For information on the disorder and its genetics see www.omim.org record #160900
For more information see http://ghr.nlm.nih.gov/condition/myotonic-dystrophy
For more information see http://www.ninds.nih.gov/disorders/friedreichs_ataxia/detail_friedreichs_ataxia.htm
For more information see http://ghr.nlm.nih.gov/condition/facioscapulohumeral-muscular-dystrophy
http://www.escapistmagazine.com/news/view/113307-Virtual-Typewriter-Monkeys-Pen-Complete-Works-of-Shakespeare-Almost
Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A., Zara F., Cañizares J., Koutnikova H., Bidichandani S. I., Gellera C., Brice A., Trouillas P., De Michele G., Filla A., De Frutos R., Palau F., Patel P. I., Di Donato S., Mandel J. L., Cocozza S., Koenig M., Pandolfo M. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8; 271(5254):1423–7
Bidichandani S. I., Ashizawa T., Patel P. I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998 Jan; 62(1):111–21
Babcock M., de Silva D., Oaks R., Davis-Kaplan S., Jiralerspong S., Montermini L., Pandolfo M., Kaplan J. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science. 1997 Jun 13; 276(5319):1709–12
Kremer E. J., Pritchard M., Lynch M., Yu S., Holman K., Baker E., Warren S. T., Schlessinger D., Sutherland G. R., Richards R. I. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science. 1991 Jun 21; 252(5013):1711–4
Verkerk A. J., Pieretti M., Sutcliffe J. S., Fu Y. H., Kuhl D. P., Pizzuti A., Reiner O., Richards S., Victoria M. F., Zhang F. P, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991 May 31; 65(5):905–14
Pieretti M., Zhang F. P., Fu Y. H., Warren S. T., Oostra B. A., Caskey C. T., Nelson D. L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991 Aug 23; 66(4):817–22
Qin M., Kang J., Burlin T. V., Jiang C., Smith C. B. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J Neurosci. 2005 May 18; 25(20):5087–95
Reviewed in Echeverria G. V., Cooper T. A. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity. Brain Res. 2012 Jun 26; 1462:100–11
http://www.genome.gov/11006943
Unless otherwise stated, the majority of the information in this chapter is from the edition of Nature published on 15th February 2001 which contained the data and analyses from the publicly funded consortium. The major reference is Initial sequencing and analysis of the human genome, authored by the International Human Genome Sequencing Consortium. Readers may also find the accompanying commentaries in the same issue of interest.
http://partners.nytimes.com/library/national/science/062700sci-genome-text.html
http://news.bbc.co.uk/1/hi/sci/tech/807126.stm
http://news.bbc.co.uk/1/hi/sci/tech/807126.stm
http://www.genome.gov/sequencingcosts/
http://www.wired.co.uk/news/archive/2014-01/15/1000-dollar-genome
For a fascinating case history, see Gura, Nature, 2012, Volume 483, pp20–22
http://www.cancerresearchuk.org/cancer-help/about-cancer/treatment/cancer-drugs/Crizotinib/crizotinib
https://genographic.nationalgeographic.com/human-journey/
http://publications.nigms.nih.gov/insidelifescience/genetics-numbers.html
Aparicio et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 2002 Aug 23; 297(5585):1301–10
Baltimore D. Our genome unveiled. Nature. 2001 Feb 15; 409(6822):814–6.
Data from the American Cancer Society http://www.cancer.org/cancer/skincancer-melanoma/detailedguide/melanoma-skin-cancer-key-statistics
Unless otherwise stated, the majority of the information in this chapter is from the edition of Nature published on 15th February 2001 which contained the data and analyses from the publicly funded consortium. The major reference is Initial sequencing and analysis of the human genome, authored by the International Human Genome Sequencing Consortium. The accompanying commentaries by David Baltimore and by Li et al in the same issue are also of interest, and rather more accessible in style and content.
Vlangos C. N., Siuniak A. N., Robinson D., Chinnaiyan A. M., Lyons R. H. Jr., Cavalcoli J. D., Keegan C. E. Next-generation sequencing identifies the Danforth’s short tail mouse mutation as a retrotransposon insertion affecting Ptf1a expression. PLoS Genet. 2013; 9(2):e1003205
Bogdanik L. P., Chapman H. D., Miers K. E., Serreze D. V., Burgess R. W. A MusD retrotransposon insertion in the mouse Slc6a5 gene causes alterations in neuromuscular junction maturation and behavioral phenotypes. PLoS One. 2012; 7(1):e30217
Schneuwly S., Klemenz R., Gehring W. J. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature. 1987 Feb 26–Mar 4; 325(6107):816–8
Mortlock D. P., Post L. C., Innis J. W. The molecular basis of hypodactyly (Hd): a deletion in Hoxa 13 leads to arrest of digital arch formation. Nat Genet. 1996 Jul; 13(3):284–9
Rowe H. M., Jakobsson J., Mesnard D., Rougemont J., Reynard S., Aktas T., Maillard P. V., Layard-Liesching H., Verp S., Marquis J., Spitz F., Constam D. B., Trono D. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature. 2010 Jan 14; 463 (7278):237–40
Young G. R., Eksmond U., Salcedo R., Alexopoulou L., Stoye J. P., Kassiotis G. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature. 2012 Nov 29; 491(7426):774–8
http://www.emedicinehealth.com/heart_and_lung_transplant/article_em.htm
For an interesting recent review of the field of xenotransplanation, see Cooper DK. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012 Jan; 25(1):49–57
Patience C., Takeuchi Y., Weiss R. A. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997 Mar; 3(3):282–6
Di Nicuolo G., D’Alessandro A., Andria B., Scuderi V., Scognamiglio M., Tammaro A., Mancini A., Cozzolino S., Di Florio E., Bracco A., Calise F., Chamuleau R. A. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation. 2010 Nov — Dec; 17(6):431–9
For a useful recent review of the effects of segmental duplication, including abnormal crossing-over, see Rudd M. K., Keene J., Bunke B., Kaminsky E. B., Adam M. P., Mulle J. G., Ledbetter D. H., Martin C. L. Segmental duplications mediate novel, clinically relevant chromosome rearrangements. Hum Mol Genet. 2009 Aug 15; 18(16):2957–62
For more information on this condition and its causes, see http://www.ninds.nih.gov/disorders/charcot_marie_tooth/detail_charcot_marie_tooth.htm
For more information on this condition and its causes, see http://www.nlm.nih.gov/medlineplus/ency/article/001116.htm
Mombaerts P. The human repertoire of odorant receptor genes and pseudogenes. Annu Rev Genomics Hum Genet. 2001; 2:493–510
http://www.innocenceproject.org/know/ retrieved 1 January 2014
Gross takings as cited by http://www.imdb.com
Reviewed in Boxer L. M., Dang C. V. Translocations involving c-myc and c-myc function. Oncogene. 2001 Sep 20(40):5595–610
Moyzis R. K., Buckingham J. M., Cram L. S., Dani M., Deaven L. L., Jones M. D., Meyne J., Ratliff R. L., Wu J. R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988 Sep; 85(18):6622–6
Vaziri H., Schächter F., Uchida I., Wei L., Zhu X., Effros R., Cohen D., Harley C. B. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993 Apr; 52(4):661–7
Hayflick L., Moorhead P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec; 25:585–621
Harley C. B., Futcher A. B., Greider C. W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990 May 31; 345(6274):458–60
Bodnar A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B., Harley C. B., Shay J. W., Lichtsteiner S., Wright W. E. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998 Jan 16; 279(5349):349–52
There is a useful discussion of this problem in Armanios M., Blackburn E. H. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704
Armanios M., Blackburn E. H. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704 provides a useful overview.
