Глава 2. Откуда взялись вещества?



Машина времени

Чтобы понять, откуда взялся строительный материал для материи — элементарные частицы, надо отправиться в далёкое прошлое. «Но ведь машины времени существуют только в фантастических романах и фильмах!» — скажете вы. И нет, и да. Пока что, действительно, не создано никакого транспортного средства, которое могло бы физически перенести нас в прошлое. Разве что в фильмах, таких как «Назад в будущее» (США). А было бы здорово: сел в мягкое кресло, пристегнул ремни, установил на дисплее «−2000 лет», нажал кнопку «Поехали», и через считанные минуты ты уже в древнем Риме, в Колизее, наблюдаешь бой гладиаторов. Возможно, созданием такой машины будете заниматься вы, когда станете исследователями. А между тем астрофизикам, изучающим Вселенную, каждый день удаётся заглянуть в далёкое прошлое и узнать о событиях, которые там происходили. На этот случай у них есть свои машины времени — телескопы.

Всё дело в свете. Когда мы смотрим на любой объект или человека, чаще всего на маму, то видим свет, который отражают её лицо, волосы, очки, костюм, маникюр и морщинки возле глаз, когда она улыбается. Отражённый свет попадает в наши глаза, на специальное приёмное устройство — сетчатку. Она, в свою очередь, передаёт сигнал в мозг, и мозг сам строит изображение того, что мы видим. Отражённый свет несёт информацию о мельчайших деталях объекта, его форме, цвете, фактуре — обо всем. Ничто от него не ускользнёт — ни пятнышко на рукаве, ни грязные ботинки, которые вы забыли почистить перед школой, ни обкусанные ногти. Просто идеальный копировщик.

Свет летит с невообразимой скоростью — 300 000 километров в секунду. Ничто во Вселенной не движется быстрее. Но эта скорость всё-таки конечна. И если свету, несущему информацию об объекте, надо преодолеть расстояние в миллионы или миллиарды километров, то на это требуется уже заметное время. Вот мы смотрим на Луну. И что же мы видим? Красивый белый диск на ночном небе, покрытый тёмными пятнами. Иногда нам кажется, что эти пятна складываются в изображение женского лица. Но вряд ли вы задумывались, что, глядя на Луну, мы смотрим в прошлое, на несколько секунд назад. Именно столько времени требуется свету, чтобы преодолеть расстояние от Луны до Земли. А если мы рассматриваем Солнце, то мы ещё больше удаляемся в прошлое — на несколько минут. Они необходимы свету, чтобы добраться от Солнца до Земли, ведь Солнце расположено от нашей планеты значительно дальше.

Что уж говорить, например, об упомянутой звёздной системе Альфа Центавра! В тёмную ясную ночь её можно увидеть на небе, особенно самую яркую её звезду — Альфа Центавра А. Наш взгляд на эту звезду — это бросок в прошлое почти на четыре с половиной года: столько времени добирается свет от звезды до наших глаз. Если обозначить это расстояние в километрах, то получится длиннющее число со множеством нулей. Оперировать такими числами трудно. Поэтому для космических расстояний астрофизики придумали свою меру длины — световой год. Он равен тому расстоянию, которое проходит свет за год, приблизительно 9 460 000 000 000 (9 триллионов 460 миллиардов) километров.



Вот она, машина времени длиной чуть больше тринадцати метров и диаметром — чуть больше четырех. На этом космическом аппарате установлен знаменитый телескоп Хаббл, который оборачивается вокруг Земли за 96 минут и позволяет заглянуть в прошлое Вселенной на 12 миллиардов лет назад


Самая мощная машина времени сегодня — это американский телескоп «Хаббл» (Hubble Space Telescope), который вращается на земной орбите уже 20 лет. Оптические глаза этого телескопа удивительно зоркие. Они видят почти в десять раз лучше, чем его собратья на Земле. Почему, спросите вы? Да всё дело в атмосфере, окружающей нашу Землю, в том воздухе, которым мы дышим. Нам-то он кажется совершенно «пустым» и потому прозрачным. Но на деле всё не так.

