалами в 25 мс.
Значит, отсчетные значения но кривой должны следовать не реже, чем через 25 мс, или с частотой 40 отсчетов в секунду (40 Гц). Обычно отсчетные значения на кривой берут "с запасом": не в 2 раза чаще, чем колеблется звук, а, скажем, в 10 раз. В этом случае они очень хорошо передают форму кривой.
Интересен случай, когда звуковые волны излучаются двумя одновременно колеблющимися струнами. На рисунке показаны три варианта: вторая струна колеблется в 2, 3 и 10 раз чаще, чем первая. Давления двух звуковых волн на пластину, помещенную на их пути, складываются. График результирующего давления уже не является синусоидой. Мы видим, что быстрые изменения этой кривой обусловлены более высокочастотным колебанием (в данном случае колебанием второй струны). Поэтому для того чтобы отследить все быстрые изменения результирующего звукового давления, отсчетные значения следует брать с частотой, по крайней мере, вдвое превышающей частоту колебания второй струны. В последнем варианте частота взятия отсчетных значений должна превышать 400 Гц. Это означает, что отсчетные значения должны следовать не реже чем через 1/400 = 0,0025 с = 2,5 мс, а лучше — еще чаще, например через 0,5 мс.
До сих пор мы намеренно упрощали задачу, когда считали, что давление звуковой волны, создаваемой струной, изменяется по закону синусоиды. На самом деле это не так. График колебания реальной струны, а следовательно, график звукового давления, отличается от синусоиды. Дело в том, что всякое вибрирующее тело создает одновременно звуки нескольких частот или, как говорят, тонов. Самый низкий из них называют основным тоном, более высокие тоны, сопровождающие основной, — обертонами. При звучании гитары, скрипки, рояля всегда слышны кроме основного тона дополнительные призвуки, т. е. обертоны. Так, если принять частоту основного тона (синусоидальное колебание) равной 20 Гц, то частоты обертонов (тоже синусоидальные колебания) составят: первого — 40 Гц; второго — 60 Гц, третьего — 80 Гц и т. д., а, скажем, десятого обертона — 200 Гц. В совместном звучании основной тон и обертоны создают соответствующую окраску звука, или тембр. Один тембр отличается от другого числом и силой обертонов.
Таким образом, для получения формы кривой звукового давления, создаваемого колеблющейся струной гитары или скрипки, нужно сложить синусоидальные кривые звуковых давлений основного тона и обертонов. Подобная операция была проделана, когда рассматривали одновременные колебания двух струн. Только в данном случае из-за наличия большого числа обертонов форма результирующей кривой будет еще сложнее, т. е. еще сильнее отличаться от синусоидальной. Совершенно ясно, что для отслеживания самых быстрых изменений звукового давления отсчетные значения на результирующей кривой придется брать с частотой в несколько раз выше (по крайней мере, в 2 раза) частоты последнего обертона.
Графики давления звуковых волн, создаваемых человеческим голосом, имеют еще более сложную форму.
Человек набрал в легкие воздух и издал звук. Что же произошло? Воздух, выходя из легких, заставляет вибрировать голосовые связки. От них колебание воздуха передается через гортань голосовому аппарату, заканчивающемуся ротовой и носовой полостями. Последние выполняют роль резонаторов — они усиливают колебания воздуха, подобно тому как полый корпус гитары или скрипки, также являясь резонатором, усиливает звуки струн. Колебания воздуха из голосового аппарата человека передаются окружающему воздуху. Возникает звуковая волна. Характер издаваемого звука определяется натяжением голосовых связок, формой ротовой полости, положением языка, губ и т. д.
Из описания голосового аппарата человека нетрудно понять, что голосовые связки играют роль своеобразных струн, только они создают более обильное количество обертонов. При преобладании в человеческом голосе высоких обертонов над низкими мы слышим "звучание металла". Люди, у которых в голосе преобладают низкие обертоны, говорят мягким, бархатным голосом. Частоты основных тонов и обертонов при произнесении различных звуков разными людьми лежат в пределах 80-6 000 Гц. Это значит, что при замене непрерывной кривой звукового давления человеческой речи его отсчетные значения необходимо брать с частотой не ниже 12000 Гц (поскольку последний обертон имеет частоту 6000 Гц), или, другими словами, не реже чем через 1/12000 = 0,0000833 с = 83,3 мкс.
Итак, мы выяснили, что вся богатейшая информация, содержащаяся в звуках музыки, человеческой речи, в шумах и т. п., заключена, по сути дела, в форме кривой давления звуковой волны на пластину, поставленную на ее пути.
Может показаться, что проблема кодирования речи двоичной последовательностью 0 и 1 принципиально нами уже решена: измеряй каждые 83,3 мкс или чаще звуковое давление и полученные десятичные числа переводи в двоичный код! Теоретически все верно. Но как это реализовать практически? Мы только тогда сможем передать звуки или "законсервировать" их в электронной памяти, когда превратим двоичные цифры в импульсы электрического тока. Как выполнить такое превращение? И как из двоичного кода снова "извлечь" звук?
Нередко решение сложных инженерных задач подсказывала живая природа — самая удивительная в мире биологическая лаборатория. Например, во время первой мировой войны на кораблях английского флота устанавливали гидрофоны — приборы для прослушивания шума гребных винтов немецких подводных лодок. Чтобы движение воды у приемного отверстия не создавало мешающий шум, ему придавали форму ушной раковины тюленя, который хорошо слышит при движении в воде.
Вот уже два столетия ученые пытаются раскрыть тайны восприятия звука слуховыми органами человека. До сих пор еще не ясно, каким образом наше ухо может улавливать звуки, различающиеся по силе давления в 1013раз. Если бы существовали весы с таким же диапазоном измерений, то на них удалось бы взвешивать и горошину, и железнодорожный состав. Остается пока загадкой для ученых и то, каким образом человеческое ухо способно разбираться в совокупности тонов и обертонов, отличать один тембр звука от другого.
В 1842 г. Берлинский медико-хирургический институт выпускал очередную группу подготовленных в его стенах врачей. Среди них выделялся блистательный молодой человек, уже на 21-м году жизни зарекомендовавший себя зрелым ученым, сделав свое первое открытие — нейрон. Это был Герман Гельмгольц (1821–1894). Свою карьеру он решил начать с военной службы врачом-хирургом в гусарском эскадроне. Но вскоре Герман понял, что его призвание — наука, и решил расстаться с гусарской службой. Слава Гельмгольца-ученого росла удивительно быстро.
Блестящие открытия в физике, физиологии, анатомии, математике, психологии позволили ему при жизни стать "великим", признать его одним из величайших ученых XIX в. Будучи профессором университетов в Кенигсберге, Бонне, Берлине, обладая широким кругозором, разнообразием знаний, Г. Гельмгольц сделал очень много и для изучения слухового аппарата человека.
Давайте и мы с вами рассмотрим этот сложнейший, созданный природой приемник звуковых сигналов.
Звуковая волна, пройдя через ушную раковину — наружное ухо, наталкивается на туго натянутую, перекрывающую слуховой проход барабанную перепонку (мембрану) и оказывает на нее давление. (Вспомните пластину, поставленную на пути звуковой волны!) Барабанная перепонка под давлением звука начинает колебаться. Чем сильнее звук — тем сильнее колеблется перепонка.