Wright W. E., Piatyszek M. A., Rainey W. E., Byrd W., Shay J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996; 18(2):173–9
Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23; 266(5193):2011–5
http://www.nlm.nih.gov/medlineplus/ency/anatomyvideos/000104.htm
Chiu C. P., Dragowska W., Kim N. W., Vaziri H., Yui J., Thomas T. E., Harley C. B., Lansdorp P. M. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells. 1996 Mar; 14(2):239–48
Vaziri H., Dragowska W., Allsopp R. C., Thomas T. E., Harley C. B., Lansdorp P. M. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A. 1994 Oct 11; 91(21):9857–60
Armanios M., Blackburn E. H. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704
Armanios M., Blackburn E. H. The telomere syndromes. Nat Rev Genet. 2012 Oct; 13(10):693–704
For an excellent clinical description, and useful pictures, see Calado R. T., Young N. S. Telomere diseases. N Engl J Med. 2009 Dec 10; 361(24):2353–65
Alder J. K., Chen J. J., Lancaster L., Danoff S., Su S. C., Cogan J. D., Vulto I., Xie M., Qi X., Tuder R. M., Phillips J. A 3rd., Lansdorp PM., Loyd JE., Armanios MY. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A. 2008 Sep 2; 105(35):13051–6
Armanios M. Y., Chen J. J., Cogan J. D., Alder J. K., Ingersoll R. G., Markin C., Lawson W. E., Xie M., Vulto I., Phillips J. A 3rd., Lansdorp P. M., Greider C. W., Loyd J. E. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007 Mar 29; 356(13):1317–26
Tsakiri K. D., Cronkhite J. T., Kuan P. J., Xing C., Raghu G., Weissler J. C., Rosenblatt R. L., Shay J. W., Garcia C. K. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A. 2007 May 1; 104(18):7552–7
Cronkhite J. T., Xing C., Raghu G., Chin K. M., Torres F., Rosenblatt R. L., Garcia C. K. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008 Oct 1; 178(7):729–37
For a useful description see http://www.patient.co.uk/doctor/aplastic-anaemia
de la Fuente J., Dokal I. Dyskeratosis congenita: advances in the understanding of the telomerase defect and the role of stem cell transplantation. Pediatr Transplant. 2007 Sep; 11(6):584–94
Armanios M., Chen J. L., Chang Y. P., Brodsky R. A., Hawkins A., Griffin C. A., Eshleman J. R., Cohen A. R., Chakravarti A., Hamosh A., Greider C. W. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci U S A. 2005 Nov 1; 102(44):15960–4
http://www.who.int/mediacentre/factsheets/fs339/en/
Alder J. K., Guo N., Kembou F., Parry E. M., Anderson C. J., Gorgy A. I., Walsh M. F., Sussan T., Biswal S., Mitzner W., Tuder R. M., Armanios M. Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med. 2011 Oct 15; 184(8):904–12
Cited in Sahin E., Depinho R. A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010 Mar 25; 464(7288):520–8
Statistical factsheet from the American Heart Association on Older Americans & Cardiovascular Diseases, 2013 update
http://www.rcpsych.ac.uk/healthadvice/problemsdisorders/depressioninolderadults.aspx
Valdes A. M., Andrew T., Gardner J. P., Kimura M., Oelsner E., Cherkas L. F., Aviv A., Spector T. D. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005 Aug 20–26; 366(9486):662–4
Cawthon R. M., Smith K. R., O’Brien E., Sivatchenko A., Kerber R. A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003 Feb 1; 361(9355):393–5
Fitzpatrick A. L., Kronmal R. A., Kimura M., Gardner J. P., Psaty B. M., Jenny N. S., Tracy R. P., Hardikar S., Aviv A. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 2011 Apr; 66(4):421–9
Atzmon G., Cho M., Cawthon R. M., Budagov T., Katz M., Yang X., Siegel G., Bergman A., Huffman D. M., Schechter C. B., Wright W. E., Shay J. W., Barzilai N., Govindaraju D. R., Suh Y. Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci U S A. 2010 Jan 26; 107 Suppl 1:1710–7
Segerstrom S. C., Miller G. E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004 Jul; 130(4):601–30
Epel E. S., Blackburn E. H., Lin J., Dhabhar F. S., Adler N. E., Morrow J. D., Cawthon R. M. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004 Dec 7; 101(49):17312–5
http://www.who.int/mediacentre/factsheets/fs311/en/index.html
For a useful introduction to this field, see Tennen R. I., Chua K. F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci. 2011 Jan; 36(1):39–46
Valdes A. M., Andrew T., Gardner J. P., Kimura M., Oelsner E., Cherkas L. F., Aviv A., Spector T. D. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005 Aug 20–26; 366(9486):662–4
UNFPA report on Ageing in The Twenty-First Century, 2012
Jennings B. J., Ozanne S. E., Dorling M. W., Hales C. N. Early growth determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett. 1999 Apr 1; 448(1):4–8
From The King and I, 1956, screenplay by Ernest Lehman, 20th Century Fox
A good overview of the types of centromeres in the different arms of the evolutionary tree can be found in Ogiyama Y, Ishii K. The smooth and stable operation of centromeres. Genes Genet Syst. 2012; 87(2):63–73
For a useful review, see Verdaasdonk JS., Bloom K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol. 2011 May; 12(5):320–32
Palmer D. K., O’Day K., Wener M. H., Andrews B. S., Margolis R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol. 1987 Apr; 104(4):805–15
Takahashi K., Chen E. S., Yanagida M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science. 2000 Jun 23; 288(5474):2215–9
Blower M. D., Karpen G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol. 2001 Aug; 3(8):730–9
Hori T., Amano M., Suzuki A., Backer C. B., Welburn J. P., Dong Y., McEwen B. F., Shang W. H., Suzuki E., Okawa K., Cheeseman IM., Fukagawa T. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell. 2008 Dec 12; 135(6):1039–52
Heun P., Erhardt S., Blower M. D., Weiss S., Skora A. D., Karpen G. H. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell. 2006 Mar; 10(3):303–15.
Van Hooser A. A., Ouspenski I. I., Gregson H. C., Starr D. A., Yen T. J., Goldberg M. L., Yokomori K., Earnshaw W. C., Sullivan K. F., Brinkley B. R. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci. 2001 Oct; 114(Pt 19):3529–42
Zuccolo M., Alves A., Galy V., Bolhy S., Formstecher E., Racine V., Sibarita J. B., Fukagawa T., Shiekhattar R., Yen T., Doye V. The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 2007 Apr 4; 26(7):1853–64
Palmer D. K., O’Day K., Wener M. H., Andrews B. S., Margolis R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol. 1987 Apr; 104(4):805–15
Sekulic N., Bassett E. A., Rogers D. J., Black B. E. The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature. 2010 Sep 16; 467(7313):347–51
Warburton P. E., Cooke C. A., Bourassa S., Vafa O., Sullivan B. A., Stetten G., Gimelli G., Warburton D., Tyler-Smith C., Sullivan K. F., Poirier G. G., Earnshaw W. C. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol. 1997 Nov 1; 7(11):901–4
For a very good analysis of this model, see Sekulic N., Black B. E. Molecular underpinnings of centromere identity and maintenance. Trends Biochem Sci. 2012 Jun; 37(6):220–9
If you are interested in learning more about the details of this process, and the epigenetic modifications involved, see González-Barrios R., Soto-Reyes E., Herrera L. A. Assembling pieces of the centromere epigenetics puzzle. Epigenetics. 2012 Jan 1; 7(1):3–13
From the song ‘Something Good’ in the movie version of The Sound of Music, 1965, 20th Century Fox
A particularly important protein in this respect is call HJURP, and more information can be found in Sekulic N., Black BE. Molecular underpinnings of centromere identity and maintenance. Trends Biochem Sci. 2012 Jun; 37(6):220–9
Palmer D. K., O’Day K., Margolis R. L. The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma. 1990 Dec; 100(1):32–6
Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22; 277(5698):665–7
http://www.cancerresearchuk.org/cancer-help/about-cancer/treatment/cancer-drugs/paclitaxel
Figure quoted in Rajagopalan H., Lengauer C. Aneuploidy and cancer. Nature. 2004 Nov 18; 432(7015):338–41
For a review of this issue, see Pfau S. J., Amon A. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 2012 Jun 1; 13(6):515–27
Rehen S. K., Yung Y. C., McCreight M. P., Kaushal D., Yang A. H., Almeida B. S., Kingsbury M. A., Cabral K. M., McConnell M. J., Anliker B., Fontanoz M., Chun J. Constitutional aneuploidy in the normal human brain. J Neurosci. 2005 Mar 2; 25(9):2176–80
Rehen S. K., McConnell M. J., Kaushal D., Kingsbury M. A., Yang A. H., Chun J. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A. 2001 Nov 6; 98(23):13361–6
Kingsbury M. A., Friedman B., McConnell M. J., Rehen S. K., Yang A. H., Kaushal D., Chun J. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci U S A. 2005 Apr 26; 102(17):6143–7
Melchiorri C., Chieco P., Zedda A. I., Coni P., Ledda-Columbano G. M., Columbano A. Ploidy and nuclearity of rat hepatocytes after compensatory regeneration or mitogen-induced liver growth. Carcinogenesis. 1993 Sep; 14(9):1825–30
For an extraordinary account of the ill-tempered controversy over who exactly identified the cause of Down’s Syndrome, which is still raging after 50 years, see http://www.nature.com/news/down-s-syndrome-discovery-dispute-resurfaces-in-france-1.14690
For more information on the medical and social aspects of Down’s Syndrome there are a large number of patient advocacy groups such as http://www.downs-syndrome.org.uk/
http://www.nhs.uk/conditions/edwards-syndrome/Pages/Introduction.aspx
http://www.cafamily.org.uk/medical-information/conditions/p/patau-syndrome/
Toner J. P., Grainger D. A., Frazier L. M. Clinical outcomes among recipients of donated eggs: an analysis of the U.S. national experience, 1996–1998. Fertil Steril. 2002 Nov; 78(5):1038–45
Statistical Bulletin from the Office for National Statistics, 8 August 2013 Annual Mid-year Population Estimates, 2011 and 2012
The publication that demonstrated the importance of this gene is Berta P., Hawkins J. R., Sinclair A. H., Taylor A., Griffiths B. L., Goodfellow P. N., Fellous M. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990 Nov 29; 348(6300):448–50
