Глава 10. АТЕРОСКЛЕРОЗА МОЖЕТ НЕ БЫТЬ

Больше всего хранимого храни сердце твое, потому что из него все источники жизни.

"Книга притчей Соломоновых", Гл.4, ст.23


Атеросклероз - этому заболеванию в наше время принадлежит печальное право считаться самым распространенным в мире. Причиной 50% всех смертей в США является атеросклероз.

Атеросклероз - это отложение в стенках артерий холестерина с последующим зарастанием этих отложений соединительной тканью. Так образуются атеросклеротические бляшки, которые препятствуют току крови по артериям и этим ухудшают кровоснабжение многих органов. Нередко атеросклероз осложняется тромбом сосудов - и в результате наступает инфаркт или инсульт.

Ишемическая болезнь сердца, инфаркт миокарда, инсульт - все это у нас на слуху постоянно, и все это - атеросклероз. В чем же причина атеросклероза?

Однозначного ответа на этот вопрос сегодня нет, а поэтому и нет действенных рекомендаций и по предупреждению, и по лечению этой болезни. Но эта глава для того и написана, чтобы предложить читателям не только новый взгляд на развитие этой болезни, но и новый метод и профилактики, и лечения этой болезни. Я не стану сразу предлагать практические пути реализации этого метода, а попытаюсь вместе с читателями исследовать все этапы развития этой болезни и вместе сделать соответствующие выводы.

ХОЛЕСТЕРИНОВАЯ ТЕОРИЯ РАЗВИТИЯ АТЕРОСКЛЕРОЗА

Существует несколько теорий и гипотез развития этой болезни. Наиболее известная из них - холестериновая теория. Уже на протяжении более чем 80-ти лет, с тех пор, как русские ученые Н. Н. Аничков и С. С. Халатов впервые сообщили о ведущей роли холестерина в развитии атеросклероза, холестериновая теория происхождения этой болезни переживала и периоды подъема, и спада. Но она и сегодня еще не сдала своих позиций. Атеросклероз и холестерин в сознании многих людей стали чуть ли не тождественными понятиями. Именно холестерин является неотъемлемой частью фиброзной бляшки, выбухающей в просвет артерии. Если такие бляшки расположатся в стенке одной из артерий, подающих кровь в мышцу сердца, то они станут помехой для кровоснабжения, а следовательно, и питания определенных участков сердечной мышцы.

Давно уже замечено, что люди, у которых наблюдается высокое содержание холестерина в крови, чаще страдают ишемической болезнью сердца. А это говорит о том, что повышенный уровень холестерина в крови действительно является фактором риска развития тяжелых заболеваний сердца, обусловленных атеросклерозом питающих его сосудов. Именно поэтому определение уровня холестерина в крови включено в комплекс биохимических исследований, которые проводятся с диагностической целью в больницах и клиниках.

Несколько слов о самом холестерине. Каждая клетка в организме человека содержит холестерин. Он входит в состав клеточных мембран, обеспечивая избирательную проницаемость их. Из холестерина синтезируются желчные кислоты, половые гормоны и кортикостероиды, из него при облучении ультрафиолетом образуется витамин Д. В чистом виде холестерин представляет собой нерастворимые в воде желтоватые кристаллы. Это вещество из группы стеаринов.

Как видим, холестерин выполняет в организме очень важные функции. И в то же время избыток холестерина в организме человека приводит к отложению его в стенках артерий и к образованию желчных камней в желчном пузыре.

Откуда же берется избыточный холестерин в организме?

Ответить на этот вопрос совсем непросто. Организм сам синтезирует холестерин (эндогенный), а также получает его с пищей (экзогенный). Причем с пищей организм получает примерно одну треть необходимого ему холестерина. Но именно этот холестерин, содержащийся в продуктах питания, и является сегодня основным предметом внимания в принятой тактике борьбы с атеросклерозом. Понизить содержание холестерина в крови - это и есть сегодня главный метод лечения и предупреждения атеросклероза. Для этого Европейская ассоциация экспертов сформулировала семь "золотых" правил, соблюдение которых необходимо для устранения нарушений обмена веществ, приводящих к атеросклерозу. В эти правила входит уменьшение на 10 и более процентов общего употребления жиров, резкое снижение потребления насыщенных жирных кислот, содержащихся в животных жирах, сливочном масле, сливках и яйцах, увеличение потребления продуктов, обогащенных полиненасыщенными жирными кислотами (растительное масло, не прошедшее рафинирования, особенно кукурузное, соевое, конопляное, а также рыба и другие морские продукты), увеличение потребления клетчатки и сложных углеводов (для этого необходимо ежедневно употреблять не менее 1 кг овощей, фруктов и таких круп, как гречка, рис, овес), замена в домашнем приготовлении сливочного масла и маргарина на нерафинированные растительные масла, а также резкое уменьшение потребления продуктов, богатых холестерином, резкое снижение количества поваренной соли и сахара- рафинада в принимаемой пище.

Я не стану здесь подробно перечислять все продукты, богатые холестерином, скажу лишь кратко, что больше всего его содержится в, мозговых тканях, относительно много в жировых и совсем немного в мышечных тканях. Я не пытаюсь заострять внимание на содержании холестерина в пищевых продуктах только потому, что считаю экзогенный холестерин не столь существенным фактором в развитии атеросклероза и об этом подробнее будет сказано ниже.

В Америке, например, настолько широко поставлена антихолестериновая пропаганда, что американец стороной обойдет в магазине вкусную и аппетитную ветчину, богатую холестерином, и купит невкусную индейку, у которой с холестерином все в порядке, да еще и, не выходя из магазина, сделает анализ крови на холестерин. Так, в отличие от нас, американцы пекутся о своем здоровье, но атеросклероз в той же мере, что и нас, не щадит и их. По-видимому, причина атеросклероза, образно говоря, не в жирной ветчине, а в чем-то другом.

Об этом же говорят и исследования А. Кейса (США), которые он проводил в семи различных странах. На первый взгляд, связь между уровнем холестерина в крови и потребляемыми с пищей животными жирами была очевидной: в популяциях с низким потреблением животных жиров (в Японии и Югославии) наблюдалась и низкая средняя концентрация холестерина в крови, а в популяциях с высоким потреблением животных жиров (восточная Финляндия) средний уровень холестерина в крови тоже был высоким. Но в то же время и у людей, которые всю жизнь едят очень мало животных жиров, наблюдается связанное с возрастом повышение уровня холестерина в крови.

Поэтому Кейс и сделал неоднозначный вывод о связи уровня холестерина с животными жирами, и несколько расширил шкалу продуктов, могущих влиять на уровень холестерина в крови: там, где основным источником энергии служат животные жиры и молочные продукты, у населения, как правило, отмечается высокое содержание холестерина в крови.

