Д. ЦИПКО ВЫШЕ, ДАЛЬШЕ, БЫСТРЕЕ…

«Земля лучше всех книг учит нас познавать самих себя.

Потому что она сопротивляется нам…»

Антуан де Сент-Экзюпери




Когда семьдесят тонн сверкающего металла сегодня проносятся у границ стратосферы — это не кажется невероятным. Потому что отброшенные назад крылья, вытянутый фюзеляж и едва выступающие гондолы двигателей — словом, все то, что связано с понятием «современный самолет», — гармонично вписывается в пейзаж заоблачной синевы. Но лишь немногим по-настоящему известно, какой бездной труда, таланта, смелости и упорства оплачено это совершенство. Каждая поднявшаяся в воздух машина венчает собой не только опыт создавших ее конструкторов? — за нею вся история авиации. И не только авиации…

«Per aspera ad astra» — «Сквозь тернии к звездам». Это знаменитое изречение Сенеки стало девизом, под которым проходит история авиации: «Через барьеры — к совершенству». Каждый раз, когда человек пытался подняться выше, полететь дальше, и быстрее, перед ним неизменно возникали препятствия. Только за последние годы — с тех пор как «статистика» барьеров приобрела официальный характер — авиация взяла барьер «звуковой», начала штурм «теплового барьера» и натолкнулась на барьер «шумовой». А впереди уже вырастают призрачные черты нового барьера — «химического». И все это барьеры, которые «существуют не столько в самой природе, сколько в наших знаниях».

Эти слова принадлежат известному советскому ученому, создателю целой серии сверхтяжелых реактивных самолетов, генеральному конструктору Владимиру Михайловичу Мясищеву. С его помощью и родились эти короткие очерки об авиации и ее науке, об их завтрашнем дне и победах человека. Победах, рождающих знания…

ЧЕРЕЗ БАРЬЕР НЕВЕРИЯ

Сначала было дерево и полотно. Фанеры и моторы от мотоциклов. И совсем не было опыта, если не считать пришедшего с легендой предостережения: нельзя сооружать крылья из перьев и воска — это стоило жизни Икару. Но, главное, была вера в, казалось бы, невозможное — полет.

Для тех, кто на первых «коробках» пытался прорваться в небо, никогда не существовало вопроса, нужен ли самолет. Это было бесспорно. Им предстояло дать ответ, каким он должен быть. Но пока полет с благополучным концом был слепым подарком удачи, и ответ мог быть только одним: самолет должен надежно держаться в воздухе.

Как первая веялка доказала свою способность веять без помощи ветра, пароход — плыть без весел и парусов, а автомобиль — двигаться без помощи «живых» лошадиных сил, так и самолету предстояло доказать способность машин тяжелее воздуха держаться в воздухе. Самолет должен летать — таковы скромные требования совершенства тех дней.

Человек «учил» самолет летать. Учил и учился сам. На ощупь, движимый во многом лишь интуицией и смелостью, расплачиваясь за свое незнание тяжелыми жертвами, он открывал свою планету с высоты полета. Он был Колумбом пятого океана, и только случай, неверный случай подчас помогал ему в нелегком единоборстве со стихией.

Сегодня, когда могучие крылья «ТУ-114» без посадки вычерчивают в небе трассы в несколько тысяч километров, трудно поверить, что всего пятьдесят пять лет назад тридцать коротких минут полета человеку дарили… дождь и туман. А ведь именно они помогли французскому летчику и конструктору Луи Блерио совершить знаменитый «прыжок» через Ла-Манш.

Всего тридцать два километра разделяют берега Франции и Англии у входа в Ла-Манш со стороны Па-де-Кале. И дело было не в расстоянии, хотя рекорд дальности полета еще был равен двадцати восьми километрам. Главное — двигатель. Моторы тех лет выходили из строя, проработав едва двадцать минут: из-за малых скоростей полета встречный поток воздуха не справлялся с охлаждением. Из-за перегрева мотора вынужден был сесть на полпути к цели пилот Латам, незадолго до Блерио пытавшийся перелететь Ла-Манш.

Но Блерио повезло: пройдя половину дистанции, его самолет врезался в плотную стену дождя и тумана. Полет осложнился, но холодная влага спасла мотор — он продержался «целых» тридцать три минуты.

Полет Блерио ознаменовал 1909 год, — завершивший первый этап развития авиации. Машины тяжелее воздуха утвердили свою победу над цепкими объятиями земного тяготения, а главное — преодолели барьер неверия в возможности человека. Самолет может летать — таков был итог этих первых крылатых лет.

Но тем не менее… Случай, удача, везенье и невезенье — пока от них зависел исход полета, нечего было и думать об использовании самолета в каких-либо практических целях, а тем более — как средства пассажирского транспорта…

Предстояло осваивать то, что добыто с таким трудом. Вчера еще борьба за право летать была подобна лихим партизанским набегам — и природа уступила свои наименее защищенные позиции. Но освоить — значит взять «главную крепость». А между тем авиация уже начинала ощущать свой первый кризис: плата за незнание становилась все тяжелее.

В начале 1910 года при попытке увеличить скорость полета на самолетах Блерио погибают пилоты Делагранж и Леблон — их машины разрушились в воздухе. Спустя полгода тяжесть первой утраты переживает Россия — во время авиационного праздника в Петербурге из-за лопнувшей в полете растяжки гибнет военный летчик капитан Лев Мациевич. И почти вслед за ним смерть настигает французского пилота Шавеза — крылья его самолета неожиданно сложились вниз уже в тот момент, когда острые вершины Альп остались позади и пилот спускался в долину.

Внешне все кажется ясным: многие аварии возникают из-за недостаточной прочности самолетов. Но как их сделать прочными, если в точности неизвестно, какие силы действуют на машину в полете? Как создать самолет устойчивым, управляемым? Случайные находки и открытия, догадки и предположения… Их нужно собрать, осмыслить, оценить. Их нужно подчинить единой цели. Все это может сделать только наука. Та самая, что уже родилась. Но которой еще предстояло взять власть в свои руки.

В ТАЙНУ ПОЛЕТА

Летом 1878 года жители окрестностей села Орехово Владимирской губернии были свидетелями необычного зрелища: оседлав неуклюжий велосипед фирмы «Мишо» с огромным передним колесом и подвязав за спину большие красные крылья из прутьев и шелка, по пыльным проселкам разъезжал грузный бородатый человек. Это был «ореховский барин» — выдающийся русский ученый Николай Егорович Жуковский. Наблюдая за насекомыми и птицами, ставя опыты с летающими моделями и в построенных им самим аэродинамических трубах, он упорно пытается проникнуть в тайну полета.

«О парении птиц» — так назывался прочитанный им в январе 1891 года доклад на заседании Московского математического общества. На примере пернатых «небожителей» в этом труде были рассмотрены, теоретические основы полета и, в частности, дано описание «мертвой петли», которую спустя двадцать два года первым в мире выполнил русский летчик Петр Николаевич Нестеров. Но для Жуковского это пока был лишь один из первых шагов к действительному пониманию законов полета.