Yamauchi Y., Riel J. M., Stoytcheva Z., Ward M. A. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science. 2014 Jan 3; 343(6166):69–72
Ross MT et al., The DNA sequence of the human X chromosome. Nature. 2005 Mar 17; 434(7031):325–37
Brown C. J., Lafreniere R. G., Powers V. E., Sebastio G., Ballabio A., Pettigrew A. L., Ledbetter D. H., Levy E., Craig I. W., Willard H. F. Localization of the X inactivation centre on the human X chromosome in Xq13. Nature. 1991 Jan 3; 349(6304):82–4
Brown C. J., Ballabio A., Rupert J. L., Lafreniere R. G., Grompe M., Tonlorenzi R., Willard H. F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991 Jan 3; 349(6304):38–44
Brown C. J., Hendrich B. D., Rupert J. L., Lafrenière R. G., Xing Y., Lawrence J., Willard H. F. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992 Oct 30; 71(3):527–42
Brockdorff N., Ashworth A., Kay G. F., McCabe V. M., Norris D. P., Cooper P. J., Swift S., Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992 Oct 30; 71(3):515–26
Lee J. T., Strauss W. M., Dausman J. A., Jaenisch R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell. 1996 Jul 12; 86(1):83–94
For a comprehensive review of this process, see Lee JT. The X as model for RNA’s niche in epigenomic regulation. Cold Spring Harb Perspect Biol. 2010 Sep; 2(9):a003749
Xu N., Tsai C. L., Lee J. T. Transient homologous chromosome pairing marks the onset of X inactivation. Science. 2006 Feb 24; 311(5764):1149–52
For a fascinating précis of the spread of haemophilia through the European royal families, see http://www.hemophilia.org/NHFWeb/MainPgs/MainNHF.aspx?menuid=178&contentid=6
For more information on this condition see http://www.nhs.uk/conditions/Rett-syndrome/Pages/Introduction.aspx
Amir R. E., Van den Veyver I. B., Wan M., Tran C. Q., Francke U., Zoghbi H. Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999 Oct; 23(2):185–8
For more information on this condition, see http://www.nlm.nih.gov/medlineplus/ency/article/000705.htm
Hoffman E. P., Brown R. H Jr., Kunkel L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987 Dec 24; 51(6):919–28
Pena SD., Karpati G., Carpenter S., Fraser F. C. The clinical consequences of X-chromosome inactivation: Duchenne muscular dystrophy in one of monozygotic twins. J Neurol Sci. 1987 Jul; 79(3):337–44
Shin T., Kraemer D., Pryor J., Liu L., Rugila J., Howe L., Buck S., Murphy K., Lyons L., Westhusin M. A cat cloned by nuclear transplantation. Nature. 2002 Feb 21; 415(6874):859
Schmitt A. M., Chang H. Y. Gene regulation: Long RNAs wire up cancer growth. Nature. 2013 Aug 29; 500(7464):536–7
Volders P. J., Helsens K., Wang X., Menten B., Martens L., Gevaert K., Vandesompele J., Mestdagh P. LNCipedia: a database for annotated human long-noncoding RNA transcript sequences and structures. Nucleic Acids Res. 2013 Jan; 41(Database issue):D246–51
ENCODE Project Consortium, Bernstein B. E., Birney E., Dunham I., Green E. D., Gunter C., Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6; 489(7414):57–74
Tay Y., Rinn J., Pandolfi P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014 Jan 16; 505(7483):344–52
Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D. G., Lagarde J., Veeravalli L., Ruan X., Ruan Y., Lassmann T., Carninci P., Brown J. B., Lipovich L., Gonzalez J. M., Thomas M., Davis C. A., Shiekhattar R., Gingeras T. R., Hubbard T. J., Notredame C., Harrow J., Guigó R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012 Sep; 22(9):1775–89
Ulitsky I., Shkumatava A., Jan C. H., Sive H., Bartel D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011 Dec 23; 147(7):1537–50
Cabili M. N., Trapnell C., Goff L., Koziol M., Tazon-Vega B., Regev A., Rinn J. L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011 Sep 15; 25(18):1915–27
Church D. M., Goodstadt L., Hillier L. W., Zody M. C., Goldstein S., She X., Bult C. J., Agarwala R., Cherry J. L., DiCuccio M., Hlavina W., Kapustin Y., Meric P., Maglott D., Birtle Z., Marques A. C., Graves T., Zhou S., Teague B., Potamousis K., Churas C., Place M., Herschleb J., Runnheim R., Forrest D., Amos-Landgraf J., Schwartz D. C., Cheng Z., Lindblad-Toh K., Eichler E. E., Ponting C. P; Mouse Genome Sequencing Consortium. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009 May 5; 7(5):e1000112
Necsulea A., Soumillon M., Warnefors M., Liechti A., Daish T., Zeller U., Baker J. C., Grützner F., Kaessmann H. The evolution of long-noncoding RNA repertoires and expression patterns in tetrapods. Nature. 2014 Jan 30; 505(7485):635–40
Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov. 2013 Jun; 12(6):433–46
Mercer T. R., Dinger M. E., Sunkin S. M., Mehler M. F., Mattick J. S. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008 Jan 15; 105(2):716–21
For a very useful review of this class and how it fits into the wider long non-coding RNA landscape, see Ulitsky I., Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013 Jul 3; 154(1):26–46
Guttman M., Donaghey J., Carey B. W., Garber M., Grenier J. K., Munson G., Young G., Lucas A. B., Ach R., Bruhn L., Yang X., Amit I., Meissner A., Regev A., Rinn J. L., Root D. E., Lander E. S. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011 Aug 28; 477(7364):295–300
Wang K. C., Yang Y. W., Liu B., Sanyal A., Corces-Zimmerman R., Chen Y., Lajoie B. R., Protacio A., Flynn R. A., Gupta R. A., Wysocka J., Lei M., Dekker J., Helms J. A., Chang H. Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011 Apr 7; 472(7341):120–4
Li L., Liu B., Wapinski O. L., Tsai M. C., Qu K., Zhang J., Carlson J. C., Lin M., Fang F., Gupta R. A., Helms J. A., Chang H. Y. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 2013 Oct 17; 5(1):3–12
Du Z., Fei T., Verhaak R. G., Su Z., Zhang Y., Brown M., Chen Y., Liu X. S. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 2013 Jul; 20(7):908–13
For a useful review of this area, see Cheetham S. W., Gruhl F., Mattick J. S., Dinger M. E. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013 Jun 25; 108(12):2419–25
Yap K. L., Li S., Muñoz-Cabello A. M., Raguz S., Zeng L., Mujtaba S., Gil J., Walsh M. J., Zhou M. M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010 Jun 11; 38(5):662–74
Kotake Y., Nakagawa T., Kitagawa K., Suzuki S., Liu N., Kitagawa M., Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011 Apr 21; 30(16):1956–62
Yang Z., Zhou L., Wu L. M., Lai M. C., Xie H. Y., Zhang F., Zheng S. S. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011 May; 18(5):1243–50
Ishibashi M., Kogo R., Shibata K., Sawada G., Takahashi Y., Kurashige J., Akiyoshi S., Sasaki S., Iwaya T., Sudo T., Sugimachi K., Mimori K., Wakabayashi G., Mori M. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncol Rep. 2013 Mar; 29(3):946–50
Kim K., Jutooru I., Chadalapaka G., Johnson G., Frank J., Burghardt R., Kim S., Safe S. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013 Mar 8; 32(13):1616–25
Gupta R. A., Shah N., Wang K. C., Kim J., Horlings H. M., Wong D. J., Tsai M. C., Hung T., Argani P., Rinn J. L., Wang Y., Brzoska P., Kong B., Li R., West R. B., van de Vijver M. J., Sukumar S., Chang H. Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010 Apr 15; 464(7291):1071–6
Yang L., Lin C., Jin C., Yang J. C., Tanasa B., Li W., Merkurjev D., Ohgi K. A., Meng D., Zhang J., Evans C. P., Rosenfeld M. G. Long-noncoding RNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013 Aug 29; 500(7464):598–602
Prensner J. R., Iyer M. K., Sahu A., Asangani I. A., Cao Q., Patel L., Vergara I. A., Davicioni E., Erho N., Ghadessi M., Jenkins R. B., Triche T. J., Malik R., Bedenis R., McGregor N., Ma T., Chen W., Han S., Jing X., Cao X., Wang X., Chandler B., Yan W., Siddiqui J., Kunju L. P., Dhanasekaran S. M., Pienta K. J., Feng F. Y., Chinnaiyan A. M. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 2013 Nov; 45(11):1392–8
Necsulea A., Soumillon M., Warnefors M., Liechti A., Daish T., Zeller U., Baker J. C., Grützner F., Kaessmann H. The evolution of long-noncoding RNA repertoires and expression patterns in tetrapods. Nature. 2014 Jan 30; 505(7485):635–40
For an interesting critique of this issue, see Fatica A., Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014 Jan; 15(1):7–21
Bernard D., Prasanth K. V., Tripathi V., Colasse S., Nakamura T., Xuan Z., Zhang M. Q., Sedel F., Jourdren L., Coulpier F., Triller A., Spector D. L., Bessis A. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010 Sep 15; 29(18):3082–93
Pollard K. S., Salama S. R., Lambert N., Lambot M. A., Coppens S., Pedersen J. S., Katzman S., King B., Onodera C., Siepel A., Kern A. D., Dehay C., Igel H., Ares M Jr., Vanderhaeghen P., Haussler D. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006 Sep 14; 443(7108):167–72
http://www.who.int/mental_health/publications/dementia_report_2012/en/
Faghihi M. A., Modarresi F., Khalil A. M., Wood D. E., Sahagan B. G., Morgan T. E., Finch C. E., St Laurent G. 3rd., Kenny P. J., Wahlestedt C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 2008 Jul; 14(7):723–30
Modarresi F., Faghihi M. A., Patel N. S., Sahagan B. G., Wahlestedt C., Lopez-Toledano M. A. Knockdown of BACE1-AS Nonprotein-Coding Transcript Modulates Beta-Amyloid-Related Hippocampal Neurogenesis. Int J Alzheimers Dis. 2011; 2011:929042
Zhao X., Tang Z., Zhang H., Atianjoh F. E., Zhao J. Y., Liang L., Wang W., Guan X., Kao S. C., Tiwari V., Gao Y. J., Hoffman P. N., Cui H., Li M., Dong X., Tao Y. X. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci. 2013 Aug; 16(8):1024–31
For a useful review, see for example Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov. 2013 Jun; 12(6):433–46
Bird A. Genome biology: not drowning but waving. Cell. 2013 Aug 29; 154(5):951–2
If you want to learn more about this topic, have a read of my first book, The Epigenetics Revolution.