Каким образом молочные продукты могут влиять на повышение уровня холестерина в крови - Кейс не сказал об этом ни слова.

Но Кейс четко выявил связь между уровнем холестерина в крови и частотой сердечно-сосудистых заболеваний (она оценивалась по числу случаев смерти от инфарктов). В двух деревнях (в Японии и в Югославии), у жителей которых средняя концентрация холестерина в крови составляла 1,6 мг/мл, люди умирали от инфаркта довольно редко - менее 5 человек на 1000 человек в течение 10 лет. А среди жителей восточной Финляндии, где средняя концентрация холестерина достигала 2,65 мг/мл - частота смертей от инфаркта была в 14 раз выше.

В популяциях же с промежуточным значением между высоким уровнем холестерина (2,65) и низким (1,6 мг/мл) величина этого показателя располагается также между вышеприведенными крайними цифрами.

Так еще раз была подтверждена концепция холестериновой теории: главным фактором в развитии атеросклероза является повышенное содержание холестерина в крови.

Но почему с годами повышается уровень холестерина в крови и как можно его понизить - на эти вопросы не ответила и эта теория.

В самом деле, каков биологический смысл накопления холестерина в крови? Ведь не для развития же в конце концов атеросклероза в нашем организме повышается с годами уровень холестерина?

И вот какой любопытный ответ дали на все эти вопросы сторонники холестериновой теории. Цитирую:

Эти вопросы неотступно преследовали нас, пока наконец мы не пришли к неожиданному и удивительно простому объяснению в виде теории холестериноза. В чем ее суть?

Холестериноз — это постепенное накопление холестерина в организме, частное проявление которого - атеросклероз. Увеличение количества холестерина и соответствующие дегенеративные изменения при холестеринозе можно обнаружить не только в стенках артерий, но и в межпозвоночных дисках, в хрусталике глаза, печени, мышцах, сухожилиях и т. д. Просто мы больше всего страдаем от атеросклероза сосудов и раньше всего замечаем его тяжелые последствия при поражении артерий, питающих сердце и мозг.

Холестериноз развивается постепенно. В первом периоде жизни - периоде роста и развития организма, когда происходит активное деление клеток, весь холестерин, который поступает с грудным молоком матери или синтезируется в самом организме, полностью расходуется на строительство мембран новообразованных клеток. Во втором периоде, когда жизненная активность максимальна, устанавливается счастливое равновесие между поступающим холестерином плюс синтезируемым и его расходом на пищеварение (желчные кислоты), на выработку половых и стероидных гормонов. В третьем, заключительном, периоде жизни происходит постепенное выключение половой, двигательной и социальной активности, что приводит к снижению расхода и накоплению холестерина в организме - холестеринозу. При этом отчетливо просматривается три типа взаимосвязанных изменений: сужение устьев и просветов всех крупных артерий, питающих органы и ткани за счет развития атеросклероза, ухудшение проницаемости всех клеточных мембран из-за накопления в них холестерина, ухудшение процесса переноса кислорода и забора углекислоты из тканей из-за снижения активности эритроцитов. К тому же ухудшается активность лимфоцитов - главных иммунных защитников организма.

Все эти изменения связаны с уплотнением клеточных мембран, снижением их диффузионных, рецепторных, ферментативных и электрических свойств.

Таким образом, могучая и полноводная прежде река жизни - аорта - с возрастом посылает все меньше живительной крови к органам и тканям, они же - ткани и органы - и сами постепенно утрачивают способность ее впитывать, да и слабеющий поток крови не столь богат жизненными силами: все меньше в нем гормонов и ферментов, все меньше приносят кислорода и все хуже вымывают накапливающиеся шлаки плотные и деформированные эритроциты, слабеют и защитные силы когда-то живых и активных лейкоцитов.

Так постепенно вначале отдельные клетки, а затем клеточные ассоциации и далее целые органы утрачивают связь с окружающей средой. Этот процесс в конце концов и приводит к угасанию всех функций организма и при естественном ходе событий приводит к легкой, свободной от мук смерти.

Изумительный по своей гармонии и простоте выработавшийся тысячелетиями эволюции процесс умирания, постепенного и безболезненного ухода из жизни!"

Академик АМН СССР Ю. Лопухин,1990 г.


Скажите, можно ли после такого гимна холестерину и, заодно с ним, атеросклерозу бороться за снижение уровня холестерина в крови и за профилактику и лечение атеросклероза? По-видимому, нет. Пусть все идет так, как оно и идет. Главное в жизни, оказывается, состоит в том, чтобы безболезненно умереть. Но в каком возрасте умереть? Если вам за 90 или 100 лет, то, возможно, кому-то и хочется спокойно и безболезненно оставить этот мир, но не исключено, что при хорошем здоровье и в таком возрасте не захочется прощаться с жизнью только потому, что по неизвестной причине у вас накопилось много холестерина. Хотя до столь преклонного возраста мы чаще всего и не доживаем, и все по причине того же атеросклероза. Как много людей уходит из жизни в самом расцвете творческих сил по нелепой случайности - от инфаркта миокарда, а оказывается, что по вновь придуманной теории холестериноза это всего лишь "эволюционный процесс ... безболезненного ухода из жизни".

"Пока что в руках советских исследователей большинство призов за первооткрытия по ишемической болезни сердца. Будут ли они первыми в снижении смертности от нее до приемлемого уровня?" Таким вопросом закончил рецензию на книгу "Холестериноз" (авторы Ю. Лопухин и др.) Ричард Купер - один из ведущих американских специалистов по атеросклерозу.

Создание теории холестериноза - это, на мой взгляд, признание полной несостоятельности ее авторов в борьбе с атеросклерозом.

Теория холестериноза полностью обезоруживает нас в борьбе с атеросклерозом и, очевидно, служит основательной базой для утраты последнего интереса к холестериновой теории.

Да, сторонники холестериновой теории разработали метод очистки крови от избыточного холестерина с помощью сорбентов и снизили этим риск развития атеросклероза у многих больных, но такую процедуру не сделаешь каждому желающему. А нас интересует метод лечения и профилактики атеросклероза, доступный каждому.

Холестериноз чем-то схож с кальцинозом. А кальциноз - это отложение солей кальция в тканях, где их не должно быть. Но мы уже знаем, что кальциноз - это не естественное накопление солей кальция в организме с последующим их отложением в тех местах, где их не должно быть, а всего лишь результат избытка кальция в организме, вызванный и внешней средой, и принятой системой питания. Поэтому с кальцинозом вполне успешно можно бороться.

А не вызван ли и холестериноз теми же причинами, что и кальциноз, или подобными им?

На этот вопрос мы еще попытаемся ответить, а сейчас отвлечемся от атеросклероза и поговорим о внутренней среде организма.