Как возникает сила, удерживающая бумажный змей в воздухе? Если верить Ньютону, то подъёмная сила возникает как результат ударов частичек воздуха о поставленную под углом к потоку преграду. Но почему тогда удерживается в воздухе выгнутая вверх пластинка, хотя частицы должны бы были заставить ее упасть? И снова поиски, наблюдения, опыты. Только пятнадцать лет спустя появляется знаменитый труд Жуковского «О присоединенных вихрях», открывший миру причины, рождающие на крыле подъемную силу. Ту самую силу, что несет сегодня над землей все наши самолеты, планеры, вертолеты и винтокрылы.

Сейчас пожелтевшие от времени страницы этого труда бережно хранятся в небольшом особняке на улице Радио в Москве. Это мемориальный музей, носящий имя «отца русской авиации». Когда-то в этом здании заседал первый научный совет ЦАГИ — Центрального аэрогидродинамического института, созданного по указанию В. И. Ленина в 1918 году. А в соседней комнате Андрей Николаевич Туполев строил свой первый самолет «АНТ-1». Любопытно, что когда строительство подошло к концу и самолет предстояло извлечь из мастерской, пришлось разрушить одну из стен: уже тогда «масштабы» молодого советского самолетостроения явно перерастали свою «колыбель».

Открытия не только рождают победы, с ними возникают и новые преграды. Так на лабораторном столе появился существующий и поныне грозный враг всего летящего — турбулентность. В те дни, когда о существе полета знали еще так мало, из это открытие, возможно, никто и не обратил бы внимания, если бы с ним не был связан своего рода научный курьез.

В 1907 году тогда еще молодой профессор Геттингенского университета, а впоследствии знаменитый немецкий ученый Людвиг Прандтль ставит ряд опытов по аэродинамике. И одновременно с ним во Франции аналогичными исследованиями занимается Александр Эйфель, успевший к тому времени обессмертить свое имя знаменитой трехсотметровой стальной башней в Париже. Оба экспериментатора изучают обтекание шара воздушным потоком и после завершения опытов, естественно, сравнивают результаты. И здесь, к их общему ужасу, выясняется непредвиденное — полученные результаты резко отличаются друг от друга: у одного коэффициент лобового сопротивления шара получился в три раза больше, чем у другого.

Любители научных скандалов уже предвкушали наслаждение от длительного спора между учеными, но, к их глубокому сожалению, перепалка не состоялась. Оказалось, что причина этого казуса уже давно известна. Ее открыл известный английский физик Осборн Рейнольдс.

В 1883 году Рейнольдс наблюдает течение жидкостей в трубах и выясняет, что оно может быть двух видов: слоистое, плавное, которое ученый назвал ламинарным (в буквальном переводе это означает «в полоску»), и бурное, вихревое, получившее название турбулентного. Тогда же он устанавливает и тот факт, что при определенных скоростях ламинарное течение может превращаться в турбулентное, при этом резко возрастает сопротивление трения: чтобы протолкнуть жидкость по трубе, приходится затрачивать большие усилия. Этими-то «капризами» потока и объяснялась разница в опытах Прандтля и Эйфеля. Там, где коэффициент лобового сопротивления получился больше, шар обтекался турбулентным потоком.

«Чрезвычайное происшествие» с шаром показало, что турбулентность присуща не только течению жидкостей, но и воздушному потоку. А раз так, значит полету самолета, ракеты, вертолета и даже планера. На примере парителя и познакомился с «сюрпризами» турбулентности наш известный авиаконструктор и большой поклонник планерного спорта Олег Константинович Антонов.

Летом двадцать седьмого года Антонов вместе с группой товарищей закончил постройку легкого планера собственной конструкции. В соответствии с традициями тех лет планер был назван инициалами автора — «ОКА-II» — и вытащен на «Жареный бугор» под Саратовом для испытаний. Конструктор, летные доспехи которого в ту пору состояли из трусов и тапочек, занял место пилота, шестеро крепких ребят дружно взялись за веревки, заменяющие буксировочный трос, и со всей прытью молодых ног кинулись вниз по склону бугра.

По всем расчетам конструктора, планер должен был полететь. Конечно, он мог летать и плохо и хорошо — опыта пока было маловато. Но планер упорно не хотел покидать надежную землю. Все усилия молодых авиаторов кончались тем, что паритель отрывался от земли и тут же грузно плюхался обратно. Неудачей закончились и все последующие попытки загнать «бессовестную птицу» в небо. Ни сильный ветер, ни различные ухищрения пилота, ни самоотверженные усилия «стартовой команды» — ничто не могло заставить планер взлететь. Каникулы подходили к концу, пора было отправляться в институт, и Олег Константинович покинул Саратов, так и не испытав собственного планера. Но его товарищи не сдались. Весной следующего года они снова вытащили «ОКА-II» на тот же бугор, предварительно покрыв тонкую полотняную обшивку планера раствором крахмала. Подобную операцию пробовали проделать и в прошлом году, но бросили: по выражению самого конструктора, полотно провисало между деталями каркаса, «как на ребрах худой лошади».

Снова веревки в руки и опять, памятуя о прошлогодней неудаче, со всех ног вниз по склону. И тут свершилось невероятное: с первых же метров разбега планер легко взмыл в воздух и поплыл, слегка покачивая крыльями, в долину. Планер полетел, а конструктору оставалось только ломать голову над странной загадкой: почему не летал раньше и почему полетел теперь?

В аэродинамике есть такое понятие — «пограничный слой». Так называют тонкий слой воздуха, текущий в непосредственной близости от поверхности обтекаемого предмета — фюзеляжа, оперения и, конечно, крыла. И от того, как ведут себя частицы воздуха в этом слое, зависит очень многое. В частности, поведение частиц в пограничном слое крыла оказывает существенное влияние и на создаваемую им подъемную силу и на неизменно сопутствующую полету силу сопротивления.

Попав на крыло, частицы сначала ведут себя вполне благопристойно — неподалеку от носка профиля крыла поток сохраняет столь приятный авиаторам «полосатый» вид. Но по мере того как частицы удаляются от носка, их поведение начинает меняться. Трущийся о крыло слой воздуха постепенно теряет скорость, а вместе с ним теряют скорость и частицы. Наконец, наступает момент, когда они, словно снаряд на излете, перестают выдерживать прежнее направление полета и начинают двигаться хаотически — ламинарный поток превращается в турбулентный. В этом месте пограничный слой сразу становится толще, как говорят аэродинамики, «набухает». А сопротивление крыла резко увеличивается, словно за счет выросшего пограничного слоя крыло стало толще.

Но и на этом сюрпризы турбулентности не оканчиваются: потерявшие скорость частицы начинали вращаться в набухшем пограничном слое. Вспыхнувшие на крыле вихри постепенно раскручиваются все сильнее и, наконец, словно камень из пращи, отрываются от крыла и улетают прочь. Срыв потока… Когда в авиации кто-нибудь произносит это сочетание слов, ясно: крыло или его часть перестали «нести» — создавать необходимую подъемную силу. И здесь можно ждать любых неприятностей, начиная от резких провалов летящей машины вниз и кончая сваливаниями на крыло или в штопор.

