Глава 1. Радиоактивность

Шипение в самодувной печи лаборатории угрожающе нарастает. Мощный воздушный поток раздувает огонь, чтобы хватило жара расплавить металл. По мере нагревания постепенно улетучивается и сырой выпар из темных камней, что лежат в ящике у печи. На них выступает влага рудника, плесень подгнивших горбылей. Кажется, сам кислый воздух заброшенной серебряной штольни прокрался в трещинки и поры минералов, и теперь его оттуда выманивает в комнату уютное тепло. Но вскоре от затхлости не остается и следа, она исчезает, как бледнеющая память о нудном осеннем дожде. Ибо ничто на свете не в силах перекрыть вонь батареи едких жидкостей в склянках, ампулах и флаконах, выстроенных в ряд.

Берлинский аптекарь Мартин Генрих Клапрот приготовил весь свой наличный запас проверенных субстанций и микстур, чтобы взяться за новые образцы пород из Рудных гор. Он намеревался расщепить и разложить их огнем и кислотами, растворить их солями и размягчить водой. Растирая в ступке ярко-красные комья кровяной соли, он следит за тем, как меняет цвет только что поставленная на огонь настойка дубильного орешка. Она добывается из грубо размолотых коконов личинок осы-орехотворки, отложенных самками в дубовые листья. Их дубильная кислота вымоет из руды ненужные примеси. Черными чернилами, произведенными из такого же отвара, в это же самое время в далеком Париже пылкий демократ Лафайет и радикальный Робеспьер пишут свои наброски «Декларации прав человека и гражданина», в которой выдвигают такие неслыханные требования, как равное избирательное право для всех мужчин и даже полное упразднение монархии.

В эти революционные летние месяцы 1789 года весьма попахивает жареным и в Медвежьей аптеке Клапрота в тени громады Николай-кирхе на Шпандауэрштрассе, угол Пробстштрассе. На почтительном расстоянии от плавильной и фарфоровой печей экспериментатор подолгу вдувает через паяльную трубку в открытое пламя столько воздуха, сколько помещается в его легких. Фитиль свечи он разрезал надвое и теперь держит свою трубку в середине развилки. Так он может модулировать пламя, выдувать его в виде длинного и заостренного языка, чтобы оно охватывало пробу руды величиной с лесной орех, которая лежит на березовом угольке, свободном от искрения. Здесь, в тесной лаборатории, неконтролируемый полет искр или крохотных брызг металла вблизи легковоспламенимых химикалий и углей когда-нибудь да становится роковым даже для самых осторожных практиков. Однако Мартин Генрих Клапрот хорошо осведомлен о рискованных ситуациях при проведении химических реакций. Как член ложи «Единение», он даже похвально упомянут в «Справочнике масонства» за 1787 год. Однажды он уберег своих братьев по ложе от гибельного взрыва во время одного неряшливо подготовленного крупного алхимического эксперимента.

Он не хочет быть причастным к свойственному фракции алхимиков стремлению из всего сделать тайну. Он определенно дистанцируется от мистического пустословия адептов, которые все еще пребывают в поисках философского камня, намереваясь с его помощью превращать обыкновенные металлы в золото. Будучи образцовым поборником научно обоснованной химии, Клапрот считается только с тем, что он может видеть, обонять и взвешивать в своих тиглях и ретортах. Ему не раз приходилось уличать в мошеннических намерениях производителей чудодейственных лекарственных средств. Так, популярную «чудодейственную воздушную соль» он идентифицирует как простую глауберову соль, очищенную от добавок, а в продающемся по грабительским ценам «калии, окисленном святым духом» от основателя гомеопатии Самюэля Ханемана он разоблачает обычную буру.

Тот минерал, образец которого аптекарь и химик Клапрот хочет разложить на составные части, горняки Рудных гор называют смоляной обманкой. Она дает оттенки от сероватого до иссиня-черного и немного напоминает своим жирным блеском смолу. Тяжелые комья пористы и ломаются на куски, по форме похожие на почки и ракушки. Из-за их тяжести еще первые искатели серебра в начале XVII века в неглубоких штольнях Санкт-Йоахимсталя предполагали в этой горной породе высокое содержание металла. Но так ничего и не обнаружили. Потому и считали «обманкой» эти находки смоляной черноты, которые лишь притворялись, что таят в себе скрытые сокровища. На самом же деле смоляная обманка — как гласил окончательный вердикт экспертов — пустая порода, ни к чему не пригодная и лишь препятствующая поиску руд, заслуживающих добычи. С тех пор в серебряных штольнях Рудных гор она шла в отвал.

Клапрот, однако, хочет на сей раз докопаться до правды и основательно исследовать этот отвергнутый минерал. Он с интересом растирает между пальцами мелкие крупинки смоляной обманки, крошит их в калийную соль и помещает смесь в плавильный тигель. Черно-серая масса остается твердой и нерастворимой. Не плавится смоляная обманка и в пламени, усиленном паяльной трубкой. И вот он в поисках ее состава отжигает крошево и испепеляет его, спекает его с кровяной солью, спиртует и дистиллирует, тонирует и фильтрует, студит и высушивает, пока из его смеси с фосфорной солью неожиданно не образуется прозрачная зеленая бусинка — первое указание на верность интуиции экспериментатора. Ведь внутри породы явно кроется что-то особенное.

Многообещающие пробы были взяты из небольшого серебряного рудника «Георг Вагсфорт» в саксонском Йоханнгеоргенштадте, близ границы с Богемией. Этим летом у Клапрота часто бывали дела в Карлсбаде — популярном курорте царей, королей и европейской знати. Он только что закончил статью о минеральных источниках всемирно знаменитых богемских термальных вод. Сделанный им химический анализ целебной минеральной воды отвечает высокому научному стандарту и ожидает публикации в будущем году.


Йоханнгеоргенштадт расположен в двадцати пяти километрах севернее Карлсбада. В середине XVII века некоторые протестантские семьи покинули богемский шахтерский город Санкт-Йоахимсталь из-за религиозных преследований. На саксонской стороне Рудных гор, у подножия горы Фастенберг они построили новый город, который назвали именем своего суверена, курфюрста Йоханна-Георга II. Пивоварня с шинком были готовы раньше, чем ратуша и церковь.