Guttman M., Donaghey J., Carey BW., Garber M., Grenier J. K., Munson G., Young G., Lucas A. B., Ach R., Bruhn L., Yang X., Amit I., Meissner A., Regev A., Rinn J. L., Root D. E., Lander E. S. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011 Aug 28; 477(7364):295–300
Guil S., Soler M., Portela A., Carrère J., Fonalleras E., Gómez A., Villanueva A., Esteller M. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol. 2012 Jun 3; 19(7):664–70
Varambally S., Dhanasekaran SM., Zhou M., Barrette T. R., Kumar-Sinha C., Sanda M. G., Ghosh D., Pienta K. J., Sewalt R. G., Otte A. P., Rubin M. A., Chinnaiyan A. M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002 Oct 10; 419(6907):624–9
Kleer C. G., Cao Q., Varambally S., Shen R., Ota I., Tomlins S. A., Ghosh D., Sewalt R. G., Otte A. P., Hayes D. F., Sabel M. S., Livant D., Weiss S. J., Rubin M. A., Chinnaiyan A. M. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003 Sep 30; 100(20):11606–11.
Sneeringer C. J., Scott M. P., Kuntz K. W., Knutson S. K., Pollock R. M., Richon V. M., Copeland R. A. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A. 2010 Dec 7; 107(49):20980–5
http://clinicaltrials.gov/ct2/show/NCT01897571?term=7438&rank=1
Kotake Y., Nakagawa T., Kitagawa K., Suzuki S., Liu N., Kitagawa M., Xiong Y. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011 Apr 21; 30(16):1956–62
Tsai M. C., Manor O., Wan Y., Mosammaparast N., Wang J. K., Lan F., Shi Y., Segal E., Chang H. Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010 Aug 6; 329(5992):689–93
For a recent major paper on this see Davidovich C., Zheng L., Goodrich K. J., Cech T. R. Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol. 2013 Nov; 20(11):1250–7
For a slightly more accessible summary of the above paper, see Goff LA, Rinn JL. Poly-combing the genome for RNA. Nat Struct Mol Biol. 2013 Dec; 20(12):1344–6
Di Ruscio A., Ebralidze A. K., Benoukraf T., Amabile G., Goff L. A., Terragni J., Figueroa M. E., De Figueiredo Pontes L. L., Alberich-Jorda M., Zhang P., Wu M., D’Alò F., Melnick A., Leone G., Ebralidze K. K., Pradhan S., Rinn J. L., Tenen D. G. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013 Nov 21; 503(7476):371–6
For an overview of all the complex stages in this process see Froberg J. E., Yang L., Lee J. T. Guided by RNAs: X-inactivation as a model for long non-coding RNA function. J Mol Biol. 2013 Oct 9; 425(19):3698–706
Froberg J. E., Yang L., Lee J. T. Guided by RNAs: X-inactivation as a model for long non-coding RNA function. J Mol Biol. 2013 Oct 9; 425(19):3698–706
Michaud E. J., van Vugt M. J., Bultman S. J., Sweet H. O., Davisson M. T., Woychik R. P. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 1994 Jun 15; 8(12):1463–72
Reviewed in Skaar D. A., Li Y., Bernal A. J., Hoyo C., Murphy S. K., Jirtle R. L. The human imprintome: regulatory mechanisms, methods of ascertainment, and roles in disease susceptibility. ILAR J. 2012 Dec; 53(3–4):341–58
A description of the actions of these proteins in the methylation of the maternal ICE can be found in Bourc’his D., Proudhon C. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Mol Cell Endocrinol. 2008 Jan 30; 282(1–2):87–94
The paper that demonstrated the importance of this protein for maintaining the maternal imprint is Hirasawa R., Chiba H., Kaneda M., Tajima S., Li E., Jaenisch R., Sasaki H. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 2008 Jun 15; 22(12):1607–16
Reinhart B., Paoloni-Giacobino A., Chaillet J. R. Specific differentially methylated domain sequences direct the maintenance of methylation at imprinted genes. Mol Cell Biol. 2006 Nov; 26(22):8347–56
Skaar D. A., Li Y., Bernal A. J., Hoyo C., Murphy S. K., Jirtle R. L. The human imprintome: regulatory mechanisms., methods of ascertainment, and roles in disease susceptibility. ILAR J. 2012 Dec; 53(3–4):341–58
Kawahara M., Wu Q., Takahashi N., Morita S., Yamada K., Ito M., Ferguson-Smith A. C., Kono T. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol. 2007 Sep; 25(9):1045–50
Reviewed in Fatica A., Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014 Jan; 15(1):7–21
For a review of this aspect, see Frost J. M., Moore G. E. The importance of imprinting in the human placenta. PLoS Genet. 2010 Jul 1; 6(7):e1001015
For a full description see http://omim.org/entry/176270
For a full description see http://omim.org/entry/105830
For a contemporaneous review of the work see Surani M. A., Barton S. C., Norris M. L. Experimental reconstruction of mouse eggs and embryos: an analysis of mammalian development. Biol Reprod. 1987 Feb; 36(1):1–16
An online depository of imprinted mouse sequences can be found at http://www.mousebook.org/catalog.php?catalog=imprinting
For a useful review see Guenzl P. M., Barlow D. P. Macro long non-coding RNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol. 2012 Jun; 9(6):731–41
For a recent review of imprinting in marsupials see Graves J. A., Renfree M. B. Marsupials in the age of genomics. Annu Rev Genomics Hum Genet. 2013; 14:393–420
Landers M., Bancescu D. L., Le Meur E., Rougeulle C., Glatt-Deeley H., Brannan C., Muscatelli F., Lalande M. Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res. 2004 Jun 29; 32(11):3480–92
Terranova R., Yokobayashi S., Stadler M. B., Otte A. P., van Lohuizen M., Orkin S. H., Peters A. H. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell. 2008 Nov; 15(5):668–79
Wagschal A., Sutherland H. G., Woodfine K., Henckel A., Chebli K., Schulz R., Oakey R. J., Bickmore W. A., Feil R. G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol Cell Biol. 2008 Feb; 28(3):1104–13
Nagano T., Mitchell J. A., Sanz L. A., Pauler F. M., Ferguson-Smith A. C., Feil R., Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008 Dec 12; 322(5908):1717–20
Reviewed in Koerner M. V., Pauler F. M., Huang R., Barlow D. P. The function of non-coding RNAs in genomic imprinting. Development. 2009 Jun; 136(11):1771–83
Barlow D. P. Methylation and imprinting: from host defense to gene regulation? Science. 1993 Apr 16; 260(5106):309–10
de Smith A. J., Purmann C., Walters R. G., Ellis R. J., Holder S. E., Van Haelst M. M., Brady A. F., Fairbrother U. L., Dattani M., Keogh J. M., Henning E., Yeo G. S., O’Rahilly S., Froguel P., Farooqi I. S., Blakemore A. I. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet. 2009 Sep 1; 18(17):3257–65
Duker A. L., Ballif B. C., Bawle E. V., Person R. E., Mahadevan S., Alliman S., Thompson R., Traylor R., Bejjani B. A., Shaffer L. G., Rosenfeld J. A., Lamb A. N., Sahoo T. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet. 2010 Nov; 18(11):1196–201
Sahoo T., del Gaudio D., German J. R., Shinawi M., Peters S. U., Person R. E., Garnica A., Cheung S. W., Beaudet A. L. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008 Jun; 40(6):719–21
For a full description see http://omim.org/entry/180860
For a full description see http://omim.org/entry/130650
Data collated in Kotzot D. Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprinting. Ann Genet. 2004 Jul-Sep; 47(3):251–60
Kagami M., Sekita Y., Nishimura G., Irie M., Kato F., Okada M., Yamamori S., Kishimoto H., Nakayama M., Tanaka Y., Matsuoka K., Takahashi T., Noguchi M., Tanaka Y., Masumoto K., Utsunomiya T., Kouzan H., Komatsu Y., Ohashi H., Kurosawa K., Kosaki K., Ferguson-Smith AC., Ishino F., Ogata T. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet. 2008 Feb; 40(2):237–42
For a detailed review of the inheritance and clinical characteristics of various human imprinting disorders, see the review by Ishida M., Moore GE. The role of imprinted genes in humans. Mol Aspects Med. 2013 Jul-Aug; 34(4):826–40
Press release on 14 October 2013 from American Society for Reproductive Medicine http://www.asrm.org/Five_Million_Babies_Born_with_Help_of_Assisted_Reproductive_Technologies/
This is discussed in some detail in Ishida M., Moore G. E. The role of imprinted genes in humans. Mol Aspects Med. 2013 Jul — Aug; 34(4):826–40
Reviewed in Moss T., Langlois F., Gagnon-Kugler T., Stefanovsky V. A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci. 2007 Jan; 64(1):29–49
For more information on ribosomes and rRNAs it is easiest to refer to a good molecular biology textbook such as Molecular Biology of the Cell., 5th Edition by Alberts., Johnson, Lewis, Raff, Roberts and Walter, 2012.
