Пролог. А мне это пригодится?

Сейчас, в эту самую минуту, где-то в мире какая-нибудь студентка пререкается со своим преподавателем математики, вручившим ей список из тридцати определенных интегралов, на вычисление которых уйдет немалая часть ее драгоценных выходных.

На свете так много всего, чем она хотела бы заниматься. В принципе нет такого дела, за которое она не была бы готова взяться – практически за любое, но только не за решение интегралов. Это абсолютно точно, поскольку на прошлой неделе ей уже пришлось в свои выходные потратить уйму времени на почти такие же тридцать определенных интегралов. В подобном времяпровождении она не видит никакого смысла, о чем заявляет вслух. В их непростой беседе наступает тот самый момент, когда наша студентка собирается задать вопрос, которого любой преподаватель боится больше всего: И когда же мне это пригодится?

По всей вероятности, учитель математики ответит так: «Понимаю, сейчас это занятие кажется вам бессмысленным. Но имейте в виду следующее: вы еще не знаете, чем будете заниматься завтра; сегодня вы не находите никакой связи между интегралами и своим будущим, но вы можете выбрать такую профессию, в которой будет чрезвычайно важно уметь быстро и правильно вычислять определенные интегралы вручную».

Вряд ли подобный ответ удовлетворит студентку, поскольку он лживый. Что понимают и преподаватель и ученик. Количество взрослых людей, которым когда-либо пригодится интеграл (1–3x + 4x2)–2 dx, или формула косинуса 3θ, или синтетическое деление многочленов, можно сосчитать на нескольких тысячах рук.

Эта ложь не доставляет особого удовольствия и учителю. Мне ли не знать: за многие годы преподавания математики я давал сотням студентов задание вычислять целые списки определенных интегралов.

К счастью, есть и более подходящее объяснение. Я постараюсь его для вас сформулировать.

«Математика – не просто последовательность вычислений, которые необходимо выполнять механически до тех пор, пока у вас не закончится терпение и выдержка – хотя эта мысль может показаться весьма далекой от того, чему вас учили на курсах, именуемых “математика”. В математике интегралы играют ту же роль, что силовые тренировки и физическая подготовка в футболе. Если вы хотите научиться играть в футбол – а я имею в виду играть по-настоящему, – вам предстоит выполнить множество скучных, однообразных, на первый взгляд бессмысленных упражнений. Используют ли когда-либо эти упражнения профессиональные игроки? На поле никто не поднимает штангу и не бегает зигзагами между конусами. Но все-таки футболисты используют ту силу, скорость, понимание сути игры и гибкость, которую они обрели в процессе выполнения – неделя за неделей – множества утомительных упражнений. Отработка таких упражнений – неотъемлемая часть обучения игре в футбол.

Если вы хотите зарабатывать игрой в футбол на жизнь или даже стать членом университетской команды, вам предстоит провести много скучных выходных на тренировочном поле. Другого пути нет. Но есть и хорошая новость: если интенсивные тренировки вам не под силу, вы все равно сможете играть в футбол – для развлечения, для самого себя. Сделав пас защитнику или забив гол с большого расстояния, вы будете получать такое же удовольствие, как и профессиональный спортсмен. Кроме того, играя в футбол с друзьями, вы почувствуете себя намного здоровее и счастливее, чем если просто сидели бы и смотрели по телевизору игру профессионалов.

Математика представляет собой почти то же самое. Возможно, вы не станете обременять себя профессией, непосредственно связанной с этой наукой. Что вполне нормально, поскольку большинство людей не ставят перед собой такой цели. Тем не менее вы все-таки можете заниматься математикой. По всей вероятности, вы – сами того не зная – уже решаете математические задачи[2]. Математика вплетена в ткань нашего мышления. Кроме того, математика помогает человеку лучше делать свое дело. Знание математики – своего рода рентгеновские очки, позволяющие увидеть структуру мира, скрытую под беспорядочной, хаотичной поверхностью. Математика – это наука о том, как не совершать ошибок, а математические формы и методы выковывались на протяжении многих столетий упорного труда и дискуссий. Владение математическим инструментарием позволит вам составить более глубокое, достоверное и осмысленное представление об окружающем мире. Все, что вам нужно, – это тренер или по крайней мере книга, которая научит вас правилам игры и некоторым базовым тактическим приемам. Я буду вашим тренером. Я научу вас этому».

К сожалению, на занятиях из-за нехватки времени мне не часто приходится произносить подобные речи. Напротив, в книге всегда найдется место и для более пространных рассуждений. Надеюсь, мне удастся оправдать сделанные выше серьезные заявления, показав вам, что математика позволяет решать многие из задач – будь то политика, медицина, коммерция или богословие, – над которыми мы размышляем каждый день.