С другой стороны перепонки расположено среднее ухо. Здесь находятся три маленькие косточки — молоточек, наковальня и стремечко, которые как рычажный механизм передают колебания другой барабанной перепонке, отделяющей среднее ухо от внутреннего. Эти две барабанные перепонки еще не являются органами слуха: с их помощью звуковое давление преобразуется в механические колебания, которые передаются во внутреннее ухо.
Если вы видели когда-нибудь улитку, то можете легко представить строение внутреннего уха. Это костная полость, свернутая улиткой и наполненная жидкостью. Внутри костного "домика" улитки и спрятан орган слуха, или кортиев орган, названный так по имени итальянского анатома А. Корти, впервые обнаружившего его. Основой кортиева органа является очень тонкая перепонка — мембрана (опять мембрана!), соприкасающаяся с 25–30 тысячами слуховых нервных волокон. Звуковое давление от средней барабанной перепонки через жидкость в улитке передается мембране кортиевого органа. Она начинает колебаться и раздражать слуховые нервные волокна. Вот здесь-то и происходит преобразование механических колебаний мембраны в серию нервных импульсов, которые по нервным волокнам "бегут" в мозг.
— Все ясно, — воскликнет читатель, знакомый с научно-популярной литературой, — авторы подвели нас к мысли, что звуковое давление нужно преобразовать сначала с помощью тонкой пластины (мембраны) в механические колебания, а затем в импульсы, но не нервные, а электрические, как это сделал изобретатель телефона А.Г. Белл!
Верно, читатель. Рассказ о том, как Белл (1847–1922) подарил миру телефон, можно встретить во многих изданиях. Символично, что в переводе с английского слово "bell" означает колокол, звонок.
Белл был учителем в школе глухонемых в американском городе Бостоне. Чтобы помочь людям, лишенным слуха и речи, он пытался создать слуховой аппарат, которым могли бы пользоваться его ученики. Рассказывают, что как-то раз 26-летний Александер Белл познакомился с английским физиком Ч. Уитстоном, который находился уже в весьма преклонном возрасте, и тот заинтересовал его идеей передачи звука с помощью электрического тока. Белл со всей энергией принялся за дело. Прежде всего он решил узнать, как человеческое ухо воспринимает звуки. Белл присутствовал на операциях у знакомого врача, изучал строение уха. Возможно, именно тогда у него и родилась мысль построить "электрическую гортань", издающую звуки, и "электрическое ухо", способное их воспринимать.
"Электрическое ухо" Белла состояло из картонного рупора, выполнявшего роль ушной раковины, ко дну которого была прикреплена круглая пластинка из тонкой жести — мембрана, наподобие барабанной перепонки в ухе. Точно такой же вид имела и "электрическая гортань".
Если в рупор "уха" произносили слова, его мембрана колебалась в такт звуковому давлению. Чтобы преобразовать механические колебания в колебания электрического тока, мембрана жестко соединялась с металлическим сердечником, расположенным внутри катушки. Через катушку пропускался постоянный ток от батареи. Когда мембрана колебалась, сердечник тоже колебался и тем самым изменял магнитное поле катушки. Белл был, безусловно, знаком с явлением электромагнитной индукции, открытым в 1831 г. английским физиком М. Фарадеем, и знал, что любое изменение магнитного поля катушки вызывает такое же изменение тока, протекающего в ней. Именно поэтому колебания электрического тока повторяли колебания мембраны. Таким образом, от "уха" по проводам бежал ток, являющийся электрической копией звукового давления.
В "электрической гортани" была точно такая же катушка. Но в ней протекал процесс прямо противоположный: колебания электрического тока изменяли магнитное поле катушки. Ее сердечник начинал колебаться и толкать в такт мембрану "гортани". В свою очередь, мембрана колебала воздух, а рупор усиливал эти колебания и направлял звуковую волну в настоящее человеческое ухо.
А.Г. Белл изобрел телефон в 1876 г. С тех пор в его конструкцию было внесено много усовершенствований. В частности, в современном телефоне вместо "электрического уха" Белла используется чувствительный угольный микрофон. В нем мембрана соприкасается с угольным порошком. Пока в микрофон не говорят, сопротивление порошка остается неизменным и через него от батареи в линию (провода) протекает постоянный ток. Стоит произнести в микрофон какие-нибудь слова, порошок под действием колеблющейся мембраны будет то спрессовываться, то разрыхляться. Изменение плотности порошка приведет к изменению его электрического сопротивления, а значит, и к изменению тока, текущего через порошок. И снова в проводах, идущих от микрофона, рождается электрическая копия звукового давления.
Принцип действия "электрической гортани" Белла сохранился и поныне. Правда, в современном телефонном аппарате она стала более компактной и умещается в телефонной трубке, однако сейчас встречаются и такие громкоговорители, которые гораздо крупнее своего "прадедушки".
С изобретением Белла, казалось бы, устранились все трудности перевода звукового давления в двоичный цифровой код.
Действительно, чего проще: замыкай и размыкай с помощью ключа цепь тока на выходе микрофона и получай отсчетные значения электрической копии звукового давления. Однако потребовалось еще более 50 лет, чтобы со всей математической строгостью доказать возможность замены любой непрерывной функции ее отсчетными значениями и выяснить, как часто такие значения следует брать. Сделал это в начале 30-х годов XX столетия академик В.А. Котельников. С тех пор все специалисты по передаче информации знают теорему об отсчетах непрерывной функции, носящую его имя.
Но и появление теоремы Котельникова не сразу привело к цифровому кодированию речи. Существовавшие в то время управляемые механические ключи-реле не могли переключаться быстро, скажем 12000 раз в секунду. Только развитие транзисторной техники и интегральной технологии позволило перейти к практическому решению задачи.
На обыкновенном транзисторе (с тремя электродами — базой, коллектором и эмиттером) можно строить простейший электронный ключ. Если на базу транзистора подать управляющий импульс тока так, чтобы полностью открыть его, то на время действия импульса коллектор и эмиттер окажутся как бы замкнутыми и транзистор, включенный этими электродами в цепь тока микрофона, будет подобен замкнутому ключу. В то время когда на базе транзистора управляющего импульса нет, его коллектор и эмиттер оказываются как бы разомкнутыми, транзистор в этом случае подобен разомкнутому ключу. Подавая на базу транзистора каждую секунду 12 000 управляющих импульсов (эта частота не считается высокой, так как современные импульсные генераторы могут вырабатывать в секунду и миллиарды импульсов), мы тем самым заставляем замыкаться электронный ключ через каждую 1/12000 с = 83,3 мкс и пропускать ток от микрофона. Таким образом, на выходе электрического ключа вместо непрерывного тока будут возникать его отсчетные значения.
Промышленностью выпускаются электронные ключи, более сложные по схеме, на нескольких транзисторах, но весьма компактные — в виде миниатюрных микросхем, надежные в работе и способные замыкаться до 1 млрд раз в секунду.
Обратим внимание читателей на одну важную деталь. При передаче звуков речи по телефону главное — отчетливо разбирал, слова говорящего, узнавать собеседника по голосу и улавливать интонации в речи: путаницы же, "испорченного телефона", здесь не должно быть. Оказывается, для этого достаточно в звуках речи сохранять обертоны с частотами не выше 4000 Гц, а это значит, что в секунду достаточно иметь 8 000 отсчетных значений тока, протекающего через микрофон телефонного аппарата. Другими словами, отсчетные значения, формируемые электронным ключом, должны следовать через 125 мкс.
