ЧАСТЬ ВТОРАЯ. СИНТЕЗИРОВАННЫЕ ЭЛЕМЕНТЫ


…Еще в очень давние времена возникла идея о трансмутации (превращении) элементов. Ее носителями были алхимики, которые преследовали, однако, конкретную цель. Все попытки трансмутации оказались тщетными. По мере того как химия обретала черты самостоятельной науки и развивались здравые суждения о строении и свойствах вещества, возможность превращения элементов вообще была поставлена под вопрос. И в конце XIX в. ученые уже всерьез не обсуждали эту проблему, хотя и не решались отвергнуть ее бесповоротно.

Но в конце столетия произошло событие, которое привело к парадоксальному выводу. В природе постоянно происходят процессы трансмутации элементов. Это событие — открытие радиоактивности. Но проявление естественной трансмутации ограничивается лишь сравнительно небольшой областью мира химических элементов, той областью, которая занимает самый конец периодической системы.

Радиоактивные превращения происходят независимо от воли человека. Все попытки искусственно повлиять на протекание природных радиоактивных процессов оказались неудачными. Когда была разработана ядерная модель строения атома, стало ясно, что радиоактивность является ядерным свойством. Способность к радиоактивному распаду определяется особенностями и закономерностями строения ядер.

Величина Z является важнейшей, определяющей характеристикой химического элемента. При испускании ядром α- или β-частиц его заряд изменяется, и тем самым изменяется природа химического элемента. Один элемент превращается в другой. Если же в нашем распоряжении имеется стабильный химический элемент, то величина его Z сама по себе никак не может измениться. Она изменится, если удастся каким-либо способом перестроить структуру его ядра, увеличить или уменьшить число протонов, содержащихся в ядре. Только тогда изменится величина его заряда, а тем самым произойдет искусственная трансмутация химического элемента.

Впервые реакцию искусственного превращения элементов осуществил в 1919 г. Э. Резерфорд.

Э. Резерфорд

Он бомбардировал азот α-частицами, в результате чего образовывались атомы кислорода. Эта первая в истории науки искусственная ядерная реакция может быть записана следующим уравнением:

или короче:

Долгое время α-частица оставалась единственным ядерным снарядом. Энергия природных α-частиц невелика, поэтому они могли проникать в ядра сравнительно небольшого числа элементов, и события эти были чрезвычайно редкими. Поэтому и были ограничены возможности искусственной трансмутации элементов. Дело существенно изменилось благодаря двум открытиям в 30-х годах нашего столетия. В 1932 г. английский ученый Дж. Чэдвик открыл нейтрон, элементарную частицу, не несущую заряда. В силу своей электронейтральности нейтрон оказался универсальным снарядом для осуществления ядерных превращений: ведь он не отталкивался положительно заряженным ядром. Спустя два года Ирен и Фредерик Жолио-Кюри во Франции обнаружили явление искусственной радиоактивности и зафиксировали новый вид радиоактивных превращений — позитронный распад, т. е. испускание позитрона. Стало ясно, что для многих стабильных элементов искусственным путем, с помощью ядерных реакций, могут быть получены радиоактивные изотопы.

Что же позволило ученым осуществить массовое получение искусственных радиоактивных изотопов? То, что физики-экспериментаторы создали точнейшую измерительную аппаратуру, разработали разнообразные методы проведения и изучения ядерных реакций и совместно с химиками научились выделять ничтожные следы полученных радиоактивных веществ. То, что арсенал бомбардирующих частиц значительно обогатился. К α-частицам, протонам и нейтронам добавились дейтроны — ядра тяжелого изотопа водорода, а уже потом многозарядные ионы таких элементов, как бор, углерод, азот, кислород, неон и т. д. Наконец, то, что ученые создали мощные ускорители ядерных снарядов, позволяющие разгонять заряженные частицы до очень высоких скоростей. Все это поставило на повестку дня искусственный синтез новых элементов.

ГЛАВА XII. ОТКРЫТИЕ СИНТЕЗИРОВАННЫХ ЭЛЕМЕНТОВ В СТАРЫХ ГРАНИЦАХ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ


Эту главу можно было бы назвать и так: «Синтез недостающих элементов периодической системы». После того как был открыт последний из стабильных элементов — рений, в таблице между водородом и ураном недоставало лишь четырех элементов с порядковыми номерами 43, 61, 85, 87. Все они были синтезированы до второй мировой войны (либо делались целенаправленные попытки их синтеза). Во всяком случае, именно они открывают историю синтезированных элементов.

ТЕХНЕЦИЙ

Верхняя часть периодической системы вплоть до шестого периода (где размещается семейство редкоземельных элементов) всегда представлялась относительно благополучной, особенно после того, как была открыта группа благородных газов, столь гармонично замкнувшая систему элементов с ее правого края. Благополучной в том смысле, что здесь едва ли можно было ожидать каких-либо сенсационных открытий. Споры возникали лишь по поводу возможного существования элементов легче водорода и между водородом и гелием. В целом же, говоря языком математиков, эта часть периодической системы представляла собой упорядоченное множество химических элементов.

И тем досаднее и непонятнее казался трудно объяснимый пробел, расположенный в пятом периоде и седьмой группе, в клетке таблицы с порядковым номером 43.

Д. И. Менделеев называл этот элемент экамарганец и пытался предсказать его важнейшие свойства. Время от времени казалось, что пробел заполнен, но вскоре обнаруживалась ошибка. Так было в случае ильмения, якобы открытого русским химиком Р. Германном еще в 1846 г. Одно время даже Д. И. Менделеев склонен был считать ильмений экамарганцем. Некоторые исследователи думали, что в промежутке между молибденом и рутением следует поставить дэвий (см. с. 144). Немецкий химик А. Ранг даже помещал символ Dv в соответствующее место таблицы. В 1896 г. мелькнул на горизонте люций, будто бы найденный П. Баррьером, и сгорел, подобно метеору.

Д. И. Менделеев так и не дожил до того счастливого момента, когда экамарганец должен был обрести, наконец, свое настоящее имя. Через год после его смерти, в 1908 г., пришла весть из Японии. М. Огава сообщил ученому миру, что в редком минерале молибдените ему удалось обнаружить долгожданный элемент. Ученый дал ему звучное имя «ниппоний» (в честь древнего названия Японии). Увы, и на сей раз Азия не смогла подарить периодической системе нового представителя. М. Огава, по всей вероятности, имел дело с гафнием (также открытым позже).

И химики, привыкшие к тому, что научные журналы каждый год сообщают об открытии нескольких химических элементов, оказались в растерянности. Химики все больше и больше начинают задумываться, не допустил ли Д. И. Менделеев ошибки в своей системе. Вдруг аналогов марганца вообще не существует.

В 1913 г. Г. Мозли решительно опроверг подобный скепсис. Он четко доказал, что для них есть места в ряду элементов.

В статье, датированной 5 сентября 1925 г., В. Ноддак, И. Такке и О. Берг объявили, что вместе с элементом № 75 — рением ими открыт также и его более легкий аналог по седьмой группе периодической системы — мазурий с порядковым номером 43. Два новых символа Ма и Re появились в таблице Д. И. Менделеева, появились на страницах учебников, замелькали в многочисленных научных журналах. Авторы открытия не видели ничего удивительного в том, что мазурий и рений не удалось обнаружить раньше. По мнению ученых, эти элементы отнюдь не были самыми редкими в земной коре. Дело заключалось в другом. Геохимики выделяют обширную группу рассеянных элементов. Это те, которые почти или совсем не образуют своих собственных минералов, а рассеяны в разных количествах по чужим, словно природа разбрызгала их по горным породам из гигантского пульверизатора. Именно благодаря своей рассеянности мазурий и рений так долго скрывались. И только всевидящий глаз рентгеноспектрального анализа как будто бы разглядел присутствие новых элементов на обширном фоне посторонних веществ. Существует древняя пословица: «Если двое делают одно и то же, это не значит, что получится одно и то же». Если двое начинают свой путь одновременно, то судьбы их обычно складываются по-разному. Из одной точки потянулись две биографии — сорок третьего и семьдесят пятого элементов, но одна из них переросла в широкий торный проселок, а другая затерялась в буреломе недоразумений, противоречий и загадок. Это была тропа мазурия.

В. Прандтль отнесся к судьбе пробелов в седьмой группе таблицы небезучастно. Он попытался взглянуть на проблему с другой стороны и высказал оригинальное мнение по поводу устройства периодической системы. В. Прандтль не предложил нового варианта таблицы. В его построении редкоземельные элементы размещались каждый в одной группе, хотя от такого варианта большинство химиков к тому времени уже отказались. И вот что ученый обнаружил: при такой структуре таблицы в седьмой группе под марганцем появляются сразу четыре пробела, которые соответствуют еще не открытым (это было в 1924 г.) элементам с порядковыми номерами 43, 61, 75 и 93. Прандтль считал, что это не случайно. Видимо, существует какая-то общая причина, которая объясняет отсутствие четырех элементов. Немецкий ученый сгустил краски. Его вариант таблицы оказался слишком искусственным, чтобы завоевать право на существование. Окончательное открытие рения внесло первое опровержение в его идею, а об элементе № 93, первом трансуране, в то время мало кто думал. Но в одном интуиция не подвела В. Прандтля: он верно предчувствовал, что сорок третий и шестьдесят первый чем-то тесно связаны друг с другом.

Чем дальше, тем меньше верили ученые в существование мазурия. Упорствовали лишь авторы открытия. Уже в начале 30-х годов И. Ноддак продолжала утверждать, что со временем сорок третий элемент можно будет приобретать у химических фирм без особого труда, так же как стало возможным покупать рений. Но время шло и, какие бы образцы земных пород ни подвергали химики испытаниям на мазурий, они убеждались, что И. Ноддак была права лишь наполовину, только лишь в отношении рения. Искать мазурий пытались в самых что ни на есть редкостных образцах. Более того, говорили, что мазурий образует свои, совершенно неведомые, свойственные лишь ему природные соединения. И это вызывало протест со стороны геохимиков. Фантазия шла дальше, и возникало предположение о радиоактивности мазурия. Эта фантазия встречала скептическое отношение. Но именно она и оказалась реальностью.

Обратимся к некоторым важным понятиям ядерной физики. Наряду с термином «изотопы» существует термин «изобары». В переводе с греческого он означает «равнотяжелые», т. е. «имеющие одинаковую массу». Изобарами будут два изотопа различных химических элементов с различными зарядами ядер, но с одинаковыми массовыми числами. Например, калий-40 и аргон-40. Их заряды ядер отличаются (соответственно 19 и 20). Но у этих разновидностей атомов одно и то же массовое число. В их ядрах содержится разное число протонов и нейтронов, а сумма их одинакова: у калия 19 протонов и 21 нейтрон, а у аргона по 20 протонов и нейтронов.

Так вот понятие «изобары» в конечном счете оказалось неожиданным ключом к решению проблемы мазурия.

Когда у большинства стабильных химических элементов были экспериментально обнаружены изотопы, причем у некоторых до десяти различных разновидностей атомов, ученые начали поиск закономерностей, царящих в мире изотопов. Одну из подобных закономерностей в начале 30-х годов подметил немецкий физик-теоретик И. Маттаух[16]. Если заряды ядер двух изобаров, считал ученый, различаются на единицу, то один из них обязательно должен быть радиоактивным. Вот, например, в паре изобаров 40K–40Ar первый проявляет слабую естественную радиоактивность, испытывает так называемый K-захват, превращаясь при этом во второй.

Далее И. Маттаух сопоставил друг с другом массовые числа изотопов элементов, соседних с мазурием, т. е. молибдена (Z=42) и рутения (Z=44).

Какой вывод следовал из этого сопоставления? А такой, что весь обширный интервал массовых чисел от 94 до 102 является запрещенным для изотопов элемента № 43. Иными словами, по И. Маттауху, получалось, что стабильных изотопов мазурия вообще быть не может.

Если это так, то с порядковым номером 43 в периодической системе элементов оказывалась связанной странная аномалия. Все разновидности атомов с Z=43 должны были обладать свойством радиоактивности, словно бы появлялся своеобразный нестабильный островок в море стабильности химических элементов. Этого никогда не удалось бы предвидеть в рамках представлений одной лишь химии. Предсказывая экамарганец, Д. И. Менделеев, конечно, не мог предполагать, что этот представитель седьмой группы периодической системы элементов не должен существовать на Земле.

Разумеется, по тем временам (начало 30-х годов) подмеченная И. Маттаухом закономерность выглядела не более чем гипотезой. Но гипотезой, которая имела все основания стать строгим теоретическим правилом. Так это впоследствии и произошло. Химикам же, вконец разочаровавшимся в попытках обнаружить элемент № 43, идея немецкого физика позволяла увидеть первопричину неудач. Однако символ Ма тем не менее не исчез из сорок третьей клетки системы, это произошло лишь несколько лет спустя. И здесь есть своя закономерность. Что из того, что все изотопы мазурия радиоактивны? Разве нет на Земле радиоактивных изотопов, которые существуют на нашей планете? Возьмите уран-238, торий-232 и, наконец, калий-40. Они существуют до сих пор потому, что имеют очень большие периоды полураспада. А кто мог поручиться, что и изотопы мазурия не являются столь же долгоживущими? А раз так, то поиски сорок третьего элемента в природе отнюдь не следовало объявлять бессмысленными.

Многолетняя проблема оставалась нерешенной. Кто знает, как сложилась бы дальнейшая судьба мазурия, если бы в науке не сверкнула зарница новой эры — эры искусственного синтеза элементов?