Однако даже если я и произнес бы свою вдохновляющую речь перед студенткой, у нее – если она действительно проницательна – все равно останутся сомнения.

«Профессор, – сказала бы она, – все это звучит неплохо, но несколько абстрактно. Вы говорите, будто математические знания позволяют нам делать правильные шаги там, где в противном случае мsы обязательно оступились бы. Но что именно вы имеете в виду? Дайте конкретный пример».

И тогда я рассказал бы студентке историю Абрахама Вальда, а также вспомнил бы о его решении проблемы отсутствующих пулевых отверстий.

Рассказ об Абрахаме Вальде и отсутствующих пробоинах

Подобно многим историям времен Второй мировой войны, мой рассказ начинается с того, как нацисты изгнали евреев из Европы, и заканчивается тем, что они горько об этом пожалели. Абрахам Вальд родился в 1902 году в городе, который тогда назывался Клаузенбург и принадлежал Австро-Венгерской империи[3]. К тому времени, когда Вальд достиг подросткового возраста, Первая мировая война уже вошла в учебники, а его родной город стал румынским городом Клуж. Внук раввина и сын булочника, Вальд проявлял математические способности с самых ранних лет. Одаренность мальчика не осталась без внимания, и он получил возможность изучать математику в Венском университете, где увлекся предметами настолько абстрактными, что даже по меркам чистой математики они были слишком трудны для понимания: теорией множеств и метрическими пространствами.

Вальд закончил обучение в середине 30-х годов ХХ столетия, когда Австрия уже находилась в состоянии глубокого экономического спада. Как у иностранца у Вальда не было шансов получить в Вене должность профессора, но его спасло предложение, поступившее от Оскара Моргенштерна. Впоследствии Моргенштерн иммигрирует в Соединенные Штаты Америки и будет участвовать в создании теории игр, а в 1933 году он, будучи директором Австрийского института экономических исследований, нанял Вальда для выполнения элементарных математических задач. Согласие на эту работу – хотя ему и назначили совсем небольшую оплату – оказалось весьма умным решением. В дальнейшем благодаря полученному опыту в области экономики Вальд получил предложение войти в комиссию Коулза – экономической организации, которая в то время находилась в Колорадо-Спрингс. Несмотря на ухудшающуюся политическую ситуацию, Вальд не хотел делать шаг, который навсегда разлучил бы его с чистой математикой. Но затем нацисты захватили Австрию, что помогло Вальду сделать окончательный выбор. После нескольких месяцев работы в Колорадо он получил предложение занять профессорскую должность в Колумбийском университете. Вальд снова упаковал вещи и переехал в Нью-Йорк.

Именно там Абрахам Вальд встретил войну.

Группа статистических исследований (Statistical Research Group; далее по тексту – SRG)[4], в которой Вальд работал на протяжении большей части Второй мировой войны, выполняла секретную программу; ее цель состояла в том, чтобы собрать крупнейших американских специалистов по статистике и использовать их возможности для решения военных задач. Это напоминало Манхэттенский проект, только в качестве оружия, разработкой которого занималась SRG, выступали уравнения, а не взрывчатые вещества. Кроме того, SRG располагалась действительно на Манхэттене, в районе Морнингсайд-Хайтс, в доме 401 на Западной 118-й улице – всего в одном квартале от Колумбийского университета. Сейчас в этом доме находятся квартиры профессоров Колумбийского университета и несколько кабинетов врачей, но в 1943 году это был живой и блестящий мозговой центр военной математики. В одном из помещений располагалась Группа прикладной математики Колумбийского университета; десятки молодых женщин корпели над калькуляторами Marchant, рассчитывая формулы для оптимальной траектории движения истребителя, позволявшей ему постоянно держать вражеский самолет на прицеле. В другом помещении команда исследователей Принстонского университета разрабатывала схемы стратегических бомбардировок. А по соседству группа ученых Колумбийского университета работала над созданием атомной бомбы.

Однако SRG была самой сильной и, по большому счету, самой влиятельной из всех этих групп. В SRG царила атмосфера интеллектуальной открытости и интенсивной научной мысли – все работали с ощущением общей цели, которое возникает только при решении задач особой важности. «Когда мы давали рекомендации, – писал руководитель SRG Уилсон Аллен Уоллис, – их использовали. Пулеметы истребителей, вступавших в бой, были снаряжены согласно рекомендациям Джека Вулфовица[5] по поводу того, как смешивать боеприпасы разных типов, – и летчики либо возвращались, либо нет. Топливо ракет, которые запускали самолеты военно-морских сил, проходило проверку в соответствии со схемой выборочного контроля Эйба Гиршика – и эти ракеты либо взрывались и уничтожали наши собственные самолеты и наших летчиков, либо поражали цель»[6].