Если же микрофон установлен в концертном зале и транслируется игра симфонического оркестра, то для качественной передачи звуков всех инструментов (вспомните флейту-пикколо, издающую звуки основного тона с частотой 9000 Гц) отсчетные значения нужно брать чаше. Учитывая, что человеческое ухо слышит звуки лишь до 20 000 Гц, фиксировать значения тока быстрее 40 000 раз в секунду не имеет смысла. Значит, самый короткий интервал между отсчетными значениями при передаче звуков равен 25 мкс. Каждое же отсчетное значение тока существует ровно столько, сколько времени замкнут электронный ключ. А замыкают его очень ненадолго — на краткий миг, равный 1 мкс.
Как теперь перевести отсчетные значения тока в цифровой двоичный код?
…XIII век. Знаменитый итальянский математик Леонардо Пизанский (Фибоначчи) бьется над решением сложной задачи: требуется выбрать пять гирь так, чтобы с их помощью можно было взвесить с точностью до 1 кг любой груз до 30 кг при условии, что гири ставятся только на одну чашу весов и масса гирь различна.
…XVIII век. Другой крупнейший математик, член Петербургской и Берлинской академий наук Леонард Эйлер заинтересовался задачей Фибоначчи и блестяще решил ее. Эта древняя задача о взвешивании имеет, оказывается, непосредственное отношение к нашей проблеме двоичного кодирования. Для ее решения достаточно выбрать массы гирь равными степени числа 2, т. е. 1, 2, 4, 8 и 16 кг. Действительно, с помощью такого набора гирь можно взвесить с точностью до 1 кг любой груз до 31 кг.
Взвешиваемый груз (обозначим его массу через М) математически можно представить как
М = а4∙16 + а3∙8 + а2∙4 + а1∙2 + а0∙1 = а4∙24 + а3∙23 + а2∙22 + а1∙21 + а0∙20
где каждый коэффициент а = 1, если соответствующую гирю кладем на чашу весов, а = 0, если этой гирей не пользуемся при взвешивании. Таким образом, процедура взвешивания сводится к представлению десятичного числа в двоичной системе счисления.
Поясним это на примере. Пусть нам нужно взвесить груз массой 21 кг. Поставим сначала на чашу весов самую большую гирю — массой 16 кг. Поскольку она не перетягивает груз, оставим гирю на чаше (а4 = 1) и добавим следующую — 8 кг. Ясно, что в этом случае чаша весов с гирями перетянет чашу с грузом. Снимем эту гирю (а3 = 0) и установим другую — массой 4 кг. Проведя взвешивание до конца, мы увидим, что на весах остались гари массой 16, 4 и 1 кг. Значения коэффициентов а4… а0 дают 5-разрядный двоичный код 10101 числа 21.
Механический груз мы взвешивали на механических весах. Считая отсчетное значение тока на выходе электронного ключа своего рода "электрическим грузом", можно осуществить аналогичное взвешивание, но на этот раз электронным способом. Такие "электронные весы" назвали кодер (от английского coder — кодировщик). Допустим, отсчетное значение тока равно 21 мА. Роль "электрических гирь" в кодере выполняют эталонные токи — 16, 8, 4, 2 и 1 мА, которые вырабатываются специальными электронными устройствами — генераторами. Каждая проба (подходит та или иная "гиря", либо нет) производится в строго установленные промежутки времени. Вся процедура взвешивания должна закончиться до прихода с электронного ключа следующего отсчетного значения тока (напомним, для звуков речи это время составляет всего 125 мкс). Итак, сначала отсчетное значение тока сравнивается с эталоном, равным 16 мА, и поскольку оно больше эталона, на выходе кодера появляется импульс тока, что соответствует двоичной цифре 1. В следующий интервал времени к первому эталонному току добавляется второй, равный 8 мА. Теперь суммарный вес "электрической гири" составляет 24 мА. Это больше отсчетного значения, поэтому второй эталонный генератор отключается. В данном интервале времени импульс тока на выходе кодера не появляется, что соответствует двоичной цифре 0. Думаем, читатели без труда завершат процедуру взвешивания.
Таким образом, за время взвешивания одного отсчетного значения кодер вырабатывает серию импульсов, полностью повторяющую двоичный код отсчетного значения микрофонного тока.
Любопытно: если записать S-разрядные двоичные коды, в которые мы превратили звуки речи, например, в интегральную микросхему памяти, то непосвященному человеку при просмотре содержимого ячеек памяти невозможно будет разобраться что закодировано — речь или текст. В самом деле, отсчетному значению тока микрофона в 11 мА кодер противопоставит комбинацию импульсов 01011. Но такой же кодовой комбинацией была зашифрована буква Г в слове ОМЕГА, когда мы использовали код Бодо.
— В этом случае нужно точно знать что хранится в памяти: скажем, живые голоса выдающихся певцов или сухие тексты научных статей, — заметит читатель, — ведь способы извлечения из памяти текстовой и звуковой информации различны.
Действительно, чтобы извлечь из двоичной последовательности 0 и 1 звуковую информацию, нужно совершить преобразования, обратные тем, которые были проделаны. Для этого прежде всего необходимо устройство, которое по двоичному коду восстановит отсчетное значение тока. Оно получило название декодер. В нем есть такие же, как и в кодере, генераторы эталонных токов 16, 8, 4, 2 и 1 мА. Если на декодер поступила комбинация импульсов, например 10101, то одновременно будут включены первый, третий и пятый генераторы, вырабатывающие токи 16, 4, 1 мА. Суммарный ток этих генераторов будет 21 мА, т. е. равен току отсчетного значения, которое мы ранее "взвешивали" с помощью кодера. Таким путем восстанавливают все отсчетные значения.
На следующем шаге необходимо из отсчетных значений тока получить непрерывный ток. Сделать это поможет обычный конденсатор небольшой емкости, который при кратковременном воздействии на него тока (т. е. отсчетного значения) мгновенно зарядится и будет удерживать заряд до следующего импульса.
Отметим, что восстановленная таким путем кривая непрерывного тока несколько отличается от той, которая была получена на клеммах микрофона: она имеет плоские ступеньки между отсчетными значениями. Можно сказать, что процесс взятия отсчетных значений и последующего восстановления непрерывной кривой пока микрофона сопровождается специфическими искажениями, которые могут повлиять на качество воспроизведения звука. Однако на практике для восстановления тока используют не конденсатор, а более сложные схемы, делающие форму восстановленного тока похожей на форму исходного тока и тем самым сводящие на нет действия указанных искажений.
Нельзя не сказать еще об одном виде искажений, появляющихся при переводе отсчетного значения тока в двоичный код. Так, если кодированию подвергается отсчетное значение 21,7 мА, кодер все равно выдает код 10101, как и в случае целого значения 21 мА. Это и понятно, поскольку "взвешивание" проводилось с точностью до 1 мА — "веса" самой меньшей "электрической гири". Такое округление чисел в технике называется квантование, а разница между отсчетным значением тока и величиной, набираемой двоичным кодом, — ошибка квантования.
Однако и искажения, вызванные ошибками квантования, можно если и не исключить совсем, то, по крайней мере, значительно уменьшить. Пусть, например, самая маленькая "электрическая гиря" будет иметь "вес" 0,125 мА. Тогда, взяв восемь "гирь", соответствующие 16; 8; 4; 2; 1; 0.5; 0,25; 0,125 мА, можно будет "взвешивать" отсчетные значения тока с точностью до 0,125 мА. При этом число 21 представится 8-разрядным двоичным кодом 10101000, а число 21,7 кодом 10101101, где последние три цифры означают добавку 0,625 к числу 21. Применение же 12-разрядного двоичного кода позволит вместо числа 21,7 набрать весьма близкое к нему число 21,692 1895.