http://www.nobelprize.org/educational/medicine/dna/a/translation/trna.html
http://www.bscb.org/?url=softcell/ribo
Reviewed in Zentner G. E., Saiakhova A., Manaenkov P., Adams M. D., Scacheri P. C. Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res. 2011 Jul; 39(12):4949–60
This whole area of diseases caused by defects in ribosomal proteins is interestingly, if occasionally rather provocatively reviewed in Narla A., Ebert B. L. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010 Apr 22; 115(16):3196–205
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15; 409(6822):860–921
See for example Hedges S. B., Blair J. E., Venturi M. L., Shoe J. L. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol. 2004 Jan 28; 4:2
Reviewed in Wilson D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014 Jan; 12(1):35–48
http://www.genenames.org/rna/TRNA#MTTRNA
Once again I would recommend a good molecular biology textbook if you would like to learn more, such as Molecular Biology of the Cell, 5th Edition by Alberts, Johnson, Lewis, Raff, Roberts and Walter, 2012
McFarland R., Schaefer A. M., Gardner J. L., Lynn S., Hayes C. M., Barron M. J., Walker M., Chinnery P. F., Taylor R. W., Turnbull D. M. Familial myopathy: new insights into the T14709C mitochondrial tRNA mutation. Ann Neurol. 2004 Apr; 55(4):478–84
Zheng J., Ji Y., Guan M. X. Mitochondrial tRNA mutations associated with deafness. Mitochondrion. 2012 May; 12(3):406–13
Qiu Q., Li R., Jiang P., Xue L., Lu Y., Song Y., Han J., Lu Z., Zhi S., Mo J. Q., Guan M. X. Mitochondrial tRNA mutations are associated with maternally inherited hypertension in two Han Chinese pedigrees. Hum Mutat. 2012 Aug; 33(8):1285–93
Giordano C., Perli E., Orlandi M., Pisano A., Tuppen H. A., He L., Ierinò R., Petruzziello L., Terzi A., Autore C., Petrozza V., Gallo P., Taylor R. W., d’Amati G. Cardiomyopathies due to homoplasmic mitochondrial tRNA mutations: morphologic and molecular features. Hum Pathol. 2013 Jul; 44(7):1262–70
Lincoln T. A., Joyce G. F. Self-sustained replication of an RNA enzyme. Science. 2009 Feb 27; 323(5918):1229–32
Sczepanski J. T., Joyce G. F. A cross-chiral RNA polymerase ribozyme. Nature. Published online 29 October 2014
An overview of MYC’s role, and the importance of chromosomal rearrangements can be found in Ott G., Rosenwald A., Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013 Dec 5; 122(24):3884–91
http://www.nlm.nih.gov/medlineplus/ency/article/001308.htm
Whyte W. A., Orlando D. A., Hnisz D., Abraham B. J., Lin C. Y., Kagey M. H., Rahl P. B., Lee T. I., Young R. A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013 Apr 11; 153(2):307–19
Ostuni R., Piccolo V., Barozzi I., Polletti S., Termanini A., Bonifacio S., Curina A., Prosperini E., Ghisletti S., Natoli G. Latent enhancers activated by stimulation in differentiated cells. Cell. 2013 Jan 17; 152(1–2):157–71
Akhtar-Zaidi B., Cowper-Sal-lari R., Corradin O., Saiakhova A., Bartels CF., Balasubramanian D., Myeroff L., Lutterbaugh J., Jarrar A., Kalady M. F., Willis J., Moore J. H., Tesar P. J., Laframboise T., Markowitz S., Lupien M., Scacheri P. C. Epigenomic enhancer profiling defines a signature of colon cancer. Science. 2012 May 11; 336(6082):736–9
ENCODE Project Consortium., Bernstein B. E., Birney E., Dunham I., Green E. D., Gunter C., Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6; 489(7414):57–74
For a description of these types of long non-coding RNAs see Ørom U. A., Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers. Cell. 2013 Sep 12; 154(6):1190–3
Ørom U. A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., Guigo R., Shiekhattar R. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010 Oct 1; 143(1):46–58
De Santa F., Barozzi I., Mietton F., Ghisletti S., Polletti S., Tusi BK., Muller H., Ragoussis J., Wei C. L., Natoli G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010 May 11; 8(5):e1000384
Hah N., Murakami S., Nagari A., Danko C. G., Kraus W. L. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 2013 Aug; 23(8):1210–23
Lai F., Ørom U. A., Cesaroni M., Beringer M., Taatjes D. J., Blobel G. A., Shiekhattar R. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature. 2013 Feb 28; 494(7438):497–501
Risheg H., Graham J. M Jr., Clark R. D., Rogers R. C., Opitz J. M., Moeschler J. B., Peiffer A. P., May M., Joseph S. M., Jones J. R., Stevenson R. E., Schwartz C. E., Friez M. J. A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nat Genet. 2007 Apr; 39(4):451–3
The role of super-enhancers in pluripotent cells was first identified in Whyte W. A., Orlando D. A., Hnisz D., Abraham B. J., Lin C. Y., Kagey M. H., Rahl P. B., Lee T. I., Young R. A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013 Apr 11; 153(2):307–19
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25; 126(4):663–76
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/
Lovén J., Hoke H. A., Lin C. Y., Lau A., Orlando D. A., Vakoc C. R., Bradner J. E., Lee T. I., Young R. A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013 Apr 11; 153(2):320–34
For an overview of the various molecular causes see Skibbens R. V., Colquhoun J. M., Green M. J., Molnar C. A., Sin D. N., Sullivan B. J., Tanzosh E. E. Cohesinopathies of a feather flock together. PLoS Genet. 2013 Dec; 9(12):e1004036
http://www.cdls.org.uk/information-centre/
Sanyal A., Lajoie B. R., Jain G., Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012 Sep 6; 489(7414):109–13
Jackson D. A., Hassan A. B., Errington R. J., Cook P. R. Visualization of focal sites of transcription within human nuclei. EMBO J. 1993 Mar; 12(3):1059–65
For an excellent review of this topic see Rieder D., Trajanoski Z., McNally J. G. Transcription factories. Front Genet. 2012 Oct 23; 3:221. doi: 10.3389/fgene.2012.00221. eCollection 2012
Iborra F. J., Pombo A., Jackson D. A., Cook P. R. Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei. J Cell Sci. 1996 Jun; 109 (Pt 6):1427–36
Jackson D. A., Iborra F. J., Manders E. M., Cook P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell. 1998 Jun; 9(6):1523–36
Papantonis A., Larkin J. D., Wada Y., Ohta Y., Ihara S., Kodama T., Cook P. R. Active RNA polymerases: mobile or immobile molecular machines? PLoS Biol. 2010 Jul 13; 8(7):e1000419
Osborne C. S., Chakalova L., Brown K. E., Carter D., Horton A., Debrand E., Goyenechea B., Mitchell J. A., Lopes S., Reik W., Fraser P. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004 Oct; 36(10):1065–71
Osborne C. S., Chakalova L., Mitchell J. A., Horton A., Wood A. L., Bolland D. J., Corcoran A. E., Fraser P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 2007 Aug; 5(8):e192
It’s difficult to find a definitive first use of this description, as discussed in http://english.stackexchange.com/questions/103851/where-does-the-phrase-of-boredom-punctuated-by-moments-of-terror-come-from
For a review of this, see Moltó E., Fernández A., Montoliu L. Boundaries in vertebrate genomes: different solutions to adequately insulate gene expression domains. Brief Funct Genomic Proteomic. 2009 Jul; 8(4):283–96
Ishihara K., Oshimura M., Nakao M. CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell. 2006 Sep 1; 23(5):733–42
Lutz M., Burke L. J., Barreto G., Goeman F., Greb H., Arnold R., Schultheiss H., Brehm A., Kouzarides T., Lobanenkov V., Renkawitz R. Transcriptional repression by the insulator protein CTCF involves histone deacetylases. Nucleic Acids Res. 2000 Apr 15; 28(8):1707–13
Lunyak V. V., Prefontaine G. G., Núñez E., Cramer T., Ju B. G., Ohgi K. A., Hutt K., Roy R., García-Díaz A., Zhu X., Yung Y., Montoliu L., Glass C. K., Rosenfeld M. G. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science. 2007 Jul 13; 317(5835):248–51
Reviewed in Kirkland J. G., Raab J. R., Kamakaka R. T. TFIIIC bound DNA elements in nuclear organization and insulation. Biochim Biophys Acta. 2013 Mar — Apr; 1829(3–4):418–24
This is known as Turner’s syndrome and more information can be found at http://www.nhs.uk/Conditions/Turners-syndrome/Pages/Introduction.aspx
For more information see http://ghr.nlm.nih.gov/condition/triple-x-syndrome
This condition is known as Klinefelter’s syndrome and more information can be found at http://ghr.nlm.nih.gov/condition/klinefelter-syndrome
Star Trek: First Contact (1996). By far the best of all the Star Trek movies, at least until the JJ Abrams franchise reboot.