Математический талант членов группы соответствовал важности задачи. По словам Уоллиса, «как с точки зрения количества, так и с точки зрения качества SRG была самой выдающейся группой специалистов по статистике из всех когда-либо созданных»[7]. В группе работали: Фредерик Мостеллер – впоследствии основатель факультета статистики Гарвардского университета; Леонард Джимми Сэвидж[8] – первопроходец теории принятия решений и большой приверженец области математики, позже ставшей известной как байесовская статистика. В SRG время от времени заглядывал Норберт Винер – математик Массачусетского технологического института, создатель кибернетики. Это был коллектив ученых, в котором почетное четвертое место среди самых толковых занимал Милтон Фридман – будущий лауреат Нобелевской премии по экономике.

А первое место по праву закрепилось за Абрахамом Вальдом. Вальд – преподаватель Аллена Уоллиса в Колумбийском университете – стал для всей группы своего рода высочайшим математическим авторитетом. Впрочем, как «подданный враждебного государства» с юридической точки зрения Вальд не имел права видеть секретные отчеты – те отчеты, которые он собственноручно составлял. В SRG шутили, что секретари обязаны буквально вырывать из-под его пера каждый листок бумаги тут же, как только он его допишет[9]. При этом Вальд практически не вписывался в общую направленность группы: он был очень далек от решения прикладных задач, поскольку его всегда интересовала лишь абстрактная математика. Однако в данном случае верх взяла его личная заинтересованность: посвятить свой талант антифашистской борьбе. Так или иначе, но Вальда сочли именно тем человеком, которого лучше было иметь на своей стороне – тем более, когда возникала необходимость перевести расплывчатые мысли на язык точных математических формулировок.

* * *

Задача заключалась в следующем. Вы не хотите, чтобы вражеские истребители сбивали ваши самолеты, поэтому покрываете их броней. Но броня делает самолет более тяжелым, что снижает его маневренность и увеличивает расход топлива. Если на самолете слишком много брони – это проблема; если брони слишком мало – это тоже проблема. Где-то в интервале лежит оптимальное решение. Чтобы вычислить этот идеальный вариант, вы собираете под крышей нью-йоркской квартиры команду лучших математиков[10].

Военные представили на рассмотрение SRG данные, которые, по их мнению, могли бы помочь в решении задачи. Когда американские самолеты выходили из воздушных боев над Европой, они были покрыты дырами от пуль. Однако повреждения распределялись по корпусу самолета не равномерно. Пробоин на фюзеляже было больше, чем на двигателе.



Представители командования увидели возможность повысить эффективность использования самолетов, обеспечив такой же уровень защиты в его уязвимых местах, для этого требовалось правильно распределить количество брони, делая ее слой толще там, где самолет получает больше всего пробоин. Но сколько именно брони следует устанавливать на этих частях самолета? С просьбой найти нужное решение военные обратились к Вальду. И получили совсем неожиданный ответ.

Броню следует укреплять не там, сказал Вальд, где больше всего пробоин, а там, где их нет, то есть на двигателе.

Вальд задался вопросом: где находятся недостающие пробоины? Именно в этом проявилась его проницательность – в простоте поставленной задачи. Речь шла о тех самых отверстиях от поражающих средств – пробоинах, которые покрывали бы кожух двигателя, если повреждения были бы распределены равномерно по всему самолету. В ответе на свой вопрос Вальд не сомневался ни на йоту. Причина, почему на двигателях уцелевших самолетах было меньше повреждений, только одна: в случае прямого попадания в двигатель самолет просто не возвращался из боя. Однако многие самолеты прилетали на базу с фюзеляжем, похожим на швейцарский сыр, – убедительный довод в пользу того, что корпус можно (а значит, и нужно) оставить без дополнительной брони. В военном госпитале вы встретите гораздо больше раненных не в грудь, а в ноги. Но причина не в том, что люди не получают ранений в грудь – просто после таких ранений они, как правило, не выживают.

Вот старый математический прием, который вносит полную ясность в картину происходящего: присвоить некоторым переменным значение 0. В данном случае в качестве такой переменной выступает вероятность того, что самолет, получивший прямое попадание в двигатель, может остаться в воздухе. Нулевое значение этой вероятности означает, что единственное попадание в двигатель неизбежно приводит к падению самолета. Как выглядели бы данные о возвращающихся самолетах в таком случае? У вас есть самолеты, вернувшиеся с дырами от пуль в крыльях, фюзеляже, носовой части, но нет ни одного самолета с пробоинами в двигателе. Военный аналитик может объяснить этот факт двумя причинами: либо немецкие орудия попадают во все части самолета, кроме одной, либо двигатель – это самое уязвимое место. Обе причины объясняют данные о повреждениях на уцелевших самолетах, но второе объяснение гораздо логичнее. Стало быть, броню следует укреплять там, где нет пулевых отверстий.