На долю будущего генерального конструктора и его «ОКА-II» выпал наименее опасный из фокусов пограничного слоя — крыло отказалось создавать нужную подъемную силу. И всему виной была реденькая обшивка планера: она пропускала воздух, который заставлял набухать этот самый коварный пограничный слой. Когда же клейстер из крахмала закупорил отверстия между нитями, все пошло как по маслу. «Так, — писал впоследствии в увлекательной книжке своих воспоминаний Олег Константинович, — из-за неуважения к пограничному слою я лишился удовольствия первым испытать свой планер…»

Трудно сказать, предопределило ли это первое знакомство с пограничным слоем дальнейшую судьбу конструктора, но только потом ему еще много раз приходилось уделять этому слою особое внимание. И именно тогда, когда речь шла о взлете и, конечно, посадке. Но это было значительно позднее. А пока…

ВОТ ОН, ФЛАТТЕР!

Авиационный 1934 год ознаменовался большим количеством удивительных на первый взгляд сенсаций. Началось с того, что в многодневном перелете Англия — Австралия первое место неожиданно для всех занял английский самолет «Комета» фирмы «Де-Хевиленд», который по своим характеристикам, казалось бы, явно уступал лучшим военным самолетам-истребителям тех лет. Не остыли еще страсти после первой сенсации, как поклонникам авиации вновь пришлось удивляться… В соревнованиях на кубок Дейч-де-ля-Мер побеждает пилот Арну на самолете «Кондор-450», также, казалось бы, уступающем лучшим самолетам того времени. Но своеобразным триумфом был рекорд в классе гоночных гидросамолетов, установленный итальянским летчиком Аджелло: его «Макки-Кастольди» пролетел три километра с невиданной по тем временам скоростью — 709 километров в час. В чем дело?..

У английской «Кометы» мощность мотора действительно была почти в два раза меньше, чем у истребителей того же веса. Но зато у нее… Впрочем, для того чтобы оценить это свойство, необходимо сказать о том, как выглядели самолеты двадцатых годов. А выглядели они, по нашим сегодняшним представлениям, не очень изящно. Толстое крыло или даже два крыла крепились к фюзеляжу многочисленными подкосами, расчалками и растяжками. Гофрированная металлическая обшивка машин была усеяна миллионами заклепочных головок. Трубчатые фермы подпирали фюзеляж — снизу к ним крепились колеса, сверкающие в полете своими велосипедными спицами. А спереди торчали ребристые головки цилиндров мотора и козырек кабины пилота. И вся эта ощетинившаяся армия деталей старательно превращала набегающий воздушный поток в турбулентный.

Иное дело «Комета». Ее фюзеляж имел благородную каплевидную форму, и над ним едва заметной надстройкой возвышался обтекаемый закрытый фонарь пилотской кабины. Исчезли расчалки и подкосы — тонкое крыло плавно уходило в стороны от закрывших стык с фюзеляжем зализов. Двигатели, установленные под крылом, оделись в обтекаемые гондолы с маленькими отверстиями для доступа охлаждающего воздуха. И в эти же гондолы в полете убирались колеса шасси самолета. Весь облик машины, казалось, говорил только об одном — вот что такое совершенная аэродинамика!

Еще ощутимей могущество аэродинамики проявлялось при взгляде на гоночный гидроплан «Макки-Кастольди». Его узкий фюзеляж походил на вытянутое веретено корпуса ракеты. В машине все было подчинено одной цели — скорость, скорость, скорость!..

Конечно, всеми этими победами авиация была обязана не только успехам аэродинамики: двигателисты создали к этому времени новые, легкие и мощные моторы, способные работать без остановки длительное время, а конструкторы самолетов — они разработали совершенные и технологичные конструкции, позволяющие сочетать в одной машине сразу целый ряд необходимых качеств. И если аэродинамика сказала решающее слово в борьбе за скорость, то конструкторы самолетов и двигателей открыли авиации дальние маршруты.

«Рекорд дальности» — так была названа построенная в 1933 году новая советская машина, конструкцию которой разработал П. О. Сухой под руководством А. Н. Туполева. Под маркой «АНТ-25» она навечно вошла в историю, как образец незаурядной «летучести». Длинные крылья этого самолета были способны покрыть без посадки расстояние в десять тысяч с лишним километров — цифра достаточно внушительная даже для наших дней. Именно на этом самолете и совершили позднее свои знаменитые перелеты по маршруту СССР — Северный полюс — США экипажи Чкалова и Громова.

Одновременно со строительством новых самолетов в нашей стране непрерывно расширяется сеть пассажирских воздушных линий. Авиация начинает использоваться в сельском хозяйстве. Летчики высаживают экспедиции во льдах Арктики, устанавливают все новые и новые рекорды. Трудно перечислить все достижения этих лет — авиация стремительно движется вперед. И вдруг останавливается, словно бегун, под ногами у которого разверзлась бездна…

Волна необъяснимых воздушных катастроф прокатилась по всем странам. Аварии случались с самолетами самых разных конструкций и назначения. Полет, казалось, протекал нормально, и вдруг машина словно взрывалась в воздухе. Спасшиеся на парашютах не могли сказать что-нибудь конкретное — все происходило слишком быстро: невиданной силы удар, треск, грохот, короткая агония — и от самолета остаются исковерканные куски металла, падающие вниз.

Только позднее удалось установить, что причиной аварий являются мощные вибрации крыла или оперения самолета, возникающие при взаимодействии аэродинамических сил и сил упругости самой конструкции. Самым страшным было то, что эти вибрации возникали совершенно неожиданно и в течение нескольких секунд достигали такой мощи, что разрушали машину. Новому противнику авиации дали название «флаттер» (от английского слова «трепетать»).

Встреча с флаттером была неожиданностью не только для пилотов. Ни конструкторы, ни ученые до тех пор еще не встречались ни с чем похожим на это явление. Неизвестно было и как с ним бороться. Оставалось одно — искать. Искать причины, искать способы борьбы.

И поиски начались. Теория полета пока ничем не могла помочь исследователям: флаттер как таковой в те дни еще не числился в ее «подопечных». А без теории путь был один — эксперименты, продувки в аэродинамических трубах и главное — летные испытания. Все, что было сделано для обуздания флаттера на земле, следовало проверить в полете: условия опыта и реальность далеко не всегда совпадают. Словом, необходимо было «нащупать» флаттер в полете и после этого вернуться на землю, чтобы чуткие и бесстрастные свидетели — приборы могли рассказать об «услышанном» и «увиденном» в воздухе. Одним из первых доставил на землю потрепанный флаттером самолет Герой Советского Союза Михаил Михайлович Громов, А позднее аналогичную задачу поручили ныне известному всей стране заслуженному летчику-испытателю, Герою Советского Союза Марку Лазаревичу Галлаю. Ему предстояло опробовать в полете аппаратуру, извещающую о приближении флаттера.

Для проведения эксперимента был выбран скоростной бомбардировщик «СБ», который намеренно «испортили»: сняли с него уже известные к тому времени так называемые противофлат-терные балансиры. Испытываемая аппаратура заняла свое место в кабине, и пилот отправился «трогать чудище за бороду». Не сразу состоялась встреча с грозным противником. Но когда она все же состоялась, действительность превзошла самые страшные предсказания. Вот как описывал позднее свою встречу с флаттером сам пилот: «И вдруг — будто огромные невидимые кувалды со страшной силой забарабанили по самолету. Все затряслось так, что приборы на доске передо мной стали невидимыми, как спицы вращающегося колеса. Я не мог видеть крыльев, но всем своим существом чувствовал, что они полощутся, как вымпел на ветру… Грохот хлопающих листов обшивки, выстрелы лопающихся заклепок, треск силовых элементов конструкции сливались во всепоглощающий шум. Вот он, флаттер!..»