Успехи в развитии интегральной микросхемотехники позволили объединить в корпусе одной небольшой микросхемы электронный ключ и кодер. Эта микросхема выполняет преобразование непрерывной (часто говорят аналоговой) электрической величины в двоичный цифровой код и известна под названием аналого-цифровой преобразователь (АЦП). Выпускаются АЦП с 8-, 10- и 12-разрядными двоичными кодами. Существуют и микросхемы, преобразующие двоичные 8-, 10- или 12-разрядные коды в непрерывный (аналоговый) сигнал. Их называют цифро-аналоговые преобразователи (ЦАП).
Подключив к микрофону АЦП, можно записать речь, музыку и другие окружающие нас звуки в электронную память. Таким путем нетрудно "законсервировать" и сохранить для потомков голоса знаменитых певцов, артистов, исполнение музыкальных произведений талантливыми музыкантами, голоса птиц и животных, занесенных в "Красную книгу" или исчезающих с лица Земли… Эта кладовая будет поистине бесценна.
Цифровую информацию, извлеченную из памяти, всегда можно превратить в звук. Для этого ее нужно с помощью ЦАП преобразовать в непрерывный ток, а подключенный к ЦАП громкоговоритель точно так же, как "электрическая гортань" Белла, воспроизведет звуковые волны.
Интересно подсчитать, какой объем памяти потребуется для записи одной секунды разговорной речи. Определить это нетрудно. За секунду АЦП измеряет ток микрофона 8 000 раз. В 10-разрядном АЦП каждое измеренное значение тока представляется двоичным словом из 10 бит, значит, для записи отрезка речи "длиной" всего 1 с нужна память объемом 80000 бит.
Заметим, что в интегральную микросхему с объемом памяти 30∙109 бит (помните, мы подсчитали, что в нее помещается 3 000 томов А. Дюма) можно записать около 100 часов непрерывного разговора!
Запись человеческого голоса в электронную память нужна не только в целях сохранения его для потомков. Практическое применение нашли "говорящие" автоответчики на телефонных станциях, в кинотеатрах, в банках, на предприятиях промышленности. Рядом зарубежных фирм выпущены электронные переводчики для туристов. Достаточно вначале нажать на нем клавишу с обозначением языка, на который вы хотите перевести свой вопрос, а потом произнести и саму фразу. Через несколько секунд искусственный голос повторит ваш вопрос на нужном вам языке.
Во всем мире бурно развивается цифровая телефония. В корпусе телефонного аппарата размещается микросхема АЦП и по проводам, подключенным к телефону, вместо привычных слов передаются 0 и 1. Понятно, что в телефонном аппарате имеется также микросхема ЦАП, позволяющая телефону воспроизводить живой человеческий голос. И хотя соответствующее дооборудование телефонных станций требует при этом определенных затрат, цифровая телефония предоставляет людям немало благ. Как отмечают специалисты, качество цифровой телефонной связи значительно выше, чем обычной, поскольку цифровые сигналы меньше боятся всякого рода помех, что самое главное, появляется возможность к одной и той же телефонной линии подключать, казалось бы, внешне совершенно различные устройства — телефонный аппарат и персональный компьютер: они оба передают в линию и принимают из нее двоичные цифры.
А нельзя ли к ним добавить еще одно устройство — для передачи видеоизображений? Можно. В следующей главе мы расскажем о том, как это сделать.
Как неразгаданная тайна.
Живая прелесть дышит в ней -
Мы смотрим с трепетом тревожным
На тихий свет ее очей.
Земное ль в ней очарованье
Иль неземная благодать?..
Ф.И. Тютчев
Краса и гордость парижского музея Лувр — знаменитая картина флорентийского живописца Леонардо да Винчи "Джоконда". Художник запечатлел на холсте Мону Лизу, жену флорентийского купца Франческо Джокондо.
Улыбка Джоконды. Ее знает весь мир. Таинственная, интригующая, загадочная, вечная — такие эпитеты сопровождают ее вот уже на протяжении почти пяти столетий. Казалось, художник загадал человечеству необыкновенную загадку, окутав портрет тайной вселенской гармонии и красоты:
В тебе изначальная тайна жива,
К которой причастны
Все люди на свете.
И вдруг сенсация: тайна портрета Моны Лизы разгадана!
В январском номере журнала "An and Antic" за 1987 г. специалист по компьютерной технике, консультант фирмы "American telephon and telegraph company" Лиллиан Шварц сообщила всему миру о том, что на портрете изображен сам Леонардо да Винчи. Как установила американская исследовательница, Мона Лиза, внучка неаполитанского короля Фердинанда I — Исабелла Арагонская, позировала художнику, когда он состоял при неаполитанском дворе. После неожиданной и таинственной смерти ее мужа работа над портретом прекратилась. Взяв за основу незавершенное полотно, Леонардо да Винчи решил продолжить работу перед зеркалом. В итоге получился своеобразный синтез мужского и женского лица. К такому выводу Лиллиан Шварц пришла, введя картину в компьютер и тщательно исследовав ее с помощью специальной компьютерной программы.
…Жестокая игра машины с тайной великого творчества…
Тайна великого творчества! Да, гениальное творение Леонардо да Винчи вечно, бессмертно. И как сказал когда-то поэт, математик и философ Омар Хайям: "Тайну вечности смертным постичь не дано". Но — жестокая игра машины? Родоначальник отечественной кибернетики академик В.М. Глушков писал почти 25 лет назад: "Можно, скажем, снять с леонардовской Моны Лизы три копии в основных цветах, поделить полотно на клеточки, соответствующие разрешающей способности зрения, а их яркость выразить численно. В итоге полотно будет целиком переведено на двоичный алфавит… Как ни стремятся люди уберечь шедевры, время действует на них медленно, незаметно, но пагубно… А Мона Лиза? Разве мы видим тот портрет, который без малого полтысячи лет назад написал Леонардо да Винчи? Портрет сильно потемнел, и вы только от искусствоведа услышите, что это было одно из самых красочных полотен флорентийца… Поэтому я пришел к выводу — впрочем, не я один, — что электронная запись будет лучшей формой сохранения шедевров…"
Добавим, что по образцу существующих "электронных библиотек" созданы "электронные музеи" — собрания "электронных копий" всех известных мировых шедевров живописи. Любой желающий может с помощью персонального компьютера "получить" на экране дисплея или обычного домашнего телевизора свой "заказ".
Итак, перед нами две тайны портрета Моны Лизы: создание оригинала флорентийским мастером Леонардо да Винчи и "электронной копии" американской исследовательницей Лиллиан Шварц. В этой книге мы будет разгадывать вторую, не менее увлекательную тайну волшебного превращения портрета в электрические импульсы двоичного алфавита.
Сначала рассмотрим простой рисунок. Поступим так, как поступают начинающие художники, когда им нужно сделать копию с картины: разобьем ее на клетки. Чем меньше размер клеток, тем легче делать копию. После этого можно приступить непосредственно к двоичному кодированию картины. Условимся обозначать каждую клетку 0, если более половины ее площади не закрашено, и 1 в противном случае. Тогда в соответствии с принятым правилом код первой строки будет иметь вид 000001000, код второй строки — 001101100 и т. д., а двоичный код всей картины, записанный в виде последовательности кодов остальных строк, —
(С равным правом можно применить и "обратный" код, т. е. незакрашенному полю ставить 1, закрашенному — 0.)