Выводы Вальда были сразу приняты к сведению, более того, ими руководствовались во время военных действий в Корее и во Вьетнаме[11]. Я не могу точно сказать, сколько американских самолетов спасли его рекомендации, хотя это наверняка известно тем преемникам SRG в современных вооруженных силах, которые занимаются сбором и обработкой данных. Высшие чины американских военных ведомств всегда отдавали себе отчет, что страны побеждают в войнах не потому, что они храбрее противника или более независимы или им чуть больше благоволит Бог. Как правило, победителем становится тот, у кого сбивают на 5 % меньше самолетов, или кто использует на 5 % меньше топлива, или кто обеспечивает пехоте на 5 % более качественное питание[12] при 95 % затрат. О таких вещах не принято говорить в военных фильмах, но именно к ним сводятся сами войны. И на каждом этапе этого пути присутствует математика.

* * *

Почему Абрахам Вальд увидел то, чего не смогли увидеть офицеры, обладающие более профессиональными знаниями и пониманием сути воздушного боя? Причина в аналитическом складе ума Вальда – так называемом математическом мышлении. Математик всегда ставит такие вопросы: «Из каких предположений вы исходите? Обоснованы ли эти предположения?»[13] Порой это вызывает раздражение. Однако такой подход может быть весьма продуктивным. В случае с авиационной броней офицеры, сами того не замечая, исходили из предположения, что вернувшиеся самолеты представляют собой случайную выборку всех самолетов. Если действительно так и было бы, мы могли бы, проанализировав распределение пробоин только на уцелевших самолетах, сделать вывод об их распределении на всех машинах. Но, как только вы осознаете, что в своих расчетах опираетесь на такое предположение, вам сразу станет понятно, насколько оно ошибочно: нет никаких оснований ожидать равной вероятности выживания всех самолетов независимо от того, в какую часть машины попадает огнестрельное оружие. Мы вернемся к этой теме в главе пятнадцатой, где в более точных математических терминах выразим мысль о существовании зависимости между уровнем выживаемости самолетов в бою и местоположением пробоин.

Еще одно неоспоримое достоинство Вальда – его особая склонность к абстракции. Вулфовиц, учившийся у Вальда в Колумбийском университете, писал, что ученый отдавал предпочтение задачам «самого абстрактного рода», а также что он «всегда охотно говорил о математике, но был безразличен к ее популяризации и практическому применению»[14].

Особенности характера Вальда действительно мешали ему сосредоточиться на прикладных задачах. Ему было в тягость разбираться в деталях конструкции самолетов и оружия, поэтому он анализировал математические основы происходящего, связывая все в единое целое. Порой такой подход приводит к игнорированию действительно важных аспектов проблемы. Правда, он дает возможность увидеть общую схему, лежащую в основе различных задач, но на поверхности выглядит совсем по-другому. Это позволяет обрести весомый опыт даже в тех областях, в которых на первый взгляд у вас не может быть никаких практических знаний.

Глубинную структуру задачи с пробоинами в авиационной броне математики обозначают термином «систематическая ошибка выжившего». Такая погрешность часто возникает в самых разных ситуациях[15]. Зная о существовании систематической ошибки выжившего – как знал о ней Абрахам Вальд, – вы будете готовы к тому, чтобы обнаружить ее, где бы она ни скрывалась.

Возьмем в качестве примера взаимные фонды[16]. Оценка их эффективности – это именно та область, в которой вам хотелось бы не допустить ни малейшей ошибки. Изменение годового темпа роста стоимости активов фонда на 1 % может составить разницу между ценным инвестиционным активом и убыточным инвестиционным инструментом. На первый взгляд может показаться, что к первому типу инвестиционных активов относятся фонды категории Large Blend (смешанные фонды акций крупных компаний) по версии агентства Моrningstar, показывающие примерно такой же рост, что и индекс S&P 500. За период с 1995 по 2004 год их рост составил 178,4 %, в среднем по целых 10,8 % в год[17]. Похоже, если в то время вы могли бы вложить деньги в те фонды, это принесло бы вам большую прибыль – не так ли?

Так вот, на самом деле все обстоит иначе. Компания Savant Capital в 2006 году провела исследование[18], результаты которого не только проливают свет на эти данные, но и действуют несколько отрезвляюще. Предлагаю подумать, как формируются рейтинги Morningstar. Например, в 2004 году агентство проанализировало темпы роста всех фондов категории Large Blend за прошедшие десять лет.