Город лежит на 850 метров выше уровня моря у восточного склона горы Фастенберг с почти полностью изведенным лесом. Когда в июле 1789 года по пути из Карлсбада Мартин Клапрот останавливается здесь, весь город окутан чадом горящего день и ночь угля кузниц и металлургических заводов. Свои лучшие времена город пережил в середине XVII века, когда серебряные рудники — а их было в ближайших окрестностях около 180 — приносили прибыль. Большинство из них истощилось с тех пор, но для шестисот горняков работа еще была. Весь здешний ландшафт изувечен протяжными сточными канавами, мутными от ртути и шлаков, а также высокими, кое-где еще дымящимися отвалами. Запах серы, казалось, никогда отсюда не выветрится. Наметанным глазом Клапрот отмечает на склоне горы по дороге на шахту «Георг Вагсфорт» вентиляционные дыры метрового диаметра. Они дают рабочим в шахтах свежий воздух и солнечный свет. Многие отдушины дымятся. Он видит и добротно построенные входы в шахты — в некоторых по колено стоит вода, — и норы, вырытые наспех искателями счастья и кое-как потом присыпанные.


В берлинскую лабораторию поступает универсальное оружие — азотная кислота. Клапрот на всякий случай держится подальше от белой стеклянной бутыли с «сильной водой», aqua fortis, как величали азотную кислоту средневековые алхимики за ее растворяющую силу. Он поливает ею кусочек матово поблескивающей смоляной обманки до тех пор, пока под красными парами полностью не исчезает черный цвет — что Клапрот расценивает как полное разложение его пробы. Раствор, разведенный водой, приобретает «светло-желтый цвет, с зеленоватым оттенком».


Случается карете Клапрота проезжать и мимо забавных часов на ратуше Йоханнгеоргенштадта. Каждую четверть часа из корпуса часов выскакивают два железных горных козла и стукаются рогатыми лбами. Одновременно шахтер приподнимает свой горняцкий головной убор — цилиндр без полей — и стучит оземь палкой. Некоторые домовладельцы ворчат, недовольные последствиями «горной горячки», как здесь называют уже отшумевшую серебряную лихорадку. Множество не поддающихся учету шахт и горизонтальных рудных жил, проходивших под городом, скорее всего, и были причиной появления трещин в стенах домов и проседания фундаментов — ущерб, который могли ощутить лишь хозяева домов. Их уже не оставлял страх, что скоро и они будут причислять себя к жертвам «горной горячки». За кузницей Виттингсталя, горной деревушки из семи домов на окраине Йоханнгеоргенштадта, на особенно слякотных местах, где Брайтенбах впадает в Шварцвассер, поперек дорожной колеи проложены еловые жерди. Здесь вход в заброшенный прииск «Георг Вагсфорт», который порекомендовали Клапроту. По названиям соседних шахт — «Благословенье», «Нежданное счастье» и «Божья милость» — можно догадаться, какую радость испытывали горняки XVII века, находя в земле серебряные сокровища. Прииски заброшены еще сто лет назад, но время от времени сюда наведываются господа с утонченным вкусом, желающие прикупить цветные минералы для своих коллекций. Четыре года назад здесь впервые появился и тайный советник Гёте из Веймара, тоже по дороге из Карлсбада, приобрел красивый кусок пираргирита и с тех пор стал заезжать сюда для пополнения своей коллекции.

После утомительного спуска по приставным лестницам в бывший забой на Клапрота повеяло знакомым духом бесконечного осеннего дождя и прели. Горный мастер точно знает, куда направить луч шахтерской лампы. Он посветит во все расселины и трещины, чтобы брат прусского короля по масонской ложе мог упиться великолепием кристаллизованной зеленой слюды. Ее тонкие пластинки и кубики изумрудно-зеленого, лимонно-желтого и светло-желтого оттенков прочно облепляют смоляную обманку. Вся порода пронизана металлическими землями кирпичного и сернисто-желтого цвета. В одном рыхлом, жирно поблескивающем обломке Клапрот заметил даже голубовато-серый свинцовый пигмент в виде нежно мерцающей жилы и мелкозернистых вкраплений.


В лаборатории небольшая добавка соляной кислоты превращает aqua fortis в царскую водку. Этот прием Клапрот выполняет автоматически, не утруждая себя измерением дозы. Придя в соприкосновение с царской водкой, смоляная обманка разогревается и сильно вспенивается. После того как он разбавит смесь, отфильтрует ее и выжжет остатки серы, его взору предстанут чудесные кристаллы в виде вытянутых шестигранных пластинок, тоже меняющих цвет от светло-зеленого к желтому. После дальнейших опытов с щелочными солями и сернистым аммонием в осадок выпадают лимонно-, ярко- и шафраново-желтые отложения, которые он идентифицирует как металлоизвесть. Если замесить желтую муку с льняным маслом в некое подобие кухонного теста и запечь в фарфоровой печи при средней температуре, получится тонкая черно-коричневая пыль с металлическим блеском, которую можно растереть в пальцах. Снова залить азотной кислотой, нагреть. Опять поднимается красный пар, и теперь Клапрот уже не сомневается в том, что выгнал из своей металлоизвести кислород. Если расплавить ее в более сильном огне фарфоровой печи, она спекается в мелкоячеистую пенную массу из тускло поблескивающих металлических зерен. И если обработать полученный ком напильником, из-под железно-серого цвета блеснет ожидаемый металл. Теперь Клапрот убежден, что выделил из смоляной обманки металлическую субстанцию. Он открыл новый «металл».

Аптекарь Мартин Генрих Клапрот считал себя полным приверженцем экспериментальной химии. Будучи членом Королевский Прусской академии наук и профессором знаменитой горной академии Фрайберга, он вряд ли был бы превосходным практиком с отличной репутацией, если б не обладал способностью извлекать новые сведения из сходных реакций в давно известных обстоятельствах, да еще и находить для них практическое применение. Поэтому сейчас он идет на поводу у одной своей догадки и проверяет пригодность металлической эссенции смоляной обманки в качестве красителя для стекла и фарфора. Для этого он замешивает различные смеси из желтой металлоизвести с фосфорной кислотой. Ее еще называют костяной кислотой, потому что производится она из измельченных в порошок костей животных. Фосфорная кислота очень жаростойка и при накаливании растекается в подобие прозрачного стекла. Так Клапрот сперва получает прозрачную изумрудно-зеленую симуляцию стекла, тогда как с добавкой кремнезема возникает непрозрачное стекло, яблочно-зеленый светлый цвет которого напоминает ему полудрагоценный камень хризопраз. Если умеренно раскаленную металлоизвесть смоляной обманки, добавив флюс, нанести на фарфор и обжечь в эмалировочной печи, получится «оранжево-огненный» цвет.


