Человеку свойственно ошибаться, и особенно серьезные ошибки случаются, когда умозаключения строятся на основе статистических данных, «холодных цифр». Наше сознание странным образом признает за математикой право на абсолютную истину.
Статистика, как рассказывает нам Даррелл Хафф в своем бестселлере «Как лгать при помощи статистики», это такая хитрая, закамуфлированная отрасль математики. С одной стороны, она оперирует цифрами, пользуется четкой логикой и понятными методами расчетов. С другой стороны, предметом той статистики, которая нас обманывает, всегда является поведение человека (или отношение человека к чему-то, вплоть до отношения к другим людям). Цифры продают нам нас же самих, завернутых в формулы, статистические распределения и байесовские множества.
Мы видим цифры, мы видим математический авторитет тех, кто ими пользуется, и мы беззащитны перед статистикой и манипуляторами, как беззащитен первоклассник перед учителем, который доказывает, что 2 + 2 = 5.
Статистика (и это, наверное, самая интересная часть книги Хаффа) настолько злокозненна, что регулярно обманывает и теоретиков, и прикладных исследователей, и тем более политиков, которые очень любят оперировать ею. Используя исторические примеры (от «соломенных опросов», чуть не разрушивших карьеру Дж. Гэллапа в 1930-х гг., до дискуссий о глобальном потеплении), Даррелл Хафф не только помогает читателю разобраться в прошлых обманах, но и дает ему инструмент проверки на будущее.
За последние 25 лет в большинстве ведущих университетов мира статистика и ее методы стали обязательным компонентом любого образования, включая самое что ни на есть гуманитарное, по той причине, что ученому, практику, юристу и даже филологу нужно иметь ту самую «бритву Оккама», которой рассекается любая путаница. В нашем веке «больших данных» это особенно важно – в бесконечном океане собираемых цифр очень важно избегать как базовых ошибок (о чем подробно рассказывает книга Даррелла Хаффа), так и некритического подхода к любому анализу, представляемому как мнение большинства. Большинство, увы, не ведет нас вперед, а упорно держится за то немногое, что у него есть, оправдывая свой «консерватизм» именно ложным выводом из ложной же статистики.