Но здесь кое-чего не хватает, а именно: фондов, не вошедших в эту категорию. Взаимные фонды не живут вечно. Некоторые из них процветают, тогда как другие прекращают свое существование. К последним, как правило, относятся фонды, не получающие прибыль. Следовательно, оценивать рост стоимости активов взаимных фондов за десятилетний период по данным о фондах, еще существовавших к концу этого периода, – все равно что оценивать эффективность маневров во время воздушного боя, пользуясь методом подсчета количества пробоин в вернувшихся самолетах. Но вдруг мы не обнаружим ни одного самолета, у которого было бы больше одной пробоины? О чем это говорило бы? Конечно, не об умении пилотов мастерски уклоняться от вражеского огня. Скорее всего, это означало бы, что самолеты, получившие два прямых попадания, охваченные огнем, упали на землю.

Результаты исследования компании Savant показывают: если наряду с выжившими фондами включить в расчеты эффективность фондов, прекративших свое существование, рентабельность инвестиций упала бы до 134,5 %, то есть до 8,9 % в год. Показатель гораздо более скромный, не правда ли? Этот вывод подтвердили результаты одного из последних исследований. Журнал Review of Finance провел в 2011 году комплексное исследование, охватившее около пяти тысяч фондов[19]. По его результатам было установлено, что избыточная доходность выживших фондов (всего 2641 фонд) оказалась на 20 % выше того же показателя, рассчитанного с учетом данных о фондах, потерпевших неудачу. Возможно, эффект систематической ошибки выжившего удивил инвесторов, но для Абрахама Вальда он, по всей вероятности, не стал бы неожиданностью.

Математика есть продолжение здравого смысла иными средствами

В этот момент мой юный собеседник прервет мой рассказ вполне обоснованным вопросом: ну и где здесь математика? Да, Вальд был математиком, и вне всяких сомнений, его решение проблемы надежности авиационной брони гениально. Но при чем здесь математика? Ни тригонометрических тождеств, ни интегралов, ни неравенств, ни формул.

Прежде всего следует отметить, что математические формулы все-таки были. Я опустил их, рассказывая историю Вальда, поскольку это только пролог. Во введении к книге о размножении человека, рассчитанной на десятилетних ребят, вряд ли стоит во всех подробностях рассказывать, как детки попадают в мамин живот. Нет, мы напишем что-нибудь в таком роде: «В природе все меняется. Зимой деревья сбрасывают листья, весной снова цветут; обычная гусеница прячется в свой кокон и выходит из него, превратившись в прекрасную бабочку. Ты тоже часть природы, поэтому…»

Мы с вами сейчас находимся именно в такой части книги.

Но мы взрослые люди, поэтому давайте на секунду уйдем от расплывчатых формулировок и посмотрим, как выглядит типичная страница реального отчета Вальда[20].

…можно вычислить нижний предел Qi. Мы предполагаем, что разность между значениями qi и qi+1 находится в определенных пределах. Следовательно, можно вычислить верхний и нижний пределы Qi.

Предположим:

λ1qiqi+1 ≤ λ2qi

где λ1 < λ2 < 1, таковы, что выполнено:

(A)


Точное решение слишком громоздко, но можно рассчитать приближенные значения верхнего и нижнего пределов Qi для i < n посредством следующей процедуры. В расчетах используется такой набор гипотетических данных:

Условие А удовлетворено, поскольку подстановка дает нам значение

что меньше, чем


1 – a0 = 0,22.


НИЖНИЙ ПРЕДЕЛ QI


На первом этапе необходимо решить уравнение 66. Это подразумевает решение следующих четырех уравнений с положительными корнями q0, q1, q2, q3.

Надеюсь, приведенная мною страничка не стала для вас слишком большим испытанием.

Тем не менее, чтобы понять саму идею, лежавшую в основе озарения Вальда, нам не нужны никакие формальные выкладки. Выше я уже все объяснил, причем не прибегая к каким бы то ни было математическим обозначениям. Поэтому вопрос моего студента остается открытым. Где здесь математика? Разве мы не имеем дело просто со здравым смыслом?

Да, именно так. Математика – это и есть здравый смысл. Ведь на базовом уровне все вполне очевидно.

Как можно объяснить кому-то, что прибавление семи вещей к пяти вещам дает такой же результат, что и прибавление пяти вещей к семи вещам? Никак. Этот факт запечатлен в наших представлениях о сведении нескольких объектов в единое целое. Математики любят обозначать специальными терминами те явления, которые описывает наш здравый смысл. Вместо фразы: «Прибавление этого объекта к тому объекту – это то же самое, что прибавление того объекта к этому» – мы говорим: «Сложение коммутативно». А поскольку мы любим использовать символы, то записываем сказанное в таком виде:

при любых значениях a и b

a + b = b + a.


Несмотря на официальный вид этой формулы, мы говорим здесь о факте, который инстинктивно понимает каждый ребенок.