Старые алхимики часто устанавливали — возможно, под воздействием возбуждающих паров в их лабораториях — связи между вещами и процессами, которые на первый взгляд не имеют между собой ничего общего. В прежние века, до того как Коперник и Галилей своими революционными идеями касательно движения планет вызвали переполох среди охранителей христианского учения, Земля еще пребывала в центре Вселенной. Она была окружена семью планетами, в число которых входило и Солнце. В течение долгого времени было известно и семь металлов — без сомнений, богоугодный, навек неизменный порядок, как и у планетной системы. И вот некий умник, идущий в ногу со временем, догадывается соотнести эти семь металлов с семью планетами. Лучи низведенного в спутники Земли Солнца вызвали появление на земле золота. Таинственные астральные вибрации Луны обусловили рост серебра под домами Санкт-Йоахимсталя и Йоханнгеоргенштадта. Железо лучше всего подходит Марсу, медь — Венере, свинец — Сатурну.

В революционном 1789 году уже ни один ученый не относится всерьез к этой системе, которая зиждилась на аналогиях, тем более что число известных металлов к тому времени выросло до семнадцати, тогда как соответствующие им планеты так и не были обнаружены. Однако всего за восемь лет до этого немецкий астроном Вильгельм Гершель открыл новое небесное тело, которое оказалось-таки планетой, и которое он назвал Ураном. Уран явился астрономической сенсацией, прежде всего потому, что он вращается в доселе невообразимом удалении от Земли и Солнца. Если принять расстояние от Земли до Солнца за астрономическую единицу, то Сатурн со своими девятью астрономическими единицами был до открытия Гершеля самым удаленным от центрального светила объектом. Уран же торит свой одинокий путь в сказочных девятнадцати астрономических единицах, или в трех миллиардах километров от Солнца. Так с появлением этого нежданного участника движения наблюдаемый универсум раздался сразу вдвое — по крайней мере, в сознании активно коммуницирующих членов академических кругов.

Мартин Генрих Клапрот тоже имел представление об этих шокирующих космических размерах, которые венчала новая планета. Возможно, они-то его и окрылили. Ведь за последние восемь лет, минувшие с открытия Гершелем Урана, новый металл так никто и не нашел. Теперь он был волен узаконить свое право открытия и примкнуть к старой традиции, назвав доселе неизвестный металл именем планеты. Он мог бы назвать новый элемент и клапротием, но ему суждено было зваться ураном. Очень помпезное имя для желтого красителя стеклянных изделий.


Тяжелые черные шторы на окнах не пропускают в лабораторию ни лучика света. Вот уже восемь недель господин профессор работает, ест и спит только в своей темной комнате на первом этаже Физического института университета Вюрцбурга и хранит свою тайну. Даже его любимая жена Берта, с которой он делит свою служебную квартиру на втором этаже, не знает о его странном открытии. При всем уважении к его труду она, должно быть, воспринимает его молчание как обиду. Больше всего ее ранит догадка, что муж явно наслаждается этим добровольным, граничащим с одержимостью заточением в темной норе — там, внизу. Когда ей случается — довольно редко — столкнуться в узком коридоре с этим бледным призраком, который когда-то был ее Вильгельмом, он что-то пишет на ходу или смотрит сквозь нее усталым, невидящим взором. Время от времени он отдает себе отчет в плачевном положении домашних дел. Но это не помогает. Он должен работать дальше, скрывая результаты, чтобы не выставить себя на посмешище преждевременными заявлениями. Ни перед Бертой, ни перед публикой. Вначале надо окончательно удостовериться. Ведь на кону стоит его доброе имя физика.

В лабораторном журнале профессора д-ра Вильгельма Конрада Рёнтгена вечер 8 ноября 1895 года отмечен как дата того открытия, которое и ввергло непоседливого, как ртуть, ученого в этот дурман работы. Он, как и многие физики его поколения, исследует многообразные формы электромагнитных явлений. Ровно тридцать лет назад шотландский физик Джеймс Клерк Максвелл четырьмя гениальными уравнениями показал, что как свет — видимый и ультрафиолетовый, — так и электрические и магнитные явления одинаково принадлежат к спектру электромагнитных волн. Рёнтгена особенно интересуют световые явления электричества в стеклянных трубках. Трубка длиной один метр с минимальным содержанием газа подключена двумя проводками к источнику тока цилиндрической формы. В тот достопамятный вечер пятницы он как раз обернул свою трубку светонепроницаемым черным картоном, чтобы выяснить, можно ли ее таким образом полностью изолировать. Включив в затемненном помещении ток высокого напряжения, он заметил слабое свечение на столе вблизи аппаратуры. Там случайно лежал бумажный экран, покрытый химическим веществом, отражающим свет, если на него попадает подходящее излучение.

Рёнтген озадачен. Ведь из его стеклянной трубки свет не пробивается. Плотно прилегающий черный картон надежно удерживает электрический свет. Он выключает ток. Свечение мгновенно исчезает. Он снова включает трансформатор. Экран на столе тут же озаряется. Рёнтген боится поверить своим глазам, ведь он не знает излучения, которое могло бы в таких экспериментальных условиях исходить из его стеклянной трубки. Он несколько раз повторяет процедуру, отодвигая при этом стол с экраном все дальше от трубки. На расстоянии двух метров люминесценция еще возникает, как только в трубке происходит газовый разряд. Судя по всему, черный картон не может удерживать излучение. Теперь он выставляет на пути лучей поочередно станиолевую полосу, бумажные тетради, еловую дощечку и, наконец, книгу толщиной в тысячу страниц. Неведомые лучи беспрепятственно проникают и сквозь эти преграды, оставляя на светящемся экране свои следы.

Только теперь, после пары дюжин лихорадочных, нервных опытов Рёнтген обращает внимание на нездешнюю красоту этого светового явления. По поверхности экрана в ритме колебательных разрядов катятся волны нежного желто-зеленого света или медленно плывут над ним, как облака. Но и в конце этого волнующего вечера смущенный ученый все еще полагает, что стал жертвой иллюзии. Слишком фантастическим кажется ему напрашивающийся вывод, что он имеет дело с неизвестным доселе излучением. В следующие дни он действует по системе и пускает в ход более тяжелые орудия, как то: тонкие листы из алюминия и цинка, из меди, серебра и золота. Однако и эти металлы не могут противостоять проникающей силе излучения. Лишь свинцовая и платиновая пластины толщиной в несколько миллиметров преграждают лучам из стеклянной трубки путь к экрану.