Осуществление ядерного синтеза стало реальным после изобретения циклотрона, открытия нейтрона и искусственной радиоактивности. В начале 30-х годов удалось синтезировать несколько искусственных радиоизотопов известных элементов. Появились даже сообщения о синтезе элементов тяжелее урана. Но посягнуть на пустовавшие клетки внутри периодической системы физики никак не решались. Разные на то были причины. Главная же состояла в огромных технических трудностях синтеза. В какой-то мере сыграл роль случай. В конце 1936 г. молодой итальянский физик Э. Сегре стажировался в Беркли (США), где в то время успешно работал один из первых в мире циклотронов. В сложной конструкции циклотрона одним из необходимых элементов была маленькая, но немаловажная деталь. Ее назначение состояло в том, чтобы направлять поток заряженных ускоренных частиц на бомбардируемую мишень. При этом часть частиц поглощалась деталью, которая сильно накалялась. Понятно, что ее необходимо было изготовлять из тугоплавкого материала, например из молибдена.

Заряженные частицы, поглощаясь молибденом, вызывали в нем ядерные реакции. Ядра молибдена могли превращаться в ядра других элементов. Молибден — сосед элемента № 43 по периодической системе. Если же в качестве ускоряемых частиц выступали дейтроны, то не исключалось такое событие, как превращение ядер молибдена в ядра мазурия.

Такая мысль и мелькнула у Э. Сегре. Будучи хорошим радиохимиком, ученый понимал, что если мазурий действительно образуется, то в количествах совершенно ничтожных. И отделение его от молибдена потребует немало ухищрений. Поэтому он попросил дать ему необходимый образец молибденовой детали для такого исследования и возвратился в Италию, где работал в Палермском университете. Помощником Э. Сегре стал сотрудник того же университета — химик К. Перрье.

Прошло около полугода, прежде чем исследователи сумели сделать определенные выводы и послали короткую заметку с изложением их сути в лондонский журнал «Природа». Вот краткое изложение сообщения о первом в мире искусственном синтезе нового химического элемента с порядковым номером 43, который так долго и так безуспешно искали в земной коре ученые разных стран. Профессор Э. Лоуренс из Калифорнийского университета подарил исследователям молибденовую пластинку, которая была облучена дейтронами на циклотроне в Беркли. Пластинка обнаружила сильную радиоактивность, причем едва ли она вызывалась каким-нибудь одним веществом. Период полураспада имел такую величину, что исключались радиоактивные изотопы циркония, ниобия, молибдена и рутения. Наиболее вероятно, эта активность относилась к изотопам атомного номера 43.

Хотя химические свойства этого элемента были практически неизвестны, К. Перрье и Э. Сегре исследовали активность, чтобы собрать информацию о химии элемента 43. Этот элемент обнаружил близкое сходство с рением и показал те же самые аналитические реакции, как рений. Но он мог быть отделен от рения тем же методом, который употреблялся для разделения молибдена и рения.

Эта заметка была написана в Палермо и датирована 13 июня 1937 г. Сказать, что она произвела сенсацию, было бы, пожалуй, неправильно. Ученый мир лишь принял ее к сведению. Слишком мало сведений она содержала, а необходимы были именно подробности, четкие результаты радиохимических исследований.

Только впоследствии выяснилось, что К. Перрье и Э. Сегре совершили подвиг, ибо выделили из облученного молибдена невесомое количество нового элемента — всего 10-10 г. Никогда ранее радиохимии не доводилось оперировать с такими ничтожными количествами вещества. Для нового элемента авторы предложили название «технеций» — от греческого слова, означающего «искусственный». Так в названии первого синтезированного элемента отразился способ его открытия. Но в научный обиход это название вошло лишь 10 лет спустя.

Получив новые образцы облученного молибдена, К. Перрье и Э. Сегре продолжили свои работы. Их открытие получило подтверждение со стороны других ученых. К 1939 г. стало ясно, что при бомбардировке молибдена дейтронами или нейтронами образуются по крайней мере пять изотопов технеция. Некоторые из них были настолько долгоживущими, что позволяли провести основательные химические исследования нового элемента. «Химия сорок третьего элемента» — это словосочетание не казалось уже фантастическим. Но никак еще не удавалось точно определить периоды полураспада изотопов технеция. Были лишь предположения, разноречивые оценки. Они не утешали, ибо оттуда следовало, что наибольшие значения не превышали 90 дней. А это только накладывало запрет на надежды обнаружить элемент в земной коре.

Чем был технеций на рубеже 30-х и 40-х годов? Не более, как дорогостоящей игрушкой в руках любознательных исследователей. Перспективы накопить его в осязаемых количествах, пожалуй, отсутствовали полностью. Коренной перелом в судьбе технеция (и далеко не его одного) произошел тогда, когда было открыто удивительное явление ядерной физики — процесс деления урана под действием медленных нейтронов.

Когда медленный нейтрон попадает в ядро изотопа уран-235, он как бы разбивает его на два осколка. Каждый из них — ядро какого-либо элемента середины периодической системы. И среди этих осколков могут быть изотопы технеция. Не зря поэтому ядерный реактор (где в промышленном масштабе осуществляется процесс деления урана с целью получения ядерной энергии) называют фабрикой изотопов.

Если циклотрон позволил впервые осуществить синтез технеция, то ядерный реактор дал способ получать его в количествах, измеряемых килограммами. Но еще до того, как первый ядерный реактор начал работать, Э. Сегре в 1940 г. в лабораторных условиях обнаружил в продуктах деления урана изотоп технеция с массовым числом 99. Вторично рожденный в реакторе, технеций стал превращаться в обыденный (как ни парадоксально звучит это слово) химический элемент. В самом деле, ведь при делении 1 г урана-235 образуется 26 мг технеция-99.

Как только технеций перестал быть редкостью, прояснилось многое, что столь долго волновало ученых. И прежде всего это касалось точного определения периодов его полураспада. Уже в начале 50-х годов стало ясно, что три изотопа технеция резко выделяются по своей долгоживучести не только среди остальных его изотопов, но и среди многих существующих в природе изотопов других радиоактивных элементов. Технеций-99 имеет период полураспада в 212 000 лет, технеций-98 — полтора миллиона лет, а технеций-97 и того больше — 2 600 000 лет. Большие числа, но недостаточные для того, чтобы первичный технеций мог сохраниться на Земле со времен ее образования. Гарантия присутствия земного технеция существовала бы, если бы период полураспада достигал как минимум ста пятидесяти миллионов лет. В этом ракурсе все предыдущие поиски технеция явно представляются безнадежными.

Но ведь технеций может и поныне образовываться в результате природных ядерных реакций, например при облучении молибдена нейтронами. Откуда на Земле берутся свободные нейтроны? Они могут возникать при спонтанном делении урана. Этот процесс имеет тот же механизм, что и описанный выше, только ядра разваливаются спонтанно, самопроизвольно. И кроме двух больших осколков — ядер средних элементов в периодической системе, одновременно выбрасывается несколько нейтронов.

Поиски технеция в молибденовых рудах были тщетными, и ученые всерьез занялись изучением другой возможности. Если изотопы технеция образуются в ядерных реакторах, то почему они не могут рождаться в природных процессах спонтанного деления урана?

Если принять во внимание земные ресурсы урана (его средняя распространенность в 20-километровой толще земной коры), допустить, что процент образования технеция такой же, как и в случае искусственного деления, то, проделав соответствующие расчеты, получим: технеция на Земле всего-навсего около 1,5 кг. Столь малое количество (не то еще будет, когда речь пойдет о других синтезированных элементах!) едва ли стоит принимать всерьез. И тем не менее исследователи решили попытаться выделить земной технеций из урановых минералов. Это удалось сделать в 1961 г. американским химикам Б. Кенне и П. Куроде. Так, технеций словно обрел еще одну дату своего рождения — дату обнаружения в природе. Даже если были бы неизвестны способы искусственного синтеза технеция, все равно рано или поздно он был бы извлечен из недр земных.

Но десятью годами раньше в судьбе элемента № 43 произошло событие, которое произвело сенсацию. Американский астроном Ш. Мур в 1951 г., изучая спектр Солнца, обнаружила в нем линии, характерные для спектра технеция. Спектр технеция был изучен сразу же, как только это стало возможно, т. е. когда удалось синтезировать минимально необходимое для получения спектра количество элемента. Полученные результаты сравнили с теми данными, которые в свое время были опубликованы И. и В. Ноддак и О. Бергом для мазурия. Ничего общего в спектрах технеция и мазурия не обнаружилось, и тем самым окончательно была подтверждена ошибочность открытия мазурия. Спектр солнечного технеция целиком и полностью соответствовал спектру технеция земного. Тут прямо-таки напрашивалась аналогия с гелием: прежде чем объявиться на Земле, технеций тоже сигнализировал о своем существовании с Солнца. Правда, некоторые астрономы подвергали сомнению результаты Ш. Мур. Однако в 1952 г. космический технеций снова дал знать о себе: английский астрофизик П. Меррил нашел линии технеция в спектрах двух звезд с поэтическими названиями R Андромеды и Мира Кита. Интенсивность спектральных линий свидетельствовала о том, что на этих звездах технеция столько же, сколько и его соседей по периодической системе элементов: циркония, ниобия, молибдена, рутения, родия и палладия. Но эти элементы стабильны, тогда как технеций радиоактивен. Хотя его период полураспада довольно велик, он все же ничтожен по космическим меркам. В таком случае присутствие технеция на звездах может означать лишь одно: он и поныне образуется там в ходе различных ядерных реакций. В звездах и в настоящее время идет гигантский процесс образования химических элементов. Один астрофизик очень метко окрестил технеций пробным камнем космогонических теорий. Теперь всякая теория происхождения элементов, чтобы привести аргументы в свою пользу, должна объяснить ту последовательность ядерных реакций в звездах, которая приводит к образованию технеция.

ПРОМЕТИЙ

История одного из редкоземельных элементов оказалась совершенно необычной и потому заслуживает самостоятельного повествования, ибо прометий (таково его современное название) фактически отсутствует в природе (мы употребили слово «фактически», но не абсолютно, в этом есть свой резон). Тому времени, когда элемент № 61 был наконец открыт путем ядерного синтеза, предшествовали события, которые иначе, как удивительными, не назовешь.

То, что между неодимом и самарием действительно существует неизвестный еще элемент, стало окончательно ясно после работ Г. Мозли. Но ясность эта оказалась, однако, относительной, ибо вскоре в биографии элемента № 61, словно в калейдоскопе, стали мелькать один драматический эпизод за другим.

В открытии химических элементов Новому Свету явно не повезло. Все элементы, обнаруженные к 20-м годам нашего столетия (не в счет элементы, известные с глубокой древности), были фактически открыты европейскими учеными. Поэтому открытие в 1926 г. химиками Иллинойского университета в Чикаго Б. Гопкинсом, Л. Интема и Дж. Гаррисом шестьдесят первого элемента американский научный мир воспринял с особой радостью.

Начиная с 1913 г. исследователи разных стран активно искали неуловимого представителя редкоземельного семейства. Казалось удивительным, почему его не удалось обнаружить раньше. В самом деле, элементы первой половины семейства — цериевые (от лантана до гадолиния), как доказали геохимики, больше распространены в природе, чем иттриевые (от тербия до лютеция). Между тем все иттриевые элементы были известны, а в ряду цериевых зияло пустое место между неодимом и самарием.

Объяснение напрашивалось следующее: шестьдесят первый не просто редкий, а редчайший элемент. Он содержится в земной коре в гораздо меньших количествах по сравнению со своими собратьями. Существующие химические методы анализа недостаточно чувствительны, чтобы обнаружить его следы в земных минералах. Нужны были более зоркие глаза, более чуткие способы исследования.

Американские химики взяли на вооружение спектральные методы анализа; обнаружить присутствие в земных минералах шестьдесят первого элемента им должны были помочь оптические и рентгеновские спектры тех образцов, где предполагалось наличие неуловимого. Памятуя уроки изучения редкоземельных элементов, можно было бы заметить: не очень-то легкий путь выбрали заокеанские исследователи. Много добра принес спектральный анализ редким землям, но причинил и немало зла. Но спектроскопия 20-х годов XX в. уже не была такой неуверенной, как несколько десятилетий назад. А рентгеновские спектры любого элемента можно было заранее рассчитывать на основании закона Мозли.

Проделав большую работу, изучив много образцов различных минералов, Б. Гопкинс, Л. Интема и Дж. Гаррис в апреле 1926 г. заявили об открытии элемента № 61. Правда, они не держали в руках даже доли миллиграмма нового элемента: весть о его существовании принесли рентгеновские и оптические спектры.

Новорожденный получил имя «иллиний» (в честь Иллинойского университета), и символ Il занял пустовавшую шестьдесят первую клетку менделеевской системы. Но не прошло и полугода, как отыскался другой претендент на клетку № 61. Он имел символ Fl и назывался флоренцием. Его открыли два итальянца — Л. Ролла и Л. Фернандес. По их словам, они на два года раньше иллинойсских коллег нашли шестьдесят первый элемент. Но сведения о достигнутом успехе до поры до времени решили не публиковать (почему именно — авторы умалчивали). Статью о сделанном открытии они поместили в запечатанный конверт (plico suggelatto по-итальянски) и сдали на хранение во Флорентийскую академию Линчей.

Если разные люди различными путями приходят к одному и тому же результату — это ли не доказательство его истинности. Американские и итальянские химики могли бы только радоваться. А спор о приоритете — ведь он часто неизбежен в науке. И никому из перечисленных открывателей шестьдесят первого элемента не приходило в голову, что уже спустя короткое время этот спор станет чем-то вроде дележа шкуры неубитого медведя, а символы шестьдесят первого, будь то Il или Fl, не будут иметь никакого права на клетку № 61.

Но ниточка потянулась дальше, но не вперед, однако, как следовало бы, а назад. В истории шестьдесят первого всплыли обстоятельства не то чтобы прочно забытые, а просто неизвестные. Открыватели его так начинали свою статью: «Не было никаких теоретических оснований для предположения существования элемента между неодимом и самарием, пока закон Мозли не показал возможности идентификации элемента № 61»[17]. Все, казалось бы, верно в этой суховатой фразе научной публикации. И тем не менее…

На полях рукописной таблицы элементов, обнаруженной в архиве одного ученого (не будем раскрывать пока его имени), было записано по-немецки красноречивое заключение: NB. 61 ist das von mir 1902 vorhergesagte fehlende Elemente. (Убедительно просим читателя не прибегать пока к помощи немецко-русского словаря.)