Немного другой случай – умножение. Формула выглядит почти так же:


при любых значениях a и b

a × b = b × a.

Мозг, анализирующий данное утверждение, соглашается с ним не так быстро, как в случае сложения. Разве отвечает здравому смыслу тот факт, что два набора из шести объектов дают в результате то же, что и шесть наборов из двух объектов?

Возможно, это утверждение и не отвечает здравому смыслу, но оно может стать очевидным. Вот одно из моих первых математических воспоминаний. Я лежу на полу в доме своих родителей, щекой на жестком коврике, и смотрю на стереосистему. Скорее всего, я слушаю вторую сторону «Синего альбома» Beatles. Мне, наверное, лет шесть. Это происходит в семидесятых, значит, стереосистема установлена в корпусе из ДСП с прямоугольными отверстиями на боковой панели. Восемь отверстий по горизонтали, шесть отверстий по вертикали. Я лежу и рассматриваю эти отверстия. Шесть рядов отверстий. Восемь столбцов отверстий. Фокусируя свой взгляд то на одном, то на другом, я переключаю свой мозг с рядов на столбцы и наоборот. Шесть рядов с восемью отверстиями в каждом. Восемь столбцов с шестью отверстиями в каждом.

А затем я понял: восемь групп по шесть отверстий – это то же самое, что шесть групп по восемь отверстий. И не потому, что когда-то мне объяснили правило, а потому, что иначе быть не может. Как ни подсчитывай, но количество отверстий в панели останется одним и тем же.



Как правило, мы преподаем математику в виде длинного перечня правил. Вы изучаете эти правила, чтобы подчиняться им, потому что в противном случае вы получите тройку с минусом. Но не это математика. Мы называем математикой изучение вещей, которые происходят определенным образом по той простой причине, что другого способа не существует.

Посмотрим правде в глаза: не все в математике можно сделать настолько доступным для нашей интуиции, как сложение и умножение. Дифференциальное и интегральное исчисление невозможно понять, руководствуясь только здравым смыслом. И все-таки исчисление проистекает из здравого смысла: Ньютон взял наши фактические знания о движении объектов по прямой линии, составил формальное описание этого движения, а затем на основе формальной схемы построил универсальное математическое описание движения. Имея в своем распоряжении теорию Ньютона, вы можете применить ее к решению задач, от которых у вас голова пойдет кругом, если вы не призовете на помощь формулы. Точно так же в нас заложены ментальные системы оценки вероятности неопределенных событий. Однако эти системы довольно слабы и ненадежны, особенно когда речь идет о крайне редких событиях. Именно в этом случае мы подкрепляем свою интуицию фундаментальными теоремами и методами, построив на этой основе математическую теорию вероятностей.

Специальный язык, на котором математики общаются друг с другом, – это замечательный инструмент для точного и лаконичного описания сложных идей. Но из-за непонятности этого языка у людей непосвященных может возникнуть ощущение, что данная область мысли недоступна пониманию обычного человека. Но все не так.

Математика – это как работающее на атомной энергии вспомогательное приспособление, которое вы прикрепляете к своему здравому смыслу, многократно увеличив его охват и эффективность. Несмотря на всю силу математики, ее абстрактность и символику, порой внушающую страх, истинная умственная работа, которая требуется в ней, мало чем отличается от того, как мы размышляем над решением простых повседневных задач. В этом случае, на мой взгляд, полезно представить образ Железного человека[21], пробивающего дыру в кирпичной стене. С одной стороны, сила, пробивающая стену, порождена не мышцами Тони Старка, а совокупностью точно синхронизированных действий сервомеханизмов, которые приводит в движение компактный генератор бета-частиц. С другой стороны, с точки зрения Тони Старка, он просто пробивает стену – точно так же, как он сделал бы и без своего снаряжения, только тогда это было бы гораздо труднее.

Перефразируя Клаузевица, можно сказать, что математика – это продолжение здравого смысла иными средствами[22].

С одной стороны, без строгих структур, которые предоставляет математика, здравый смысл может ввести вас в заблуждение. Именно это произошло с командующими, которые хотели укрепить броней и без того надежные части самолета. С другой – формальная математика без здравого смысла (без постоянного взаимодействия между абстрактными рассуждениями и интуитивными догадками по поводу количества, времени, пространства, движения, поведения и неопределенности) была бы всего лишь бесплодным упражнением в следовании правилам и счетоводстве[23]. Другими словами, математика была бы именно тем, чем считает ее недовольный студент, изучающий математический анализ.