Эту двоичную информацию — с виду она ничем не отличается от закодированной текстовой или речевой информации — можно записать в электронную память или передать на расстояние подобно тому, как передается двоичный код телеграмм. Правда, восстановленная по данной последовательности 0 и 1 картина будет отличаться от исходной. Однако если разбить изображение на достаточно большое число клеток (взяв, например, ширину клетки 0,5 мм или еще меньше), то можно добиться полного, как говорится, один к одному, сходства восстановленного изображения с оригиналом. Конечно, в этом случае двоичный код картины нам придется записывать на бумаге гораздо дольше: ведь он будет содержать в 50-100 раз большее число 0 и 1. Для того чтобы поместить в микросхему изображение размером всего лишь со спичечный коробок (4x5 см), объем ее памяти при ширине клеточки 0,5 мм должен составлять 8000 бит, а при ширине клеточки 0,1 мм — уже 200000 бит. Таким образом, более точное описание изображения требует больших информационных затрат. За качество, как всегда, приходится платить.
Обратите внимание, закодировать нашу картину двоичным кодом было весьма просто, поскольку мы имели дело с изображением, состоящим всего из двух цветовых градаций: поле каждой клеточки было условлено считать либо белым (0), либо закрашенным (1). А как быть с фотографией? Ну хотя бы с той, которую называем черно-белой. Ведь на ней вопреки названию имеются плавные переходы от белого цвета к черному. Как определить степень "яркости" той или иной клеточки? Дело осложняется еще и тем, что при разбиении фотографии на клеточки может оказаться, что яркость изображения даже внутри одной клеточки будет неодинаковой. Очевидно, чем меньше размеры клеточки, тем более однородной будет ее яркость. Если в клеточке размером 1 мм2 нарисовать пять черных линий (есть умельцы, которые умудряются на рисовом зернышке разместить целое стихотворение), то человеческий глаз легко их различит. Если же таких линий больше, скажем десять, то глаз не сможет их различить: все они сольются воедино и клеточка будет казаться однотонной. Это свойство глаза — различать определенное число линий на 1 мм — называется его разрешающей способностью. Ученые установили, что разрешающая способность человеческого глаза у разных людей колеблется от 5 до 10 линий на 1 мм. Это означает, что для фотографических изображений размер клеточки должен быть не больше 0,1х0,1 мм, т. е. на 1 мм2 изображения должно поместиться как минимум 100 таких клеточек. Только тогда можно считать яркость внутри клеточки всюду одинаковой.
— Но ведь на такого же размера клеточки мы разбивали и изображение, состоящее всего из двух тонов! — воскликнет наблюдательный читатель.
Правильно. Никакого особого отличия в разложении на отдельные элементы (клеточки) этих двух типов изображений нет. Разница заключается в другом. В первом случае было только две градации яркости (помните, поле либо белое, либо закрашенное?). Это и позволило нам сразу же применить двоичный алфавит: 0 и 1. Во втором же случае мы имеем дело с непрерывной шкалой изменения яркостей элементов изображения (от белого цвета до черного).
Как же поступить в этом случае? Экспериментально установлено, что для качественного воспроизведения художественной фотографии достаточно иметь (опять-таки из-за конечной разрешающей способности глаза) всего 10–20 градаций яркости, отличающихся друг от друга. (Не напоминает ли вам такая фотография картину, сложенную из отдельных элементарных площадок подобно детской мозаике?) Значит, весь диапазон изменения яркости элемента изображения следует разбить на требуемое число градаций. После этого номер каждой градации нетрудно представить в двоичной системе счисления. Для записи, скажем, любой из 20 градаций достаточно 5 бит.
Итак, при двоичном кодировании фотографии яркость каждого элемента (клеточки) изображения может быть записана 5-разрядным числом из 0 и 1. Заметим, что для фотографии размером со спичечный коробок нужна электронная память, содержащая в 5 раз больше ячеек, чем для двухтонового рисунка (т. е. 1 млн бит).
Как практически осуществляют двоичное кодирование изображения? Ведь не разбивают же фотографию на такие, прямо скажем, микроскопические клеточки вручную? Впрочем, если мы преодолеем эту трудность, то сразу же столкнемся с другой: к какой разрешенной градации следует отнести яркость той или иной клеточки.
Чтобы автоматизировать процедуру двоичного кодирования изображения, необходимо научиться выделять из него отдельные элементы и измерять их яркость. Давайте посмотрим, как это делает такой "естественный" прибор, как человеческий глаз.
Вопрос о том, как устроен человеческий глаз, волновал людей еще в глубокой древности. Им интересовались такие крупные философы и мыслители, как Демокрит (V–IV вв. до н. э.), Аристотель (IV в. до н. э.), Герофил ((II в. до н. э.), Тит Лукреций Кар (I в. до н. э.) и др. Но первые достоверные физиологические данные были получены лишь в I в. н. э. талантливым представителем древней медицины Клавдием Галеном (примерно 120–201 гг. н. э.).
…Гладиаторы бились уже два часа. Но вот под восторженный рев трибун один из них тяжело ранил своего соперника, и очередной бой в школе гладиаторов в римском городе Пергам закончился. Над раненым гладиатором склонился человек с обрамленным курчавой бородкой лицом и добрыми, излучавшими какой-то особенный свет глазами. Это был врач гладиаторов Клавдий Гален.
Сын богатого архитектора, он получил хорошее образование в области философии, математики, естественных наук, но решил посвятить себя врачебному искусству. Лечение израненных, с вывихами и переломами гладиаторов многому научило Галена и пригодилось ему позже, когда римский император Марк Аврелий сделал его придворным медиком.
Искуснейший врач своего времени, Гален положил начало общей физиологии человека и физиологии зрения, в частности. Благодаря ему человечество впервые узнало, что глаз состоит из хрусталика, радужной оболочки с отверстием (зрачком), сетчатки и зрительного нерва, связывающего сетчатку с мозгом.
Спустя несколько столетий (в IX в.) крупнейший ученый древнего Востока, физик, математик, медик Абу Али Ион аль-Хайсам (Альгацена) в своей знаменитой книге "Оптика" изложил первые научные основы зрения. Он разъяснил, что предметы посылают в глаз лучи каждой своей частицей и каждый луч возбуждает в глазу соответствующую точку хрусталика. Альгацена даже воспроизвел простейшую модель глаза: коробку с маленькой дырочкой, на задней стенке которой он получил изображения от нескольких зажженных свечек, поставленных перед дырочкой. Его наблюдения позволили сделать важный вывод: любой луч движется сквозь дырочку самостоятельно, не мешая другим.
Оба ученых — и Гален, и Альгацена — ошибочно приписывали хрусталику роль светочувствительного элемента. Только в 1851 г. немецкому физиологу Г. Мюллеру удалось на опытах с лягушками доказать, что эту функцию выполняет сетчатка глаза. Другой немецкий физиолог И. Кюнс проделал такой опыт: на неподвижный глаз кролика, долго находящегося в темноте, он отбросил изображение светового окна с темным переплетом. Когда через некоторое время он извлек из глаза сетчатку, на ней достаточно ясно было видно изображение окна. Получилась живая фотография!