С подлинной предысторией шестьдесят первого элемента тесно связано имя уже знакомого нам человека. Это известный чешский ученый, большой специалист по химии редких земель, друг Д. И. Менделеева, Богуслав Браунер.

Обнаружен иллиний, авторы открытия принимают поздравления, во второй, третий, четвертый раз убеждаются в существовании иллиния ученые других стран. «Мозли предсказал — американские химики открыли» — так пишутся первые главы родословной шестьдесят первого элемента. Ноябрь 1926 г. Со страниц лондонского журнала «Природа» неожиданно звучит голос чешского химика. Б. Браунер тоже поздравляет заокеанских коллег. Но он совершенно не согласен с началом их статьи, которое было процитировано несколькими строчками выше. Он затевает спор. В данном случае неважно, кто открыл шестьдесят первый — американцы или итальянцы: в двадцатых годах уже отчетливо представляется, что открытие нового элемента — это дело техники. Важно другое, кто предсказал? Г. Мозли? Нет, не Г. Мозли! — так утверждает чешский ученый. Тогда кто же? Да он сам, Богуслав Браунер…

Но и тени нескромности нет в этом утверждении. Оно покоится на труднейших работах ученого с редкими землями, на глубоком понимании духа периодической системы, на умении подметить чуть заметные изменения свойств в ряду удивительно похожих редкоземельных элементов; оно основано, наконец, на научной интуиции.

Пока это лишь слова, давайте же искать конкретные подтверждения. Вернемся к 1882 г. Старый дидим, дидим К. Мосандера, уже накануне своей гибели. Уже П. Лекок де Буабодран отделил от него новый элемент — самарий. Б. Браунер тщательно изучает остаток; труднейшими химическими операциями разделяет его на три части, три фракции, различающиеся по атомным массам. В силу многих обстоятельств ему приходится прекратить эти работы, и в 1885 г. К. Ауэр фон Вельсбах опережает чешского ученого. Старого дидима нет, а есть празеодим и неодим, те самые крайние фракции в работах Б. Браунера. А промежуточная? Нет, сейчас не до нее. Хаос царит в области редких земель. Мутные волны лжеоткрытий новых элементов ставят под сомнение периодическую систему. Годы идут. Хаос постепенно исчезает; известные редкоземельные элементы выстраиваются в стройный последовательный ряд. И Б. Браунер обращает внимание, что разница в величинах атомных масс неодима и самария довольно велика, больше, чем между двумя любыми соседними редкоземельными элементами. Б. Браунер, основываясь на блестящем знании химии редких земель, отчетливо видит, что последовательное изменение их свойств как бы претерпевает некий разрыв при переходе от неодима к самарию. Он вспоминает, наконец, свои работы 1882 г. Нити связываются в узелок. Рождается предчувствие, нет, даже уверенность в том, что между неодимом и самарием существует неизвестный элемент. Но, подобно Д. И. Менделееву, Б. Браунер никогда не был поспешен в выводах. Лишь в 1901 г., когда он высказал свои взгляды о месте редкоземельных элементов в периодической системе, он сделал прочерк в их ряду между неодимом и самарием.

И вот, наконец, он составил рукописную таблицу элементов. На полях ее черным по белому написано по-немецки: «61 — это предсказанный мной в 1902 году недостающий элемент!»

Короткая заметка в «Природе» продиктована стремлением Б. Браунера восстановить историческую справедливость. Тем самым как будто бы облегчается задача биографов шестьдесят первого. Маленькая деталь: можно писать биографии реально существующих элементов. Иллиний же оказался мертворожденным.

Пока энтузиасты пытались поместить в шестьдесят первой клетке таблицы Д. И. Менделеева символ Il, нашлись придирчивые и беспощадные скептики. Первым из них был В. Прандтль. Тщательность его экспериментов не внушала никаких сомнений. Но он не получил даже намека на существование шестьдесят первого элемента.

В конце 1926 г. за дело взялись соотечественники В. Прандтля И. Ноддак и В. Ноддак. Они только что сообщили об открытии двух новых элементов — мазурия и рения, сорок третьего и семьдесят пятого. Теперь ученые поставили своей целью заполнить пробел между неодимом и самарием. Пятнадцать различных минералов, в которых предполагалось присутствие иллиния, подвергли они исследованию всеми возможными методами. Целый центнер редкоземельного сырья переработали они в поисках нового элемента и ничего не обнаружили. И. и В. Ноддаки заявили, что, если бы данные американских химиков соответствовали действительности, они (Ноддаки) неизбежно выделили бы иллиний. Даже, если бы этот элемент в 10 миллионов раз был более редким, нежели неодим и самарий, им удалось бы его обнаружить. Значит, одно из двух: или шестьдесят первый уникально редок, и существующие методы исследования недостаточно точны, чтобы разглядеть его следы, или этот элемент искали вовсе не в тех минералах, где надо.

Геохимики возражали против первого предположения. Редкоземельные элементы содержатся в природе в более или менее сходных количествах. Трудно предполагать, что иллиний окажется исключением. Но геохимики же советовали поискать его в минералах кальция и стронция. Ведь все редкоземельные элементы, как правило, трехвалентны, но некоторые из них могут проявлять валентность, равную четырем или двум. Таков, например, европий, он довольно легко образует двухзарядные катионы. По размеру они ближе к катионам кальция и стронция и могут замещать их в соответствующих щелочноземельных минералах. Быть может, у иллиния эта способность выражена еще сильнее, и его удастся обнаружить в каком-нибудь редком природном соединении стронция. Гипотеза наслаивалась на гипотезу, одно недоказанное предположение базировалось на другом. Супруги И. и В. Ноддаки исследовали на всякий случай несколько щелочноземельных минералов. Увы, успех и на сей раз не сопутствовал им.

Развенчание иллиния поставило ученых в тупик. Поиски шестьдесят первого, правда, продолжались, но достигавшимся результатам теперь уже мало кто верил.

Химикам оказалось не под силу найти шестьдесят первый элемент в земных минералах. Теоретической физике выпало на долю вскрыть «конверт», где природа надежно «запечатала» шестьдесят первый элемент. Но когда это произошло, ученым (в который раз) снова пришлось огорченно развести руками. «Конверт» оказался пустым.

И здесь судьба шестьдесят первого элемента самым непосредственным образом переплетается с судьбой элемента № 43 — технеция. В соответствии с правилом немецкого физика-теоретика И. Маттауха технеций в принципе не может иметь стабильных изотопов. Это же правило накладывает вето и на возможности существования стабильных изотопов у элемента шестьдесят один. Иллиний умер, но ведь шестьдесят первый элемент должен был существовать.

А если он в действительности не существует? Такая неожиданная мысль пришла И. Ноддак. Она высказала смелое предположение. Иллиний (будем пока называть его так) присутствовал на Земле в ранние геологические эпохи. Но это был сильно радиоактивный элемент с небольшим периодом полураспада и потому довольно быстро распался, исчез с нашей планеты. Если следовать идее И. Ноддак, то придется сделать два совершенно невероятных допущения. Во-первых, иллиний — элемент середины периодической системы — не имеет ни одного устойчивого изотопа. Во-вторых, периоды полураспада этих изотопов гораздо меньше возраста Земли.

И в самом деле, соседи иллиния по периодической системе — неодим и самарий — имеют много (по семь каждый) природных изотопов, и диапазон их массовых чисел очень широк — от 142 до 154. Какой бы предполагаемый изотоп шестьдесят первого элемента мы ни взяли, его массовое число попадает в этот интервал. Значит, любой изотоп иллиния в этом интервале массовых чисел оказывается неустойчивым.

Казалось, правило Маттауха окончательно подорвало надежды найти на Земле элемент № 61. И все же появилась «соломинка», за которую можно было схватиться. Пусть все изотопы иллиния радиоактивны. Но в какой степени? Быть может, некоторые из них имеют очень большие периоды полураспада. Теоретики в то время еще не умели предсказывать величины периодов полураспада. И поиски элемента № 61 продолжались вслепую. Но физики решили, что только ядерный синтез должен помочь разгадать загадку шестьдесят первого элемента, тем более что уже был пример синтеза технеция.

Словно пытаясь взять реванш за поражение своих соотечественников в 1926 г., американские физики М. Пул и Л. Квилл из Огайоского университета в 1938 г. поставили первый эксперимент по искусственному синтезу элемента № 61. Они обстреливали мишень из неодима быстрыми дейтронами, ядрами тяжелого водорода. По их мнению, при этом происходила ядерная реакция Nd+d→61+n, и продуктом ее должен был явиться изотоп элемента № 61. Результаты оказались противоречивыми, но тем не менее ученые пришли к выводу, что им действительно удалось получить изотоп нового элемента с массовым числом 144 и периодом полураспада 12,5 ч.

Но и тут нашлись скептики, которые объявили достижения американцев ошибочными, и они имели право на сомнения, ибо никто не мог гарантировать, что неодимовая мишень была идеально чистой. Да и сам метод идентификации нового изотопа вряд ли следовало считать достаточно надежным. Даже несложные оптические и рентгеновские спектры, как в работах исследователей 1926 г., свидетельствовали о присутствии шестьдесят первого; этот вывод делали на основании радиометрических измерений.

Химия в этом процессе фактически не участвовала: химическая природа загадочного радиоактивного продукта не определялась. Поэтому возникает вопрос: можно ли считать 1938 г. действительной датой открытия элемента № 61? Скорее, это было лишь начало целенаправленных попыток его синтеза.

Время шло, и ученые расширяли арсенал бомбардирующих частиц. Они брали мишени из других редкоземельных элементов, совершенствовали технику измерения получающихся активностей. И на страницах научных журналов стали появляться статьи о других изотопах иллиния. Факт становился реальностью. Шестьдесят первый искусственно обретал жизнь. Он сменил имя. Символ Cy воцарился (но опять на короткое время) в клетке № 61, название «циклоний» было дано в знак того, что новый элемент получили с помощью циклотрона.

Исследователи слышали радиоактивный «писк» циклония, но никто не видел и крупицы нового элемента, даже его спектры не были получены. О существовании циклония приходилось судить по косвенным признакам.

В научной летописи XX в. записано много великих открытий, и одно из величайших — это открытие деления урана под действием медленных нейтронов. Ядра изотопов урана-235 раскалываются при этом на две части, каждая из которых представляет собой изотоп одного из элементов середины таблицы Д. И. Менделеева. Среди подобных осколков могут быть изотопы тридцати с лишним элементов — от цинка до гадолиния. Теоретики рассчитали, что выход изотопов элемента № 61 довольно велик. Он достигает примерно 3% от общего количества продуктов деления.

Выделить эти три процента оказалось очень нелегко.

Три американских химика — Д. Маринский, Л. Гленденин и Ч. Кориэлл — применили для разделения осколков урана метод новой химии — ионообменную хроматографию.

В этом методе разделение элементов осуществляется с помощью ионообменных смол — особых высокомолекулярных соединений. Эти смолы играют роль своеобразного сита, которое позволяет рассортировать разделяемые элементы в определенной последовательности в зависимости от прочности соединений, которое образует тот или иной элемент со смолой. На дне сита ученые обнаружили настоящие жемчужные зерна — два изотопа шестьдесят первого элемента с массовыми числами 147 и 149.

Теперь шестьдесят первый элемент иллиний (он же флоренций, он же циклоний) должен был в конце концов обрести окончательное имя. Авторы открытия впоследствии вспоминали, что придумывать новое название было ничуть не легче, чем выделить сам элемент. Конец спорам положила супруга Ч. Кориэлла — Мэри Кориэлл. Она посоветовала назвать его прометием. Согласно древнегреческой мифологии, Прометей похитил огонь у богов и подарил его людям, за что Зевс жестоко покарал титана. Это название не только символизирует драматический путь получения нового элемента в заметных количествах в результате овладения людьми энергией ядерного деления, но и предостерегает людей от грозящей опасности наказания стервятником войны, писали Д. Маринский, Л. Гленденин и Ч. Кориэлл.

Прометий родился в 1945 г. В печати сообщение об этом было опубликовано в 1947 г. 28 июня 1948 г. участники симпозиума Американского химического общества в Сиракузах любовались первыми образцами соединений прометия (желтым хлоридом и розовым нитратом, каждого по 3 мг). Этим препаратам стоит воздать должное не в меньшей мере, чем первой чистой соли радия, выделенной Марией Кюри. Великое искусство ученых вызвало к жизни прометий. Сейчас его получают в количествах, измеряемых десятками граммов. И многие его свойства хорошо изучены.

Правило Маттауха закрывало дверь к земным кладовым шестьдесят первого элемента, но закрывало недостаточно плотно. Если бы прометий располагал долгоживущими изотопами, чьи периоды полураспада измерялись величинами порядка возраста Земли, то поиски его в рудах и минералах имели полное основание.

Но в этом смысле ядерная физика оказалась врагом природного прометия. Синтез каждого нового изотопа прометия делал возможную лазейку все более узкой. Выяснилось, что жизнь изотопов прометия коротка. Из пятнадцати известных ныне изотопов шестьдесят первого элемента самый долговечный имеет период полураспада, равный всего лишь 30 г. Другими словами, когда наша Земля только сформировалась как планета, на ней уже давным-давно не могло быть и тени прометия. Но прометия первичного, того самого, который образовался в сложнейшем процессе происхождения химических элементов. Речь же могла идти о поисках прометия вторичного, т. е. такого, который и поныне образуется на Земле в результате различных природных ядерных реакций.

Технеций удалось в конце концов обнаружить в земной коре среди осколков спонтанного деления урана. Но в этих продуктах деления не исключалось присутствие изотопов элемента № 61. Проделанный приблизительный расчет показал, что количество прометия, который мог бы образоваться в результате спонтанного деления урана, содержащегося в земной коре, соответствует примерно 780 г (это все равно, что ничего). Искать природный прометий — это примерно то же самое, что растворить бочку соли в озере Байкал, а затем пытаться найти отдельные ее молекулы.