Постепенно Рёнтген привыкает к мысли, что он действительно открыл новый вид лучей, и приходит к дерзкой идее. Он заменяет световой экран из бумаги с покрытием на фотографическую пластинку. Опыт удается. Невидимые лучи, произведенные в стеклянной трубке, проникают сквозь глухой деревянный ящик, в котором хранится набор весовых образцов металла. На экспонируемой пластине, которая во время облучения лежала под ящиком, отчетливо прорисовались темные округлости образцов. И стрелка компаса в жестянке тоже становится видимой за счет нового способа светокопирования. Когда однажды его ладонь случайно попадает в поток излучения, он ужасается. Лучи явно могут просвечивать структуру материи насквозь и фотографировать там вещи, скрытые от человеческого взгляда. И поскольку они до сих пор так уверенно демонстрировали, что великодержавно проникают сквозь любые субстанции, фотопластинка может оставаться в своей светозащитной упаковке из бумаги или фольги. Это счастливое обстоятельство позволяет фотографировать непосредственно, без окольных путей через камеру и в освещенных помещениях. Так в лаборатории летят дни и недели. Все, что происходит в Вюрцбурге и в мире, мало интересует Рёнтгена. Двадцать седьмого ноября 1895 года, в разгар его опытов, шведский химик Альфред Нобель, изобретатель динамита, учреждает фонд, который должен ежегодно присуждать премию за выдающиеся достижения в области химии, медицины, физики, литературы и за вклад в дело мира.

Сколь бы сенсационными ни были первые доказательства проницаемости твердой материи при помощи новых лучей, больше всего впечатляют, конечно, снимки частей человеческого тела. Когда Вильгельм Конрад Рёнтген двадцать второго декабря 1895 года наконец посвящает Берту в свои тайны и в течение четверти часа облучает ее кисть, он эффектнейшим образом, без лишних слов доводит до ее понимания возможности его X-лучей, как он их теперь называет, позаимствовав у математиков универсальное обозначение неизвестной величины. X-лучи лишь смутно проявили на экране мускулы, кожу и нервные ткани руки Берты Рёнтген, но тем отчетливее отобразили структуру ее костей. Однако при виде собственного скелета к удивлению и восторгу человека невольно примешиваются и мысли о смерти.


Двадцать восьмого декабря Вильгельм Конрад Рёнтген передает секретарю Физико-медицинского общества университета Вюрцбурга первый научный отчет о своем самобытном кино в отрыве от его института. Отчет носит название «О новом виде лучей». Работа сразу идет в печать и рассылается девяноста коллегам по всей Европе. Газеты реагируют на новое открытие молниеносно. По всему миру, прежде всего в Англии и США, в первые недели после публикации вспыхивает форменная рентгеномания. Снимок скелета руки Берты побуждает необозримое множество медиков, физиков и предпринимателей к производству качественных рентгеновских снимков человеческих ладоней. Особенное внимание в эти первые недели нового 1896 года привлекает картинка из государственной Физической лаборатории в Гамбурге, на которой обручальное кольцо невесомо парит вокруг косточки безымянного пальца.

Двадцать четвертого января газета «Фрэнкише фольксблатт» сообщает о якобы первом практическом применении X-лучей в Англии. В лондонской больнице вот уже несколько месяцев лежит матрос, парализованный по необъяснимым причинам. Поскольку врачу и пациенту нечего терять, его позвоночник просвечивают X-лучами. При этом врач обнаруживает между двумя позвонками чужеродное тело, которое после извлечения оказывается обломленным кончиком ножа. Уже вскоре после этого матросу выпал случай принять живейшее участие в ближайшей драке. Такие сообщения будят фантазию и окрыляют дух предпринимательства. Так, знаменитый изобретатель лампочки накаливания Томас Альва Эдисон объявляет, что намерен просветить X-лучами мозг. Три недели его дом осаждают репортеры, и ему в конце концов приходится обескураженно признаться в неудаче. В одной американской газете кто-то призывает направить лучи Рёнтгена на мозг преступников, чтобы исцелить их от криминальных наклонностей. Один более безобидный — якобы! — вариант этой идеи и впрямь осуществляется, а именно: прекрасный пол подвергается облучению, чтобы избавиться от нежелательного роста волос над верхней губой, на родинках и икрах. Облучают в салонах красоты и в кабинетах врачей — во всю силу рентгеновских трубок. Эйфория пока велика.

Уже в середине января 1896 года зубной врач Отто Валькхофф в Брауншвейге вырезает из фотопластинки кружок, заворачивает его в светонепроницаемую бумагу и закрепляет его, «широко раскрыв рот, за обоими рядами зубов. Облучение ведется через щеку... Двадцать пять минут экспонирования были пыткой», — пишет неустрашимый пионер-рентгеновец, признавая на основании «снимка пульповых камер и корней, сидящих в костях, что эти лучи имеют в нашем деле большое значение».

Во Франции один физик тоже вдохновился на собственные опыты с X-лучами. Правда, он не просто повторил опыт Рёнтгена, а нашел новый подход, напрашивающийся сам собой. На январском заседании 1896 года членов Парижской академии наук под председательством знаменитого математика Анри Пуанкаре сильно впечатляет волнующий отчет со снимками из Вюрцбурга. Анри Беккерель, профессор физики парижской Политехнической школы, зачарован одной деталью. Источником X-лучей, должно быть, является — это подтвердил ему и Пуанкаре — светло-зеленое световое пятно на стенке стеклянной трубки, используемой Рёнтгеном. Беккерель уже давно знаком с люминесцирующими веществами. Эти вещества способны отдавать свет после того, как их подержали на солнце. Не удастся ли с этими своеобразными веществами, размышляет Беккерель, добиться сходных результатов с теми, что описывает Рёнтген. Он хотел бы выяснить, не смогут ли и они зачернить фотопластинку. Его отец Александр Эдмон Беккерель сконструировал чувствительный аппарат с фосфороскопом. Этот аппарат фиксирует малейшую способность свечения тел. Тем самым в распоряжении сына изобретателя был широкий спектр субстанций для его опытов. В тот же день он приступает к эксперименту и кладет на фотопластинки кристаллы, заведомо обладающие послесвечением. Фотопластинки, во избежание воздействия света, завернуты в черную бумагу или алюминиевую фольгу.

И вот в затемненной лаборатории Беккереля снова отдают поглощенный солнечный свет в оттенках различной интенсивности — зеленом, голубом, фиолетовом и оранжево-желтом — плавиковый шпат, редкие цианистые соединения платины, нафталинрот и пробы воды с замоченной в ней свежей корой конского каштана. Однако впечатляющее цветное кино не приносит ожидаемого успеха. Фотопластинки не темнеют, как от X-лучей, ни от одного из известных люминесцирующих веществ даже после недельной выдержки. В конце февраля Беккерель хочет провести опыты с кристаллами соли урана, известными своей сильной люминесценцией. Он выставляет их на солнечный свет, затем заворачивает в два слоя черной бумаги и кладет тонкую серебряную фольгу между препаратом и фотопластинкой. Через два часа экспозиции на пластинке впервые появляются темные пятна. Это однозначно очертания крошек урановой соли.