ГОМЕОСТАЗ

Гомеостаз - это относительное динамическое постоянство внутренней среды организма. Этот термин предложил 70 лет назад американский физиолог Уолтер Кеннон. Однако представление о существовании внутренней среды организма было сформулировано еще в 1878 г французским физиологом Клодом Бернаром.

Внутренняя среда - это кровь, лимфа, тканевая жидкость, с которыми контактирует каждая клетка животного организма.

"Постоянство внутренней среды, - писал К. Бернар, - есть условие свободной, независимой жизни ...Постоянство среды предполагает такое совершенство организма, чтобы внешние параметры в каждое мгновение компенсировались бы и уравновешивались."

Химический состав внутренней среды очень сложен. Одни ее параметры изменяются лишь в очень узких границах ("существенные переменные" по У.Кеннону), другие более значительно, а третьи весьма широко.

Постоянство внутренней среды организма нами часто понималось как независимость этой среды от внешних условий. Подавай в этот организм все, что только возможно, а он сам решит, что использовать, а что выбросить. Но в действительности все обстоит далеко не так.

Когда внешняя среда изменяется в значительной степени и надолго, то организм переходит на новый уровень гомеостаза. При этом всегда изменяется химический состав внутренней среды и, прежде всего, крови.

Я уже писал о том, что уровень кальция в крови может изменяться почти в три раза в зависимости от содержания его в местных природных водах и в зависимости от его содержания в продуктах питания. Писал я и о том, что у жителей высокогорий увеличивается почти в полтора раза содержание эритроцитов в крови - это ответная реакция организма на низкое парциальное давление кислорода на больших высотах

Не одинаков и уровень сахара в крови у людей, проживающих в разных регионах, значительно отличающихся по внешним условиям. Если у жителей средних широт содержание сахара в крови колеблется от 80 до 100 мг на 1ОО мл крови и когда этот показатель падает до 60-70 мг, то развивается гипогликемия. А дальнейшее снижение приводит к гипогликемической коме, когда человек теряет сознание из-за недостаточного снабжения мозга глюкозой. Но на Крайнем Севере содержание сахара в крови у коренных жителей всегда находится на нижней границе нормы и даже может снижаться до 45 - 50 мг на 100 мл крови и при этом не наблюдается гипогликемической комы.

Из приведенных примеров вытекает такой вопрос - с какой меркой нам следует подходить к оценке здоровья человека, что считать нормой и что патологией? Очевидно только одно: нельзя принимать за норму показатели среднего практически здорового человека. Не исключено, что эти усредненные показатели являются зависимыми от конкретных внешних условий, а эти условия могут быть не совсем благоприятны для организма человека.

Я уже писал, что уровень потребления кальция в разных странах не одинаков и, вероятнее всего, он привязан не к национальным особенностям людей, а к территориям их проживания. У японца в Японии уровень потребления кальция не превышает 350 мг в сутки, а у того-же японца, но уже проживающего в США, уровень потребления кальция возрастает до 800. И вслед за повышенным потреблением кальция японец в США приобретет и весь набор болезней, свойственных населению этой территории.

И ВНОВЬ О ХОЛЕСТЕРИНОВОЙ ТЕОРИИ

А не может ли и уровень холестерина в крови быть в некоторой степени зависимым от условий проживания людей? И поэтому на определенной территории он может быть достаточно высоким уже в молодом возрасте, но мы принимаем этот уровень за норму и лишь делаем возрастные поправки, разумеется в сторону увеличения, считая, что так и должно быть. Например, в нашей стране в возрасте 25 лет уровень холестерина считается нормальным, если он не превышает 1,8 мг/мл (мы продолжаем пользоваться размерностью, принятой в США, а у нас это будет 180 мг на 100 мл или 4,6 ммоль/л). А у жителей двух деревень в Японии и в Югославии, о чем говорилось выше, средний уровень холестерина не превышал 1,65 мг/мл. Как видим, в нашей стране уже у молодых людей уровень холестерина бывает выше, чем в среднем у жителей некоторых других стран.

С возрастом у нас считается вполне нормальной следующая динамика роста концентрации холестерина в крови: у мужчин после 40 лет содержание холестерина не должно быть выше 2,6 мг/мл (6,7 ммоль/л), у женщин до 40 лет уровень холестерина медленно нарастает, а после 40 лет начинается резкое увеличение содержание холестерина в крови в зависимости от возраста: у 40 - 49 летних -2,5 мг/мл (6,6 ммоль/л), у 50 - 59 летних - 2,8 мг/мл (7,2 ммоль/л), а у тех, кому за 60 лет - 2,95 мг/мл (7,7 ммоль/л).

А для развития атеросклероза уже вполне достаточно уровня холестерина в 2,4 мг/мл.

Таким образом, при вполне узаконенных возрастных нормах уровня холестерина в крови все мы после 40 лет не должны удивляться тому, что атеросклероз уже посетил нас. И тогда, безусловно, верна теория холестериноза, объясняющая нам, что от атеросклероза нам никак нельзя уклониться.

Но жизнь всегда богаче по своим проявлениям, чем каноны любой теории. Например, у эскимосов Гренландии и у коренных жителей Якутии при белково-липидном типе питания (рыба, мясо и жиры), когда жировых фракций в крови у них значительно больше, чем у жителей средних широт, и поэтому следовало бы ожидать значительного скачка в развитии атеросклероза, но последнего у них не наблюдается.

Или возьмем другой пример. Обследование 800 долгожителей Нахичеванской республики, которое проводил азербайджанский геронтолог М. Н. Султанов, показало, что уровень холестерина у этих людей оказался не только не высоким, как следовало ожидать и по холестериновой теории, и по теории холестериноза, но даже вдвое ниже общепринятой у нас нормы для молодых людей, и втрое ниже нормы для пожилых людей. И атеросклероза у этих людей, естественно, не было.

Внешне, как мы видим и на примере долгожителей Нахичеванской республики, холестериновая теория права — при низком уровне холестерина в крови атеросклероз не развивается. Но как понизить уровень холестерина и почему повсеместно, за исключением лишь некоторых регионов, он поддерживается на достаточно высоком уровне — ответа на эти вопросы обсуждаемая теория нам не дает. И методика борьбы с атеросклерозом по холестериновой теории сводится к понижению уровня холестерина в крови любыми путями, но трудно найти правильный путь к достижению этой цели, если не знать саму причину высокого уровня холестерина в крови.

Например, один из способов понижения холестерина в крови заключается в том, чтобы вывести избыток холестерина из организма с помощью желчных кислот. Дело в том, что желчные кислоты синтезируются печенью из холестерина и на это уходит до половины всего имеющегося в крови холестерина. Но желчные кислоты могут быть лишь частично использованы в кишечнике для эмульгирования жиров, а неиспользованные кислоты не выбрасываются, а вновь всасываются и возвращаются в печень. И печень в таком случае уменьшает синтез желчных кислот, уменьшая при этом и забор холестерина из крови. Как видим, организм во всем рационален и экономичен. Но если неиспользованные в кишечнике желчные кислоты связать с зернистыми полимерами, чтобы они не могли быть возвращены вновь в печень, а были выброшены из организма в связанном состоянии, то таким образом нам удастся заставить печень в большем количестве забирать холестерин из кровяного русла.