Глаз часто сравнивают с фотоаппаратом: хрусталик — это объектив, фокусирующий изображение на сетчатку; зрачок — диафрагма, сужающаяся при большой освещенности предмета и расширяющаяся при малой: сетчатка — фотопленка, на которой фиксируется изображение предмета. Конечно, сходство здесь чисто внешнее, процессы, которые происходят в сетчатке глаза, на самом деле гораздо сложнее процессов, происходящих в фотопленке.
Сетчатка глаза состоит из множества светочувствительных элементов, или, как их называют, фоторецепторов — палочек и колбочек, соединенных с окончаниями волокон зрительного нерва. Два элемента изображения воспринимаются отдельно, если они попадают на две рядом расположенные колбочки. Каждая колбочка присоединена к отдельному окончанию нервных волокон. С помощью этих колбочек различаются мелкие детали изображения. Палочки подсоединяются к окончаниям нервных волокон группами и позволяют судить о яркости данного участка изображения. Следовательно, любое изображение, сфокусированное хрусталиком на сетчатку, разбивается на отдельные элементы. При различной яркости этих элементов по-разному раздражаются нервные окончания и в них возбуждаются биотоки различной силы. По волокнам зрительного нерва (этого удивительного, состоящего почти из 150 млн "проводов" природного "кабеля связи") биотоки передаются в мозг.
Человек постоянно учится у природы, копирует ее, стремится превзойти ее наивысшие достижения. Так были созданы "искусственная гортань" и "искусственное ухо". Сейчас во многих устройствах автоматики и связи успешно трудится "искусственный глаз" — фотоэлемент, который служит для преобразования яркости света в электрический ток. Например, фотолюбителям знаком прибор, определяющий экспозицию при съемке, — фотоэлектрический экспонометр. Направляя его "глаз" на объект съемки, можно измерить яркость отраженного от объекта света. Свет, попадая на катод фотоэлемента, выполненный из специального светочувствительного материала, выбивает из него электроны. В цепи фотоэлемента появляется электрический ток: чем ярче свет, тем больше ток.
Итак, яркость элемента изображения можно измерить с помощью "электронного глаза" — фотоэлемента. Как вы помните, в изображении размером всего лишь со спичечный коробок насчитывается до 200000 таких элементов. Ясно, что измерить яркость каждого из них с помощью своего собственного фотоэлемента, как это делается в глазу человека, лишено всякого смысла. Как же быть?
Обратите внимание на то, как вы читаете эту книгу. Ваши глаза скользят по строке слева направо, затем вы переходите к началу другой строки и т. д. до конца страницы. Словом, вы "просматриваете" все элементы строки (буквы, знаки препинания) последовательно. Можно сказать, что при чтении книги происходит построчная развертка текстового изображения.
Именно по такому принципу "просматривает" изображение "электронный глаз" в современных факсимильных (от латинских слов facsimile — делай подобное) аппаратах, предназначенных для передачи на расстояние различного рода изображений — документов, чертежей, рисунков, фотографий и др. Для этого с помощью источника света и системы оптических линз формируют световое пятно, сфокусированное так, чтобы освещать на передаваемом изображении площадку размером не более 0,1х0,1 мм. Это световое пятно перемещается сначала вдоль одной строки, затем переходит на другую и движется по ней — и так до конца последней строки. Свет, отражаясь от каждой элементарной площадки, попадает на фотоэлемент и вызывает ток. Его сила зависит от яркости отраженного света, а последняя — от яркости освещенной площадки. Таким образом, при переходе светового пятна на изображении от одной элементарной площадки к другой ток в цепи фотоэлемента меняется пропорционально яркости площадок: мы получаем точную электрическую копию изображения!
Теперь представьте, что с помощью такого вот "электронного глаза" мы рассматриваем изображение, состоящее только из двух цветов: черного и белого. Очевидно, каждый элемент изображения (напомним, что размером он всего 0,1х0,1 мм) будет представлять собой либо черную, либо белую площадку, напоминая чередованием шахматную доску. Черные площадки практически полностью поглощают падающий на них свет. Яркость отраженного ими света при этом настолько ничтожна, что при просмотре черных площадок ток в цепи фотоэлемента не возникает. Отсутствие тока (нулевое его значение) удобно обозначить цифрой 0. Наоборот, площадки белого цвета почти полностью отражают падающий на них свет, и при попадании на них светового луча ток в цепи фотоэлемента скачком принимает максимальное значение. Обозначим сто цифрой 1. Таким образом, перемещая световое пятно, а вслед за ним и наш "искусственный глаз" вдоль каждой строки изображения, получаем на выходе фотоэлемента последовательность импульсов, которая есть ничто иное, как двоичный цифровой код изображения. Этот код можно либо поместить в электронную память, либо передать по линии связи.
— А как получить ток в виде двоичных импульсов, если изображение имеет плавные переходы от белого цвета к черному, как, например, на фотографии? — спросит читатель. — Ведь в этом случае ток в цепи фотоэлемента будет меняться тоже плавно.
Законный вопрос. Чтобы на него ответить, вспомним, каким образом мы поступали, когда имели дело с плавным изменением звукового давления, точнее, с плавным изменением его "электрической копии" — тока микрофона. В этом случае включали на выходе микрофона АЦП, который с помощью встроенного в него электронного ключа выделял отсчетные значения тока и затем, "взвешивая" их на "электронных весах", вырабатывал двоичный импульсный код.
При двоичном кодировании фотографии нужно прежде всего решить вопрос, с какой частотой АЦП должен брать отсчетные значения тока в цепи фотоэлемента. Ясно, что за промежуток времени, пока "рассматривается" один элемент изображения, нужно взять хотя бы одно отсчетное значение, иначе информация об этом элементе будет пропущена. Например, если световое пятно освещает каждую элементарную площадку изображения в течение 1 с, то и отсчетные значения тока следует брать не реже чем через 1 с. Если же на "рассматривание" элемента изображения тратится времени в 10 раз меньше, т. е. 0,1 с, то каждую секунду нужно выделять, по крайней мере, 10 отсчетных значений. Вот такой интервал.
В современных факсимильных аппаратах световое пятно и фотоэлемент перемещаются вдоль строк изображения с помощью механических систем. Световому лучу удается при этом "пробегать" за 1 с более 2000 элементов изображения — своеобразный световой спринт. Нетрудно подсчитать, что на "просмотр" одного такого элемента приходится отрезок времени, не превышающий 1/2 000 = 0,0005 с = 500 мкс. Через такие интервалы (или чаще, но не реже) и должен выделять отсчетные значения тока АЦП. Заметьте, чтобы не потерять информацию при кодировании звукового сигнала, приходилось брать его отсчетные значения гораздо чаще: через 125 мкс для речи и через 25 мкс для сигналов с более богатой звуковой палитрой — музыки, шума прибоя, щебетания птиц и т. п. Это сравнение не относится к факсимильным аппаратам, предназначенным для передачи газет, где скорость развертки значительно выше: более 200000 элементов изображения в секунду, в результате необходимо брать отсчеты тока в 100 раз чаще — через 5 мкс.
Мы уже упоминали, что для удовлетворительного воспроизведения фотографии достаточно сохранить всего 20 градаций полутонов при переходе от белого тона к черному. Это означает, что каждое отсчетное значение тока должно сравниваться в АЦП с одним из 20 эталонных значений, соответствующим той или иной градации яркости. Для этих целей можно было бы использовать АЦП, кодирующий каждое отсчетное значение 5-разрядным двоичным кодом. Но, поскольку промышленностью выпускаются стандартные 8-разрядные микросхемы АЦП, удобнее использовать их. Кстати, это позволяет сохранять в изображении до 255 градаций яркости и делать тем самым его цифровую копию еще более точной, приближенной к оригиналу.