Воздух и атмосфера содержат огромное количество разных веществ — кислород, азот, углекислый газ, пары воды и многое другое. Эти вещества летают над нами и вокруг нас в виде одиночных молекул. А мы-то уже знаем, что одиночные молекулы невидимы нашему глазу. Вот нам и кажется, что прозрачный воздух — это сплошная пустота. Однако свет очень чувствителен к той среде, через которую летит. Да и человек тоже: одно дело нестись по берегу вдоль реки, а другое — бежать по мелководью по пояс в воде. Догадайтесь, кто движется быстрее? В атмосфере Земли свет сталкивается с невидимыми молекулами, рассеивается и немного замедляется. Вот поэтому астрофизики и решили поместить телескоп на орбиту Земли, поднять его над атмосферой, расположить в космическом вакууме, где содержание веществ ничтожно и потому нет никаких препятствий для света, нет помех.

Ожидания астрофизиков оправдались, и теперь у нас есть супертелескоп «Хаббл», который ловит свет далёкого прошлого и посылает на Землю фантастические по красоте снимки разных уголков Вселенной. Кстати, вы тоже можете посмотреть на эту красоту — в Интернете. Снимки доступны для всех.


Спектральные очки

Но зачем нам свет, если мы хотим узнать, откуда взялось вещество? Оказывается, свет может рассказать не только о внешнем виде. Любое сильно нагретое тело излучает энергию. Разогретая печка излучает тепло, раскалённые угли пышут жаром и мерцают красным огнём, а летнее солнце слепит глаза и жжёт кожу. Таково свойство всех веществ и его составных частей, атомов, — возбуждаться и излучать при нагревании.

Возьмите щепотку обыкновенной поваренной соли на кончик ножа (химики для этого используют фарфоровую ложечку) и внесите в открытый огонь. Пламя, охватывающее соль, будет окрашено в яркий жёлтый цвет. Именно такой свет испускают при сильном нагревании атомы элемента натрия, входящего в состав соли. А если вы возьмёте другое вещество, которое содержит элемент калий, то пламя будет сине-фиолетовое. Кстати, этот незамысловатый метод до сих пор используют химики, чтобы определить присутствие того или иного элемента в неизвестном веществе или смеси веществ. А пиротехники — для создания разноцветных праздничных фейерверков.


Синее пламя газовой горелки становится желтым, если в него внести на ложечке обыкновенную поваренную соль. Атомы натрия, входящие в состав этого вещества, обнаруживают себя этим желтым свечением


Астрофизики, поймавшие свет далёкой звезды, могут разложить его на составные части — это называется спектром. Природа тоже умеет это делать. Вы наверняка не раз видели, как после дождя в небе вдруг появляется восхитительная радуга. Это капельки воды, висящие в воздухе, раскладывают видимый свет на составные части. И вы точно знаете, как в этом полосатом чуде будут чередоваться цвета: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. А если не знаете, то запомните фразу-подсказку: каждый охотник желает знать, где сидит фазан. Или вот ещё такой шутливый «французский» вариант: как однажды Жак-звонарь головой сломал фонарь Вы уже догадались, что первая буква в каждом слове — это первая буква в названии цвета радуги.



Но вернёмся к астрофизикам. Астрофизики умеют разложить свет далёких звёзд на гораздо более тонкие составные части, причём даже увидеть с помощью специальных приборов те части светового спектра, которые невидимы глазу, — инфракрасную и ультрафиолетовую. Тот, кто умеет читать эти спектры, многое узнаёт о звезде. Например — какая у неё температура, какие элементы входят в её состав, какие процессы протекают на этой звезде и как далеко она расположена от Земли.