Галлай вышел победителем из этого неравного поединка с флаттером, он сумел доставить смертельно раненную машину на землю, и чуткие самописцы рассказали ученым немало интересного. Так в содружестве ученых и испытателей и родилась теория флаттера, которой с успехом пользуются при проектировании самолетов и по сей день. И по тому, как сравнительно быстро была добыта эта победа, уже можно было судить — наука стала могучим союзником полета.

Могучий союзник… Именно ему авиация была обязана успехами, достигнутыми в тридцатых годах, он же открыл и пути дальнейшего развития. Не все было гладко в этом неуклонном движении вперед; в авиации едва ли не четче, чем в других областях знания, ощущается справедливость бессмертных слов Маркса: «В науке нет широкой столбовой дороги…»

ПОБЕЖДАЯ САМИХ СЕБЯ…

Несколько лет назад в машинном зале одного из авиационных научно-исследовательских институтов ежедневно можно было услышать один и тот же диалог:

— Ну как?

— Держится.

— А ветер?

— На пределе.

— Пилот?

— Спит пилот.

— И держится?

— Стоит.

И снова люди вспарывали пеструю начинку электронных блоков, в десятый раз меняли схемы и программы, сверяли затертые диаграммы и графики и снова с надеждой и тревогой бросались к голубому экрану осциллографа. Но безжалостная молния, взлетев к самому обрезу экрана, каждый раз возвращалась вниз. И каждый раз все озабоченнее становились лица людей — для этого у них были веские основания…

Во время испытательного полета потерпел аварию один из новых высотных самолетов. Погибла машина, которая, казалось бы, не могла и не должна была погибнуть. Все говорило против случившегося: надежная конструкция и двигатели лайнера, оставшиеся позади серьезные испытания, высокое мастерство экипажа.

«Бросило! Падаем!..» — вот и все, что успел передать на землю радист. И эта короткая фраза заставила насторожиться конструкторов, инженеров, ученых.

В авиации есть такой термин — «полет в неспокойной атмосфере». В обиходе же смысл такой обтекаемой формулировки значительно точнее передается одним словом — «болтанка». Это один из самых давних и серьезных противников полета.

Летчиков сравнительно мало волнуют солнце и дождь. Но ветер всегда остается предметом особого внимания. Особенно с его восходящими и ниспадающими ураганами, страшным ветровым колесом. Оно внезапно обрушивает на машину стремительный, подобный удару кинжала поток, который может швырнуть самолет на несколько сотен метров вверх или вниз, сбросить в сторону или вздыбить, как норовистого коня. И горе пилоту, если он вовремя не вступит в борьбу: секундное промедление грозит тем, что органы управления самолетом уже не могут справиться с вынужденным «курбетом». Вот почему самолет проектируется с таким расчетом, чтобы болтанка ему была не страшна.

Точно так же проектировался и погибший самолет. Но тем загадочнее звучало донесшееся из эфира: «Бросило!..» По всем расчетам, машина должна была справиться с болтанкой. И если она не справилась, значит где-то скрывается коварный дефект. Ошибка в расчетах? И в конструкторском бюро тщательно проверяют ровные колонки цифр, продувают модели самолета в аэродинамических трубах, а летчики-испытатели готовятся отправиться на «близнеце» погибшего на поиск причины.

Одновременно приняли решение исследовать поведение самолета при болтанке и на специальной моделирующей электронной установке. Для этого все характеристики самолета сначала превратили в графики и формулы, которые затем были занесены в машину в виде строгого сочетания конденсаторов, сопротивлений, емкостей и прочих деталей электроники, — так родилась модель самолета. Аналогичным образом в память машины занесли модель полета и модель… летчика — в виде тех отклонений рулей, которыми пилот управляет. Была заложена в машину и модель болтанки.

За те годы, что существует авиация, ученые собрали достаточно богатую статистику всевозможных сюрпризов атмосферы. Изучили и то, какой мощности порывы ветра могут обрушиться на самолет на той или иной высоте. Все эти сведения после соответствующей обработки и позволили установить нормы, с помощью которых учитывается болтанка. Обычно эти нормы задаются в виде графика, глядя на который можно узнать, что наиболее мощные порывы ветра встречаются у земли, там, где сказывается влияние ландшафта нашей планеты: гор, морей, материков. А с подъемом на высоту эти порывы постепенно сходят на нет — не случайно пассажиры современных крылатых лайнеров почти не ощущают «неровностей» воздушных дорог. Вот такой-то график «нормированного порыва» и послужил прообразом модели болтанки.

Поначалу моделировался нормальный полет. На экране осциллографа тонкий луч вычерчивал ровную горизонтальную линию. Внезапно включался «порыв ветра». Он «вздыбливал» самолет. Линия на экране начинала искривляться кверху. Почувствовав, что самолет «бросило», «летчик» включался в работу, пытаясь с помощью рулей вернуть самолет в нормальное положение. Если это ему удавалось, линия на экране возвращалась вниз; если же самолет отказывался повиноваться, линия уходила вверх, за границу экрана.

Но линия упорно не желала уходить за экран, и в этом было самое удивительное. Самолет не желал терять устойчивость даже тогда, когда ветер был предельным, а пилот «спал» — включался в работу с громадным опозданием. Конечно, сначала машина реагировала на порыв — линия взлетала вверх, но потом неизменно возвращалась обратно. В чем дело? Ведь самолет, судя по всему, потерял устойчивость именно при попадании в болтанку! Почему ж он этого не делает сейчас? Ошибка в моделировании?..

Ошибку искали долго и упорно: меняли схему модели, десятки раз проверяли надежность работы самой электронной машины, учитывали уже такие нюансы полета, которые даже при более строгих экспериментах не берутся в расчет. И после каждого очередного усовершенствования неизменно повторялся диалог:

— Стоит?..

— Держится!..

Наконец, кто-то из молодых сотрудников не выдержал:

— А что, если ветер?.. — произнес он с таким видом, словно, отрешившись от всего земного, кинулся в пропасть.

На него зашикали:

— Ты что, смеешься? Мы и так взяли ветер «с запасом»!. Но криминальный вопрос давно мучил не только новичка — «корифеи» сами уже начали подозревать, что все дело в величине порыва. И так как иного выхода не было, решено было плюнуть на норму и взять ветер побольше.

И тут все пошло по-другому. Самолет начал «взбрыкивать» так, что «летчик» едва успевал парировать его «курбеты». А стоило ему промедлить, как зеленая молния стремительно вылетала за обрез экрана — машина теряла устойчивость и управляемость. Все получалось как будто бы так, как и следовало ожидать, если бы не порыв — он-то был больше нормированного, того, который согласно статистике можно было ожидать на больших высотах. Впрочем, что касается статистики, то говорят, что ложь бывает трех видов: просто ложь, ложь злостная и… статистика. Далеко не всегда последняя утверждает незыблемые истины…

Этот эпизод рассказан не случайно — путь авиационной науки и тех, кто движет ее, не так прост, как может показателя на первый взгляд. Часто чрезвычайно трудно отказаться от того, что мы называем установившимися понятиями и представлениями. Величие Н. Е. Жуковского состояло не только в том, что его могучее дарование объединило в себе логику математика, трезвый подход инженера, наблюдательность экспериментатора и талант педагога, — он сумел подняться над царившей в умах теорией Ньютона.