Когда Антуан Анри Беккерель докладывает о своем открытии Академии наук в Париже 24 февраля 1896 года, все члены академии уверены, что излучение урана объясняется его способностью к послесвечению. Мол, здесь, возможно, тоже присутствуют лучи Рёнтгена, проникающие сквозь светонепроницаемый материал. Уран и через сто лет после его открытия остается всего лишь популярным и надежным красящим средством для стекла и керамики. Вот только удивительно, что он оказался единственным металлом, испускающим лучи, которые не могут быть обычным светом.

Но подлинное потрясение Беккерель испытывает лишь несколько дней спустя. Поскольку небо над Парижем в эти последние дни февраля никак не хочет проясняться, облучить солнечным светом очередные пробы урановой соли нет надежды. Поэтому Беккерель пока что откладывает в долгий ящик упакованную в фольгу фотопластинку, положив на нее сверху обломок урана. Пару дней спустя — солнце так и не показалось — он снова извлекает их оттуда. То ли его подвигло нетерпение, то ли внезапное наитие, что уран мог испускать остаточную люминесценцию, — это навсегда останется тайной. Беккерель проявляет пластинку, озадаченно обнаруживая и здесь уже знакомый фотографический эффект: очертания кристалла урана тенью отобразились на фотопластинке. Лихорадочные контрольные испытания со всеми доступными соединениями урана, даже со слабо, а то и вовсе не люминесцирующими препаратами, все приводят к тому же результату: излучение урана вызвано однозначно не солнечным светом. Оно не имеет ничего общего с явлением люминесценции. Даже месяцами хранившиеся в темноте урановые соли непрерывно испускают проникающее излучение.

Это поистине знаменательное свойство так называемых «лучей Беккереля» публикуется Парижской академией наук 2 марта 1896 года. Прошло всего четыре месяца со времени открытия лучей Рёнтгена, а к спектру электромагнитного излучения добавился второй неизвестный вид лучей. Однако новые научные выводы Беккереля поначалу беззвучно и бесславно тонут в шуме глобального восторга, вызванного лучами Рёнтгена. Физики слишком заняты постепенным усовершенствованием метода светокопии по Рёнтгену, чтобы обратить серьезное внимание на известия из Парижа, не говоря уже о том, чтоб повторить опыты Беккереля. Они в упоении фотографируют «черепа» и кости рук своих детей и жен, не задумываясь о продолжительности экспозиции, либо вместе с медиками уже работают над концепциями лучевой терапии.

Хотя урановые лучи и могут проникать сквозь металлическую фольгу и вызывать довольно-таки заметный фотоэффект, это не в силах изменить предвзятое мнение в головах коллег. Они не хотят извлечь из работы Беккереля должные выводы, что имеют дело с новым свойством материи. Они усматривают в этом лишь слабый вариант лучей Рёнтгена. Лучам Беккереля требуются целые сутки, чтобы оставить на фотоэмульсии мало-мальский отпечаток. Они не могут даже близко создать нечто подобное тем эффектным картинкам, какие производят лучи Рёнтгена, проходя сквозь материю. Что такое смутная тень комочка урана по сравнению с видом сверкающей пули внутри ствола охотничьего ружья Вильгельма Рёнтгена? Лучи Рёнтгена позволяют отчетливо видеть пули, застрявшие в лопатках и большеберцовых костях ветеранов войны, сломанные кости рук и ног, проглоченные и теперь, казалось, невесомо парящие внутри таза монеты. Американские энтузиасты X-лучей могут за полдоллара купить радиографию почки; если с камнями в почках — то за 75 центов.

Те немногие коллеги, которые потом все же вникли в тезисы Беккереля, высказываются с оговорками. Дескать, слишком фантастично звучит утверждение, что какая-то незначительная составная часть красителя для фарфора может без воздействия света или электричества проявлять проникающие свойства, сходные с X-лучами. И совсем уж ни в какие ворота не лезет допущение, будто уран может и вовсе «спонтанно», то есть на основе собственного излучения, отображаться на фотопластинке. Такие нелепые представления никак не умещаются в физическую картину мира конца XIX века. Мол, серьезной науке уже приходится идти окольными путями — через грушевидные, откачанные и заполненные газом стеклянные трубки, ток высокого напряжения и световой экран, как это продемонстрировал Рёнтген.

Учителя вольфенбюттельской гимназии Юлиус Эльстер и Ганс Гейтель относятся к числу немногих исследователей, которые уже в апреле 1896 года повторили опыт Беккереля, подтвердили по всем пунктам его результаты и послали протокол своей работы скептику Вильгельму Рёнтгену. Который, надо отдать ему должное, показал, что верная наблюдательность северогерманской пары исследователей произвела на него впечатление. Однако в своем ответном письме от двадцать третьего февраля 1897 года, спустя ровно год после первой публикации Беккереля, он пишет: «...я должен признаться, что не вполне в это верю...» И в другом месте он приходит к такому заключению: «Правда, это не умещается у меня в голове...». К этому времени опубликовано уже более тысячи статей и пятьдесят книг об X-лучах. На фоне такой бумажной лавины вряд ли кто принимает во внимание публикацию Беккереля. За исключением одной тридцатилетней женщины-химика польского происхождения. Она как раз подыскивает тему для диссертации и прочитала все статьи об излучении урана, которые Беккерель опубликовал до середины 1897 года. Другой литературы на эту тему, судя по всему, нет, а она как раз находит эту тему в высшей степени интересной. Но именно это обстоятельство и подстегивает ее, поскольку дает простор для самостоятельных исследований. И поэтому она решает писать свою диссертацию об излучении урана.


Свое свадебное платье Мария Склодовская получает в подарок от родственницы. Она попросила себе черное и скромное, чтобы потом можно было носить его вместо лабораторного халата. Ведь на темной ткани не так заметна угольная пыль, которую постоянно задувает со двора. Молодая женщина из Варшавы работала за гроши служанкой и гувернанткой у богатых людей в польской провинции, отрекшись от своих интеллектуальных способностей. Однако благодаря самодисциплине и упорству все же поступила в конце концов в Сорбонну. Она изучает физику, математику и химию и знакомится там с Пьером Кюри, который сразу влюбляется в хрупкую, честолюбивую женщину с печальным взглядом.

Кюри преподает в Школе промышленной физики и химии в Париже и зарабатывает немногим больше рабочего. Но это не заботит Марию. Она привыкла к безденежью и знает, как обойтись малыми средствами. На свадьбу молодая пара отказывает себе даже в такой роскоши, как обручальные кольца. Мадам и мсье Кюри попросили дарить им деньги и исполняют свою мечту: купив новые велосипеды, они совершают длительные загородные прогулки. Даже летом 1897 года, на восьмом месяце беременности Мария садится на велосипед, чтобы сопровождать своего Пьера в Брест. Однако через несколько километров она понимает, что такая суровая гимнастика не для беременных.