Если посмотреть на Солнце сквозь такие спектральные очки, то окажется что на Солнце присутствует около 80 элементов таблицы Менделеева. Больше всего — водорода (почти три четверти по массе) и гелия (почти четверть), и совсем чуть-чуть (2%) остальных элементов.

Однако главный вопрос остаётся — откуда эти элементы взялись на Солнце? Чтобы узнать это, нам придётся вернуться к нашей машине времени.


Вообще, любое разогретое вещество излучает энергию. И это на руку астрофизикам, которые разглядывают светящиеся галактики и узнают о событиях, происходящих в них


Начало всех начал, или Космическая кухня

Сегодня телескоп «Хаббл» позволяет заглянуть на двенадцать миллиардов лет назад! Излучение, пришедшее из невообразимо далёкого прошлого и пойманное «Хабблом», тщательно изучают астрофизики. Так им удаётся воссоздать те космические события, которые разворачивались на протяжении этого гигантского отрезка времени. Они как будто смотрят фильм, прокручиваемый назад, от конца к началу. К тому, с чего всё началось.

А всё началось с Большого взрыва. Именно так назвал момент зарождения Вселенной бельгийский священник и астроном Жорж Леметр в 1931 году. Уже тогда, в начале XX века, астрономы сумели с помощью наземных телескопов разглядеть и понять, что части Вселенной находятся в постоянном движении. И не просто в движении: они словно разбегаются в разные стороны, удаляясь друг от друга, — точно так, как разлетаются осколки гранаты или искры фейерверка. В конце 20-х годов прошлого века Жорж Леметр посетил своего друга, астронома Эдвина Хаббла (в его честь назван телескоп) в Маунт-Вилсоновской астрономической обсерватории в Калифорнии (США) и узнал об этих последних наблюдениях. А дальше он просто подумал и представил, что будет, если разлетающиеся осколки гранаты обратить вспять, то есть заставить лететь в обратном направлении. Этот мысленный эксперимент привел его к тому исходному моменту, когда граната взорвалась и породила разлетающиеся осколки. Так появилась на свет теория Большого взрыва.

Сегодня астрофизики подсчитали, что Большой взрыв случился около 14 миллиардов лет назад. Взорвалось нечто очень маленькое и невероятно плотное. Жорж Леметр называл это первоатомом, а современные физики — точкой сингулярности. И в момент этого исторического для нашего мира взрыва родились материя, пространство и время. Большой взрыв был невероятно мощным: на его фоне взрыв атомной бомбы — просто комариный писк. Раскалённый шарик с гигантской температурой начал стремительно раздуваться, создавая внутри себя всё больше пространства. По мере расширения температура внутри раскалённой сферы падала, и начала рождаться будущая материя.

Я просто вижу, как вы недоумённо трясёте головой: «Ничего не понимаю! Как это ничего не было, ни материи, ни пространства, ни времени?!» Понять и представить это действительно трудно. Я сама ломала над этим голову многие годы. И вот какая аналогия пришла мне на ум, надеюсь, она поможет и вам. Вас ведь тоже когда-то не было, и для вас не было ни пространства, ни времени. Но вот вы появились на свет, и в этот миг для вас распахнулось пространство и пошёл отсчет времени. Ваше пространство было вначале очень маленьким и ограничивалось вашей кроваткой. Но вы росли, и оно росло, расширялось, вместе с вами. Чем дальше, тем больше будет становиться это пространство, которое вы узнаете и освоите. И пределов вашему познанию нет. Вам открыт весь этот мир — прекрасный и бесконечный.

Но вернёмся к рождению Вселенной. Мы с вами уже знаем, что всё состоит из трех элементарных частиц — протона, нейтрона и электрона. Они-то и появились в самом начале первой секунды после Большого взрыва. Секунда ещё не прошла, а температура уже упала до 300 миллионов градусов, и начали формироваться первые ядра будущих атомов, самых маленьких и простых — тяжелого водорода (один протон, один нейтрон) и гелия (два протона, два нейтрона). Не случайно эти элементы занимают два первых места в таблице Менделеева. Они действительно были первыми! Через тысячу лет стало «прохладно» — всего-то 30 тысяч градусов. Но это была именно та температура, при которой ядра гелия и водорода смогли притянуть к себе электроны. Так появились первые атомы.