Отказ от господствующих представлений и сегодня доступен не каждому. А тем более он был труден тогда, когда речь шла о таком серьезном препятствии, как «звуковой барьер».

ОТ ЗВУКОВОГО К ТЕПЛОВОМУ

Появились реактивный двигатель и реактивные самолеты. Почти десять лет прошло с того дня, как летчик-испытатель Григорий Бахчиванджи поднял в небо первый ракетный самолет «БИ», созданный под руководством известного советского ученого и конструктора Виктора Федоровича Болховитинова. А в кругах авиационных специалистов разных стран все чаще поговаривали о новом скоростном кризисе. И действительность, казалось, и впрямь решила подтвердить эти прогнозы: все попытки достичь скорости звука оканчивались неудачей. Природа словно отгородила неприступной стеной область сверхзвуковых скоростей. И эта стена многим казалась непреодолимой — «звуковой барьер».

Аэродинамика всегда раскрывает свои законы с помощью графиков. Их лаконичный язык понятен ученым лучше, чем самое пространное объяснение. Вот на основании одного из таких графиков и родился пессимистичный прогноз о невозможности достичь скорости звука. На графике было показано, как растет лобовое сопротивление самолетов с увеличением скорости полета. И, глядя на этот рост, невольно приходилось задумываться: а что, если действительно «стена»? Кривая, характеризующая коэффициент лобового сопротивления, лишь слегка поднималась в области малых, дозвуковых скоростей, но зато при скоростях, близких к скорости звука, круто уходила вверх или, как говорят математики, в бесконечность. Конечно, никакие двигатели не смогли бы протолкнуть самолет через стену выросшего в десятки и согни раз сопротивления воздуха. Но действительно ли сопротивление должно быть таким огромным?

Вот тогда-то и родилась сказанная Владимиром Михайловичем Мясищевым фраза, которая сегодня по праву считается классической: «Барьеры существуют не столько в самой природе, сколько в наших знаниях. Такова диалектика развития…» Прошло совсем немного времени, и жизнь подтвердила справедливость этой мысли. Оказалось, что лобовое сопротивление действительно растет очень сильно, если штурмовать звуковой барьер на самолетах с дозвуковыми аэродинамическими формами. Но если эти формы изменить…

На «лабораторном столе» аэродинамиков родились формы сверхзвуковых самолетов: тонкие и короткие крылья, фюзеляжи с большим удлинением, фонари пилотских кабин с заостренной передней кромкой и воздухозаборники двигателей с регулируемым входным и выходными отверстиями. А в результате крутая стена сопротивления на графике превратилась в едва заметный бугорок, подобный арочному мосту, переброшенному в зазвуковую область.

Но не только аэродинамика штурмовала звуковой барьер. Самые разные профессии пришлось созвать под свои знамена авиационной науке: слишком уж необычным было поведение самолетов в новой для человечества области скоростей. «Вдруг самолет затрясся, словно пулемет при стрельбе… Скорость, которую я навязываю ему, приближается к скорости звука, и самолет дрожит — он определенно находится на грани разрушения. Бог неба держит нас в зубах, и земля подо мной конвульсивно содрогается. От этой проклятой тряски самолет разлетится в куски… Инстинктивно хочу убавить скорость… Газ убрать, воздушные тормоза выпустить! Тряска усиливается, меня словно бьет в конвульсиях… Я тяну ручку управления на себя. Господи, еще хуже… Я жду. Немного приподнимаю нос самолета. Снова жду… Так! Внезапно наступает тишина. Почему?..» Так описывает приближение к звуковому барьеру американский летчик-испытатель У. Бриджмен в своей книге «Один в бескрайнем небе».

Почему прекратилась тряска, почему машины — неожиданно теряют устойчивость, почему «захлебываются» компрессоры двигателей и горят лопатки турбин?.. Понадобились годы упорных исканий, прежде чем сверхзвук был окончательно покорен. Впрочем, конструкторам здесь еще много работы. Лишь сравнительно небольшое число машин достигает сегодня скоростей порядка 1500, 1700, 2000 или 2500 километров в час. И перед этими стремительными птицами уже выросло новое препятствие — тепловой барьер.

Воздух, столь податливый на малых скоростях, обретает в сверхзвуковом полете невиданную «твердость». Разрезая его упругую стену, носки крыльев нагреваются до температур в несколько сотен градусов. Немногим меньше температура трения воздуха об обшивку. Самые лучшие материалы не в состоянии выдержать упорных тепловых «атак»: алюминиевые сплавы становятся податливыми, как воск, теряют прочность сталь и титан.

Кинетический нагрев зависит от скорости полета и плотности разрезаемого крылом воздуха. Плотность падает с высотой, одновременно уменьшается и нагрев. Так возник «тепловой пол» самолетов — температурная граница сверхзвукового полета. Конечно, эта граница временная, ее определяет термостойкость тех материалов, которыми человек располагает сегодня. Но как только наука найдет материалы, способные сохранять достаточную прочность при более высоких температурах, так «тепловой пол» немедленно опустится на меньшие высоты.

Казалось бы, выход найден: большие высоты — обширное поле для громадных скоростей. Но это только так кажется. На больших высотах, в разреженных слоях атмосферы, маленькие крылья скоростных машин отказываются создавать необходимую подъемную силу. Так на больших высотах выросла еще одна граница — «потолок крыльев», — выше которой могут «жить» лишь баллистические снаряды и спутники. Природа отвела скоростным крыльям человека лишь узкий «коридор», в котором трудно развернуться, когда речь заходит о сверхзвуковом пассажирском сообщении.

Большинству пассажиров Аэрофлота хорошо знаком высотный полет — они отлично чувствуют себя в герметизированных салонах «ТУ», «ИЛов», «АНов», бороздящих небо в нескольких километрах от земли.

Но как только скорость полета вырастет до сверхзвуковой, пассажирские машины уйдут по границе «теплового пола» все выше и выше, туда, где меньше лобовое сопротивление и кинетический нагрев конструкции.

Атмосферное давление быстро падает с высотой. И для того чтобы обеспечить нормальные условия для пассажиров, высотные машины снабжают специальными устройствами, поддерживающими в салонах если не земное, то, во всяком случае, близкое к нему давление, а сами салоны делают герметическими. Проблема герметизации встает перед конструкторами сверхзвуковых машин во всей своей остроте.

Стоит нарушить герметичность, как воздух со страшной силой устремляется в разреженное пространство за бортом. В практике одной из зарубежных авиалиний известен даже такой случай. В полете был поврежден иллюминатор. Поток воздуха, вырвавшийся наружу, увлек за собой пассажира, сидевшего вблизи иллюминатора, и выбросил его за борт. Конечно, подобные происшествия — исключение. Да и не в них главная опасность. В случае нарушения герметизации резко упадет давление в кабинах и перед пассажирами возникнет угроза «кислородного голода».