Их дочери Ирен исполнилось всего три месяца, и в декабре 1897 года Мария Кюри приступает к первым исследованиям лучей Беккереля. Но даже в либеральном Париже профессорам и руководителям институтов непонятно, откуда у молодой матери, которая должна бы в первую очередь печься о младенце, столько честолюбия, что она вместо этого пишет диссертацию. До сих пор еще ни один европейский университет не присваивал женщине титул доктора наук. Начальник Пьера предоставляет ей для мастерской маленькое застекленное помещение на первом этаже здания школы. Здесь хоть и сыро, и сквозит, но на такие мелочи невзыскательная докторантка не жалуется.

Для начала она повторяет опыты Беккереля и подтверждает его результаты. Он ведь тем временем обнаружил еще одно важное свойство соединений урана: исходящие из них лучи делают окружающий воздух электропроводным. При помощи изобретенного Пьером аппарата, специального электрометра, она замеряет наэлектризованный воздух над различными урановыми пробами и может из этого делать опосредованное заключение об интенсивности их излучения. Так она нашла простую меру — силу тока — для определения интенсивности излучения своих урановых препаратов. Внешние обстоятельства — такие, как сильные температурные колебания в рабочем помещении Марии, влажность воздуха, равно как и освещение, искусственное или естественное, — не оказывают никакого влияния на степень интенсивности излучения. Самый сильный ток, с большим отрывом от остальных, она замеряет над пробами смоляной обманки из саксонского Йоханнгеоргенштадта, за ними вплотную идут образцы из богемского Санкт-Йоахимсталя.

Ее внимание привлекает еще одно важное наблюдение. При измерении излучения не играет роли, подвергает ли она вещества экстремальному нагреву или охлаждению, исследует ли она уран в виде оксида, соли или фосфата в водном растворе, в виде комочков или в форме порошка. Следовательно, оно не может быть свойством того или иного соединения, а должно быть связано напрямую с элементом ураном. Ибо чем больше доля урана в веществе, тем интенсивнее излучение. И его ничем не устранишь. Ни агрессивными химикалиями, ни мощными электрическими разрядами. Теперь Мария намерена действовать упорядоченно и исследовать все известные химические элементы периодической системы. Для этого она первым делом опустошает коллекцию минералов в школе Пьера. При этом она обнаруживает, что и соединения, содержащие элемент торий, тоже дают излучение и электризуют воздух. Чтобы впредь иметь общее обозначение для силы излучения урана и тория, Мария вводит понятие «радиоактивность».

После этого значительного открытия весной 1898 года она наталкивается на странное обстоятельство, измеряя два урановых минерала. Излучение смоляной обманки в четыре раза превосходит излучение чистого урана. И хоть она не спешит делать из этого выводы, ей остаётся в конце концов лишь одно-единственное заключение: в самородных, необработанных урановых минералах, должно быть, скрыто еще одно вещество, которое излучает сильнее урана и тория. Но поскольку мадам Кюри уже исследовала при помощи аппарата Пьера все известные на тот момент элементы на предмет излучения, это скрытое вещество может быть только новым химическим элементом.

Летом революционного 1789 года Клапрот в Берлине выделил из смоляной обманки новый элемент и назвал его именем самой удаленной от Солнца планеты Уран. Он придает столовому стеклу, флаконам и вазам в преуспевающем ныне стиле модерн типичные желто-зеленые тона всех оттенков — от насыщенного янтарно-желтого до темного яблочно-зеленого. И вот, по прошествии более чем ста лет, Мария Кюри явно выходит на след еще одного неизвестного элемента в смоляной обманке. Какой триумф после четырех месяцев работы. Она пока не может предъявить его в виде материальной субстанции, ибо его существование в этой горной породе мимолётнее, чем дуновение ветра. Но она уверена, что скоро и эта материя, видимая и весомая, захрустит в ее лабораторной ступке.

Вот она стоит в лаборатории вместе со своим мужем. Пьер Кюри приостановил свою работу над кристаллами, чтобы помочь Марии в поисках нового элемента. С оптимизмом пионеров они жертвенно отнимают от сокровища смоляной обманки несметные сто граммов для кропотливого дела растворения, выделения и очистки минерала. Семь недель спустя Мария Кюри уже умеет отделять свою гипотетическую материю от всех прочих веществ, содержащихся в смоляной обманке. Под конец опытов они с Пьером так наловчились применять огонь и сероводород, что проба излучала в триста раз сильнее, чем уран. И с каждой следующей степенью очистки радиоактивность продолжала нарастать. Тут были отринуты последние сомнения.

Восемнадцатого июля 1898 года Академия наук в Париже получает статью супружеской пары Кюри под заголовком «О новом радиоактивном веществе, содержащемся в смоляной обманке». В тридцать один год Мария Кюри считает новый химический элемент самым значительным открытием своей жизни и называет его в честь своей родины «полонием». Но смоляная обманка припасла для нее еще больший сюрприз, чреватый далеко идущими последствиями. После выделения полония у нее осталось небольшое количество легкого металла бария. И он тоже проявляет значительное радиоактивное излучение. Значит, в тускло-сером веществе должна быть скрыта еще одна неведомая радиоактивная субстанция.

А супруги Кюри что-то стали необъяснимо быстро уставать, работая с лучистыми веществами, и им приходится бороться со странной летаргией. Кроме того, Пьер жалуется с некоторых пор на боли в конечностях. Эти боли он принимает за ревматизм, тогда как Марии причиняют муки потрескавшиеся, воспаленные кончики пальцев. Они оба явно нуждаются в перерыве для отдыха. И их лабораторные журналы остаются нераскрытыми до одиннадцатого ноября. Видный химик Эжен Демарсе помогает им до Рождества сделать так называемую спектроскопию нового вещества. Каждому химическому элементу соответствует собственная характерная спектральная линия. Она представляет собой свет, который исходит от разогретых атомов этого элемента, и является, так сказать, неповторимым отпечатком пальца этого особого изотопа. Вот над этим однозначным доказательством существования нового элемента и работает Демарсе. Он наносит крошечную пробу вещества на электроды, через которые пропускает электрическую искру. Так ему удается сфотографировать спектр искры вещества. На этой фотографии он находит спектральную линию, которую нельзя отнести ни к одному из известных элементов. После каждого последующего шага очистки неизвестная спектральная линия видна все отчетливее.