Эта задумка медикам вполне удалась, печень стала много холестерина забирать в качестве сырья для производства желчных кислот, но та же печень увеличила и синтез холестерина. И в итоге уровень холестерина в крови понизился не на 50%, как ориентировочно можно было бы ожидать, а всего лишь на 10%. Но и эти 10% - тоже большой успех медицины, так как они дали снижение частоты сердечно - сосудистых заболеваний на 20%.

Или возьмем другой способ снижения концентрации холестерина в крови - это фильтрация крови больного человека через определенные сорбенты, которые также связывают холестерин, удаляя таким образом его из крови. И это тоже большое достижение медицины, оно улучшило состояние здоровья многих больных. Но это трудоемкая и сложная операция, и ее не сделаешь каждому желающему. А главное, на что я сейчас хочу обратить внимание, это то, что и по этому методу, как и по предыдущему, нам не удается надолго понизить уровень холестерина в крови, так как организм по непонятному для нас упрямству вновь возвращает его к исходному положению. И вновь остается без ответа главный в холестериновой теории вопрос - почему организм повышает с возрастом уровень холестерина в крови и устойчиво поддерживает его?

Таким образом, заканчивая рассмотрение холестериновой теории развития атеросклероза, мы приходим к выводу, что эта теория не дает нам действенного инструмента для профилактики и лечения атеросклероза, так как она не может объяснить причину повышенного уровня холестерина у большинства людей и поэтому не может воздействовать на нее.

РАЗВИТИЕ АТЕРОСКЛЕРОЗА ПО М. БРАУНУ И Д. ГОЛДСТЕЙНУ

До сих пор мы рассматривали лишь общий уровень холестерина в крови и никак не касались ни вопросов его транспортировки, ни его модификаций. Это было как бы общее знакомство с холестерином. В действительности же картина холестеринового обмена в организме очень сложна и мозаична.

Мы уже знаем, что холестерин нерастворим в воде, а кровь - это не что иное, как вода. Поэтому необходим какой-то механизм транспортировки холестерина по кровяному руслу. Такую транспортировку холестерина осуществляют особые белково-липидные частицы, называемые липопротеидами. Они хорошо смачиваются водой и в своем составе доставляют холестерин во все клетки организма, а также забирают избыточный холестерин из клеток и доставляют его в печень для переработки в желчные кислоты. Холестерин может транспортироваться липопротеидами как в чистом виде, так и в виде его соединений с жирными кислотами, то есть в виде эфиров.

Сами липопротеиды подразделяются на множество классов, но мы будем рассматривать в общем виде только липопротеиды низкой плотности (ЛПНП) и высокой плотности (ЛПВП). Роль этих липопротеидов в развитии атеросклероза прямо противоположна. ЛПНП доставляют холестерин во все клетки организма и именно они ответственны за развитие атеросклероза. А ЛПВП извлекают избыточный холестерин из клеток и доставляют его на переработку в печень. Чем больше в крови ЛПВП, тем меньше вероятность развития атеросклероза. Поэтому при биохимической диагностике атеросклероза сегодня чаще пользуются не общим уровнем холестерина, а определяют раздельно количество ЛПНП и ЛПВП. Увеличение уровня ЛПНП с одновременным снижением уровня ЛПВП говорит нам о патогенной (болезненной) ситуации в организме, склонной к развитию атеросклероза.

Теперь и методика борьбы с атеросклерозом может быть иной: нам надо стремиться понизить уровень ЛПНП в крови и повысить имеющийся уровень ЛПВП - и этого будет достаточно для предупреждения развития атеросклероза. Но как это сделать - будет известно лишь в конце этой главы.

Американские ученые, лауреаты Нобелевской премии М. Браун и Д. Голдстейн связывают ускоренное развитие атеросклероза с тем уровнем ЛПНП, который в конце концов складывается у большинства людей среднего возраста. В результате своих исследований эти ученые установили, что более половины населения в развитых странах, включая и США, из-за высокой концентрации циркулирующих в крови частиц ЛПНП, следует отнести к группе лиц с высоким риском развития атеросклероза.

Эти же ученые открыли рецепторы, которые располагаются на поверхности клеток и в их функции входит захват ЛПНП из кровяного русла и передача их внутрь клеток. Они же предложили гипотезу о решающей роли рецепторов ЛПНП в обмене холестерина и развитии атеросклероза.

Кратко суть этой гипотезы заключается в том, что если бы на поверхности клеток было достаточное количество рецепторов ЛПНП, то они в большем бы количестве захватывали частицы ЛПНП и таким образом удаляли бы значительную часть холестерина из крови. Но недостаточное количество рецепторов на поверхности клеток способствует высокому уровню ЛПНП в крови и, следовательно, провоцирует развитие атеросклероза.

В этой гипотезе имеется одно достаточно уязвимое предположение - нельзя же рассматривать клетки как безразмерные склады для холестерина. В ней так же, как и в холестериновой теории, остается без ответа главный вопрос - почему уровень холестерина с возрастом повышается?

А как авторы этой гипотезы отвечают на вопрос - почему на поверхности клеток нет необходимого по их мнению количества рецепторов ЛПНП?

Ответ такой: при накоплении в клетке холестерина она прекращает синтез новых рецепторов. Но это перечеркивает саму суть гипотезы - как же можно надеяться с помощью рецепторов ЛПНП понизить содержание холестерина в крови, если количество самих рецепторов сдерживается поглощенным клетками холестерином?

Далее эти ученые указывают на высокую эффективность рецепторов ЛПНП: один рецептор может связывать частицу ЛПНП и извлекать ее из водной среды, если она там будет всего одна на миллиард молекул воды. В связи с этим они приходят к выводу, что эволюционно рецепторы ЛПНП у людей и у животных приспособлены к функционированию при очень низком уровне ЛПНП, равном 0,5 мг/мл. У животных этот уровень выдерживается, а у населения развитых стран средний "нормальный" уровень ЛПНП составляет 1,25 мг/мл. А что обуславливает такой высокий уровень ЛПНП при столь высокой эффективности рецепторов - ответа на этот вопрос мы тоже пока не имеем.

Система рецепторов у человека, продолжают М. Браун и Д. Голдстейн, рассчитана на то, чтобы функционировать при непривычно низкой для нас концентрации ЛПНП в крови.

Чтобы поддерживать такой низкий уровень ЛПНП, Американская кардиологическая ассоциация предлагает полностью исключить из рациона питания яйца и молочные продукты, а также резко ограничить потребление мяса и других продуктов, содержащих насыщенные жиры.