Правда, случись подобное происшествие сегодня, ничего особенного не произойдет: пилоты немедленно начнут снижаться до безопасной для жизни и здоровья пассажиров высоты. Дозвуковые машины позволяют это сделать без особого труда: уменьшаются обороты двигателей, навстречу потоку уходят воздушные тормоза, и, теряя скорость, самолет быстро планирует к земле. А в те короткие минуты, что тратятся на этот маневр, на помощь пассажирам приходят аварийные кислородные приборы.

Сегодня все просто. Но когда разговор заходит о сверхзвуковом полете, эта простота оборачивается невероятными трудностями. Мало того, что быстро погасить большую скорость машины достаточно сложно: резкого торможения при снижении не перенесут сами пассажиры. А при медленном торможении снижающийся самолет неизбежно упрется в «тепловой пол». Выход один — обеспечить максимальную надежность герметизации кабин. Но как это сделать? И взоры конструкторов вот уже в который раз обращаются к потенциальным источникам разгерметизации — отверстиям в фюзеляже: как уменьшить их количество? От дверных проемов, конечно, освободиться не удастся. А от окон?..

Как часто пассажиры пользуются окнами? Пожалуй, только тогда, когда самолет стоит или движется по земле. А в полете в лучшем случае заглянут раз-другой, чтобы удостовериться в сохранности крыльев и моторов. Словом, окна пассажирских салонов — это скорее дань комфорту. Так само собой напрашивается решение — отказаться от окон.

Ученые и инженеры предлагают заменить окна экранами телевизоров. Эксперимент с установкой телевизоров недавно был проведен в Японии. А те расчетные исследования, которые выполнены в США, показывают, что только экономия в весе конструкции за счет отказа от оконных проемов окупит установку телевизионных экранов для каждого пассажира. Если один из членов экипажа будет время от времени управлять приемочной телевизионной камерой, сопровождая показ комментариями, то это даст пассажирам гораздо лучшее представление о том, что происходит в полете или во время стоянки на земле, чем любое сочетание окон.

Кстати сказать, телевизор не единственная возможность заменить окна. Дело в том, что полет в сверхзвуковом самолете будет продолжаться сравнительно недолго — максимум два-три часа. И это время можно использовать для демонстрации кинофильмов. У нас в стране, пожалуй, впервые в мире проводилась опытная демонстрация кинофильмов в самолете «АН-10» — его просторный салон с приподнятыми задними рядами кресел как нельзя лучше подходит на роль зрительного зала. Конечно, все это пока отдельные эксперименты.

Проблема герметизации, бесспорно, очень важна, но ее решение и при сохранении окон в принципе уже есть. А вот целый ряд других проблем сверхзвукового пассажирского сообщения — здесь вопрос пока еще остается открытым. Вот одна из таких проблем и… новый барьер на пути авиации.

ШУМ И КРЫЛЬЯ…

Эта сенсация стоила Канаде ровно миллион долларов. Сверхзвуковой истребитель «F-104» пролетел над столицей страны, после чего опытное строящееся здание уменьшилось на величину, которую в обтекаемых газетных формулировках называют «сильными повреждениями». Эти-то повреждения и были оценены в звенящий круглый миллион.

Происшествие в Оттаве, возможно, скоро бы и забылось, если бы не причины, которые его вызвали. А эти причины были достаточно серьезными. Особенно для тех, кто работает сегодня над проектами сверхзвуковых пассажирских самолетов. И не случайно в опубликованной вскоре статье Флойда, главного инженера группы перспективного проектирования английской фирмы «Хоукер-Сиддли», говорилось:

«Полеты сверхзвуковых гражданских самолетов над странами с большой плотностью населения вызовут серьезные возражения, поскольку они отразятся на менее здоровых людях. Многие из них перебрались бы в более спокойные районы страны, но назвать такое место, в будущем свободное от частых звуковых ударов, просто невозможно…»

Итак, звуковой удар. Прежде чем сверхзвуковая пассажирская авиация получит право на жизнь, нужно научиться бороться с ним. Но чтобы бороться, надо прежде всего познать его природу, законы, поведение. Именно эту серьезную задачу в упорном поиске решают ученые и инженеры многих стран мира.

Рассекая воздух своим носом или крылом, самолет заставляет колебаться его частицы. И эти колебания распространяются во все стороны со скоростью звука. Если скорость самолета меньше звуковой, то колебания, естественно, обгоняют его и как бы подготавливают воздушный поток к встрече с машиной. Вот почему воздух так плавно обтекает формы дозвуковых самолетов. Иное дело сверхзвуковые скорости. Колеблющиеся частицы уже не успевают обогнать самолет и накапливаются перед носом фюзеляжа или крыла, образуя плотную стену — ударную волну. У этой волны есть и другое название — «скачок уплотнения». А появилось оно вот почему: если перед волной воздух имеет обычное, атмосферное давление, то за ней это давление может быть в десятки раз больше.

Вот этому-то повышенному давлению за ударной волной и обязан своим рождением новый барьер авиации — «шумовой».

Наше ухо очень чутко реагирует на малейшие изменения давления, но еще более чувствительно оно к скорости, с которой это давление изменяется. У человека, попавшего под тянущийся по земле шлейф ударной волны от сверхзвукового самолета, ухо воспринимает повышение давления в принципе так же, как удары грома. Все дело осложняется тем, что переход от нормального давления к повышенному здесь происходит мгновенно, а удару грома обычно предшествует молния, которая как бы подготавливает: внимание, ждите удара!

Да, у ударной волны нет предупредительных сигналов. Возможно, поэтому разные люди и реагируют на звуковой удар по-разному. Так, в разных местах в Соединенных Штатах реакция людей на звуковой удар была различной, хотя экспериментальный самолет все время летел на одной высоте и с постоянной скоростью.

Все это невероятно усложняет работу исследователей: очень трудно по таким отзывам установить допустимую величину звукового удара. А ведь им нужно учесть не только реакцию людей. Птицы, животные и даже… оконные стекла — как отразится на них звуковой удар?

Вряд ли кто-нибудь придет в восторг, если от пролетающего над домом самолета вылетит стекло в окне, а посуда в шкафу будет выбивать барабанную дробь. Необходимо оградить население от неприятных воздействий. Пока тщательные исследования позволили установить четыре основные причины, определяющие интенсивность звукового удара: это скорость самолета, его вес, форма и высота полета.

Скорость полета мало влияет на интенсивность звукового удара, если, конечно, ее не свести до минимума — сделать всего на десять-двадцать процентов больше скорости звука. Но при этом самолет будет вынужден все время преодолевать тот самый «бугорок» сопротивления, в который превратился «звуковой барьер». А кроме того, обладая такой сравнительно небольшой скоростью, сверхзвуковой самолет не будет иметь никаких преимуществ перед дозвуковыми машинами.