И все же эта неимоверной трудности задача была в 1968 г. решена. Американские ученые, среди которых оказался автор открытия природного технеция П. Курода, сумели зафиксировать природное существование изотопа прометия с массовым числом 147 в образце урановой руды — смоляной обманки. Тем самым была закончена удивительная история открытия элемента № 61.

Как и в случае технеция, для прометия правомерно говорить о двух датах открытия.

Первая дата — это дата синтеза, год 1945-й. Но синтез в данном случае был необычным (можно было бы сказать: синтез через деление). Два первых изотопа прометия выделили из осколков деления урана, облученного медленными нейтронами, а не прямым способом, как технеций, который был получен непосредственно в результате прямой ядерной реакции. Эти особенности прометия уникальны на фоне всех других синтезированных элементов.

Вторая дата — обнаружение прометия в природе в 1968 г. Она имеет самостоятельное значение, ибо это достижение находилось на грани возможности физических и химических методов анализа. Данное событие представляет чисто теоретический интерес, потому что никто не будет добывать для практических нужд природный прометий.

АСТАТ И ФРАНЦИЙ

В июле 1925 г. английский ученый В. Фриенд отправился в Палестину. «Земля обетованная» привлекала его отнюдь не по религиозным соображениям. Он не был ни археологом, ни туристом, путешествующим в поисках экзотических мест. В. Фриенд был просто-напросто химиком, и его багаж составляло в основном множество самых обычных склянок, куда ученый намеревался собирать пробы воды Мертвого моря. По концентрации растворенных солей Мертвое море почти не имеет себе равных среди водоемов земного шара. Рыба в нем не живет, человек может плавать в его водах, не рискуя утонуть, — так велика плотность этих вод.

Безрадостные библейские ландшафты не омрачали настроения В. Фриенда. Он верил в успех, а цель его состояла в том, чтобы обнаружить в водах Мертвого моря экаиод и экацезий, которые химикам никак не удавалось поймать. Ведь в солях, растворенных в морской воде, много щелочных металлов и галогенов; в Мертвом море их должно быть особенно много. И тем больше вероятность, что среди них, пусть в ничтожных количествах, затерялись неизвестные элементы — самый тяжелый галоген и самый тяжелый щелочной металл.

В. Фриенд, конечно, не был оригинален в выборе направления поисков. Еще в конце XIX в. химик не затруднился бы ответить на вопрос, где искать экаиод и экацезий в земной коре. Конечно же там, где встречаются в природе соединения щелочных металлов и галогенов: в залежах калийных солей, в морских и океанских водах, в различных минералах, в водах буровых скважин, в некоторых морских водорослях — словом, объектов для поисков было более чем достаточно.

Но более чем достаточно оказалось и неудачных попыток обнаружить экаиод и экацезий. И усилия В. Фриенда лишь разделили судьбу прежних безуспешных попыток.

Перенесемся в последние десятилетия прошлого века. Когда Д. И. Менделеев разработал периодическую систему элементов, то выяснилось, что в ней между висмутом и ураном существует много пробелов, соответствующих неизвестным элементам. Эти пробелы стали быстро заполняться после обнаружения явления радиоактивности. Встали на свои места полоний и радий, радон и актиний, наконец, протактиний занял место между ураном и торием. Только с экаиодом и экацезием получилась заминка. Правда, она не особенно смущала ученых. Неизвестные «эки» должны быть радиоактивными, поскольку ни у кого не возникало сомнений, что радиоактивность — общее свойство элементов, которые тяжелее висмута. Поэтому рано или поздно существование восемьдесят пятого и восемьдесят седьмого будет доказано радиометрическими методами.

Своеобразные генераторы вторичных химических элементов (природные изотопы урана и тория) дают начало длинным цепочкам последовательных радиоактивных превращений. В первое десятилетие XX в. ученые имели в своем распоряжении около сорока радиоактивных изотопов элементов конца периодической системы — от висмута до урана. Эти радиоэлементы объединялись тремя радиоактивными семействами. Их возглавляют торий-232, уран-235 и уран-238. Каждый радиоактивный элемент послал своих представителей в эти семейства. Каждый, кроме экаиода и экацезия. Ни в одной из трех цепочек не было звена, которое отвечало бы изотопам восемьдесят пятого или восемьдесят седьмого элементов. Тогда напрашивается неожиданный вывод, что экаиод и экацезий не являются радиоактивными элементами. Но почему? Никто не брал на себя смелость ответить на подобный вопрос. Стало быть, искать их в рудах урана и тория, где содержатся все радиоактивные элементы без исключения, не имеет смысла.

Предположение о вероятной стабильности экаиода и экацезия не подтверждалось. Но столь же тщетными оказывались попытки обнаружить изотопы этих элементов на ветвях радиоактивных «дерев». Правда, имелась одна возможность, которой не следовало пренебрегать. Распадается ли данный радиоактивный изотоп только одним-единственным способом или же двумя способами? Скажем, обладает способностью испускать и α- и β-частицы. Если это так, то продуктами распада этого изотопа будут изотопы двух различных элементов, а цепочка радиоактивных превращений в месте исходного изотопа как бы раздвоится, разветвится. Ученые давно интересовались этим вопросом, и для некоторых изотопов как будто удалось получить положительный результат.

В 1913 г. англичанин А. Кранстон работал с радиоэлементом MsTh-II (изотопом актиния-228). Этот изотоп испускает β-частицу и превращается в торий-228. Но ученому показалось, что в очень слабой степени здесь наблюдается и α-распад. В этом случае продуктом превращения должен был оказаться долгожданный экацезий. В самом деле,

А. Кранстон, однако, ограничился лишь констатацией наблюдения.

Прошел всего год. Три радиохимика из Вены — С. Мейер, Г. Гесс и Ф. Панет — исследуют изотоп актиний-227, принадлежащий семейству урана-235. Один опыт сменяется другим, и, наконец, чуткие приборы регистрируют α-частицы неизвестного происхождения. α-Частицы каждого радиоактивного изотопа характеризуются определенной длиной пробега в воздухе (порядка нескольких сантиметров). α-Частицы в работах венских химиков пробегали в воздухе 3,5 см. Частицы, испускаемые другими известными α-активными изотопами, пробегали дальше или ближе, но не то же расстояние. И в результате трое исследователей из Венского радиевого института приходят к выводу, что эти частицы говорят об α-распаде обычно β-активного актиния-227. Продуктом распада должен быть изотоп элемента № 87.

Открытие требовало подтверждения, новых экспериментов. С. Мейер, Г. Гесс и Ф. Панет были готовы доказывать свою правоту, но им помешала первая мировая война.

Венские исследователи действительно наблюдали α-излучение 227Ас, и тем самым в их присутствии рождались атомы восемьдесят седьмого. Но это ведь нужно было доказать. Опровергать все же было легче. Скептики возражали, что наблюдавшаяся α-активность слишком слаба, и достигнутый результат, вероятно, ошибочен. Другие указывали, что изотоп соседнего элемента протактиния тоже испускает α-частицы с длиной пробега, близкой к 3,5 см. Возможно, что исследователей подвела примесь протактиния.

Открытия восемьдесят пятого и восемьдесят седьмого элементов совершались неоднократно, и им предлагали разные названия: дакин и молдавий, алкалиний и гельвеций, лептин и англогельвеций. Но то были лишь заблуждения. За пышными именами якобы открытых элементов царила пустота.

Массовые числа всех изотопов, входящих в семейство тория-232, без остатка делятся на четыре. Поэтому ториевое семейство называют еще 4n-семейством. Массовые числа двух урановых семейств при делении на 4 дают в остатке два или три. По этой причине семейство урана-238 обозначают как (4n+2) — семейство, а урана-235 — как (4n+3) — семейство.

Но где же (4n+1) — семейство? Может быть, именно в этом неизвестном четвертом ряду радиоактивных превращений и располагаются изотопы экаиода и экацезия. Предположение не было лишено смысла, но ни один из известных радиоактивных изотопов по величине своего массового числа не мог быть отнесен к этому гипотетическому семейству.

Скептики не без основания утверждали, что действительно на заре существования Земли имелся и четвертый радиоактивный ряд. Но все входящие в него изотопы (в том числе и родоначальник ряда) имели слишком малые периоды полураспада и потому давным давно исчезли с лица нашей планеты. Четвертое радиоактивное древо высохло задолго до того, как появился первый человек.

В 20-х годах теоретики пытались реконструировать это семейство, представить как оно выглядело, если бы существовало. В этой воображаемой картине находилось место для изотопов элементов № 85 и № 87 (но зато отсутствовали изотопы радона). И этот путь поисков неуловимых элементов оказывался бесперспективным. Быть может, они вовсе не существуют?

Но до истины было не так уже далеко. Однако, прежде чем рассказать, каким способом ученые заполучили, наконец, «синюю птицу», вернемся к технецию, элементу № 43 — первому из синтезированных элементов.

Почему именно он оказался первым? Прежде всего потому, что не вызывал трудностей выбор мишени и бомбардирующей частицы. Материалом мишени мог служить молибден, который в то время уже умели приготовлять в достаточно чистом состоянии. Бомбардирующими снарядами могли быть нейтроны и дейтроны, причем дейтроны можно было разгонять на существующих ускорителях. Вот почему открытие технеция положило начало эпохе синтезированных элементов.

С прометием дело усложнилось тем, что он принадлежал к редкоземельному семейству, и в данном случае основные трудности коренились в определении его химической природы.

А вот по отношению к элементам № 85 и 87 задача представлялась куда более сложной. Для того чтобы попытаться получить экаиод, ученые могли располагать лишь одним вариантом для мишени — элементом висмутом с порядковым номером 83; столь же однозначным был и выбор бомбардирующего агента (α-частиц). Нельзя было использовать предшествующий экаиоду полоний в качестве мишени. Не годились и элементы, стоящие в периодической системе перед висмутом (от них никак нельзя было дотянуться до восемьдесят пятого, ибо отсутствовали необходимые снаряды).

Экацезий вообще представлялся недоступным искусственному синтезу. Чтобы его синтезировать, в 30-х годах отсутствовали подходящие мишени и снаряды. Но таковы бывают зигзаги в истории науки, что именно восемьдесят седьмой стал вторым после технеция достоверно открытым элементом из четверки отсутствовавших элементов в старых границах периодической системы.

И вот наступает момент, когда линии экаиода и экацезия, так долго тянувшиеся параллельно, на определенное время расходятся, и истинную историю открытия этих элементов целесообразно рассмотреть по отдельности.

Авторами синтеза элемента № 85 стали ученые, работавшие в Беркли (США), — Дж. Корсон, К. Маккензи и Э. Сегре. Итальянский физик Э. Сегре к этому времени переселился в США и среди группы исследователей был единственным, кто уже принимал участие в искусственном получении нового элемента — технеция. Эти авторы 16 июля 1940 г. отправили в крупнейший физический журнал «Physical Review» большую статью, озаглавленную «Искусственно радиоактивный элемент 85». В ней они описали, как в результате бомбардировки висмутовой мишени потоком α-частиц, ускоренных на циклотроне, им удалось получить радиоактивный продукт в соответствии с ядерной реакцией . По всей вероятности, он являлся изотопом экаиода с периодом полураспада 7,5 ч и массовым числом 211. Э. Сегре и его коллеги провели искусные химические эксперименты с ничтожными количествами нового элемента и убедились, что он похож на иод и обнаруживает слабые металлические свойства.

Исследование было достаточно убедительным. Однако новый элемент пока оставался безымянным. Кроме того, дальнейшие работы над экаиодом пришлось отложить в связи с началом войны. Лишь в 1947 г. искусственное получение восемьдесят пятого снова встало на повестку дня, и те же трое ученых объявили о синтезе другого изотопа с массовым числом 210. Его период полураспада был немногим больше — всего 8,3 ч. Как оказалось потом, это самый долгоживущий изотоп элемента № 85. И способ его получения был аналогичным. Только ученые несколько увеличили энергию бомбардирующих α-частиц. В результате из образующегося составного промежуточного ядра (209Bi+α) вылетало не два, а три нейтрона, и потому массовое число изотопа становилось на единицу меньшим. Только теперь решили дать название новому элементу — «астатин», от греческого слова, означающего «неустойчивый». В отечественной литературе ныне принято название «астат» (символ At).

Но в промежутке между синтезами изотопов 211At и 210At произошло замечательное событие. Ученые из Венского радиевого института Б. Карлик и Т. Бернерт сумели доказать существование астата в природе. Это была поистине филигранная работа, находившаяся на грани возможностей техники радиометрических измерений. И она увенчалась успехом, а элемент № 85 обрел тем самым свое второе рождение. И так же как в случае технеция и прометия, можно говорить о двух самостоятельных датах в истории знакомства с астатом — дате синтеза (1940) и дате обнаружения в природе (1943).

Но к тому времени, когда Э. Сегре и его коллеги готовились приступить к облучению мишени из висмута α-частицами, прошло уже больше года, как научный мир узнал об открытии экацезия. В «Докладах Парижской Академии наук» помеченная датой 9 января 1939 г. появилась статья под названием: «Элемент 87: АсK, производящийся от актиния». Ее автором была Маргарита Перей, сотрудница маститого радиохимика А. Дебьерна, который четырьмя десятилетиями раньше заявил об открытии актиния.

Она не изобретала никаких принципиально новых методов и не строила туманных и глубокомысленных умозаключений относительно возможных источников экацезия в природе. В 1938 г. ей попала в руки статья 1914 г. Под статьей стояли фамилии венских химиков С. Мейера, Г. Гесса и Ф. Панета. И М. Перей задалась целью доказать их правоту. В ее руках тщательно очищенный образец изотопа актиний-227. Он интенсивно испускает электроны, но в этом электронном потоке нет-нет да и промелькнут α-частицы. Каждая такая частица пробегает в воздухе 3,5 см. И протактиний здесь ни при чем: исследовательница позаботилась о чистоте препарата актиния. Коль скоро испускаются α-частицы, то в препарате этом должен постоянно накапливаться изотоп экацезия с массовым числом 223. Эксперименты следуют один за другим. Да, вне всякого сомнения, в актиниевом образце действительно накапливается нечто, и это нечто имеет период полураспада, равный 21 мин. Теперь химические реактивы должны подтвердить, что нечто — новый элемент. Выясняется, что свойства подобны свойствам цезия.