На примере эскимосов и коренных якутов мы уже видели, что большое потребление и мяса, и животных жиров не приводит в определенных случаях к развитию атеросклероза. Вспомним и о долгожителях Оймякона, которые держат лошадей исключительно с целью получения жирного питательного мяса, которое помогает человеку побороть самый лютый холод. И при этом у них нет никакого атеросклероза.

Остановимся еще на двух моментах исследований М. Брауна и Д. Голдстейна.

Первый состоит в том, что поступающий в избытке в клетки холестерин накапливается в них в качестве эфиров (соединений холестерина с жирными кислотами) и внешне выглядит в виде жировых капелек.

А второй поясняет как образуются атеросклеротические бляшки. Развиваются они медленно и только в местах повреждения тонкого слоя выстилающих артерию клеток эндотелия. Поврежденное место становится проницаемым для частиц ЛПНП и тромбоцитов крови. Последние секретируют фактор роста тромбоцитов, а он стимулирует разрастание прилегающих гладкомышечных тканей. Одновременно в поврежденное место поступают моноциты (один из типов лейкоцитов крови), которые, захватив подвергшиеся деградации частицы ЛПНП, становятся макрофагами и остаются на месте, превращаясь в так называемые пенистые клетки. Высвобождающийся из ЛПНП холестерин накапливается в пенистых клетках и между ними, образуя таким образом утолщение в стенке артерии. Просвет артерии от этого сужается, препятствуя току крови.

Пенистые клетки и липидные капельки и являются теми кирпичиками, из которых в течение достаточно продолжительного времени будет построен атеросклероз. Уже в детском возрасте закладываются эти кирпичики, что является следствием достаточно высокого уровня ЛПНП даже в этом возрасте, хотя рождаются дети с очень низкой концентрацией ЛПНП в крови (такой же, как и у животных), но уже на протяжении детских и юношеских лет уровень этих липопротеидов возрастает в 3 - 4 раза.

ПЕРЕКИСНАЯ ГИПОТЕЗА РАЗВИТИЯ АТЕРОСКЛЕРОЗА

А теперь рассмотрим перекисную гипотезу развития атеросклероза, по которой главным фактором, провоцирующим эту болезнь, являются свободные радикалы. Свободным радикалам могут противостоять только антиоксиданты. И если их достаточно в организме, то развитие болезни может быть не только предупреждено, но возможен и регресс уже имеющегося атеросклероза. При недостатке же антиоксидантов в организме наблюдается беспрепятственное развитие атеросклероза.

Сам механизм развития атеросклероза по этой гипотезе мало изучен. Одни авторы полагают, что свободные радикалы, а это, по-видимому, преимущественно активные формы кислорода, прежде всего повреждают стенки артерий, где затем и начинают формироваться атеросклеротические бляшки. А другие считают, что ведущая роль в атерогенезе принадлежит частицам ЛПНП, подвергшимся окислению свободными радикалами. Окисленные формы ЛПНП, находясь в стенках артерий, вызывают на себя те же моноциты, речь о которых шла выше. Моноциты, захватив окисленные ЛПНП и став макрофагами, не могут выйти из стенок артерий и переходят в пенистые клетки, из которых и развиваются затем атеросклеротические бляшки по схеме, описанной выше.

По этой гипотезе нам даже не столь важно знать, повреждаются ли вначале стенки артерий свободными радикалами, с чего и начинается затем развитие атеросклероза, или же атеросклероз провоцируют подвергшиеся окислению свободными радикалами частицы ЛПНП. Возможно, что оба эти процесса идут параллельно и независимо друг от друга, то есть частицы ЛПНП могут подвергаться окислению свободными радикалами и стенки артерий могут повреждаться свободными радикалами, а в итоге создаются условия для развития атеросклероза. И поэтому для нас не столь важна сама по себе схема образования атеросклеротической бляшки - она в конце концов разовьется, если для ее образования в организме имеются соответствующие условия (имеются свободные радикалы при недостатке антиоксидантов).

Для нас принципиально важно установить, почему и по этой гипотезе нам не удается предупредить развитие атеросклероза.

Главным условием для предупреждения развития атеросклероза по перекисной гипотезе является обеспечение организма достаточным количеством антиоксидантов.

В организме имеется ферментативная антиоксидантная система, вырабатывающая фермент супероксиддисмутазу. Но эффективность этой системы почему-то всегда недостаточна и поэтому требуется постоянно пополнять антиоксидантную защиту организма внешними биоантиоксидантами, поступающими с пищей. Например, жители стран, где наблюдается высокая смертность от ишемической болезни сердца (США, Англия), получают с пищей половину, а то и больше половины суточной нормы основного биоантиоксиданта - токоферола. А токоферол содержится в основном в растительном масле. Известно также, что антиоксидантными свойствами обладают полифенолы (витамин Р), мочевая и аскорбиновая кислоты.

Периоды активного развития атеросклероза, а также инфаркты и инсульты, отмечаются чаще всего в феврале-марте, то есть в те месяцы, когда в организм поступает меньше всего биоантиоксидантов.

Казалось бы, стоит нам только увеличить потребление биоантиоксидантов и проблема атеросклероза будет решена. Тогда в чем же проблема? В недостатке продуктов, богатых антиоксидантами или в чем-то другом?

Ответы на эти вопросы мы получим чуть позже, а сейчас рассмотрим, какие из свободных радикалов являются нашими главными противниками и как они нейтрализуются антиоксидантами.

Перекисная гипотеза называет три основных радикала: гидроксид НО-, пергидроксид НО2- и супероксид О2-

Гидроксид - это достаточно устойчивая группа атомов, но реакционноспособная. Две молекулы гидроксида могут реагировать друг с другом, что чаще всего и происходит в живом организме, так как они рождаются рядом в качестве промежуточных реакций. В результате образуется молекула перекиси водорода. В перекисях всегда существует кислород - кислородная связь.

Перекись водорода используется организмом для синтеза лигнина, придающего упругость стенкам клеток. Поэтому считать образование перекиси водорода в организме только как вредное явление, по-видимому, нельзя.

Пергидроксид тоже является продуктом промежуточных реакций и существует он в организме лишь ничтожные доли секунды, после чего распадается по схеме:

2НО2 - Н2О2 + О2

Как видим, пергидроксид также мало опасен для организма, как и гидроксид.

Супероксид — это отрицательно заряженный свободный радикал О2. Он поступает в организм с вдыхаемым воздухом, но может образовываться и внутри организма. И в воздухе, и внутри организма он порождается фоновым радиационным излучением (более подробно об этом говорится в 22-ой главе). Вот для борьбы с супероксидом в организме и имеется антиоксидантная система, которая вырабатывает фермент супероксиддисмутазу. Фермент этот катализирует одну-единственную реакцию - взаимодействие супероксидов друг с другом с помощью ионов водорода:

О2 + О2 + 2Н+ - Н2О2 + О2.