Точно так же мало влияет на величину звукового удара и уменьшение веса: результаты получаются ощутимыми лишь тогда, когда все сводится к самолету, рассчитанному всего на 40–50 пассажиров. Существенного влияния здесь нельзя добиться и изменяя форму самолета; волей-неволей приходится его снабжать фюзеляжем, в котором бы могли разместиться пассажиры. Остается старый и верный союзник авиации больших скоростей — высота. И это понятно: чем выше летит самолет, тем большее расстояние проходит ударная волна, прежде чем попадет на землю. А пока она преодолеет этот путь, ее интенсивность уменьшится во много раз.

Правда, безопасные высоты полета оказались довольно большими: для самолетов с утроенной звуковой скоростью-порядка двадцати пяти километров, а если скорость только вдвое больше звуковой — двадцать километров. Сами по себе эти высоты не очень смущают конструкторов — современные самолеты летают и выше. Но вот этапы набора высоты и снижения выдвигают целый ряд проблем.

Нужно сказать, что даже небольшое снижение самолета с безопасной высоты приводит к весьма существенному уменьшению допустимых скоростей полета. А это означает, что самолет должен обладать способностью держаться на достаточно большой высоте при сравнительно малой скорости. И если вспомнить о существовании «потолка крыла», то становится ясным, что для того, чтобы обеспечить необходимую подъемную силу, сверхзвуковые машины придется снабжать довольно большими крыльями. «Часть» этих крыльев в горизонтальном полете будет не только не нужна, но и превратится в бесполезный груз и дополнительное сопротивление.

Кроме того, набор высоты и снижение по границам «шумового пола» будут продолжаться значительно дольше, чем если бы этих ограничений не было, и расходы топлива при этом сильно вырастут.

Правда, в последнее время ученые разных стран начали возлагать большие надежды на самолеты с так называемым «крылом изменяемой геометрии», которое позволяет управлять аэродинамическими характеристиками самолета в зависимости от высоты и скорости полета.

Вот один из проектов такого самолета. Глядя сверху на его треугольное крыло, кажется, будто оно составлено из двух частей — стреловидного крыла и поставленного к нему впритык хвостового горизонтального оперения. Собственно, так оно и есть: стреловидные части треугольного крыла «живут» своей самостоятельной «жизнью». На взлете эти плоскости раздвигаются, уходят вперед, и самолет становится похожим на наши дозвуковые машины с достаточно длинными крыльями. У таких крыльев несущие свойства примерно в полтора раза выше, чем у треугольных. А в переводе на аэродромный «язык» это означает, что такому самолету потребуются взлетно-посадочные полосы примерно такой же длины, как и у современных транспортных самолетов. Это огромное достоинство.

После взлета, по мере того как самолет с таким крылом будет разгоняться, поворотные плоскости постепенно будут «складываться», сдвигаться, сохраняя все время наивыгоднейший угол стреловидности и строго необходимую подъемную силу. Это-то и даст возможность обогнуть границы «шумового пола» без особых потерь топлива. Конечно, все эти преимущества должны быть оплачены дорогой ценой — сложными и тяжелыми механизмами поворота плоскостей. Но, может быть, именно это и будет самая приемлемая плата за совершенство.

Впрочем, что вообще скрывается за этим понятием — «совершенство»? Едва покинувший цехи завода опытный самолет еще только готовится к первому полету, а у создавших его людей уже масса новых идей, замыслов, решений. И если им поручить спроектировать машину примерно такого же типа, то они сделают ее еще лучше, надежнее и, конечно, совершеннее. Так что ж это такое — «совершенство»?..

С ЦИФРОЙ — В ЗАВТРА

Есть заветная цель, к которой каждый раз на пути к новому стремится творческая мысль ученых, инженеров, конструкторов; в технике ее определяет союз понятий «совершенство» и «время». В «переводе» же это означает, что каждая новая машина должна гармонично «вписываться» в ту обстановку, в какой ей предстоит жить. А отсюда немедленно возникает вопрос: какой для этого она должна быть?

Для того чтобы создать новый пассажирский самолет, — а это значит: спроектировать, испытать его и запустить в серийное производство, — в среднем требуется три-четыре года. При наших темпах развития за этот срок многое изменится: вырастут новые города, откроются новые трассы, увеличится число пассажиров, появятся новые материалы и двигатели, новые методы производства и оборудование. И если конструктор создаст машину для грядущих лет по мерке сегодняшнего дня, то, вероятней всего, она вступит в жизнь уже заведомо устаревшей.

Возможна и другая крайность — конструктор переоценил как потребности, так и возможности завтрашнего дня. По логике вещей в этом случае должна получиться машина с чрезвычайно высокими техническими качествами. Но и такой самолет появится, что называется, не к месту — проявить свои достоинства он не сможет, потому что в них не будет необходимости, а так как всякое достоинство должно быть оплачено, применение новой машины может оказаться весьма дорогим «удовольствием».

Ясно, что наиболее выгодный вариант лежит где-то между этими «антиподами». И чтобы найти его, надо уметь заглянуть в завтрашний день, заглянуть не только умозрительно, а, что называется, с цифрой в руках. Пожалуй, это самая ответственная задача авиационной науки, потому что если ошибка рабочего сказывается на результатах работы его бригады, ошибка начальника цеха ощущается уже в масштабах завода, то ошибки ученых и конструкторов могут сказаться на темпах развития целой отрасли. Вот почему совсем не просто ответить на вопрос, каким должен быть самолет завтрашнего дня.

Только в течение последних десяти лет воздушные пассажиры успели познакомиться с добрым десятком новых машин, у каждой из которых свои особенности и достоинства, свое место в жизни. Взять хотя бы средние самолеты «ТУ-104», «ИЛ-18» и «АН-10» — все они поднимают в воздух примерно по сто пассажиров. И тем не менее у каждой из этих машин есть своя «сфера влияния». Реактивный «ТУ-104» превосходит своих турбовинтовых «соперников» в скорости полета — 900 километров в час против 600, но зато уступает им в дальности полета. У «ИЛ-18» и «АН-10» скорости одинаковы, но первый обладает большей дальностью полета, а у второго есть такое важное качество, как неприхотливость, — ему подходят не только бетонированные, но и простые грунтовые аэродромы.

Точно так же «поделили» скорость и неприхотливость новые самолеты для местных авиалиний «ТУ-124» и «АН-24», поднимающие в воздух по сорок четыре пассажира. А пришедший на помощь гиганту «ТУ-114» новый пассажирский лайнер «ИЛ-62» превосходит флагмана нашего воздушного флота в скорости, но уступает ему в дальности полета. Ну, а вертолеты по своей неприхотливости к площадкам для взлета и посадки далеко оставили позади все самолеты.

Спрашивается, все ли эти машины отвечают тем понятиям о совершенстве, которые рождены последними шагами авиационной науки? Строго говоря — нет: часть из них была создана более десяти лет назад. И тем не менее стоит попробовать снять любую из этих машин с вооружения Аэрофлота, как сразу же образуется весьма заметная брешь. Вот отсюда-то и следует, что совершенство самолета, вертолета, винтокрыла или еще какого-нибудь «лёта» нельзя оценивать как нечто самостоятельное — достоинства любой летающей машины познаются лишь тогда, когда эта машина является неотъемлемым звеном совершенной системы, которую мы называем транспортной авиацией.