М. Перей назвала новорожденный элемент в честь своей родины. Он стал называться францием. Лишь в течение короткого времени его именовали актинием K (АсK), и то была дань старой терминологии, применяющейся для обозначения радиоэлементов.

Первая характеристика, которую составила М. Перей на новорожденный элемент, была предельно краткой: образуется при α-распаде актиния-227:

испускает α-частицы с периодом полураспада около 21 мин. Затем в течение нескольких месяцев М. Перей изучала химическую природу франция, и ей удалось убедительно показать, что он во всем похож на цезий.

Ни один из естественных радиоактивных элементов не имеет столь малой продолжительности жизни; даже долговечность восемьдесят пятого, искусственно полученного, все же измеряется часами. Можно было надеяться на лучшее: вдруг удастся обнаружить природные изотопы франция с бóльшими периодами полураспада. Но франций-223 фактически оказался единственным изотопом элемента, существующим на Земле.

В таком случае приходилось рассчитывать лишь на синтез. Но этот путь был очень трудным. Лишь спустя более десятка лет после успеха М. Перей ученые освоили методы искусственного получения изотопов франция. Вот сокращенная запись ядерной реакции образования изотопа франция с массовым числом 212:

Этот метод называется расщеплением ядер урана быстрыми протонами, разогнанными на ускорителе до очень больших скоростей. Ударяя в урановое ядро, такой высокоэнергичный протон производит в нем своеобразный взрыв, в результате которого выбрасывается целый сонм частиц — шесть протонов и двадцать один нейтрон. Конечно, такая реакция осуществляется не вслепую, а основана на тщательных теоретических расчетах. Вместо урана может быть использован и торий. Продукт этой реакции — франций-212 — одно время считался самым долгоживущим изотопом (с T½=23 мин), но впоследствии это значение уточнили, и оно оказалось равным 19 мин.

Получить франций искусственно — путь гораздо более сложный и менее надежный, чем извлечение элемента в качестве продукта распада природного актиния. Но ведь актиний тоже редко встречается в природе. Как же быть? В наши дни ученые облучают основной изотоп радия с массовым числом 226 (с Т½=1622 года) быстрыми нейтронами. Поглотив нейтрон, 226Ra превращается в 227Ra, живущий около 40 мин. В ходе его распада накапливается чистый актиний-227, в результате α-распада которого образуется франций-223.

Символы At и Fr навсегда утвердились соответственно, в 85-й и 87-й клетках периодической системы Д. И. Менделеева, и свойства их оказались в точности такими, какие можно было предположить на основе таблицы элементов. Но по сравнению со своими нестабильными собратьями, рожденными волей ядерной физики, технецием и прометием, они явно находятся в проигрышном положении.

Приблизительный подсчет показывает, что в двадцатикилометровой толще земной коры содержится примерно 520 г франция и 30 г астата (это ориентировочная и кое в чем завышенная оценка). И все же количества эти одного порядка с земными «запасами» (кавычки здесь более чем уместны) технеция и прометия. Может, мы напрасно «обижаем» астат и франций? Нисколько! Ведь сорок третий и шестьдесят первый элементы производят в промышленных масштабах, и килограммы тут отнюдь не самая большая единица измерения. Дело заключается в том, что Tc и Pm имеют несравненно большие периоды полураспада. Эти синтезированные элементы можно поэтому накапливать в больших количествах. В то же время ни о каком накоплении астата и франция не может быть и речи. Фактически, когда возникает необходимость изучения их свойств, то каждый раз эти элементы приходится получать заново.

В радиоактивных семействах изотопы астата и франция располагаются не на главных, магистральных направлениях превращений, а на боковых ответвлениях. Эти разветвления распадов называются радиоактивными вилками. Вот вилка, благодаря которой образуется природный франций:

Изотоп в 99 случаях из 100 предпочитает испускать β-частицы и лишь в одном случае испытывает α-распад.

Еще менее утешительную картину можно наблюдать для вилок, ответственных за образование астата:

О чем рассказывают эти вилки? Генераторы природного астата (изотопы полония) сами по себе чрезвычайно редкие. Распад с испусканием α-частицы для них является не то чтобы преобладающим, но практически единственным. Что же касается β-распадов, то они выглядят прямо-таки недоразумением, как об этом красноречиво говорят соответствующие значения.

На 5000 α-распадов полония-218 приходится лишь один случай β-распада. Еще печальнее обстоит дело для полония-216 (1 на 7000) и полония-215 (1 на 200 000). Тут уж, как принято говорить, комментарии излишни. Франция все же больше в земной коре. Природным поставщиком его является наиболее долгоживущий изотоп актиния 227Ас (T½=21 год); его, конечно, гораздо больше, чем уникально редких изотопов полония, способных производить астат.

ГЛАВА XIII. ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ


Этот термин обозначает совокупность элементов с порядковыми номерами, большими 92 (элементов, которые непосредственно следуют за ураном). Ныне их известно 15. А сколько еще трансуранов предстоит узнать ученым? На этот вопрос пока нельзя дать ответа. Здесь скрывается одна из удивительных загадок науки.

Хотя день рождения первого трансуранового элемента нептуния (Z=93) относится к 1940 г. и не так уж отдален от нашего времени, проблема существования элементов тяжелее урана стала волновать исследователей гораздо раньше. Не оставил ее без внимания и Д. И. Менделеев. Он полагал, что если заурановые элементы и отыщутся в земных недрах, то количество их будет ограничено. Так считал ученый в 1870 г. Более четверти века проблема не была решена. Каждый год появлялось по нескольку сообщений об открытии новых элементов, оказавшихся ложными, но ни в одном случае не было речи об обнаружении элемента с большей атомной массой, чем у урана. Что уран последний элемент периодической системы, казалось аксиомой. Почему только — никто не знал.

Но вот произошло открытие явления радиоактивности, обнаружилось, что это свойство присуще торию и урану, т. е. самым тяжелым представителям таблицы Д. И. Менделеева. И логика рассуждений, казалось бы, подсказывала: трансурановые элементы некогда в природе существовали, но в силу высокой неустойчивости давно распались, превратившись в другие, известные элементы. Простота объяснения скрывала подводный камень: ведь были совершенно неясными величины периодов полураспада хотя бы ближайших правых соседей урана. Никто не мог поручиться, что эти гипотетические элементы менее долгоживущи, нежели торий и уран. А следовательно, поиски трансуранов в природе были обоснованными.

Тянулись десятилетия, и редко в научной литературе появлялось сообщение о якобы успешном обнаружении первого трансуранового элемента. С развитием теоретической физики появились многочисленные объяснения обрыва системы на уране. Среди них оказалось много курьезных, но ни одно не было убедительным. Словом, в 20-х годах нынешнего столетия проблема трансуранов выглядела столь же неопределенной, как в последней четверти прошлого столетия.

На этом безотрадном фоне промелькнула, однако, удивительная гипотеза, которую сначала ученые рассматривали как безосновательную. И лишь четыре десятка лет спустя ей суждено было обрести совершенно новое звучание. Автором гипотезы был немецкий ученый Р. Свинне. В 1925 г. он занимался поисками трансурановых элементов. Своеобразен был объект его поисков — пыль космического происхождения, собранная на ледниках Гренландии. Образцы темного порошка подарил Стокгольмскому музею в 80-х годах прошлого века известный полярный путешественник Э. Норденшельд. Исследуя эти образцы, Р. Свинне рассчитывал обнаружить в них следы трансурановых элементов с порядковыми номерами 106–110 и в одной из своих публикаций даже упомянул о получении им рентгеновского спектра, содержащего линии, которые, по мнению ученого, должны были относиться к сто восьмому элементу. Но в это никто не поверил, да и сам Р. Свинне не стал продолжать эксперименты.

Будучи теоретиком, Р. Свинне изучал закономерности изменения различных характеристик у радиоэлементов, в частности периодов полураспада. При этом он сделал вывод о том, что элементы, располагавшиеся непосредственно за ураном, должны иметь короткую продолжительность жизни. Зато в интервалах порядковых номеров 98–102 и 108–110 можно было ожидать достаточно долгоживущие трансураны. Где их искать? Не в земных минералах, думал Р. Свинне, а в объектах космического происхождения. Поэтому его внимание привлекла пыль, собранная Э. Норденшельдом. Все это в высшей степени интересно, но не было обосновано, а поэтому казалось обреченным на забвение.

Здесь же мы подходим к тому моменту, когда со словами «трансурановый элемент» стали рядом ставить слово «синтез».

Как бы это ни казалось парадоксальным, но попытки синтеза новых элементов (и именно трансурановых) начались на несколько лет раньше, чем появился на свет технеций. Поводом к этому оказалось открытие нейтрона. Не имеющая заряда элементарная частица обладала в глазах ученых безмерной проникающей силой, способной вызвать самые различные превращения всевозможных элементов. И поэтому во всех лабораториях, где был под рукой источник нейтронов, ими стали обстреливать мишени из разных веществ, в том числе и из урана. Особенную активность здесь проявил итальянский физик Э. Ферми, возглавлявший в Римском университете группу молодых энтузиастов.

Облучив уран, коллеги пришли к выводу, что в нем возникает какая-то новая активность. Поскольку в их распоряжении был уран-238, то, поглотив нейтрон, он превращался в неизвестный еще изотоп урана с массовым числом 239. Имея избыток нейтронов, этот изотоп обнаруживал четкое стремление к β-распаду. Написав в левой части равенства 239U-β неизбежно приходим к выводу, что в правой части нужно записать 23993.

Примерно так (правда, не столь четко, ибо многие понятия ядерной физики в то время еще не устоялись) рассуждал Э. Ферми и его молодые соратники. Чтобы доказать синтез первого трансуранового элемента, требовалось вмешательство химии. Нужно было установить, что возбужденная нейтронами активность в уране не принадлежит какому-либо из предшествующих ему элементов. Насколько позволяли возможности радиохимии, это и удалось установить. Следовательно, в руках группы Э. Ферми находился новый элемент, притом трансурановый, да притом впервые открытый благодаря ядерному синтезу (все описываемые события происходили в 1934 г.). У Э. Ферми и его коллег, однако, полной уверенности не было. Между тем сообщения о синтезе нового элемента просочились в печать, и событие начало обрастать несуществующими подробностями. Например, говорили, что Э. Ферми преподнес итальянской королеве пробирку с раствором соли девяноста третьего элемента. И много подобных измышлений печаталось в те дни, когда группа Э. Ферми продолжала изучать результаты облучения урана нейтронами.

Теперь уже несколько β-активных веществ выделяли ученые из урановой мишени. Два из них отличались химическим своеобразием; они легче осаждались с оксидом марганца (IV) в отличие от предшествующих урану элементов. Так был сделан вывод, что элемент № 93 есть экарений, аналог марганца. Ему дали название «аузоний» (Ао). Будучи β-активным, он мог превращаться в следующий элемент с Z=94, гесперий (Hs). Вот как записал Э. Ферми эту цепочку ядерных процессов:

Цепочку эту потянули дальше немецкие ученые О. Ган, Л. Мейтнер и Ф. Штрассманн, которые имели большой опыт радиохимических исследований, в особенности О. Ган, в свое время прославившийся открытием нескольких радиоэлементов. Благодаря скрупулезным исследованиям число новых трансурановых элементов возросло на три (по элемент с порядковым номером 97 включительно):

Наличие приставки эка указывает на то, что ученые считали образующиеся трансурановые элементы аналогами соответственно иридия, платины и золота из шестого периода системы. Но здесь-то и коренилась глубокая ошибка, которая обнаружилась не сразу. Свойства ближайших трансурановых на самом деле оказались другими.

История науки полна удивительных догадок, на первых порах будто бы ни на чем не основанных. И. Ноддак еще в 1934 г. высказала одну из них: при обстреле урана нейтронами вовсе не образуются новые элементы, ядра урана как бы раскалываются на осколки — ядра элементов более легких и уже известных. Коллеги подняли И. Ноддак на смех, и особенно иронизировал по поводу ее гипотезы О. Ган. Однако ирония Гана обернулась иронией судьбы.

В это же время и другие ученые хотели выяснить, что же происходит с ураном под действием нейтронов. И. Жолио-Кюри и ее сотрудник сербский физик П. Савич с особой тщательностью изучали обстрелянную урановую мишень. И среди возбужденных активностей обнаружили следы химического элемента, по свойствам очень похожего на актиний, т. е. элемента, предшествующего урану, а отнюдь не следующего за ним в периодической системе Д. И. Менделеева. Вскоре оказалось, что у него больше общего с лантаном, нежели с актинием. Следовательно, один из продуктов обстрела урана медленными нейтронами похож на лантан.

Если бы И. Кюри и П. Савич не остановились на осторожном выражении «похож на лантан», а твердо доказали, что неизвестный элемент есть лантан, они стали бы авторами (или по крайней мере, соавторами) одного из самых выдающихся научных открытий XX в. (Здесь не мешает вспомнить, что порядковый номер лантана равен 57, а урана 92, и заодно вспомнить о предположении И. Ноддак.) Это казалось более чем невероятным. Но факты оставались фактами. Работы И. Кюри и П. Савича выглядели настолько убедительными, что О. Ган взялся их проверить, тот самый О. Ган, который был яростным противником результатов, полученных И. Кюри. Решение его означало, что он начал сомневаться в правильности занимаемых им позиций.

Вместе со своим сотрудником Ф. Штрассманном он воспроизвел опыты французских коллег, в которых они еще недавно видели своих научных противников. Почти все оказалось таким, как считала Ирэн Жолио-Кюри. В урановой мишени содержались изотопы и лантана, и предшествующего ему элемента — бария. Как химик, О. Ган не мог в этом сомневаться. Как физик, он не знал, как этот факт объяснить.