И таким образом удачливое трио двадцать шестого декабря представляет академии очередную работу. В ней они называют новый радиоактивный элемент «радием». Он излучает в девятьсот раз сильнее, чем уран, но, кажется, обладает еще гораздо большим потенциалом радиоактивности. Правда, дальнейшая очистка и рафинирование радия невозможна, поскольку Кюри без остатка израсходовали весь свой запас смоляной обманки. Благодаря хорошим отношениям с венским геологом профессором Эдуардом Зюсом им перепадает сто килограммов смоляной обманки, которую предоставляет государственная урановая фабрика в богемском Санкт-Йоахимстале, щедро не выставив за нее счета.

Лучший из чуланов, в котором до сих пор работала исследовательская пара, новым требованиям отвечать уже не может. Им нужно больше места, и они получают разрешение использовать бывший анатомический зал школы. Мария Кюри так описывает свой сарай: «Стеклянная крыша протекала во время дождя. Летом часто бывало жарко и душно; зимой раскаленная печь приносила одно разочарование. У самой печи было нестерпимо жарко, а в нескольких шагах от нее можно было замерзнуть». Дочь Ева рассказывает о собственноручно помеченных местах на рабочем столе и на полу, куда сквозь худую крышу попадал дождь. На эти места нельзя было ставить аппаратуру. Из-за «вредных газов», которые из чулана невозможно было выветрить, большая часть работ и без того проводилась в маленьком внутреннем дворике. Знаменитый химик Вильгельм Оствальд, однажды посетив лабораторию, принял все это за дурную шутку — «помесь хлева с картофельным подвалом».

Вот мадам Кюри стоит перед своим чугунным чаном и стоически перемешивает дымящуюся жидкость железной палкой, длиной с ее собственный рост. В продолжительной череде всегда одних и тех же действий она измельчает материал, растворяет его в теплой соляной кислоте и сероводороде, тщетно пытаясь уклониться от ядовитых паров, фильтрует, очищает и кристаллизует лучистый бульон. Это еще и борьба с угольной и железной пылью, постоянно задувающей со двора, которая все равно то и дело загрязняет тщательно оберегаемые на столах сосуды для кристаллизации, губя тем самым работу многих часов, а то и дней. К этому времени Мария и Пьер Кюри уже знают, что и ста килограммов смоляной обманки в качестве исходного материала слишком мало, чтобы выделить достаточное количество радия для определения его атомного веса. Приходится мыслить в промышленных масштабах. В процесс кристаллизации надо ввести самое меньшее тонну. Они находят промышленного партнера — Научный центр химической продукции, который готов взять на себя тяжелую работу сепарации. В качестве ответной услуги парижская химическая фабрика просит во временное пользование лишь капельку радия, чтобы представить его на Всемирной выставке 1900 года в Париже.

Некогда славный своим изобилием серебра богемский горняцкий город Санкт-Йоахимсталь теперь принадлежит к двуглаво-орлиной Австро-Венгерской монархии. Урановая фабрика вот уже пятьдесят лет обогащает смоляную обманку, которая до открытия Клапрота шла в отвал. Теперь из измельченной руды здесь выделяют все соединения урана и перерабатывают в красители для местных стекольных фабрик и фарфоровых мануфактур. Лишенные урана отходы, считающиеся пустыми, в свою очередь, десятилетиями сбрасываются в протекающую мимо фабрики речку. С недавнего времени, однако, эти так называемые хвосты стали копить в сосновом лесу за территорией фабрики — к счастью для Кюри, поскольку, с их точки зрения, эта куча отвала на краю леса — настоящее лучистое сокровище, которое содержит радий и полоний. Помимо того, йоахимстальцы считали трудоемкий процесс выделения урана уже пропащим делом. Поэтому 150 франков за тонну плюс транспортные расходы — приемлемая цена. Тяжелые мешки, которые вскоре выгрузят во дворе Школы физики в Париже, содержат коричневый порошок, из которого сплошь торчат сосновые шишки и хвоя.

Времена своей первопроходческой работы по очистке радия в неприглядной и пронизанной сквозняками лаборатории Мария Кюри воспринимает как счастливую пору. Иногда, не желая прерывать важный опыт, она даже варит обед в своей облученной кухне. А радий в составе твердых солей излучает в пять миллионов раз сильнее, чем уран. И уж разумеется, супруги Кюри совсем не принимали во внимание то, что все лабораторные предметы, с которыми соприкасался высокоактивный радий, тоже становились радиоактивными и оставляли на фотопластинках, свои тени сквозь черную бумагу. «Пыль, комнатный воздух, одежда — всё радиоактивно. ...Бедствие настолько обострилось, что мы больше не можем держать в изолированном состоянии ни один прибор». Когда лаборатория облучена до такой степени, измерения становятся недостоверными и их приходится проводить где-то в другом месте.

Но оба умеют извлечь из этого эффекта и нечто позитивное. Ведь чем больше радий приближается к своей чистой форме, тем сильнее становится его спонтанное свечение. И вскоре это становится любимым «развлечением» пары, по выражению Марии. Поздним вечером еще раз заглянуть в лабораторию, чтобы побаловать себя фантастическим зрелищем: «Повсюду виднелись слабо светящиеся очертания пробирок и мешочков, в которых находились наши препараты. Вид и впрямь был великолепный, всякий раз он казался нам новым. Тлеющие трубки походили на волшебные огоньки».

Научный мир Германии почти не принял к сведению работу Кюри даже по прошествии года с открытия радия. Лишь некоторые одиночки — такие, как Юлиус Эльстер и Ганс Гейтель, — идут по следам Кюри. Они принимают участие и в рассуждениях о причинах излучения. Так, Мария Кюри летом 1898 года подозревает, что радиоактивные элементы единственные в периодической системе могут абсорбировать космические лучи из Вселенной и превращать их в наблюдаемое излучение. Для проверки этой теории так называемого вторичного излучения Эльстер и Гейтель спускаются в шахту под Клаусталем в Гарце на глубину 850 метров, имея при себе урановый препарат. Они исходят из того, что слои земли и горных пород должны абсорбировать космическое излучение, так что на такой глубине оно уже не будет поддаваться измерению. Однако они обнаруживают, что и там уран излучает с такой же силой, как у входа в шахту. Так они приходят к заключению, что космические лучи в качестве причины радиоактивности «в высшей степени неправдоподобны». Сама Мария Кюри тоже принимает во внимание эксперимент немцев и оценивает его как опровержение теории вторичного космического излучения.