В этом кроется настоящая опасность. В эссе The Mathematician («Математик»)[24], опубликованном в 1947 году, Джон фон Нейман предупреждал:

На довольно большом удалении от своего эмпирического источника и тем более во втором и третьем поколении, когда математическая дисциплина лишь косвенно черпает вдохновение из идей, идущих от «реальности», над ней нависает смертельная опасность. Ее развитие все более и более определяется чисто эстетическими соображениями, оно все более и более становится искусством для искусства. Само по себе это неплохо, если она взаимодействует с примыкающими математическими дисциплинами, обладающими более тесными эмпирическими связями, или если данная математическая дисциплина находится под влиянием людей с исключительно развитым вкусом. Но существует серьезная угроза, что математическая дисциплина будет развиваться по линии наименьшего сопротивления, что вдали от источника поток разветвится на множество ручейков и дисциплина превратится в хаотическое нагромождение деталей и сложностей. Иначе говоря, при большом отдалении от эмпирического источника или после основательного абстрактного «инбридинга» (близкородственного скрещивания. – Ю. Д.) математической дисциплине грозит опасность вырождения.

О какой математике пойдет речь в моей книге?

Если ваше знакомство с математикой ограничивается школьной программой, это означает, что вам известна весьма ограниченная, а в какой-то степени даже ложная версия этого предмета. Школьная математика состоит главным образом из совокупности фактов и правил – фактов, которые нельзя оспаривать, и правил, которые предписаны высшим авторитетом и не подлежат сомнению. Такой подход рассматривает математические концепции как нечто непреложное.

Но математика не неизменна. Даже если речь идет о базовых объектах изучения, таких как числа и геометрические фигуры, наше незнание гораздо больше знания. А то, что мы все же знаем, получено в результате огромных усилий, разногласий и недоразумений. Весь этот труд и смятение тщательно завуалированы в ваших учебниках.

Безусловно, факты фактам рознь. Никогда не было особых споров по поводу того, что 1 + 2 = 3. Но можем ли мы действительно доказать, что 1 + 2 = 3, и как это можно сделать, – вопрос, который блуждает где-то между математикой и философией. Однако это совсем другая история, и мы вернемся к ней в конце книги. Правильность вычислений в данном случае не подлежит сомнению. Проблема кроется совсем в другом. Мы не раз столкнемся с ней на этих страницах.

Математические факты могут быть простыми и сложными, поверхностными и глубокими, что делит математическую вселенную на четыре сектора:



Базовые арифметические факты, такие как 1 + 2 = 3, относятся к категории простых и поверхностных. К этой же категории принадлежат и основные тождества, в частности sin(2x) = 2sin x × cos x или формула корней квадратного уравнения. Возможно, убедить себя в истинности таких тождеств немного труднее, чем в том, что 1 + 2 = 3, но по большому счету они не так уж сложны на концептуальном уровне.

В сегменте сложных и поверхностных фактов находится, например, задача умножения двух десятизначных чисел, или вычисление сложного определенного интеграла, или (при условии, что вы пару лет учились в магистратуре) определение следа Фробениуса на модулярной форме кондуктора 2377. Можно предположить, что по какой-то причине вам понадобится найти ответ на вопрос такого рода, но поиск решения вручную, вне всяких сомнений, покажется слишком раздражающей и невыполнимой задачей. В случае модулярной формы вам, возможно, понадобится серьезное образование даже для того, чтобы понять, о чем идет речь. Однако в действительности знание этих ответов не обогащает понимание окружающего мира.

Сектор сложных и глубоких математических фактов – это именно то, на что тратят большую часть своего времени профессиональные математики, к числу которых отношусь и я. Здесь обитают знаменитые теоремы и гипотезы, такие как гипотеза Римана, последняя теорема Ферма[25], гипотеза Пуанкаре[26], равенство классов P и NP[27], теорема Гёделя и так далее. Каждая из этих теорем касается идей, имеющих глубокий смысл, фундаментальную важность, поразительную красоту и сугубо специальный характер, и каждая из них сама по себе выступает в качестве главного персонажа многих книг[28].

Но только не моей. То, о чем пойдет речь в настоящей книге, относится к верхнему левому сектору, где находятся простые и глубокие факты. Вы сможете непосредственно, с выгодой для себя использовать представленные здесь математические идеи независимо от того, ограничивается ли ваше математическое образование основами алгебры или охватывает гораздо более широкую область математики. И речь идет не о «фактах самих по себе», таких как простые арифметические утверждения, а о принципах, применение которых выходит далеко за рамки привычных представлений о математике. Мы будем говорить о надежных практических инструментах – их применение поможет вам не совершать ошибок.