Дело состояло в том, что при действии нейтронов ядра урана как бы раскалываются на два осколка, и эти осколки представляют собой изотопы элементов середины периодической системы. Ядерная физика не знала ничего подобного. Но иного объяснения найти было нельзя. О. Ган и Ф. Штрассманн сделали вывод, что ядра урана обладают способностью разваливаться под действием нейтронов.

Это произошло 23 декабря 1938 г. Ученые немедленно написали о своем открытии. Потом О. Ган признавался: «После того как статья была отправлена по почте, все это снова показалось столь невероятным, что захотелось вернуть статью обратно из почтового ящика»[18].

Невероятное оказалось вероятным. Несколькими днями позже письмо об этом событии получила от О. Гана его многолетняя сотрудница Л. Мейтнер. Вместе со своим племянником, физиком О. Фришем она попробовала теоретически истолковать это явление.

Ядра до известной степени можно уподобить капле жидкости — ученые уже давно пытались проводить аналогию между свойствами ядра и свойствами жидкой капли. Если капле сообщить достаточную энергию, привести ее в движение, то она может разделиться на более мелкие капли. Если ядро придет в возбужденное состояние (его приводит в это состояние нейтрон), то оно также может разделиться на более мелкие части. Постепенно происходит деформация уранового ядра, оно удлиняется, образуются сужения, и, наконец, происходит деление на две половины. Так представляли процесс деления уранового ядра Л. Мейтнер и О. Фриш. В своей статье они писали, что поразительное сходство этой картины с процессом деления, которым размножаются бактерии, послужило поводом назвать это явление ядерным делением.

Ядро урана распадалось на два осколка. При этом выделялась огромная энергия. Но вместе с осколками из погибающего уранового ядра вылетало несколько свободных нейтронов. Они могли разрушать другие ядра урана. И так далее. При благоприятных условиях в куске урана могла возникнуть цепная реакция деления — колоссальной мощи ядерный взрыв. Уже в 1940 г. советские ученые Я. Б. Зельдович и Ю. Б. Харитон создали строгую теорию цепной реакции деления. Человек осуществил процесс, которого, казалось, не знала природа. Люди еще не обнаруживали в ней столь глубокого процесса превращения элементов. Изотопы 34 химических элементов — от цинка (порядковый номер 30) до гадолиния (порядковый номер 64) — были найдены среди осколков деления урана. Ядерный реактор оказался настоящей фабрикой радиоактивных изотопов.

Деление урана, вызываемое нейтронами, было искусственным, вынужденным. Не каждый атом урана мог делиться. И не каждый нейтрон обладал способностью это деление вызывать. Когда ученые детальнее разобрались в механизме деления, выяснилось, что оно гораздо интенсивнее проходит под действием медленных нейтронов, притом на изотопе урана с массовым числом 235. Другой урановый изотоп — уран-238 — реагировал только на быстрые нейтроны. Нет ли в природе процесса, аналогичного искусственному делению урана? Таким вопросом задался Н. Бор и, размышляя далее, высказал гипотезу о возможности самопроизвольного деления урана (без внесения в ядро энергии извне).

Советские ученые Г. Н. Флеров и К. А. Петржак решили экспериментально подтвердить гипотезу. Но как установить, что ядра урана действительно могут делиться сами по себе? Ведь случайные нейтроны космических лучей, залетевшие в лабораторию, могли исказить картину опытов. Вот почему в осеннюю полночь 1940 г. Г. Н. Флеров и К. А. Петржак спустились в вестибюль станции Московского метро «Динамо». Здесь на глубине нескольких десятков метров под землей не нужно было опасаться влияния космического излучения. В эту полночь ученые окончательно убедились в существовании нового вида радиоактивных превращений — спонтанного деления ядер (пока речь шла лишь о ядрах изотопа урана-238). Потом удалось установить, что многие изотопы тяжелых элементов (тория и в особенности трансурановых) подвержены этому виду радиоактивного распада. В настоящее время известно около сотни самопроизвольно делящихся ядер, принадлежащих различным элементам. Механизм спонтанного деления аналогичен делению под действием нейтронов.

Теперь у нас с вами есть все необходимые сведения, чтобы приступить к рассказу об открытиях отдельных трансурановых элементов, ибо как раз в этой области порядковых номеров спонтанное деление играет весьма существенную роль.

Сорок лет насчитывает история трансурановых элементов, и за этот, по современным меркам, довольно продолжительный исторический период ученым удалось сделать пятнадцать шагов за уран: от элемента 93 до 107. Если построить график: на оси абсцисс отложить по порядку номера элементов от 1 до 92, а по оси ординат — годы, то полученная кривая будет напоминать сейсмограмму, характеризующую сильное землетрясение. Аналогичный график для трансурановых элементов — это сравнительно плавно поднимающаяся вверх линия, на которой четко выделяются отдельные пики. Хронологическая последовательность синтезов трансурановых элементов строго отвечала (за одним исключением) увеличению порядкового номера нового элемента каждый раз на единицу.

В истории синтезов можно видеть взлеты и падения. Первый взлет приходится на 1940–1945 гг., когда было открыто четыре синтезированных элемента: нептуний (Z=93), плутоний (Z=94), америций (Аm=95), кюрий (Cm = 96). Затем подъем кривой сменяется плавным участком (до 1949 г. новых синтезов не произошло). Далее можно наблюдать второй взлет — 1949–1952 гг. Еще четыре трансурановых элемента: берклий (Z=97), калифорний (Z=98), эйнштейний (Z=99) и фермий (Z=100) — оставили свои символы в периодической системе. Третий, единичный взлет соответствует синтезу менделевия (Z=101) в 1955 г., когда история синтеза трансурановых элементов отметила пятнадцатилетний юбилей. В последующую четверть века синтезов было значительно меньше: верхняя граница периодической системы отодвинулась всего на шесть порядковых номеров. Здесь ученые вступили в совершенно новую область синтезов, поэтому прежние критерии, которыми оценивались открытия элементов, во многом оказались иными.

Все эти взлеты и падения отнюдь не обусловлены случайностями, все они результат обстоятельств, вполне закономерных. Они становятся понятными, если передвигаться по шкале синтезов трансурановых элементов от нептуния и далее.

НЕПТУНИЙ

Э. Ферми, конечно, никогда не преподносил итальянской королеве флакончик, содержащий соли первого трансуранового элемента. Это не более чем досужая выдумка журналистов. Но то, что Э. Ферми действительно держал в руках элемент № 93, правда, которая в то время не могла быть доказана. Урановая мишень в его опытах состояла из смеси изотопов — урана-238 и урана-235. Второй из них делился под действием медленных нейтронов, образовались осколки — элементы середины периодической системы. Они чрезвычайно запутывали химическую картину, в чем удалось разобраться только после открытия деления.

Но уран-238 поглощал нейтрон, превращаясь в уран-239, новый изотоп девяносто второго элемента. β-Активный 239U рождал изотоп первого трансуранового элемента с порядковым номером 93. Все было так, как и предполагали Э. Ферми с коллегами. Но следы будущего нептуния невозможно было различить на фоне множества осколков деления. Потому-то опыты середины 30-х годов закончились безрезультатно.

Открытие О. Гана и Ф. Штрассманна явилось решающим стимулом для действительного синтеза трансурановых элементов. Для начала нужно было найти надежный способ уловить атомы элемента № 93 в мешанине осколков деления. Сравнительно небольшие по массе, эти осколки в процессе бомбардировки урана должны были отлетать на большие расстояния (иметь бóльшую длину пробега), чем массивные атомы девяносто третьего.

Так рассуждал американский физик Е. Макмиллан, сотрудник Калифорнийского университета. Еще весной 1939 г. он стал исследовать распределение осколков деления урана по длине пробегов. Ему удалось выделить порцию таких осколков, чья длина пробега была очень малой. И в этой самой порции он обнаружил следы радиоактивного вещества с периодом полураспада 2,3 дня и высокой интенсивностью излучения. Другие порции осколков подобной активности не содержали. Это вещество «X», показал Е. Макмиллан, является продуктом распада изотопа урана, также содержащегося в выделенной порции короткопробежных осколков. Так ученый записал цепочку, которая в свое время виделась Э. Ферми:

Только теперь поиски вели уже не вслепую. Чтобы окончательно доказать образование нового элемента, требовалось вмешательство химии. На летние каникулы к Е. Макмиллану приехал его приятель, химик П. Абельсон, что и сыграло решающую роль в открытии элемента № 93. Совместными усилиями Е. Макмиллан и П. Абельсон установили химическую природу вещества с периодом полураспада 2,3 дня. Вещество можно было химическим путем отделить от урана и тория, хотя кое в чем наблюдалось и сходство. Зато никакой общности не было между этим веществом и рением. Так окончательно рухнуло предположение о том, что элемент № 93 должен быть экарением.

В начале 1940 г. в журнале «Physical Review» появилось сообщение о действительном открытии девяносто третьего элемента. Ему было дано имя «нептуний», по названию планеты, следующей в солнечной системе за Ураном (тем самым подчеркивалось и некоторое сходство нептуния с ураном).

Уже при синтезе нептуния проявилось существенное обстоятельство, которое характерно для открытия всех трансурановых (да и других синтезированных элементов). Первоначально был синтезирован один изотоп, с определенным массовым числом. Для нептуния это был изотоп 239Np. С той поры стало правилом датировать открытие нового трансуранового элемента по времени достоверного синтеза первого его изотопа. Но иногда этот изотоп оказывался таким короткоживущим, что его трудно было использовать для химических и физических исследований, не говоря уже о каком-либо практическом применении. Для изучения нового элемента лучше всего подходил бы его самый долгоживущий изотоп. В случае нептуния таким стал 237Np, синтезированный в 1942 г.:

Он имеет период полураспада 2,2∙106 лет. Однако получение его сопряжено с большими техническими трудностями. И потому все начальные работы по изучению свойств нептуния были выполнены на третьем его изотопе 238Np, его синтезировали по ядерной реакции . Поэтому для истории трансурановых элементов важна и дата синтеза наиболее доступного для исследований изотопа, который далеко не всегда является самым долгоживущим.

Начиная с нептуния, первенство в открытии трансурановых элементов долгое время принадлежало американским ученым. Это легко понять, поскольку тяготы второй мировой войны мало сказались на США. Нужно, правда, подчеркнуть, что в 1942 г. элемент № 93 был независимо синтезирован немецким физиком К. Штарке.

В весовых количествах (несколько микрограммов) нептуний был выделен в 1944 г. Теперь его получают десятками килограммов в ядерных реакторах.

Тринадцать изотопов нептуния известно в настоящее время. Один из них (237Np) был обнаружен в 1952 г. в природе. Это еще один случай существования в природе синтезированного элемента и повод рассматривать для нептуния две самостоятельные даты открытия (так же как для Тс, Pm, At и Fr).

ПЛУТОНИЙ

Выделенный Е. Макмилланом и П. Абельсоном нептуний-239 был β-активным. Он закономерно должен был превращаться в изотоп следующего, девяносто четвертого элемента. Эти ученые, конечно, хотели стать авторами и его открытия, но их мечта не сбылась. Как выяснилось позже, предполагаемый элемент № 94 с массовым числом 239 имеет большой период полураспада, интенсивность его излучения низка. Открыватели нептуния зафиксировали лишь испускание α-частиц неизвестного происхождения (потом выяснилось, что их-то и испускает элемент № 94), и на этом всякие поиски прекратились.

Работы по его синтезу возглавил знаменитый американский ученый Г. Сиборг, под руководством которого было открыто много трансурановых элементов. В течение зимы 1940–1941 гг. группа Г. Сиборга изучала ядерную реакцию 238U (d, 2n), которая приводила к образованию изотопа 238Np. Со временем в нем накапливалось α-активное вещество. Ученые смогли его выделить и убедиться, что оно является изотопом элемента № 94 с массовым числом 238 и периодом полураспада около 50 лет. Новый элемент получил название «плутоний», по имени очередной планеты солнечной системы.

Г. Сиборг

И опять это был не самый долгоживущий изотоп. Его (массовое число 244 и Т½= 8,3∙107 лет) удалось обнаружить только в 1952 г. Определяющую роль в истории изучения плутония сыграл изотоп 239Pu, синтезированный весной 1941 г. Во-первых, он оказался долгоживущим (T½=24 360 лет), во-вторых, под действием медленных нейтронов 239Pu делился гораздо более интенсивно, чем 235U. Это решающим образом повлияло на его использование для создания ядерного оружия. Поэтому химические и физические свойства элемента стали исследовать с особым вниманием и тщательностью. В итоге плутоний оказался одним из самых изученных элементов периодической системы. Кроме того, плутоний-239 ученые могли использовать в качестве мишени для синтеза следующих трансуранов. Обо всем этом стало широко известно лишь в конце 40-х годов, когда многие работы по овладению ядерной энергией были рассекречены. Вот еще один своеобразный штрих в истории элементов, когда их открытие до поры до времени оставалось тайной.

Интерес к плутонию был настолько велик, что уже в августе 1942 г. удалось приготовить его весовые количества (первый случай в истории синтезированных элементов). В наши дни плутоний получают в гораздо бóльших масштабах, чем многие из стабильных элементов, содержащихся в земной коре. А всего известно 17 изотопов девяносто четвертого элемента.

Подобно нептунию, плутоний (его изотоп 239Pu) удалось найти в урановых минералах, конечно же, в символических количествах. Он образуется в уране под действием природных нейтронов. Тем самым плутоний как бы является естественной верхней границей периодической системы, и также правомерно говорить о двух датах его открытия.