…В конце XIX века в преступном мире Парижа возник переполох. В руки полиции все чаще стали попадать действовавшие ранее безнаказанно матерые преступники. Резко повысить раскрываемость преступлений помогла созданная начальником Бюро судебной идентификации парижской префектуры Альфонсом Бертильоном картотека "словесных портретов" преступников, нарисованных со слов свидетелей.
К сожалению, словесные портреты не гарантируют высокой точности опознания разыскиваемых лиц: часто облик, созданный по указаниям свидетелей, весьма далек от реальности. Наличие у следователя фотографий подозреваемых лиц значительно повышает вероятность опознания. В распоряжении следственных органов имеются фотокартотеки, в которых хранятся тысячи фотографий представителей преступного мира.
Давайте подсчитаем, какой объем памяти нужен для записи в нее фотоизображения размером с обычную почтовую открытку. Ее площадь составляет примерно 100 см2 или 10000 мм2. Так как на каждом квадратном миллиметре изображения располагается 100 элементов, а яркость каждого из них кодируется с помощью 8 бит, то легко определить, что для кодирования всей фотографий потребуется объем памяти 10000х100х8 = 8∙I06 бит.
В интегральной микросхеме с объемом памяти, скажем, 30 гигабит (30∙109 бит) можно вместо 3 000 книг или 100 часов непрерывного разговора, хранить около 4000 фотографий преступников.
Как же "извлечь" фотографию из электронной памяти? Двоичную информацию, "считанную" из ячеек памяти, нужно подать на ЦАП. Он превратит двоичный импульсный код в непрерывный ток — электрическую копию изображения. Если этот ток пропустить теперь через специальную газосветную (или газоразрядную) лампу, она будет вспыхивать то ярче, то слабее — как бы мигать в зависимости от силы тока. Остается только сфокусировать оптическими линзами свет от этой лампы в виде пятна размером 0,1х0,1 мм и по строкам перемещать его вдоль фотопленки или фотобумаги. Так как яркость свечения лампы меняется, в различных участках фотографического материала будет вызываться большее или меньшее почернение светочувствительного слоя. В результате этих следов на фотопленку или фотобумагу точка за точкой, строка за строкой наносится изображение. Пока оно еще скрыто от наших глаз. Но вот завершены процессы проявления и фиксирования — и перед нами точная фотокопия оригинала, помещенного ранее в электронную память.
Фотография… Она запечатлевает только одно вырванное из жизни мгновение. И это "застывшее" мгновение оказалось возможным превратить в чередование 0 и 1, которые, в свою очередь, можно "упаковать" в интегральную микросхему "до востребования" или передать с помощью средств связи по назначению.
А нельзя ли "законсервировать" в электронных ячейках не одиночный стоп-кадр из многообразной жизни, а хотя бы ее небольшой "кусочек"? Представьте, вы подключили к дисплею электронную память и на его экране ожили застывшие до той поры мгновенья.
Живые картинки? Ожившие фотографии? Да ведь их впервые широкая публика увидела еще 28 декабря 1895 г. — в Париже на сеансе "синематографа" братьев Огюста и Луи Люмьеров.
Возможно, братья были знакомы с замечательным свойством глаза "видеть" исчезающее изображение еще примерно 0,1 с. Весь "секрет", таким образом, заключается в том, что если каждую секунду делать десять или более фотографий, а затем предъявлять их с такой же частотой, то человек не будет наблюдать разрывов между изображениями. На этом эффекте основаны и "синематограф" братьев Люмьеров, и современное кино, и телевидение. Заметим лишь, что для устранения неприятных мельканий на экране каждую секунду снимается и затем воспроизводится не 10, а 25 кадров.
Не правда ли, эти 25 неподвижных изображений напоминают нам отсчетные значения такого непрерывного процесса, как окружающая нас жизнь, взятые через промежутки 1/25 с?
Итак, любое подвижное изображение — это смена через каждые 40 мс одного неподвижного изображения другим. За время между сменой кадров нужно успеть просмотреть все неподвижное изображение. Как вы помните, изображение размером, скажем, с почтовую открытку содержит миллион элементарных площадок или элементов изображения размером 0,1х0,1 мм. Значит, каждый элемент изображения придется рассматривать в течение одной миллионной доли от отведенных на весь кадр 40 мс. Это непостижимо короткий отрезок времени — всего четыре десятимиллиардных доли секунды! Ясно, что ни одно механическое устройство не способно перемещать световое пятно и фотоэлемент по строкам изображения с такой скоростью.
Вы никогда не задумывались над тем, что вы видите на экране телевизора, когда усаживаетесь перед ним в свободный вечер? Изображение? Нет, в действительности на экране никакого изображения нет, абсолютно никакого! Если бы мы сумели открыть глаза на какую-то ничтожную долю секунды (а речь идет о миллионных и даже миллиардных долях), то увидели бы на экране всего одну светящуюся точку. Это она бежит с невероятной скоростью по экрану, оставляя в нашем глазу след (помните, мы видим то, чего уже нет, еще в течение 0,1 с), изменяющийся по яркости.
Что же заставляет светящуюся точку перемещаться с такой головокружительной быстротой? Электронный луч. Это он способен почти мгновенно отклоняться под действием изменяющегося магнитного поля и развертывать "картинки". Это его можно очень точно сфокусировать с помощью специальных электрических "линз". Первые опыты с электронным лучом начались в самом начале XX в. Еще в 1907 г. профессор Петербургского технологического института Б.Л. Розинг сконструировал первую электронно-лучевую трубку и получил на ней изображение, правда, невысокого качества. Изобретение в начале 30-х годов первых передающих телевизионных трубок с высоким разрешением связано с именами советских ученых, пионеров отечественного телевидения С.И. Катаева и П.В. Шмакова.
Как бы ни отличались конструкции передающих телевизионных трубок разных лет, все они в чем-то имитируют глаз. Роль хрусталика выполняет объектив, роль зрачка — диафрагма. Имеется в трубке и своя "сетчатка" — пластинка, напоминающая пчелиные соты, в ячейках которых располагаются микроскопические фотоэлементы. Конечно, их намного меньше, чем фоторецепторов в глазу: всего около 0,5 млн. Изображение, которое нужно превратить в серию электрических импульсов, проектируется с помощью объектива на эту искусственную "сетчатку".
При этом каждый микроскопический фотоэлемент (представляющий собой капельку светочувствительного серебряно-цезиевого сплава) получает свою порцию света и, если его подключить к внешней цепи, создаст ток, пропорциональный освещенности. Что касается электронного луча, то он как раз и подключает поочередно каждый из 500000 фотоэлементов к внешней цепи трубки, причем отводится ему на это всего 40 мс, пока не сменится кадр. Таким образом, на одном элементе изображения луч "задерживается" не более 80 миллиардных долей секунды (т. е. 80 нс). Сила тока во внешней цепи трубки отражает в каждый момент времени яркость соответствующего элемента изображения, спроектированного объективом на "сетчатку" передающей трубки, и является точной электрической копией передаваемого изображения.