В начале 1899 года истинное решение уже носится в воздухе. На одном заседании Брауншвейгского общества естественных наук 19 января 1899 года Эльстер и Гейтель докладывают о своих исследованиях в области радиоактивности и становятся на следующую — удивительную — точку зрения: «...приходится делать вывод, что источник энергии заключен скорее в самих атомах этих элементов. Мысль близка к тому, что атом радиоактивного элемента переходит из нестабильной связи в стабильное состояние путем отдачи энергии». При этом они впервые указывают не только на атомарный источник излучения, но и на возможность распада атома в качестве объяснения излучения. Эта теза вскоре будет точно разработана Эрнестом Резерфордом и Фредериком Содди в Монреале. К кругу исследователей в земле Брауншвейг принадлежит и зубной врач Отто Валькхофф, который уже через две недели после новаторской публикации Рёнтгена сделал снимки своих челюстей при помощи X-лучей, тем самым впервые продемонстрировав терапевтическое использование новооткрытого излучения в стоматологии. Однако в центре внимания, без сомнения, оказывается профессор Фридрих Гизель, ведущий химик Брауншвейгской хининовой фабрики Бухлера. Он разрабатывает хитрый метод отделения радия, который ведет к успеху гораздо быстрее, чем метод очистки Марии Кюри. Гизель оживленно переписывается с супружеской парой парижских ученых. Они посылают друг другу по почте препараты высокой радиоактивности и обмениваются результатами исследований. Для своей фирмы он специализируется на коммерческом производстве препаратов радия, чтобы удовлетворить спрос, постепенно растущий в лабораториях.

Уже в 1896 году, когда весь мир бросился к X-лучам, а открытие Беккереля игнорировалось, Гизель использовал собственное излучение урановой руды, чтобы запечатлеть на фотопластинке изображение лягушки. Сходство отображающей способности лучей Рёнтгена и Беккереля наводит его на вопрос, а не сопоставимо ли и физиологическое действие обоих видов лучей. Имея дело с лучами Рёнтгена четыре года, радиологи и конструкторы аппаратов уже знают об опасности передозировки для здоровья. Они работают над мерами защиты, чтобы уменьшить силу лучей. Ведь случаи затяжных недугов, а то и вовсе тяжелых ожогов со смертельными последствиями заметно поубавили рентгеновскую эйфорию среди физиков и медиков. Никто не знает точно, какая доза облучения может считаться допустимой.

Неустрашимый зубной врач Отто Валькхофф тоже, конечно, осведомлен о вредном воздействии рентгеновских лучей, когда осенью 1900 года отваживается на первый задокументированный опыт с радиоактивностью на себе самом. Для этого Гизель предоставляет в его распоряжение 0,2 грамма своего препарата радия. Может быть, надеялся Валькхофф, этот способ облучения тоже пригодится в терапии. Он кладет препарат, заключив его в целлулоидную капсулу, на свое предплечье и дважды облучает его по 20 минут, после чего его кожа воспаляется. Фридрих Гизель, который каждый день соприкасается в лаборатории с радием, недоумевает, однако принимает вызов Валькхоффа и повторяет опыт, слегка повысив дозу. Чтобы действовать наверняка, он дает капсуле пролежать на внутренней поверхности плеча сразу два часа. Через две недели он получает «очень сильное воспаление кожи с пигментацией на упомянутом, точно очерченном месте; за воспалением последовало образование пузырей и отторжение верхнего слоя кожи, как при ожоге, после чего наступило заживление». Полтора года спустя на этом месте все еще виден шрам. И волосы на этом месте больше не растут. Этот феномен должен был бы вообще-то напомнить ему о собственных ранних опытах с X-лучами, когда он страстно добивался лучшего изображения на рентгеновских снимках, и у его девятилетнего сына Фрица выпали волосы после бессчетных просвечиваний черепа.

В Париже отчеты Валькхоффа и Гизеля воспринимаются с воодушевлением и тут же со спортивным азартом побиваются более сильными козырями. Если Гизель положил себе два часа облучения, то Пьер Кюри не станет мелочиться и взвинтит свой рекорд до испепеляющих десяти часов. С возникшей после этого раной пришлось повозиться гораздо больше, чем со сравнительно безобидным ожогом немца. Пострадавшая поверхность кожи тщательно обмеряется, дням воспаления ведется счет, в дело идут перевязки, а рана, похоже, въелась глубоко в мякоть, поскольку «приобретает серый оттенок», что с удовлетворением отмечает Кюри. Вскоре и Анри Беккерель описывает собственный опыт со сходными ожогами кожи после того, как слишком долго носил в кармане пиджака капсулу с радием. Раны демонстрируются с известной гордостью экспериментаторов — поскольку оптимизм пока что перевешивает опасения: исследователи надеются, что наблюдаемый эффект однажды приведет к лучевой терапии рака и кожных лишаев.

Гизель уже превратился в радийного дервиша до такой степени, что обрыскал в поисках жертвы весь дом и сад. Комнатные растения его жены после короткого облучения радием приобретают осенние цвета и гибнут. Он разрушает — именем науки — всхожесть цветочных семян и целенаправленно истребляет хлорофилл всех зеленых организмов, какие попадаются на пути ему и его капсуле радия.

Беззаботное обращение и ежедневный контакт со все более чистым и все сильнее излучающим препаратом радия превращают пионеров в живые источники излучения. Всё, к чему они прикасаются, становится радиоактивным. Записные книжки Марии и Пьера Кюри и в XXI веке всё еще заражены радиоактивностью так сильно, что их приходится держать в свинцовом ящике. Также в письма и документы из наследия Гизеля можно заглянуть лишь с соблюдением противолучевых защитных предписаний. Летом 1904 года немецкий знаток радия предоставляет самого себя в качестве подопытной персоны для одного очень специфического опыта своих друзей Эльстера и Гейтеля. Экспериментаторы исходят из следующих соображений: поскольку радий непрерывно испускает радиоактивный инертный газ радон, Гизель после шести лет работы со своими препаратами должен был настолько пропитаться радоном, что его дыхание могло стать электропроводным и поддающимся на сей счет измерению. Они велят ему надышать воздуха под колокол аппарата, и тот действительно показывает наличие электрического заряда, намного превышающего средние значения. Одну щекотливую деталь их испытания Эльстер и Гейтель стыдливо спроваживают в мелкий шрифт сноски: «И моча подопытного (220 куб. см), если пропускать через нее воздух, отдавала ему такое количество эманации, что его электропроводность в семь раз превышала нормальную».

Ладони Фридриха Гизеля теперь постоянно воспалены. На коже образуются чешуйки, а кончики пальцев затвердевают. Неумеренные опыты над собой проводятся из научного любопытства и в осознании того, что пионерам приходится и рисковать. Мария и Пьер Кюри поначалу тоже не думают о вредном воздействии полученного облучения. Весной 1903 года Мария работает в лучистом сарае ничуть не меньше обычного, хотя она снова беременна. Даже после выкидыша ей все еще невдомек, что гибель ее дочери с высокой степенью вероятности связана с радиационным облучением. Ведь оно с легкостью разрушает как раз клетки в процессе деления — а это клеточное состояние естественно для эмбриона.

Загрузка...