АМЕРИЦИЙ И КЮРИЙ

Пожалуй, это был единственный в истории трансуранов случай, когда элемент с бóльшим порядковым номером (Z=96) удалось идентифицировать раньше его предшественника (Z=95). В июле 1944 г. циклотрон Калифорнийского университета, уже подаривший миру несколько синтезированных элементов, в том числе плутоний, нацелился на синтез очередных элементов тяжелее урана. Г. Сиборг и его коллеги облучали мишень из плутония-239 ускоренными α-частицами. Легко сообразить, что поскольку ядро гелия имеет заряд, равный двум, то продукт реакции мог быть изотопом элемента № 96. Это в том случае, если бы из образующихся ядер вылетали нейтроны. Но процесс мог пойти и так, что вылетали бы не нейтроны, а протоны, и тем самым происходил синтез изотопов элемента № 95. Действительно, в плутониевой мишени образовались различные радиоактивные вещества, и сначала было трудно определить, «кто есть кто». Только искусные химические операции позволили сделать вывод, что в смеси наверняка содержится изотоп 24296. Для подтверждения открытия ученые тот же изотоп 239Pu облучили мощным потоком нейтронов, в результате чего выстроилась такая цепочка:

После поглощения нейтронов плутоний путем β-распада превращался в элемент № 95, а тот, поглотив еще нейтрон, — в элемент № 96.

Так вот этот конечный продукт был аналогичен тому, который ученые приняли за изотоп элемента № 96 с массовым числом 242. Это и означало открытие кюрия (Z=96), который получил свое имя в честь М. и П. Кюри. В выборе этого названия был и другой резон. Элемент № 96 в таблице Д. И. Менделеева рассматривался как аналог элемента гадолиния из редкоземельного семейства, истории которого положил начало Ю. Гадолин; супруги же Кюри были пионерами изучения радиоактивности, что привело к столь удивительным последствиям.

Дата рождения элемента № 95 — январь 1945 г., и он был выделен из плутония, облученного нейтронами. Название элементу дано в честь Америки (и по сходству америция с европием из семейства редких земель).

Хотя перед синтезом америция и кюрия ученые накопили уже достаточный опыт исследования, в данном случае трудности оказались гораздо существеннее. Потребовалось много времени, чтобы доказать определенно, «кто же есть кто»: 241Am и 242Cm. Оба этих изотопа не являются самыми долгоживущими. Такими оказались 243Am (T½=7950 лет) и 247Cm(1,64∙107 лет), но их удалось синтезировать только в 50-х годах. Всего же известно 11 изотопов америция и 13 изотопов кюрия. Вот еще несколько дат из истории этих элементов. В чистом виде америций был выделен в 1945 г., а в виде металла приготовлен в 1951 г. В том же году появилось сообщение о получении металлического кюрия.

Кюрием заканчивается первый взлет в истории синтеза трансуранов. Для науки открытие нептуния, плутония, америция и кюрия имело огромное значение. Впервые ученым удалось искусственно расширить таблицу Д. И. Менделеева. Выяснилось, что свойства этих элементов совсем не такие, как ожидалось раньше, и химикам пришлось серьезно задуматься, как же их наилучшим образом разместить в периодической системе.

БЕРКЛИЙ

Синтезу америция и кюрия помог плутоний-239. Его быстро научились приготовлять в больших количествах, а потому изготовление плутониевых мишений не составляет проблемы. Чтобы двигаться дальше, нужно было научиться синтезировать америций и кюрий в достаточных количествах. На это ушли годы. Но не только данное обстоятельство мешало синтезу новых трансурановых элементов. На бумаге запись ядерной реакции выглядит до удивления простой, но только специалист может понять и оценить, какие огромные трудности стоят за этим. Требовалось не только до деталей обдумать эксперимент, выяснить наиболее оптимальные условия протекания ядерных реакций. Был необходим и тщательный теоретический расчет, чтобы предсказать виды радиоактивных превращений синтезированных изотопов и вероятные продолжительности их жизни. Ведь в распоряжении ядерных физиков не было такой замечательной классификации, как периодическая система элементов у химиков. Плавный участок на кривой открытий трансурановых элементов растянулся на 5 лет. И еще одно обстоятельство должно быть упомянуто. Активность америция и кюрия настолько высока, что работать с ними в открытую смертельно опасно. Пришлось соответствующим образом оборудовать лаборатории, которые получили название горячих.

В конце 1949 г. группа Г. Сиборга сумела изготовить америциевую мишень и облучить ее α-частицами. Ядерная реакция протекала так, как предварительно рассчитали теоретики: 241Am(α, 2n)24397. Для нового элемента предложили название берклий (символ Bk) в честь города Беркли и вследствие химической аналогии элемента № 97 с редкоземельным элементом тербием (вспомните деревушку Иттербю, давшую жизнь названиям нескольких редких земель). Среди девяти известных ныне изотопов самым долгоживущим является 247Bk (период полураспада 1380 лет), синтезированный в 1956 г. Два года спустя элемент накопили в весовых количествах, а в 1971 г. ученые выделили металлический берклий. Сколь трудно осуществить накопление берклия, говорят следующие цифры: 8 г 239Pu в течение 5 лет облучались нейтронами в ядер-ном реакторе, а итогом было лишь несколько микрограммов элемента № 97. Чем дальше пробирались исследователи в трансурановую область, тем с меньшими количествами новых элементов им приходилось иметь дело.

КАЛИФОРНИЙ

После берклия элемент № 98 Г. Сиборг и его сотрудники синтезировали очень быстро. В январе–феврале 1950 г. они провели рассчитанную ядерную реакцию: 242Cm(α, n)24598, назвав новый элемент в честь штата Калифорния и Калифорнийского университета, а еще и потому, что элемент № 98 являлся аналогом редкоземельного диспрозия (труднодоступного): в прошлом веке было так же трудно добраться до Калифорнии, как выделить диспрозий из смеси редких земель. Из четырнадцати известных ныне изотопов калифорний-245 был не самым долгоживущим. Наибольший период полураспада (900 лет) имеет калифорний-251, синтезированный в 1954 г. Весовые количества этого элемента ученые выделили в 1958 г., а металлический калифорний стал реальностью в 1971 г.

ЭЙНШТЕЙНИЙ И ФЕРМИЙ

Синтезировав калифорний, американские ученые (да и их коллеги в других странах) серьезно задумались, как же двигаться дальше. Реально ли в обозримом будущем ставить задачу прорыва в еще более далекую область неизвестных трансурановых элементов?

В самом деле, не было видно реальных путей накопления достаточных для изготовления мишеней количеств берклия и калифорния, чтобы, обстреляв их α-частицами, синтезировать девяносто девятый и сотый элементы. Препятствием этому были слишком малые периоды полураспада берклия и калифорния, измерявшиеся часами и минутами (долгоживущих изотопов ученые еще не знали). Предполагался лишь один более или менее реальный путь: длительное облучение плутония интенсивным источником нейтронов, но ждать результатов пришлось бы долгие годы.

Конечно, было бы желательно получить такой мощный поток нейтронов, который сразу бы помог решить проблему. Так уран либо плутоний, захватив большое число нейтронов за короткий промежуток времени, превратились бы в очень тяжелые изотопы, например:

или

Давно было известно, что ядра избавляются от избытка нейтронов в результате превращения их в протоны, т. е. путем β-распада. Эти цепочки последовательных β-превращений могут оказаться настолько длинными, что дотянутся до образования изотопов 99-го и 100-го элементов.

Расчеты же показывали, что мощности нейтронных потоков в ядерных реакторах являются слишком слабыми, чтобы осуществить идею на практике. Кроме того, теоретики видели беду и в предполагаемых малых продолжительностях жизни изотопов элементов № 99 и № 100.

1 ноября 1952 г. американцы произвели взрыв термоядерного устройства на атолле Эниветок в Тихом океане. Несколько сотен килограммов почвы на месте взрыва (получившей кодовое название «дорогостоящая грязь») были собраны со всеми предосторожностями и отправлены в США. Группы исследователей во главе с Г. Сиборгом и А. Гиорсо произвели тщательное изучение этого радиоактивного пепла. В нем было обнаружено много различных радиоактивных изотопов трансурановых элементов, и в том числе два изотопа, которые могли быть не чем иным, как изотопами 99-го или 100-го элементов.

В ходе термоядерного взрыва мощность нейтронных потоков оказалась гораздо выше, чем предполагалось. Благодаря этому и реализовались процессы захвата нейтронов ураном, представленные выше. Изотопы 253U и 255U, испустив соответственно одну за другой 7 и 8 β-частиц, превратились в изотопы элементов девяносто девятого (25399) и сотого (255100). Их периоды полураспада оказались малыми, но вполне приемлемыми, однако, для исследований (20 дней и 22 ч).

Новые элементы получили названия «эйнштейний» (в честь А. Эйнштейна) и фермий (в честь Э. Ферми). Их долгоживущие изотопы 254Es (T½=270 дней) и 252Fm (T½=80 дней) были синтезированы значительно позже в лабораториях.

Таким образом, эйнштейний и фермий были открыты, если можно так выразиться, незапланированно.

Сакраментальный вопрос: «А что же дальше» — вставал с новой остротой. Уже было совершенно ясно, что, чем больше Z, тем меньше времена жизни изотопов. Предполагалось, что для элементов с Z>100 счет должен был вестись уже на секунды. Вопрос о накоплении таких изотопов в сколь-либо приемлемых количествах не имел смысла. До сих пор химическая идентификация новых трансурановых элементов проводилась с помощью метода ионообменной хроматографии, путем установления их аналогии с соответствующими представителями редкоземельного семейства. Но слишком короткоживущие изотопы распадутся раньше, чем успеют выйти из хроматографической колонки, и тем самым исказят действительную химическую картину.

Природа, казалось, поставила перед учеными непреодолимый барьер, не давая им надежды проникнуть в область элементов второй сотни.

МЕНДЕЛЕВИЙ

Великих успехов достигли ученые, добравшись до сотого элемента, в названии которого, наконец-то, было увековечено имя Энрико Ферми, предпринявшего некогда первый поход за трансуранами.

За фермием отчетливо вырисовывались контуры страшной опасности: во весь рост поднялся главный враг трансурановых элементов — спонтанное деление. По этому виду радиоактивных превращений изотопы с Z=100 должны были, согласно расчетам, оказаться весьма короткоживущими. Успешный синтез эйнштейния и фермия в мощных нейтронных потоках сначала вселял оптимизм. Но теоретики заявили, что за фермий продвинуться не удастся, ибо слишком мал его период полураспада по спонтанному делению. Ядро сотого элемента быстрее распадется на два осколка, нежели успеет испустить β-частицу.

И все же элемент № 101 оказался последним, который удалось синтезировать классическим методом, применяя в качестве бомбардирующего агента легкую α-частицу. К 1955 г. Г. Сиборгу и его коллегам удалось накопить количество эйнштейния, измеряемое миллиардом атомов. Со всей тщательностью столь мизерное количество нанесли на подложку из золотой фольги, где цена золота по сравнению с ценой эйнштейния была смехотворно низкой. Мишень обстреляли α-частицами. Ученые полагали, что произойдет ядерная реакция: . Образующиеся атомы элемента № 101 благодаря отдаче вылетали из эйнштейниевого слоя и застревали в золотой фольге. После опыта фольгу растворяли и полученный раствор подвергали разделению на хроматографической колонке. Самый ответственный момент — уловить, когда порция раствора, содержащая элемент № 101, выходит из колонки и зарегистрировать случаи спонтанного деления.

Всего пять (!) актов деления удалось зарегистрировать в первом эксперименте. Но и этого хватило, чтобы опознать изотоп элемента № 101. Потом выяснилось, что период его полураспада составляет 3 ч, а массовое число равно 256. Подобная долгоживучесть оказалась неожиданной, и эта неожиданность способствовала успешному синтезу нового элемента. Его назвали менделевием (символ Md), в честь признания заслуг великого русского химика Д. И. Менделеева, который первым использовал для предсказания свойств неоткрытых химических элементов периодическую систему. Так писали авторы открытия менделевия.

Позже, когда символ Md определился в 101-й клетке таблицы, они красочно описали, как все это происходило. Атмосфера уныния царила в лаборатории, рассказывали Г. Сиборг и его коллеги. При попытке синтезировать и идентифицировать элемент № 101 было выполнено несколько тщательных опытов. Увы, они оказались неудачными. Наконец, был поставлен последний, решающий опыт, когда можно было рассчитывать на удачу. В лучшем случае предполагалось получить один или два атома, упорно ускользавшего из рук элемента № 101. Затаив дыхание, ученые ожидали показаний прибора, который регистрировал спонтанное деление. Прошел час. Ночь была уже на исходе. Ожидание казалось бесконечным.

И вдруг, вспоминали авторы открытия, перо самописца стремительно двинулось на середину шкалы и вернулось обратно, прочертив тонкую красную линию. Такой скачок ионизации никогда не наблюдался ранее при исследовании радиоактивных материалов. Вероятно, этот скачок был сигналом ожидавшегося деления. Примерно через час удалось зарегистрировать второй скачок. Теперь появилась уверенность, что произошел распад двух атомов элемента № 101, и его можно вписать в существующий список химических элементов.

Любопытно, что регистрирующий деление прибор был присоединен к пожарному звонку. И элемент № 101 каждый раз объявлял о своем рождении оглушительным трезвоном.

Спустя 12 лет оказалось, что менделевий имеет еще более долгоживущий изотоп 258Md с T½=2 месяца. Именно он позволил ученым детально изучить химические свойства элемента № 101. С открытием менделевия возникла новая область радиохимического исследования — химия единичных атомов со своими специфическими методами. Она оказалась незаменимой помощницей при изучении химической природы последующих трансурановых элементов. Синтез менделевия и стал переломным событием в истории открытия элементов тяжелее урана. Все прежние способы синтеза утратили свое значение, ибо нельзя накоплять менделевий в количествах, достаточных для приготовления мишени. За сто первым элементом открывалась теоретическому взору неизведанная страна, населенная призраками. Уже не было сомнений в том, что следующие трансураны могут существовать лишь секунды и доли секунды.

Даже если и удастся их получить, то изучение их свойств представлялось чрезвычайно трудным делом. Или вообще невозможным.