Для превращения непрерывного электрического тока в двоичные импульсы необходимо на выходе передающей телевизионной трубки поставить АЦП. Чтобы перевести в двоичный код яркость каждого элемента изображения, отсчетные значения тока следует брать не реже чем через 80 нс. Использование АЦП с 8-разрядным кодом позволит сохранить в изображении 256 градаций яркости.
Перед приемной телевизионной трубкой — кинескопом — следует поставить ЦАП, чтобы из двоичного кода получить вновь непрерывный ток. От его силы зависит число электронов в электронном луче и, следовательно, число квантов света, выбитых лучом из люминофора — специального состава, покрывающего экран с внутренней стороны трубки. Луч в кинескопе прочерчивает строки на экране с такой же скоростью, как и передающий электронный луч, и "засвечивает" различные участки экрана пропорционально значениям тока в те или иные моменты времени, а следовательно, пропорционально освещенности передаваемых элементов изображения. Очевидно, что оба луча — и передающий, и приемный — должны начинать движение с одного и того же элемента изображения. Чтобы поддерживать одинаковые скорости перемещения лучей и начинать их перемещение с одного и того же элемента изображения, из передающей телевизионной трубки в приемную посылаются специальные управляющие импульсы, называемые импульсами синхронизации.
Читатели, вероятно, обратили внимание на то, что и передача подвижного изображения, и запись его в электронную память требуют очень больших информационных затрат. В самом деле, нетрудно подсчитать, что в течение одной секунды у непрерывной электрической копии изображения необходимо взять 12,5 млн отсчетных значений. Следовательно, при кодировании каждого из них восемью битами общее число бит, описывающее всего один миг из нашей жизни — секунду, составит 100 млн. Сравните эти информационные затраты с теми, которые требуются для передачи или "консервации" текста, речи или музыки, фотографий, и вы увидите, что на превращение в двоичные цифры 0 и 1 пятиминутного видеорепортажа о футбольном матче нужно столько же бит, сколько для кодирования 3000 книг, или 100 часов непрерывного разговора, или 4000 фотографий преступников. Так что, если мы пожелаем сохранить в электронной памяти весь репортаж о футбольном матче (2 тайма по 45 мин каждый), нас не сможет выручить та микросхема фирмы "Intel corporation", о которой уже не раз упоминалось. Значит, свидание с блистательными "звездами" футбола не состоится?
Революцией в области хранения информации стало изобретение видеодисков размером с грампластинку, сделанных из прочного и легкого алюминия и покрытых пластиком. Двоичная информация записывалась на блестящую поверхность диска в виде микроскопических углублений по всей длине спиральной дорожки и затем считывалась с помощью лазерного луча, проходящего по поверхности диска с очень большой скоростью. Каждая сторона видеодиска могла содержать до 54000 цветных изображений. Так, Национальная художественная галерея в Вашингтоне записала на одном видеодиске изображения 1 645 картин и скульптур. Каждая картина имеет кодовый номер, внесенный в видеодисковый каталог. При наборе этого номера на клавиатуре компьютера считывающее устройство отыскивает нужную картину и проецирует ее на экране. Сейчас такие видеодиски (они меньше размером и известны под названием компакт-диски) используются и для записи в цифровом виде подвижных изображений. Стало быть, "звезды" кожаного мяча могут в любое время прийти в наш дом.
Но мы еще ничего не говорили о цвете. Как с помощью всего двух цифр — 0 и 1 — передать тончайшую палитру красок, скажем, бессмертного произведения Леонардо да Винчи, с которого начался наш рассказ?
Кто из нас в детстве не экспериментировал с акварельными красками и не пытался создать различные цветовые оттенки. Оказывается, любой цвет радуги можно получить, смешивая в определенной пропорции краски только трех цветов — красного, зеленого и синего, которые потому называют основными.
Впервые эта мысль была высказана в речи "Слово о происхождении света, новую теорию о цветах представляющее, в публичном собрании Императорской Академии Наук июля 1 дня 1756 года говоренное Михаилом Ломоносовым", в которой великий русский ученый утверждал о существовании трех родов особой материи — эфира: от первого из них происходит красный цвет, от второго — желтый, от третьего — голубой, а все прочие цвета получаются смешением этих трех. Кстати, нелишне будет заметить, что в современной полиграфии для печатания цветных изображений используются именно данные цвета.
Мы уже упоминали о немецком физиологе Г. Гельмгольце. Это ему принадлежит заслуга в создании научной теории слуха. Он же развил и завершил в 1859–1866 гг. теорию цветного зрения. Помните, сетчатка глаза человека содержит светочувствительные палочки и колбочки? Так вот, колбочки, а их около 6–7 млн, делятся на три группы, из которых каждая чувствительна только к какому-либо основному цвету — красному, зеленому или синему.
И что же это значит, что лучи света, отражаясь от предмета и возбуждая колбочки сетчатки, как бы создают на ней три одноцветных изображения — красное, зеленое и синее? Да, так. Все остальные оттенки рождаются в нашем мозгу в результате сочетания основных цветов. Это как бы природная фантазия цветов.
Указанные свойства сетчатки глаза были использованы в 1903 г. французом Луи Жаном Люмьером (тем самым, который вместе со своим братом Огюстом изобрел кинематограф) для создания цветной фотографии. Люмьер брал зерна крахмала, окрашивал их в красный, зеленый и синий цвета, после чего посыпал этим трехцветным порошком фотопластинку. Современная фотопленка, применяемая, например, для изготовления цветных слайдов, имеет три тончайших слоя эмульсии, на которых получаются три одноцветных изображения — красное, зеленое и синее. В разных местах кадра они имеют разную плотность и, складываясь в разных пропорциях, дают многокрасочную картинку.
Итак, основная идея уже четко прорисована: из цветного изображения нужно получить три изображения в основных цветах. В свою очередь, их можно преобразовать в непрерывные токи и затем в двоичные кодовые импульсы для того, чтобы передать по назначению или поместить в электронную память.
Выделение трех одноцветных изображений — красного, зеленого и синего — из неподвижного или подвижного многокрасочного изображения довольно легко осуществляется цветными светофильтрами, пропускающими только свой цвет и задерживающими все остальные. На выходе каждого светофильтра ставится свой анализатор яркости: перемещающийся фотоэлемент с источником света для неподвижного изображения или передающая телевизионная трубка для подвижного. Чтобы воспроизвести цветное изображение, достаточно совместить на фотопленке, фотобумаге или экране восстановленные обычным путем красное, зеленое и синее изображения.
Ну вот, мы и завершили первую часть нашего повествования об удивительной, поистине магической системе счисления, содержащей всего две цифры, но позволяющей сколь угодно точно отобразить окружающий мир, его звуки, его движение. Всего с помощью двух понятий: один и нуль, или ДА и НЕТ, можно представить необозримые массивы информации — текстовой, звуковой, визуальной. Казавшееся вначале непостижимым, невозможным становится теперь естественным, научным, логичным.
Источниками информации могут быть не только люди или компьютеры. Ими также являются различные датчики (температуры, скорости ветра, смещения и т. п.), машины и механизмы и другие устройства. И любая информация может быть преобразована в цифровую форму! Потребители информации — это люди, компьютеры, машины (различные исполнительные механизмы, такие как роботы, станки, устройства автоматики и пр.). В любом случае, находятся ли источник и потребитель информации рядом или на расстоянии сотен и тысяч километров, информацию нужно уметь передавать. О том, как это делается, и пойдет речь в следующих главах.