Анализ планов развития страны и перспектив технического прогресса, определение на основании этого анализа основных черт авиации будущего как единой системы и, наконец, разработка требований к отдельным звеньям этой системы — новым транспортным машинам — таковы этапы научного поиска, открывающего дорогу новому, дорогу к совершенству. Лишь после этого начинается процесс создания новых летательных аппаратов. Но даже при таком тщательном подходе к вопросу о том, какими должны быть воздушные машины, подчас не удается получить однозначный ответ.

Основные черты авиации будущего сегодня уже известны. Все лучшее, что есть сегодня в наших «ТУ», «ИЛах», «АНах», «МИ» и «КА», страна возьмет в свой завтрашний день. Останутся жить и станут совершеннее турбореактивные, турбовентиляторные и турбовинтовые двигатели, на новую ступень шагнет конструкторская мысль и технология производства, усовершенствуются материалы, топлива и оборудование, а самолеты и вертолеты, похожие на те, что мы видим сегодня, станут все экономичнее, комфортабельнее, надежнее. И вот эту эстафету прямого совершенствования можно проследить достаточно строго — наша страна располагает таким мощным оружием, как единая система государственного планирования.

Но авиации завтрашнего дня будут присущи и совершенно новые черты — уже в ближайшие годы пассажирским самолетам предстоит освоить сверхзвуковые скорости и обрести независимость от аэродромов. И хотя сверхзвуковые машины «возьмут на себя» скорость и дальность полета, а самолеты вертикального взлета и посадки «оставят за собой» неприхотливость, эти достоинства, присущие и современной авиации, поднимутся на несоизмеримо более высокую ступень. И естественно, что вопрос о том, какими должны быть машины завтрашнего дня, обретает неимоверную сложность и спорность.

В этом отношении показательны разногласия, возникшие за рубежом по поводу характеристик сверхзвукового пассажирского самолета ближайших лет, разногласия, разделившие конструкторов и ученых на два лагеря. С одной стороны, английские и французские инженеры. Они разрабатывают «холодный» самолет со скоростью, в два — два с половиной раза превосходящей скорость звука. На этом «сверхзвуке» можно еще использовать проверенные, освоенные, а потому и недорогие алюминиевые сплавы, а двигатели будут мало чем отличаться от тех, что стоят на современных сверхзвуковых истребителях..

Инженеры США отстаивают проекты самолетов с утроенной скоростью звука, и не без основания. Большие скорости полета — главное достоинство сверхзвуковых машин, рождающее своего рода высокую «производительность труда»: за одно и то же время самолеты смогут совершить больше рейсов и, следовательно, перевезти больше пассажиров. Но для того чтобы создать машины с утроенной скоростью звука, понадобятся новые двигатели, термостойкие титановые материалы, новые топлива и аэродромы с более длинными бетонными полосами. Опять свои «за» и не менее веские «против».

Еще сложнее проблема создания так называемой «безаэродромной авиации». Совсем недавно перед ней стояла задача — связать центры городов с расположенными за их пределами аэропортами, и здесь с успехом справляются вертолеты. Но завтра машины, способные взлетать прямо с места, должны освоить трассы средней протяженности, которые начинаются и кончаются в непосредственной близости от пунктов отправления и назначения. Иначе время на дорогу в аэропорт и от аэропорта будет «съедать» все преимущества скорости полета. И здесь вертолеты при всех своих незаменимых качествах безнадежно сдают позиции: у них слишком малы скорости полета. Самые радужные прогнозы упираются в цифру 300 километров в час — на больших скоростях из-за срывов потока винты отказываются создавать подъемную силу, удерживающую вертолеты в воздухе.

Выход один — «научить» самолет садиться и взлетать вертикально. Среди проектов винтовых самолетов вертикального взлета и посадки можно встретить и машины с мощной и сложной системой закрылков, отклоняющих вниз потоки от винтов, и самолеты, у которых сами винты поворачиваются в «вертолетное положение», и другие машины, у которых двигатели с винтами поворачиваются вместе с крылом.

Как и все винтовые самолеты, эти машины смогут развивать скорости до 700–900 километров в час. А там, где скорость должна быть еще больше, вертикальные взлет и посадку будет обеспечивать сила тяги реактивных двигателей. И здесь решение проблемы тоже не однозначно. Правда, основной спор в этой области ведут сторонники двух направлений. Одни отстаивают самолет, у которого одни и те же двигатели обеспечивают и взлет-посадку и горизонтальный полет. Другие отдают предпочтение машинам с двумя независимыми двигательными установками, одна из которых обеспечивает взлет и посадку, а другая — горизонтальный полет.

Снова свои достоинства и недостатки, и снова вопрос пока остается открытым. И это когда речь идет фактически лишь о принципе вертикального взлета и посадки. А ведь «лицо» самолетов завтрашнего дня определяет не только это — десятки самых различных требований предъявляют к новым машинам. Здесь и грузоподъемность, и скорость, и дальность полета, и требуемое число пассажирских мест, и надежность, и экономные расходы топлива — словом, всего не перечесть. И среди этих требований есть такие, казалось бы, на первый взгляд совсем уж второстепенные, как, например, требования продолжительности жизни самолета. Кажется, что может измениться от того, десять или двадцать лет будет служить машина? Но на самом деле это совсем не безразлично.

В книге воспоминаний известного нашего судостроителя А. Н. Крылова есть любопытный эпизод, относящийся как раз к этому вопросу. В 1924 году ученый работает в составе советско-французской комиссии, осматривающей стоящие в гавани Бизерты русские военные корабли, уведенные туда Врангелем. Здесь бок о бок с русским эсминцем стоял эсминец французский — примерно того же возраста и размеров. Но разница в боевой мощи кораблей была настолько разительной, что адмирал Буи — председатель комиссии — не выдержал и воскликнул: «У вас пушки, а у нас пукалки! Каким образом вы достигли такой разницы в вооружении эсминцев?» В ответ на этот вопрос Крылов прежде всего обратил внимание адмирала на состояние кораблей: в то время как французский корабль производил впечатление почти нового, русский эсминец выглядел крайне изношенным. Все дело было в том, что французы строили свой корабль так, как будто это было коммерческое судно, которое должно служить не менее двадцати четырех лет. Русский же эсминец был построен из стали высокого напряжения, которая служит намного меньше, но зато позволяет получить выигрыш в весе корпуса и прочих частей, и этот выигрыш может быть использован для усиления боевой мощи. «Миноносец строится на десять-двенадцать лет, — пояснил А. Н. Крылов, — ибо за это время он успевает настолько устареть, что не представляет более истинной боевой силы». «Как это просто!» — единственно что мог ответить адмирал Буи.

Как просто… Но за этой простотой упорный и настойчивый поиск ученых, инженеров, конструкторов. Сегодня они обещают, что в ближайшие десять лет человечество получит сверхзвуковой пассажирский транспорт со скоростями порядка 2000–3000 километров в час. А завтра творческая мысль авиации устремится к скоростям в 5000, а то и в 7000 километров в час. И вот на пути к этим заманчивым скоростям авиацию уже ждет очередной «химический барьер» — проблема новых топлив и преобразования энергии. Нет сомнения, что пройдет время, и этот барьер останется позади. Не случайно на «щите» авиационной науки начертан девиз: «Через барьеры — к совершенству!»



Загрузка...