В итоге мы получаем те же продукты, что и при распаде пергидрооксида.

Такая реакция называется дисмутацией, то есть она затрудняет мутационные свойства такой формы кислорода. Эта реакция может протекать и самопроизвольно, без фермента, но с последним она идет значительно быстрее и в меньшей степени зависит от условий среды.

Известно, что в состав ЛПНП входит много молекул ненасыщенных жирных кислот. А ненасыщенные жирные кислоты очень реакционноспособны (в противоположность относительно инертным насыщенным жирным кислотам). Поэтому именно по двойной связи жирных кислот, входящих в ЛПНП, происходит окисление ЛПНП супероксидом с образованием в последнем альдегидов.

Альдегиды могут соединяться с белками или самих ЛПНП, или с белками артериальной стенки. При таком взаимодействии с альдегидами белки чаще всего погибают, поэтому к ним и устремляются макрофаги. Многие макрофаги с поглощенными ими погибшими частицами ЛПНП не могут выбраться из стенок артерий в кровяное русло и, таким образом, создают основу для будущего разрастания фиброзной бляшки.

Так что же следует считать причиной атеросклероза?

ПРИЧИНА АТЕРОСКЛЕРОЗА

Возможно, что причиной атеросклероза следует считать супероксид - не будь его - не было бы и атеросклероза. Но если мы никак не можем предотвратить поступление супероксида в организм или образование его в самом организме, то неужели мы безропотно должны согласиться с неизбежностью атеросклероза?

А может быть, причина атеросклероза заключается в том, что организм почему-то не в состоянии бороться с супероксидом, хотя защита от последнего в организме и предусмотрена?

Какая же, скажем так, помеха не дает возможности организму нейтрализовывать супероксид еще до того, как он произведет разрушения в нем?

Если мы повнимательнее посмотрим на приведенную выше реакцию дисмутации супероксида, которая протекает с участием фермента, то, конечно, заметим то, чего просто нельзя не заметить, - в этой реакции принимают участие ионы водорода. То есть действие фермента супероксиддисмутазы в этой реакции заключается в выдаче необходимого количества ионов водорода. Таким образом, мы видим, что инструментом антиоксидантной защиты организма являются ионы водорода. Кстати, и вещества-ловушки (токоферол и полифенолы — витамины Е и Р) обезвреживают свободные радикалы тоже с помощью ионов водорода, превращая таким образом радикалы в стабильные молекулы.

И если эффективность антиоксидантной защиты зависит только от количества поставляемых ею в кровь ионов водорода, то мы по новому можем посмотреть на всю проблему атеросклероза.

Безусловно, возможности антиоксидантной системы не беспредельны, как и не беспредельны функциональные возможности любого органа. Не исключено также, что такая система была запрограммирована для работы в другой среде, то есть для работы в крови с другими физическими показателями. А мы уже знаем, что параметры крови проявляют заметную зависимость от условий внешней среды. Поэтому вполне закономерным может быть предположение, что под влиянием каких-то факторов внешней среды физические показатели крови не соответствуют тем оптимальным показателям, при которых наиболее эффективно может работать антиоксидантная система организма. В этом, по-видимому, и следует искать причину наблюдаемой нами неэффективной работы антиоксидантной системы.

Из 2-ой главы мы уже знаем, что потребление больших количеств кальция с питьевой водой и с продуктами питания делает нашу кровь щелочной. При реакции крови, равной 7,4 (а такую реакцию крови имеет большинство людей и такая реакция признается официальной медициной как нормальная), на один ион водорода (Н+) будет приходиться шесть гидроксид-ионов (ОН-).

Как видим, при щелочной реакции крови каждый ион водорода окружен множеством ионов ОН-. Преобладание ОН- над ионами водорода в крови и является, очевидно, той помехой, которая не дает возможности антиоксидантной системе эффективно бороться с супероксидом. Для борьбы с супероксидом антиоксидантная система тоже вырабатывает ионы водорода, которые просто могут блокироваться большим количеством ОН-, имеющихся в щелочной крови. Поэтому при щелочной реакции крови не может быть эффективной работы антиоксидантной системы и нам приходится прибегать к биологическим антиоксидантам, которые содержатся в продуктах питания. Но не во всех продуктах имеются антиоксиданты, а если и имеются, то в незначительном количестве. А нам необходима надежная антиоксидантная защита, чтобы избежать развития атеросклероза.

Такую защиту мы в состоянии сделать сами. Как мы уже убедились, антиоксидантная защита в конечном счете сводится лишь к созданию достаточного количества ионов водорода в крови. Настолько достаточного, чтобы полностью блокировать негативное воздействие на организм супероксида. А каким образом мы создадим необходимое количество ионов водорода в крови — не имеет принципиального значения. То есть, если мы не будем прибегать к пищевым биоантиоксидантам, а просто подкислим кровь одной из органических кислот, то этим действием мы сделаем антиоксидантной саму кровь.

Антиоксидантной кровь может стать и без дополнительного, если убрать все факторы, подщелачивающие кровь (питьевая вода с повышенным содержанием кальция и все молочные продукты).

Пример Якутии, где белково-липидный тип питания должен был бы способствовать повышению уровня холестерина в крови и этим повышать риск развития атеросклероза (как мы это уже видели в исследованиях Кейса), но где в действительности нет атеросклероза, убедительно подтверждает наш вывод, что сдвиг реакции крови в кислую сторону является основным фактором, препятствующим развитию атеросклероза.

Восточная Финляндия, где до последнего времени был самый высокий в Европе уровень потребления молочных продуктов (и самая высокая частота сердечно-сосудистых заболеваний), что способствовало значительному подщелачиванию крови и высокому риску развития атеросклероза, - это наиболее наглядный пример атерогенного действия молочных продуктов при одновременном высоком содержании кальция в местных природных водах.

В этой главе уже говорилось, что у долгожителей Нахичеванской республики наблюдается очень низкий уровень холестерина. Нет у этих долгожителей и атеросклероза. По холестериновой теории легко объяснить почему нет атеросклероза — а потому, что низок уровень холестерина. А почему низкий уровень холестерина у такого большого числа людей в столь почтенном возрасте — ответа на этот вопрос холестериновая теория не дает.

Перекисная гипотеза развития атеросклероза также не объясняет ни причины низкого уровня холестерина у долгожителей Нахичеванской республики, ни причины отсутствия атеросклероза у них. Но, согласно этой гипотезе, можно предположить, что долгожители названной выше республики каким-то образом успешно борются с супероксидом. Питается население этой республики разнообразной пищей, в том числе, в большом количестве и мясной. Но какой-то особой пищи с биоантиоксидантами в этой республике нет.