See https://ghr.nlm.nih.gov/gene/SHOX
Hemani G., Yang J., Vinkhuyzen A., Powell J. E., Willemsen G., Hottenga J. J., Abdellaoui A., Mangino M., Valdes A. M., Medland S. E., Madden P. A., Heath A. C., Henders A. K., Nyholt D. R., de Geus E. J., Magnusson P. K., Ingelsson E., Montgomery G. W., Spector T. D., Boomsma D. I., Pedersen N. L., Martin N. G., Visscher P. M. Inference of the genetic architecture underlying BMI and height with the use of 20.,240 sibling pairs. Am J Hum Genet. 2013 Nov 7; 93(5):865–75
A wealth of information about ENCODE, including interviews with some of the leading scientists, can be accessed at http://www.nature.com/encode/
http://www.theguardian.com/science/2012/sep/05/genes-genome-junk-dna-encode
http://edition.cnn.com/2012/09/05/health/encode-human-genome/index.html?hpt=hp_bn12
http://www.telegraph.co.uk/science/science-news/9524165/Worldwide-army-of-scientists-cracks-the-junk-DNA-code.html
ENCODE Project Consortium, Bernstein B. E., Birney E., Dunham I., Green E. D., Gunter C., Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6; 489(7414):57–74
Mattick J. S. A new paradigm for developmental biology. J Exp Biol. 2007 May; 210(Pt 9):1526–47
Sanyal A., Lajoie B. R., Jain G., Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012 Sep 6; 489(7414):109–13
Thurman R. E., Rynes E., Humbert R., Vierstra J., Maurano M. T., Haugen E., Sheffield N. C., Stergachis A. B., Wang H., Vernot B., Garg K., John S., Sandstrom R., Bates D., Boatman L., Canfield T. K., Diegel M., Dunn D., Ebersol A. K., Frum T., Giste E., Johnson A. K., Johnson E. M., Kutyavin T., Lajoie B., Lee B. K., Lee K., London D., Lotakis D., Neph S., Neri F., Nguyen E. D., Qu H., Reynolds A. P., Roach V., Safi A., Sanchez M. E., Sanyal A., Shafer A., Simon J. M., Song L., Vong S., Weaver M., Yan Y., Zhang Z., Zhang Z., Lenhard B., Tewari M., Dorschner M. O., Hansen R. S., Navas P. A., Stamatoyannopoulos G., Iyer V. R., Lieb J. D., Sunyaev S. R., Akey J. M., Sabo P. J., Kaul R., Furey T. S., Dekker J., Crawford G. E., Stamatoyannopoulos J. A. The accessible chromatin landscape of the human genome. Nature. 2012 Sep 6; 489(7414):75–82
Djebali S., Davis C. A., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F., Xue C., Marinov G. K., Khatun J., Williams B. A., Zaleski C., Rozowsky J., Röder M., Kokocinski F., Abdelhamid R. F., Alioto T., Antoshechkin I., Baer M. T., Bar N. S., Batut P., Bell K., Bell I., Chakrabortty S., Chen X., Chrast J., Curado J., Derrien T., Drenkow J., Dumais E., Dumais J., Duttagupta R., Falconnet E., Fastuca M., Fejes-Toth K., Ferreira P., Foissac S., Fullwood M. J., Gao H., Gonzalez D., Gordon A., Gunawardena H., Howald C., Jha S., Johnson R., Kapranov P., King B., Kingswood C., Luo O. J., Park E., Persaud K., Preall J. B., Ribeca P., Risk B., Robyr D., Sammeth M., Schaffer L., See L. H., Shahab A., Skancke J., Suzuki A. M., Takahashi H., Tilgner H., Trout D., Walters N., Wang H., Wrobel J., Yu Y., Ruan X., Hayashizaki Y., Harrow J., Gerstein M., Hubbard T., Reymond A., Antonarakis S. E., Hannon G., Giddings M. C., Ruan Y., Wold B., Carninci P., Guigó R., Gingeras T. R. Landscape of transcription in human cells. Nature. 2012 Sep 6; 489(7414):101–8
I originally used this description in a Huffington Post blog about the ENCODE project. I’ve decided I like it so much I will use it again here! For the original blog, see http://www.huffingtonpost.com/nessa-carey/the-value-of-encode_b_1909153.html
A good example can be found at http://blog.art21.org/2009/03/06/on-representations-of-the-artist-at-work-part-2/#.UyDZjZZFDIU
Ward L. D., Kellis M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science. 2012 Sep 28; 337(6102):1675–8.
Ecker J. R., Bickmore W. A., Barroso I., Pritchard J. K., Gilad Y., Segal E. Genomics: ENCODE explained. Nature. 2012 Sep 6; 489(7414)
For a fascinating example of epigenetic transgenerational inheritance see this paper, in which a fear response was passed on from parent to pups: Dias B. G., Ressler K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2014 Jan; 17(1):89–96
Graur D., Zheng Y., Price N., Azevedo R. B., Zufall R. A., Elhaik E. On the immortality of television sets: ‘function’ in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013; 5(3):578–90
http://womenshistory.about.com/od/mythsofwomenshistory/a/Did-Anne-Boleyn-Really-Have-Six-Fingers-On-One-Hand.htm
Lettice L. A., Heaney S. J., Purdie L. A., Li L., de Beer P., Oostra B. A., Goode D., Elgar G., Hill R. E., de Graaff E. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet. 2003 Jul 15; 12(14):1725–35
www.hemingwayhome.com/cats/
Lettice L. A., Hill A. E., Devenney P. S., Hill R. E. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum Mol Genet. 2008 Apr 1; 17(7):978–85
For a fuller description, see http://www.genome.gov/12512735
Jeong Y., Leskow F. C., El-Jaick K., Roessler E., Muenke M., Yocum A., Dubourg C., Li X., Geng X., Oliver G., Epstein D. J. Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat Genet. 2008 Nov; 40(11):1348–53
For more information see http://rarediseases.info.nih.gov/gard/10874/pancreatic-agenesis/resources/1
Lango Allen H., Flanagan S. E., Shaw-Smith C., De Franco E., Akerman I., Caswell R; International Pancreatic Agenesis Consortium., Ferrer J., Hattersley A. T., Ellard S. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2011 Dec 11; 44(1):20–2
Sellick G. S., Barker K. T., Stolte-Dijkstra I., Fleischmann C., Coleman R. J., Garrett C., Gloyn A. L., Edghill E. L., Hattersley A. T., Wellauer P. K., Goodwin G., Houlston R. S. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004 Dec; 36(12):1301–5
Weedon M. N., Cebola I., Patch A. M., Flanagan S. E., De Franco E., Caswell R., Rodríguez-Seguí SA., Shaw-Smith C., Cho C. H., Lango Allen H., Houghton J. A., Roth C. L., Chen R., Hussain K., Marsh P., Vallier L., Murray A; International Pancreatic Agenesis Consortium, Ellard S., Ferrer J., Hattersley AT. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014 Jan; 46(1):61–4
For a review of this, see Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol Genet. 2009 Apr 15; 18(R1):R9–17
Durham-Pierre D., Gardner J. M., Nakatsu Y., King RA., Francke U., Ching A., Aquaron R., del Marmol V., Brilliant M. H. African origin of an intragenic deletion of the human P gene in tyrosinase positive oculocutaneous albinism. Nat Genet. 1994 Jun; 7(2):176–9
Visser M., Kayser M., Palstra R. J. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res. 2012 Mar; 22(3):446–55
For an up-to-date catalogue, see www.genome.gov/gwastudies/
Hindorff L. A., Sethupathy P., Junkins H. A., Ramos E. M., Mehta J. P., Collins F. S., Manolio T. A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009 Jun 9; 106(23):9362–7
Gorkin D. U., Ren B. Genetics: Closing the distance on obesity culprits. Nature. 2014 Mar 20; 507(7492):309–10
Frayling T. M., Timpson N. J., Weedon M. N., Zeggini E., Freathy R. M., Lindgren C. M., Perry J. R., Elliott K. S., Lango H., Rayner N. W., Shields B., Harries L. W., Barrett J. C., Ellard S., Groves C. J., Knight B., Patch A. M., Ness A. R., Ebrahim S., Lawlor D. A., Ring S. M., Ben-Shlomo Y., Jarvelin M. R., Sovio U., Bennett A. J., Melzer D., Ferrucci L., Loos R. J., Barroso I., Wareham N. J., Karpe F., Owen K. R., Cardon L. R., Walker M., Hitman G. A., Palmer C. N., Doney A. S., Morris A. D., Smith G. D., Hattersley A. T., McCarthy M. I. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007 May 11; 316(5826):889–94
Scuteri A., Sanna S., Chen WM., Uda M., Albai G., Strait J., Najjar S., Nagaraja R., Orrú M., Usala G., Dei M., Lai S., Maschio A., Busonero F., Mulas A., Ehret GB., Fink AA., Weder AB., Cooper RS., Galan P., Chakravarti A., Schlessinger D., Cao A., Lakatta E., Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007 Jul; 3(7):e115
Church C., Moir L., McMurray F., Girard C., Banks G. T., Teboul L., Wells S., Brüning J. C., Nolan P. M., Ashcroft F. M., Cox R. D. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet. 2010 Dec; 42(12):1086–92
Fischer J., Koch L., Emmerling C., Vierkotten J., Peters T., Brüning J. C., Rüther U. Inactivation of the Fto gene protects from obesity. Nature. 2009 Apr 16; 458(7240):894–8
Smemo S., Tena J. J., Kim K. H., Gamazon E. R., Sakabe N. J., Gómez-Marín C., Aneas I., Credidio F. L., Sobreira D. R., Wasserman N. F., Lee J. H., Puviindran V., Tam D., Shen M., Son J. E., Vakili N. A., Sung H. K., Naranjo S., Acemel R. D., Manzanares M., Nagy A., Cox N. J., Hui C. C., Gomez-Skarmeta J. L., Nóbrega M. A. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014 Mar 20; 507(7492):371–5
For a recent review of this field see Trent R. J., Cheong P. L., Chua E. W., Kennedy M. A. Progressing the utilisation of pharmacogenetics and pharmacogenomics into clinical care. Pathology. 2013 Jun; 45(4):357–70
http://www.nhs.uk/Conditions/Herceptin/Pages/Introduction.aspx
http://www.nature.com/scitable/topicpage/gleevec-the-breakthrough-in-cancer-treatment-565
http://www.cancer.gov/cancertopics/druginfo/fda-crizotinib