Чистая математика представляется чем-то вроде монастыря – спокойное место, надежно защищенное от влияния окружающего мира со всей его суетой и противоречиями. Я вырос в стенах такого убежища. Знакомых мне математически одаренных молодых людей интересовало практическое применение математики в физике или геномике, многих влекла черная магия управления хедж-фондами, но все эти подростковые шатания и проблемы выбора были не для меня[29]. Во время учебы в магистратуре я посвятил себя изучению теории чисел, которую Гаусс называл «королевой математики». Из всех чистых дисциплин это была самая чистая – закрытый сад посреди монастыря, где мы размышляли над теми же вопросами о числах и уравнениях, которые занимали умы древних греков и которые едва ли стали менее мучительными за прошедшие две с половиной тысячи лет.

Сначала я работал над теорией чисел в ее классическом виде, доказывая факты о суммах четвертых степеней целых чисел, о которых я при необходимости мог рассказать членам своей семьи на День благодарения, даже если мне и не удавалось объяснить им, как именно я доказал то, что доказал. Но вскоре я увлекся еще более абстрактными областями, изучая задачи, основные элементы которых («остаточно модулярные представления Галуа», «когомология модулярных схем», «динамические системы однородных пространств») невозможно было обсуждать за пределами архипелага университетских аудиторий, коридоров и комнат отдыха, раскинувшегося в водах Оксфорда, Принстона, Киото, Парижа и Мэдисона (штат Висконсин), где я сейчас преподаю. Если я назову все перечисленное волнующим, имеющим смысл и прекрасным и скажу вам, что мне никогда не надоедает размышлять над этими темами, вам придется просто поверить мне, поскольку требуется длительное обучение даже для того, чтобы выйти на уровень, на котором эти объекты изучения попадают в ваше поле зрения.

Но затем произошло нечто интересное. Чем более абстрактными и далекими от реальной жизни становились мои исследования, тем чаще я начал замечать, как много математики присутствует во внешнем мире, за стенами этого убежища. Речь идет не о представлениях Галуа или когомологиях, а о более простых, древних и не менее глубоких понятиях, попадающих в верхний левый сектор нашей таблицы математических концепций. Я начал писать для газет и журналов статьи о том, как выглядит мир сквозь призму математики, и, к своему удивлению, обнаружил, что их охотно читают даже люди, твердящие, как они ненавидят математику. Это было своего рода обучение математике, но обучение, весьма отличающееся от обычных занятий.

Но у такого подхода есть нечто общее с обычными занятиями. Это кое-какие задания, которые предстоит выполнить читателям. Давайте вернемся к эссе фон Неймана «Математик»:

Разобраться в устройстве самолета и понять природу сил, поднимающих самолет в воздух и приводящих его в движение, труднее, чем лететь в салоне самолета, подниматься в нем в заоблачную высь, покрывать огромные расстояния, и даже труднее, чем управлять самолетом.

Только в исключительных случаях процесс удается понять, не научившись применять его практически, руководствуясь инстинктом и опытом[30].

Другими словами, довольно трудно понять математику, не решая математических задач. Царской дороги в геометрии нет, как сказал Евклид Птолемею или – в зависимости от вашего источника – Менехм Александру Македонскому. (Надо признать, популярные изречения, приписываемые древним, вполне возможно, им не принадлежат, но это не делает их менее поучительными.)

В этой книге я не собираюсь вставать в позу и делать величественные жесты в сторону великих математических памятников, не буду учить вас восхищаться ими с большого расстояния. Нам предстоит с головой погрузиться в работу. Мы с вами сделаем кое-какие вычисления. Чтобы донести ту или иную мысль, мне придется, когда это понадобится, прибегать к помощи кое-каких формул и уравнений. Вам не понадобится никаких формальных математических знаний, кроме знаний арифметики, но в то же время вы узнаете о математике многое из того, что выходит за пределы арифметики. Я привожу здесь ряд упрощенных графиков и таблиц. Мы с вами встретим некоторые темы из школьной математики, но вне их обычной среды обитания. Мы узнаем, как тригонометрические функции описывают степени взаимозависимости между двумя переменными, что говорит математический анализ о соотношении между линейными и нелинейными явлениями, а также каким образом формула корней квадратного уравнения служит в качестве когнитивной модели научного познания. Кроме того, мы встретим здесь некоторые математические концепции, изучение которых обычно откладывается до колледжа или до университета. В частности, мы поговорим о таких вещах, как кризис в теории множеств, выступающий здесь в качестве метафоры для судебной практики Верховного суда и судейства в бейсболе; последние достижения в аналитической теории чисел, подтверждающие наличие взаимосвязи между структурой и случайностью; теория информации и комбинаторные схемы, позволяющие объяснить, как несколько студентов MIT выиграли миллионы долларов, разобравшись во внутреннем механизме лотереи штата Массачусетс.

В книге вы найдете рассказы об известных математиках, а также некоторые философские рассуждения. Представлены даже пара доказательств. Зато нет ни домашних заданий, ни тестов.

Загрузка...