Обсуждаемый нами Нахичеванский феномен легко объясним с позиции новой теории развития атеросклероза, которую условно назовем теорией недостаточного подкисления крови. Согласно этой теории, атеросклероз развивается только в случаях недостаточного подкисления крови. Это как бы дальнейшее развитие перекисной гипотезы. А суть последней гипотезы в том, что провоцируют развитие атеросклероза свободные радикалы, а противостоять им могут только антиоксиданты. У долгожителей Нахичеванской республики антиоксидантной является сама кровь. Чуть выше уже было сказано, при каких условиях кровь может стать антиоксидантной. В Нахичеванской республике этому способствует природная вода с очень низким содержанием кальция (меньше 10 мг/л). Точно так же мы можем воспрепятствовать развитию атеросклероза любым иным подкисленном крови.

Итак, нам удалось, в отличие от холестериновой теории, уже с других позиций объяснить причину отсутствия атеросклероза у долгожителей названной выше республики.

А почему у этих же долгожителей наблюдается еще и очень низкий уровень холестерина - новая теория тоже дает объяснение, но об этом чуть позже. Сейчас же я приведу один любопытный пример, который может служить наглядной иллюстрацией достоверности новой теории развития атеросклероза. Давно известно, что нет атеросклероза у лиц, систематически употребляющих алкогольные напитки. По новой теории развития атеросклероза это обстоятельство объясняется систематическим и достаточным подкислением крови.

Какой же кислотой происходит подкисление крови при употреблении алкогольных напитков? Если это вино, то оно подкисливает кровь всеми имеющимися в нем органическими кислотами, в том числе и уксусной. А если это водка, то содержащийся в ней этиловый спирт тоже может незначительно подкисливать кровь, так как спирты тоже в некоторой степени являются слабыми кислотами. Но дело здесь в другом. Этиловый спирт, окисляясь в организме, превращается в ацеталь-дегид. Известно, что любой альдегид можно получить, если отнять два атома водорода у соответствующего спирта - это называется дегидрогенизацией спирта. Отсюда вытекает и происхождение слова альдегид - от сокращения двух слов Алкоголь ДЕГИДрогенезированный. Но ацетальдегид не накапливается в организме, потому что, только образовавшись, он тут же окисливается в уксусную кислоту. Эта кислота тоже окисливается до воды и углекислого газа, но окисливается постепенно в течение продолжительного времени. А до своего полного окисления она будет подкисливать кровь. То же самое можно сказать и об этиловом спирте, содержащемся во всех винах. Поэтому вино подкисливает кровь вначале содержащимися в нем органическими кислотами, а затем уксусной кислотой, получающейся из имевшегося в вине этилового спирта.

Продолжительное подкисление крови уксусной кислотой и является той причиной, в результате которой у любителей спиртного не развивается атеросклероз. Правда, имеется и еще одно небольшое дополнение к этому объяснению. В экспериментах над животными установлено, что при систематическом потреблении алкоголя заметно усиливается выведение из организма кальция. А снижение содержания кальция в крови приводит, как известно, к подкислению крови.

Известный Французский парадокс - смертность от сердечно-сосудистых заболеваний во Франции в три раза ниже, чем в США, тогда как средний уровень холестерина у американцев чуть ниже, чем у французов, а следовательно, ниже по холестериновой теории должно было бы быть и число названных выше заболеваний, - так вот этот парадокс объясняется тем, что французы пьют больше, чем американцы, алкогольных напитков, в основном вин. Как видим, французы подкисливают кровь преимущественно винами.

Не развивается атеросклероз и у любителей бега. И тоже по причине подкисления крови, но уже молочной кислотой.

А теперь попытаемся в деталях рассмотреть схему обмена холестерина в организме согласно новой теории и одновременно ответить на некоторые трудные вопросы предыдущих гипотез и теорий по атеросклерозу.

Всем клеткам организма необходим холестерин. Они его получают из тока крови, захватывая своими рецепторами, расположенными на их поверхности, частицы ЛПНП, несущие холестерин. Эти рецепторы вместе с захваченными ими частицами ЛПНП поступают внутрь клеток.

Здесь я должен сделать маленькое пояснение. Холестерин в ЛПНП содержится не в чистом виде, а в виде эфира. Эфир холестерина - это его соединение с жирной кислотой. А клетке нужен не эфир, а свободный холестерин. Поэтому частица ЛПНП, попав внутрь клетки вместе с захватившим ее рецептором, должна подвергнуться диссоциации, в результате которой из эфира высвободится холестерин и жирная кислота. А освободившийся рецептор возвращается вновь на поверхность клетки.

Весь этот механизм впервые был описан американскими учеными Брауном и Голдстейном и о нем уже говорилось выше. Эти же ученые, прошу прощения за повторение, выдвинули и гипотезу, согласно которой атеросклероз развивается по причине недостатка рецепторов на поверхности клеток, которые могли бы захватывать дополнительные частицы ЛПНП и тем самым снижать уровень холестерина в крови.

Новая теория развития атеросклероза (теория недостаточного подкисления крови) хорошо вписывается в этот механизм снабжения клеток холестерином и позволяет с новых позиций объяснить все его сбои.

Первый сбой начинается в процессе захвата рецептором частицы ЛПНП. И заключается он в том, что и рецепторы, и частицы ЛПНП имеет отрицательные заряды. И чем крупнее частица, тем больший она несет на себе отрицательный заряд. Как правило, рецепторы захватывают частицы с меньшим зарядом. И хотя М. Браун и Д. Голдстейн указывают на высокую избирательную способность рецепторов ЛПНП, в действительности же при щелочной реакции крови, когда преобладают отрицательные заряды, захват рецепторами частиц; ЛПНП значительно затруднен. В результате клетки испытывают холестериновый голод и в гипоталамус поступают соответствующие сигналы. В ответ гипоталамус дает команду печени увеличить синтез ЛПНП. Увеличенное количество частиц ЛПНП в крови увеличивает шанс захвата их рецепторами (увеличивается количество мишеней), но одновременно увеличивается и концентрация холестерина, циркулирующего в крови.