Examples of such cases can be found at http://medicalmisdiagnosisresearch.wordpress.com/category/osteogenesis-imperfecta-misdiagnosed-as-child-abuse/
For a good description of the symptoms and genetics, see http://ghr.nlm.nih.gov/condition/osteogenesis-imperfecta
Cho T. J., Lee K. E., Lee S. K., Song S. J., Kim K. J., Jeon D., Lee G., Kim H. N., Lee H. R., Eom H. H., Lee Z. H., Kim O. H., Park W. Y., Park S. S., Ikegawa S., Yoo W. J., Choi I. H., Kim J. W. A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet. 2012 Aug 10; 91(2):343–8
Semler O., Garbes L., Keupp K., Swan D., Zimmermann K., Becker J., Iden S., Wirth B., Eysel P., Koerber F., Schoenau E., Bohlander S. K., Wollnik B., Netzer C. A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012 Aug 10; 91(2):349–57
Moffatt P., Gaumond M. H., Salois P., Sellin K., Bessette M. C., Godin E., de Oliveira P. T., Atkins G. J., Nanci A., Thomas G. Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res. 2008 Sep; 23(9):1497–508
Liu L., Dilworth D., Gao L., Monzon J., Summers A., Lassam N., Hogg D. Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet. 1999 Jan; 21(1):128–32
Tietze J. K., Pfob M., Eggert M., von Preußen A., Mehraein Y., Ruzicka T., Herzinger T. A non-coding mutation in the 5′ untranslated region of patched homologue 1 predisposes to basal cell carcinoma. Exp Dermatol. 2013 Dec; 22(12):834–5
For a full description see http://omim.org/entry/309550
Ashley C. T Jr., Wilkinson K. D., Reines D., Warren S. T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science. 1993 Oct 22; 262(5133):563–6
Qin M., Kang J., Burlin T. V., Jiang C., Smith C. B. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J Neurosci. 2005 May 18; 25(20):5087–95
Azevedo F. A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E., Jacob Filho W., Lent R., Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009 Apr 10; 513(5):532–41
Drachman D. A. Do we have brain to spare? Neurology. 2005 Jun 28; 64(12):2004–5
Darnell J. C., Van Driesche S. J., Zhang C., Hung K. Y., Mele A., Fraser C. E., Stone E. F., Chen C., Fak J. J., Chi S. W., Licatalosi D. D., Richter J. D., Darnell R. B. FMRP stalls ribosomal translocation on messenger RNAs linked to synaptic function and autism. Cell. 2011 Jul 22; 146(2):247–61
Udagawa T., Farny N. G., Jakovcevski M., Kaphzan H., Alarcon J. M., Anilkumar S., Ivshina M., Hurt J. A., Nagaoka K., Nalavadi V. C., Lorenz L. J., Bassell G. J., Akbarian S., Chattarji S., Klann E., Richter J. D. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013 Nov; 19(11):1473–7
Summarised in http://www.ncbi.nlm.nih.gov/books/NBK1165/
Jiang H., Mankodi A., Swanson M. S., Moxley R. T., Thornton C. A. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA., sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet. 2004 Dec 15; 13(24):3079–88
Savkur R. S., Philips A. V., Cooper T. A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001 Sep; 29(1):40–7
Ho T. H., Charlet-B N., Poulos M. G., Singh G., Swanson M. S., Cooper T. A. Muscleblind proteins regulate alternative splicing. EMBO J. 2004 Aug 4; 23(15):3103–12
Kino Y., Washizu C., Oma Y., Onishi H., Nezu Y., Sasagawa N., Nukina N., Ishiura S. MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1. Nucleic Acids Res. 2009 Oct; 37(19):6477–90
Hanson E. L., Jakobs P. M., Keegan H., Coates K., Bousman S., Dienel N. H., Litt M., Hershberger R. E. Cardiac troponin T lysine 210 deletion in a family with dilated cardiomyopathy. J Card Fail. 2002 Feb; 8(1):28–32
Reviewed in Michalova E., Vojtesek B., Hrstka R. Impaired pre-messenger RNA processing and altered architecture of 3′ untranslated regions contribute to the development of human disorders. Int J Mol Sci. 2013 Jul 26; 14(8): 15681–94
For a full description of the syndrome see http://ghr.nlm.nih.gov/condition/immune-dysregulation-polyendocrinopathy-enteropathyx-linked-syndrome
Bennett C. L., Brunkow M. E., Ramsdell F., O’Briant K. C., Zhu Q., Fuleihan R. L., Shigeoka A. O., Ochs H. D., Chance P. F. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics. 2001 Aug; 53(6):435–9
For further information see http://www.alsa.org/
A database of genes believed to be implicated in ALS can be found at http://alsod.iop.kcl.ac.uk/
Kwiatkowski T. J Jr., Bosco D. A., Leclerc A. L., Tamrazian E., Vanderburg C. R., Russ C., Davis A., Gilchrist J., Kasarskis E. J., Munsat T., Valdmanis P., Rouleau G. A., Hosler B. A., Cortelli P., de Jong P. J., Yoshinaga Y., Haines J. L., Pericak-Vance M. A., Yan J., Ticozzi N., Siddique T., McKenna-Yasek D., Sapp P. C., Horvitz H. R., Landers J. E., Brown R. H Jr. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009 Feb 27; 323(5918):1205–8
Vance C., Rogelj B., Hortobágyi T., De Vos K. J., Nishimura A. L., Sreedharan J., Hu X., Smith B., Ruddy D., Wright P., Ganesalingam J., Williams K. L., Tripathi V., Al-Saraj S., Al-Chalabi A., Leigh P. N., Blair I. P., Nicholson G., de Belleroche J., Gallo J. M., Miller C. C., Shaw C. E. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009 Feb 27; 323(5918):1208–11
Lai S. L., Abramzon Y., Schymick J. C., Stephan D. A., Dunckley T., Dillman A., Cookson M., Calvo A., Battistini S., Giannini F., Caponnetto C., Mancardi G. L., Spataro R., Monsurro M. R., Tedeschi G., Marinou K., Sabatelli M., Conte A., Mandrioli J., Sola P., Salvi F., Bartolomei I., Lombardo F.; ITALSGEN Consortium, Mora G., Restagno G., Chiò A., Traynor B. J. FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2011 Mar; 32(3):550.e1–4
Sabatelli M., Moncada A., Conte A., Lattante S., Marangi G., Luigetti M., Lucchini M., Mirabella M., Romano A., Del Grande A., Bisogni G., Doronzio P. N., Rossini P. M., Zollino M. Mutations in the 3′ untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum Mol Genet. 2013 Dec 1; 22(23):4748–55
Johnson J. M., Castle J., Garrett-Engele P., Kan Z., Loerch P. M., Armour C. D., Santos R., Schadt E. E., Stoughton R., Shoemaker DD. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 2003 Dec 19; 302(5653):2141–4
Reviewed in Keren H., Lev-Maor G., Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010 May; 11(5):345–55
These steps are laid out very clearly in some reviews e.g. Wang G. S., Cooper T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 2007 Oct; 8(10):749–61
More information on the spliceosome can be found in e.g. Padgett RA. New connections between splicing and human disease. Trends Genet. 2012 Apr; 28(4):147–54
http://ghr.nlm.nih.gov/condition/retinitis-pigmentosa
Vithana E. N., Abu-Safieh L., Allen M. J., Carey A., Papaioannou M., Chakarova C., Al-Maghtheh M., Ebenezer N. D., Willis C., Moore A. T., Bird A. C., Hunt D. M., Bhattacharya S. S. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell. 2001 Aug; 8(2):375–81
McKie A. B., McHale J. C., Keen T. J., Tarttelin E. E., Goliath R., van Lith-Verhoeven J. J., Greenberg J., Ramesar R. S., Hoyng C. B., Cremers F. P., Mackey D. A., Bhattacharya S. S., Bird A. C., Markham A. F., Inglehearn C. F. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet. 2001 Jul 15; 10(15):1555–62
Chakarova C. F., Hims M. M., Bolz H., Abu-Safieh L., Patel R. J., Papaioannou M. G., Inglehearn C. F., Keen T. J., Willis C., Moore A. T., Rosenberg T., Webster A. R., Bird A. C., Gal A., Hunt D., Vithana E. N., Bhattacharya S. S. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet. 2002 Jan 1; 11(1):87–92
Maita H., Kitaura H., Keen T. J., Inglehearn C. F., Ariga H., Iguchi-Ariga S. M. PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor. Exp Cell Res. 2004 Nov 1; 300(2):283–96
Microcephalic osteodysplastic primordial dwarfism type 1 also known as Taybi-Linder syndrome. http://rarediseases.info.nih.gov/gard/5120/microcephalic-osteodysplastic-primordial-dwarfism-type-1/resources/1
He H., Liyanarachchi S., Akagi K., Nagy R., Li J., Dietrich R. C., Li W., Sebastian N., Wen B., Xin B., Singh J., Yan P., Alder H., Haan E., Wieczorek D., Albrecht B., Puffenberger E., Wang H., Westman J. A., Padgett R. A., Symer D. E., de la Chapelle A. Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science. 2011 Apr 8; 332(6026):238–40
Padgett R. A. New connections between splicing and human disease. Trends Genet. 2012 Apr; 28(4):147–54
Haas J. T., Winter H. S., Lim E., Kirby A., Blumenstiel B., DeFelice M., Gabriel S., Jalas C., Branski D., Grueter C. A., Toporovski M. S., Walther T. C., Daly M. J., Farese R. V Jr. DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest. 2012 Dec 3; 122(12):4680–4
Byun M., Abhyankar A., Lelarge V., Plancoulaine S., Palanduz A., Telhan L., Boisson B., Picard C., Dewell S., Zhao C., Jouanguy E., Feske S., Abel L., Casanova JL. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010 Oct 25; 207(11):2307–12
See http://www.genome.gov/11007255
Eriksson M., Brown W. T., Gordon L. B., Glynn M. W., Singer J., Scott L., Erdos M. R., Robbins C. M., Moses T. Y., Berglund P., Dutra A., Pak E., Durkin S., Csoka A. B., Boehnke M., Glover T. W., Collins F. S. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003 May 15; 423(6937):293–8
http://www.nhs.uk/conditions/spinal-muscular-atrophy/Pages/Introduction.aspx
http://www.smatrust.org/what-is-sma/what-causes-sma/