Так выглядит наша Вселенная глазами телескопа Хаббл. Сто миллиардов галактик, вроде нашей, и в каждой из них сто миллиардов звезд, вроде нашего Солнца! Интересно, сколько планет во Вселенной?




Эта гигантская спиралевидная галактика, как, впрочем, и всё остальное, состоит всего лишь из трёх типов элементарных частиц — электронов, протонов и нейтронов


А потом, ещё через 200 миллионов лет, во Вселенной стало просто чудовищно холодно — минус 272 градуса по Цельсию, или всего около одного градуса по абсолютной шкале температур. При таких условиях газ Вселенной, состоящий из водорода и гелия, стал конденсироваться, то есть объединяться в газовые шары вроде нашего Солнца и других звезд. Силы гравитации всё сильнее сжимали их. Из-за выделяющейся при этом энергии начала расти температура. И вот в недрах звёзд создались условия, при которых началась реакция термоядерного синтеза — слияние ядер водорода и гелия, порождающее ядра всё более тяжелых элементов, всех химических элементов таблицы Менделеева. Так звёзды превращались в гигантские фабрики материи. А ещё в результате этих реакций выделялось много энергии, которая распространялась во Вселенной, в том числе в виде света. Именно поэтому мы видим на небе звёзды, которые удалены от нас на сотни миллионов световых лет.

А потом всё «топливо» в недрах звезды сгорало, и звезда взрывалась, раскидывая по Вселенной наработанную материю. Образовывалась межзвёздная пыль, из неё — пылевые облака, а уже из них — планеты, напичканные самыми разными веществами. Вот так рождалась материя, из которой сформировались все объекты во Вселенной.

Наша Солнечная система, в которой мы живём, входит в состав нашей Галактики Млечный Путь. В этой Галактике, как и в других, больше 100 миллиардов звёзд. А всего во Вселенной 100 миллиардов галактик вроде нашей. Гигантский, необозримый, загадочный мир! И весь он соткан из материи, то есть вещества, порождённого Большим взрывом.

Хотя на самом деле никто не может утверждать этого наверняка, ведь никто же не видел Большого взрыва. Это всего лишь теория, предположение. Но сегодня все наблюдаемые данные, полученные астрофизиками с помощью «Хаббла» и других телескопов, подтверждают, что сценарий зарождения и развития Вселенной, именуемый «Большим взрывом», очень похож на правду. Впрочем, остаётся много вопросов: а что было до Большого взрыва? Есть ли другие Вселенные, кроме нашей? Будет ли Вселенная расширяться до бесконечности? А если нет, то что с ней в конце концов произойдёт? Возможно, эти вопросы ждут вас, уважаемый читатель. И если вы посвятите свою жизнь исследованию вселенной, то, очень может быть, найдете на них ответы и осчастливите человечество.

Давайте подведём итог. Протоны, нейтроны и электроны, из которых созданы все элементы и вещества, или материя, появились на свет в момент рождения Вселенной, сразу после Большого взрыва. Из них сформировались атомы первых веществ — водорода и гелия, которые по-прежнему остаются самыми распространёнными веществами во Вселенной. А весь остальной набор химических элементов из таблицы Менделеева рождался и продолжает рождаться в звёздах. Здесь при огромных температурах безостановочно протекают реакции распада и синтеза ядер и атомов, здесь рождаются химические элементы, поставляемые, как сырьё, во Вселенную.

Физики утверждают, что количество электронов во Вселенной не менялось с момента Большого взрыва. Это означает, что и количество разных веществ в этом удивительном мире конечно.


Загрузка...