Но как получить? Какие ядерные реакции пригодны? К счастью, к концу 50-х годов на этот вопрос уже существовал определенный ответ: нужно использовать в качестве бомбардирующих агентов многозарядные ионы легких элементов периодической системы (углерода, кислорода, неона, аргона). Тогда можно изготовлять мишени из обычных трансурановых элементов: плутония, америция, кюрия, т. е. проблема мишени отпадала. Конечно, лучше бы иметь «голые» бомбардирующие ядра (подобно α-частице — ядру атома гелия), но ободрать всю электронную «кожуру» с атомов едва ли возможно. Эти многозарядные ионы предварительно необходимо разогнать до больших скоростей, чтобы их энергия оказалась достаточной для вступления в ядерные реакции. Поэтому нужны новые мощные ускорители. Когда они были созданы, наступил новый взлет в истории открытия трансурановых элементов. Оговоримся, однако, что слово «открытие» здесь имеет несколько иной смысл, чем во всех предшествующих случаях знакомства с новыми элементами.

ЭЛЕМЕНТ № 102

Да, именно элемент № 102 без какого бы то ни было названия. В большинстве современных таблиц элементов в 102-й клетке часто стоит прочерк, хотя сам-то элемент давно считается открытым и хорошо изученным.

Иногда (особенно в зарубежной литературе) можно встретить название «нобелий» и символ No, но они лишь свидетельство ошибки эксперимента, имевшей место в 1957 г. Тогда интернациональная группа ученых, работавших в Нобелевском физическом институте в Стокгольме, впервые применила многозарядные ионы для синтеза нового трансурана. Мишень из кюрия-244 была обстреляна ионами углерода-13. В продуктах реакции якобы были зарегистрированы изотопы 253102 и 251102 с T½~10 мин. Удачный пример менделевия побудил авторов применить ионообменную хроматографию, и это как будто бы то же свидетельствовало о синтезе элемента № 102.

Все заявления оказались ошибочными — опыты никем не были подтверждены. И некоторое время на страницах популярных журналов странствовала шутка: от нобелия осталось одно No (по-английски — нет).

Осенью 1957 г. за дело синтеза новых трансурановых элементов взялись советские ученые во главе с Г. Н. Флеровым. Сейчас лаборатория ядерных реакций Объединенного института ядерных исследований в г. Дубне лидирует в области синтеза элементов тяжелее урана. Г. Н. Флеров и его сотрудники обстреляли плутониевую мишень ионами кислорода: . Но в итоге было получено совсем не то, что объявлялось годом раньше в Стокгольме. Тем временем и в Беркли, где эксперименты возглавлял теперь ученик Г. Сиборга — А. Гиорсо, проводилась атака на элемент № 102. Здесь были получены свои результаты, они опровергали результаты Нобелевского института, но и не совпадали с данными советских физиков.

Г. Н. Флеров

Так постепенно от нобелия осталось одно No. И действительно, дата открытия этого элемента трудносвязуема с каким-либо определенным временем. Группа Г. Н. Флерова предприняла наступление на элемент № 102 в 1963–1966 гг. Удалось синтезировать несколько его изотопов, оценить величины их массовых чисел и периодов полураспада. И это было подлинным знакомством с новым трансурановым элементом, для которого дубненские исследователи на правах действительных первооткрывателей предложили название «жолиотий» (в честь Ф. Жолио-Кюри). Однако американцы это название не приняли, хотя и подтвердили результаты, полученные в работах Г. Н. Флерова и сотрудников.

Перипетии, связанные со 102-м элементом, положили начало приоритетным спорам, которые особенно обострились, когда дело дошло до синтеза следующих трансуранов. Ныне сто второй элемент представлен девятью изотопами, самый долгоживущий 259102 имеет T½ около 1 ч.

ЭЛЕМЕНТ № 103

Как и в предыдущем случае, мы пока не приводим названия очередного трансуранового элемента. И та дата его рождения, которая приводится в хронологической таблице открытий химических элементов (см. с. 214), отнюдь не является надежным свидетельством.

В начале 1961 г. охоту за новым трансураном начал А. Гиорсо со своими коллегами. Мишень из калифорния бомбардировалась ионами бора. Как будто бы получился 257103 с T½=8 с. Конечно, не замедлило появиться и название «лоуренсий» (символ Lw), в честь изобретателя циклотрона Э. Лоуренса. Этот символ часто помещают в 103-ю клетку периодической системы.

Тот же изотоп 257103 был получен в Дубне, и свойства его оказались совсем другими, чем заявляли физики из Беркли. Поэтому они вынуждены были изменить свою точку зрения и считать, что весной 1961 г. в действительности им удалось синтезировать не 257103, а какой-то другой изотоп, например 258103 или 259103.

Ясность наступила в 1965 г., когда дубненские физики по ядерной реакции 243Am(18О, 5n)256103 осуществили синтез изотопа с массовым числом 256 и определили его характеристики. Они совпали с теми, которые тремя годами позже получила берклиевская группа, согласно ядерной реакции 249Cf(11В, 4n)256103. Вот почему правомерно ставить под сомнение дату 1961 г. Но дискуссия о приоритете синтеза элемента № 103 пока ничем определенным не завершилась. В случае элемента № 103, так же как и его предшественника, ученые имели дело со считанными атомами. Сначала были определены массовые числа и радиоактивные характеристики изотопов. Оценивать же их химическую природу ученые научились не сразу.

КУРЧАТОВИЙ

Открытие этого элемента, пожалуй, самое выдающееся достижение советских исследователей, работающих в области ядерного синтеза. Он получил свое название в честь выдающегося советского физика И. В. Курчатова — организатора атомной промышленности в нашей стране.

Еще в 1967 г. в дубненской лаборатории ядерных реакций был предпринят первый штурм элемента № 104. На мишень из плутония-242 обрушился поток ускоренных ионов неона-22:

244Pu(22Ne, 4n)260104

Так должна была протекать ядерная реакция. Но в итоге удалось лишь наблюдать спонтанное деление с исключительно малым периодом полураспада (четырнадцать миллисекунд). Вскоре выяснилось, что элемент № 104 здесь ни при чем. Это делился давно известный 242Am, хотя деление его протекало аномально стремительно; на этом примере ученые открыли новое физическое явление.

Основная трудность состояла в следующем: каким способом регистрировать единичные процессы образования ядер курчатовия? Ученые решили проводить регистрацию по осколкам их спонтанного деления, ибо этот вид радиоактивных превращений у элемента № 104 должен быть преобладающим. Для регистрации осколков деления применили специальный сорт стекла, который, по удивительному стечению обстоятельств, обозначался в каталогах как уран-104. Осколки оставляли на стеклянных пластинках чуть заметные следы (лунки). После специальной химической обработки стекла лунки рассматривали под микроскопом. Следы других радиоактивных излучений в этих условиях не просматривались.

В 1964 г. опыты по синтезу элемента № 104 были возобновлены. Сорок часов осуществлялась бомбардировка ядрами неона плутониевой мишени. Специальная лента переносила синтезированные ядра к стеклянным пластинкам. После выключения циклотрона стеклянные пластинки обрабатывались в лаборатории. Спустя несколько часов под микроскопом было обнаружено шесть треков и по их положению на пластинках вычисляли период полураспада. Он оказался в интервале времени от 0,1 до 0,5 с, т. е. в среднем 0,3 с. Лишь спустя несколько лет удалось получить более долгоживущие (хотя вряд ли уместно здесь это слово) изотопы курчатовия, из которых «самым-самым» оказался 261104 (T½=1 мин).

Но в Дубне химические свойства курчатовия изучались на его изотопе с массовым числом 260 и периодом полураспада 0,3 с. Кажется невероятным, как за столь ничтожное время можно получить хотя бы какие-нибудь сведения о природе нового элемента. Однако это так.

Схема исследования химических свойств элемента № 104 заключалась в следующем. Атомы отдачи после выхода из мишени попадали в струю азота, тормозились в ней, а затем подвергались действию хлора. Соединения элемента № 104 с хлором легко проникали через специальный фильтр, тогда как хлориды актиноидов через фильтр не проходили. Если бы 104-й принадлежал к актиноидам, то и он бы поглотился фильтром. Однако исследования показали, что элемент № 104 является химическим аналогом гафния.

Вот в чем и состояла суть метода изучения химических свойств единичных атомов. С его помощью была установлена химическая природа элементов № 102 и № 103. Только здесь пришлось доказывать их принадлежность к актиноидам. Метод получил название «фронтальная термохроматография летучих металлических хлоридов на пучке циклотрона». Его разработка проводилась под руководством сотрудника Г. Н. Флерова, чехословацкого ученого И. Звары.

Элемент № 104 тоже является предметом дискуссии. Американские физики выдвигают свои претензии на приоритет открытия, хотя их обоснованность оставляет желать лучшего.

НИЛЬСБОРИЙ

Об элементе 105 пока можно сказать сравнительно немного. Родина его — Дубна, время рождения — февраль 1970 г., реакция синтеза 243Am(22Ne, 4n)261Ns. Период полураспада по спонтанному делению около 2 с. Название дано в честь великого датского физика Нильса Бора. Химическая природа определялась так же, как и для Ku. Нильсборий оказался аналогом тантала.

А в чем заключаются претензии американских физиков? Время — апрель 1970 г. Ядерная реакция 249Cf(15N, 4n)260Ha. Предложенное название «ганий» (в честь автора открытия деления О. Гана).

По всей вероятности, дискуссия по поводу синтезов трансурановых элементов с Z>102 — явление довольно закономерное. Каждый такой синтез равнозначен научно-техническому подвигу. Это очень сложный процесс, в котором неизбежны и неточности, и ошибки. Ученые уже давно считают, что должны быть выработаны строгие критерии достоверности синтеза новых элементов. Для синтезированных элементов второй сотни само понятие «открытие» приобретает принципиально иное звучание. Прежде всего потому, что продолжительность жизни этих элементов очень коротка. И символы их в периодической системе, образно говоря, не имеют материального обеспечения. Эти элементы никогда не удастся накопить в весовых количествах. Считанные атомы — вот их удел. Всякий раз, когда ставится цель исследования свойств этих элементов, процессы синтеза приходится осуществлять заново. Мы видим здесь не столько открытие нового элемента, сколько наблюдение образования (в соответствующих условиях) ядер с определенным значением Z.

ЭЛЕМЕНТЫ № 106 И № 107

Название этим элементам пока и не пытались давать, как и не определяли их химическую природу. Периоды полураспада здесь измеряются сотыми и тысячными долями секунд. Правда, есть надежда получить более долгоживущие изотопы. Метод синтеза этих элементов имеет новые черты. Во всех предыдущих случаях получения трансуранов мишень была в той или иной степени радиоактивной, и, конечно же, это было осложняющим обстоятельством. Для синтеза элементов № 106 и № 107 физики из Дубны впервые применили мишени из стабильных элементов (свинца и висмута) и обстреляли их ускоренными ионами хрома:

Первая реакция была осуществлена в 1974 г., вторая — в 1976 г.

А ЧТО ЖЕ ДАЛЬШЕ?

В ту уже сравнительно далекую пору, когда удался синтез первого трансуранового элемента, — нептуния, ученые оставались в полном неведении, сколько же еще шагов за уран сумеют они сделать. И в наши дни, ученые уже другого поколения, также затрудняются дать ответ на вопрос: где же предел синтеза новых элементов?

Но есть принципиальная разница между исследователями — современниками Е. Макмиллана и П. Абельсона и учеными конца 70-х годов. Первые знали слишком мало, вторые (как ни парадоксально это звучит) знают слишком много, чтобы судить о проблеме с какой-либо определенностью. За сорокалетнюю историю синтеза трансуранов были времена, когда казалось, что конец близок. По мере того как синтез продвигался в область все бóльших значений Z, четко вырисовывалась закономерность: постоянное уменьшение периодов полураспада, в особенности по спонтанному делению, от миллиардов лет к часам, минутам, секундам и долям секунды. Простая экстраполяция показывала, что при значении Z, равном 108–110, ядра станут настолько короткоживущими, что будут разваливаться в момент образования.

Какое-то время в ученом мире царило мнение о скором окончательном завершении периодической системы элементов. Но появлялись сигналы о синтезе все новых и новых изотопов элементов второй сотни, и экспериментаторы убеждались, что выводы теоретиков не столь уж безупречны. Все эти изотопы жили, конечно, очень мало, но не настолько мало, как это предсказывалось теорией. Вот хотя бы один пример. Изотоп элемента № 107 с массовым числом 261 спонтанно делится с периодом полураспада 0,002 с. Очень небольшая величина, но она в десять миллиардов раз больше той, которая бы наблюдалась, если бы происходило нарастание неустойчивости ядер по мере роста Z, в согласии с расчетами теории. На деле же рост нестабильности ядер начинает словно бы тормозиться.

Почему? Здесь-то стоит вспомнить работы немецкого физика Р. Свинне (см. с. 191). Если перевести его идеи на язык современной физики, то их суть можно изложить следующим образом: среди элементов с большими порядковыми номерами, в сильной степени радиоактивных, возможно существование своеобразных островков стабильности. Расположенные на них элементы будут в гораздо меньшей степени неустойчивы, чем соседние с ними.

Об удивительном, на долгие годы забытом предвосхищении Р. Свинне вспомнили в середине 60-х годов, когда идея об островках стабильности (или, точнее говоря, островках относительной стабильности) повисла на кончике пера теоретиков. Расчеты показывали, что первый такой островок должен быть приурочен к Z=114. Но взор теоретиков проникал в еще более далекие, гипотетические области периодической системы. Контуры новых островков обозначались около Z=126, 164 и даже у Z=184.

Наша книга посвящена истории открытия элементов, и поэтому не будем обсуждать, насколько правомерны все эти прогнозы. В соответствии с ними ядра, лежащие на островках, должны быть очень долгоживущими по отношению к спонтанному делению, а, следовательно, сама возможность их синтеза перестает быть фантастической. Эту смелую и красивую гипотезу может подтвердить только факт синтеза того или иного элемента — «островитянина». Попытки таких синтезов предпринимались начиная с 1967 г. Все они пока оказались безрезультатными.

И все же следует верить, что написание историй открытия элементов будет продолжено.

Загрузка...