Monani U. R., Lorson C. L., Parsons D. W., Prior T. W., Androphy E. J., Burghes A. H., McPherson J. D. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999 Jul; 8(7):1177–83
Cooper T. A., Wan L., Dreyfuss G. RNA and disease. Cell. 2009 Feb 20; 136(4):777–93
http://quest.mda.org/news/dmd-drisapersen-outperforms-placebo-walking-test
http://www.fiercebiotech.com/story/glaxosmithklines-duchenne-md-drug-mirrors-placebo-effect-phiii/2013-10-07
Ameres S. L., Zamore P. D. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013 Aug; 14(8):475–88
For a more detailed description of classes of smallRNAs, see Castel S. E., Martienssen R. A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet. 2013 Feb; 14(2):100–12
Kang S. G., Liu W. H., Lu P., Jin H. Y., Lim H. W., Shepherd J., Fremgen D., Verdin E., Oldstone M. B., Qi H., Teijaro J. R., Xiao C. MicroRNAs of the miR-17∼92 family are critical regulators of T(FH) differentiation. Nat Immunol. 2013 Aug; 14(8):849–57
Baumjohann D., Kageyama R., Clingan J. M., Morar M. M., Patel S., de Kouchkovsky D., Bannard O., Bluestone J. A., Matloubian M., Ansel K. M., Jeker L. T. The microRNA cluster miR-17∼92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat Immunol. 2013 Aug; 14(8):840–8
Tassano E., Di Rocco M., Signa S., Gimelli G. De novo 13q31.1-q32.1 interstitial deletion encompassing the miR-17-92 cluster in a patient with Feingold syndrome-2. Am J Med Genet A. 2013 Apr; 161A(4):894–6
For more information see http://ghr.nlm.nih.gov/condition/feingold-syndrome
Han Y. C., Ventura A. Control of T(FH) differentiation by a microRNA cluster. Nat Immunol. 2013 Aug; 14(8):770–1
Reviewed in Koerner M. V., Pauler F. M., Huang R., Barlow D. P. The function of non-coding RNAs in genomic imprinting. Development. 2009 Jun; 136(11):1771–83
Rogler L. E., Kosmyna B., Moskowitz D., Bebawee R., Rahimzadeh J., Kutchko K., Laederach A., Notarangelo L. D., Giliani S., Bouhassira E., Frenette P., Roy-Chowdhury J., Rogler C. E. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet. 2014 Jan 15; 23(2):368–82
Subramanyam D., Lamouille S., Judson R. L., Liu J. Y., Bucay N., Derynck R., Blelloch R. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011 May; 29(5):443–8
Li Z., Yang C. S., Nakashima K., Rana T. M. Small RNA-mediated regulation of iPS cell generation. EMBO J. 2011 Mar 2; 30(5):823–34
Ameres S. L., Zamore P. D. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013 Aug; 14(8):475–88
Huang T. C., Sahasrabuddhe N. A., Kim M. S., Getnet D., Yang Y., Peterson J. M., Ghosh B., Chaerkady R., Leach SD., Marchionni L., Wong GW., Pandey A. Regulation of lipid metabolism by Dicer revealed through SILAC mice. J Proteome Res. 2012 Apr 6; 11(4):2193–205
Yi R., O’Carroll D., Pasolli H. A., Zhang Z., Dietrich F. S., Tarakhovsky A., Fuchs E. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet. 2006 Mar; 38(3):356–62
Crist C. G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S. J., Buckingham M. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A. 2009 Aug 11; 106(32):13383–7
Chen J. F., Tao Y., Li J., Deng Z., Yan Z., Xiao X., Wang D. Z. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 2010 Sep 6; 190(5):867–79
da Costa Martins P. A., Bourajjaj M., Gladka M., Kortland M., van Oort R. J., Pinto Y. M., Molkentin J. D., De Windt L. J. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008 Oct 7; 118(15):1567–76
de Chevigny A., Coré N., Follert P., Gaudin M., Barbry P., Béclin C., Cremer H. miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci. 2012 Jun 24; 15(8):1120–6
Konopka W., Kiryk A., Novak M., Herwerth M., Parkitna J. R., Wawrzyniak M., Kowarsch A., Michaluk P., Dzwonek J., Arnsperger T., Wilczynski G., Merkenschlager M., Theis F. J., Köhr G., Kaczmarek L., Schütz G. MicroRNA loss enhances learning and memory in mice. J Neurosci. 2010 Nov 3; 30(44):14835–42
Schaefer A., O’Carroll D., Tan C. L., Hillman D., Sugimori M., Llinas R., Greengard P. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007 Jul 9; 204(7):1553–8
Pietrzykowski A. Z., Friesen R. M., Martin G. E., Puig S. I., Nowak C. L., Wynne P. M., Siegelmann H. T., Treistman S. N. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron. 2008 Jul 31; 59(2):274–87
Hollander J. A., Im H. I., Amelio A. L., Kocerha J., Bali P., Lu Q., Willoughby D., Wahlestedt C., Conkright M. D., Kenny P. J. Striatal microRNA controls cocaine intake through CREB signalling. Nature. 2010 Jul 8; 466(7303):197–202
Fernández-Hernando C., Baldán A. MicroRNAs and Cardiovascular Disease. Curr Genet Med Rep. 2013 Mar; 1(1):30–38
For a review, see for example Suzuki H., Maruyama R., Yamamoto E., Kai M. Epigenetic alteration and microRNA dysregulation in cancer. Front Genet. 2013 Dec 3; 4:258. eCollection 2013
Kleinman C. L., Gerges N., Papillon-Cavanagh S., Sin-Chan P., Pramatarova A., Quang D. A., Adoue V., Busche S., Caron M., Djambazian H., Bemmo A., Fontebasso A. M., Spence T., Schwartzentruber J., Albrecht S., Hauser P., Garami M., Klekner A., Bognar L., Montes L., Staffa A., Montpetit A., Berube P., Zakrzewska M., Zakrzewski K., Liberski P. P., Dong Z., Siegel P. M., Duchaine T., Perotti C., Fleming A., Faury D., Remke M., Gallo M., Dirks P., Taylor M. D., Sladek R., Pastinen T., Chan J. A., Huang A., Majewski J., Jabado N. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet. 2014 Jan; 46(1):39–44
Song S. J., Poliseno L., Song M. S., Ala U., Webster K., Ng C., Beringer G., Brikbak N. J., Yuan X., Cantley L. C., Richardson A. L., Pandolfi P. P. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013 Jul 18; 154(2):311–24
For an extensive review of this approach., see Schwarzenbach H., Nishida N., Calin G. A., Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014 Mar; 11(3):145–56
Chen W., Cai F., Zhang B., Barekati Z., Zhong X. Y. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol. 2013 Feb; 34(1):455–62
Hong F., Li Y., Xu Y., Zhu L. Prognostic significance of serum microRNA-221 expression in human epithelial ovarian cancer. J Int Med Res. 2013 Feb; 41(1):64–71
Shen J., Liu Z., Todd N. W., Zhang H., Liao J., Yu L., Guarnera M. A., Li R., Cai L., Zhan M., Jiang F. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer. 2011 Aug 24; 11:374
For more information see http://emedicine.medscape.com/article/233442-overview
Trobaugh D. W., Gardner C. L., Sun C., Haddow A. D., Wang E., Chapnik E., Mildner A., Weaver S. C., Ryman K. D., Klimstra W. B. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014 Feb 13; 506(7487):245–8
Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005 Sep 2; 309(5740):1577–81
See http://www.fiercepharma.com/special-reports/15-best-selling-drugs-2012 for a summary of the best-selling drugs in recent years
There are multiple blogs in this area, for example http://biopharmconsortium.com/rnai-therapeutics-stage-a-comeback
More information can be found at http://ghr.nlm.nih.gov/condition/transthyretin-amyloidosis
http://investors.alnylam.com/releasedetail.cfm?ReleaseID=805999
Updates on this programme can be found at http://mirnarx.com/pipeline/mirna-MRX34.html
Koval E. D., Shaner C., Zhang P., du Maine X., Fischer K., Tay J., Chau B. N., Wu GF., Miller T. M. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet. 2013 Oct 15; 22(20):4127–35
Ozsolak F., Kapranov P., Foissac S., Kim S. W., Fishilevich E., Monaghan A. P., John B., Milos P. M. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell. 2010 Dec 10; 143(6):1018–29
A very good review of how antisense expression can regulate genes is Pelechano V., Steinmetz L. M. Gene regulation by antisense transcription. Nat Rev Genet. 2013 Dec; 14(12):880–93
http://www.drugs.com/cons/fomivirsen-intraocular.html
https://www.bhf.org.uk/heart-matters-online/august-september-2012/medical/familial-hypercholesterolaemia.aspx
http://www.medscape.com/viewarticle/804574_5
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm337195.htm
http://www.medscape.com/viewarticle/781317
http://www.nature.com/nrd/journal/v12/n3/full/nrd3963.html
Lindow M., Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012 Oct 29; 199(3):407–12
http://www.fiercebiotech.com/story/merck-writes-rnai-punts-sirnaalnylam-175m/2014-01-13
http://www.fiercebiotech.com/press-releases/rana-therapeutics-raises-207-million-harness-potential-long-non-coding-rna
http://www.bostonglobe.com/business/2014/01/30/dicerna-shares-soar-first-day-trading-after-biotech-raises-million-initial-public-offering/mbwMnXBSPsVCUVkGQLc64I/story.html
http://www.dicerna.com/pipeline.php as of 14 April 2014
http://www.fiercebiotech.com/story/breaking-novartis-slams-brakes-rnai-development-efforts/2014-04-14
The final story draws together multiple findings from a number of different researchers. Rather than refer to each publication, I recommend the following excellent review article: van der Maarel S. M., Miller D. G., Tawil R., Filippova G. N., Tapscott S. J. Facioscapulohumeral muscular dystrophy: consequences of chromatin relaxation. Curr Opin Neurol. 2012 Oct; 25(5):614–20
This is a distinction, and a terminology, first coined by Sidney Brenner.