К этому же результату - увеличению числа частиц ЛПНП в крови - ведет и второе обстоятельство, также связанное с реакцией крови. Чуть выше уже говорилось, что поступающие внутрь клетки рецепторы вместе с захваченными ими частицами ЛПНП подлежат диссоциации, а для этого необходима достаточно кислая среда. И мы уже знаем из 2-ой главы, что мембраны клетки имеют протонные помпы, которые перекачивают протоны (а иначе говоря - ионы водорода) из омывающей клетку жидкости внутрь клетки. Причем в некоторых отсеках клетки рН среды может быть ниже 3 единиц, и это достаточно кислая среда. А чтобы создать внутри клетки избыток ионов водорода, необходимо, кроме протонных помп, иметь еще и сами протоны. То есть, в окружающей клетку жидкости должно быть достаточное количество ионов водорода. Но при щелочной реакции крови в ней больше ионов ОН, чем необходимых нам ионов водорода . В таком случае клетка может недобрать нужного ей количества протонов, а это приведет к тому, что находящийся в клетке в составе частиц ЛПНП эфир холестерина так и останется в виде эфира и клетка не получит необходимого ей холестерина. Она опять будет сигнализировать гипоталамусу о холестериновом голоде, а он опять будет давать команду на увеличение синтеза ЛПНП. В итоге уровень ЛПНП в крови будет очень высоким, а с возрастом станет еще выше, так как с возрастом увеличивается и щелочность крови - об этом нам красноречиво говорят большие отложения солей кальция в организме пожилых людей.

Кроме того, в клетках должна происходить еще и диссоциация комплекса рецептор - частица ЛПНП , а если она не происходит, то и рецептор останется внутри клетки и не сможет выйти на ее поверхность. И в этом заключается главная причина того, что на поверхности клетки может быть недостаточное количество рецепторов.

При кислой же реакции крови весь вышеописанный механизм работает исправно: для рецепторов ЛПНП достаточно будет и незначительного количества частиц ЛПНП в крови, чтобы произошел захват их рецепторами, так как и самих рецепторов будет много (каждый попавший внутрь клетки комплекс "рецептор — частица ЛПНП" будет диссоциирован, так как в клетке будет достаточно ионов водорода и освободившийся рецептор возвратится на поверхность клетки), а кроме того, и сами частицы ЛПНП могут сменить свой поверхностный заряд с отрицательного на положительный.

Вот почему у долгожителей Нахичеванской республики очень низкий уровень общего холестерина в крови - они живут на территории, где природные воды содержат очень мало кальция (меньше 10 мг/л), а это создает кислую реакцию крови. А кислая реакция крови благоприятна для холестеринового обмена в организме.

Новая теория развития атеросклероза позволяет по новому взглянуть и на роль частиц ЛПВП в холестериновом обмене. До сих пор мы говорили в основном о плохих частицах ЛПНП, которые и приводят к атеросклерозу, и надолго оставили без внимания хорошие частицы ЛПВП, которые забирают холестерин из артерий и как бы спасают нас от атеросклероза. Сегодня при диагностике атеросклероза определяют не общий уровень холестерина в крови, а соотношение между ЛПНП и ЛПВП. И если частиц ЛПНП больше, чем частиц ЛПВП, (что в большинстве случаев и диагностируется), то такая ситуация располагает к развитию атеросклероза, а обратная — исключает развитие атеросклероза. Отсюда вытекает естественное желоние любыми способами не только понизить концентрацию части ЛПНП, но и повысить содержание ЛПВП в крови. Но спасают ли самом деле нас от атеросклероза хорошие частицы ЛПВП, или их высокий уровень в крови говорит лишь о благополучии в холестериновом обмене? Попытаемся выяснить и это.

Новая теория развития атеросклероза предполагает достаточным условием для предотвращения развития атеросклероза лишь кислую реакцию крови, но никак не высокий уровень частиц ЛПВП. Для чего же тогда нужны частицы ЛПВП?

Мы уже знаем, что плохие частицы ЛПНП несут в клетки холестерин и они же способствуют развитию атеросклероза. А хорошие частицы ЛПВП как будто и предназначены для исправления негативного действия частиц ЛПНП - они собирают излишки холестерина с поверхности клеток и этим как бы снижают риск развития атеросклероз за. Но какова в действительности роль ЛПВП в холестериновом обмене и как можно повысить их концентрацию в крови, если они и в самом деле защищают нас от атеросклероза?

В действительности же роль ЛПВП в организме состоит не в том, чтобы препятствовать развитию атеросклероза, а в сугубо заготовительно-производственно-снабженческих функциях в системе холестеринового обмена. ЛПВП собирают все излишки холестерина, находящиеся на поверхности клеток, а также подбирают холестерин и триглицериды в потоке крови, остающиеся там после гибели ЛПНП и липопротеидов, транспортирующих жиры. Из собранного материала: ЛПВП производят эфиры холестерина и жирных кислот.

Обогащенные эфирами частицы ЛПВП затем отдают часть своих; запасов (эфиров) частицам ЛПНП, (которые понесут их в клетки, если будут захвачены рецепторами), а другую часть эфиров передают печени, которая приготовит из них желчные кислоты. Вот в этом, по существу, и заключается роль частиц ЛПВП в организме. Сами частицы ЛПВП, как и частицы ЛПНП, синтезируются печенью.

Но в судьбе частиц ЛПВП имеется и еще один интересный момент, который тоже легко объясняется новой теорией развития атеросклероза. Речь идет о производстве эфиров частицами ЛПВП. Если смотреть на этот процесс глазами медика, то в нем участвуют всевозможные энзимы. И недостаточную производительность этого процесса можно объяснить недостаточностью каких-то энзимов. А поэтому и способы активации этого процесса видятся в поисках средств, восполняющих недостающие энзимы (отсюда берет свое начало и укоренившийся в медицинской практике термин энзимотерапия). Чаще всего это медикаментозные средства.

А с точки зрения химика, реакция образования эфиров успешно идет только в среде с достаточным количеством ионов водорода.

Ион водорода атакует гидроксидную группу жирной кислоты, в результате чего разрывается связь гидроксида с углеродом и гидроксид соединяется с подошедшим ионом водорода, образуя молекулу воды. А молекула холестерина подходит к положительно заряженному углероду в остатке кислоты. При этом разрывается связь водорода с кислородом в гидроксидной группе холестерина и кислород образует новую связь с углеродом жирной кислоты, а в окружающую среду выделяется один ион водорода.

Из описания этой реакции ясно, как трудно она может протекать в условиях щелочной реакции крови, где каждый ион водорода находится в окружении многих ионов ОН-.

И далее. С точки зрения химика, эта же реакция образования эфиров обратима под воздействием воды и достаточного количества опять-таки ионов водорода. В результате получается свободный холестерин и жирная кислота, что и происходит внутри клетки, когда туда попадает частица ЛПНП и там имеется достаточно кислая среда.

Поэтому при достаточном количестве ионов водорода в крови (при кислой реакции крови) в ней быстро растут частицы ЛПВП и остается немного частиц ЛПНП, так как последние легко улавливаются рецепторами и легко диссоциируют внутри клеток. В результате клетки не испытывают холестеринового голода и не шлют жалоб гипоталамусу, а последний не дает команду печени на увеличение синтеза ЛПНП. Так при кислой реакции крови в холестериновом обмене создается низкая концентрация частиц ЛПНП и высокая ЛПВП. В этом случае последние являются как бы холестериновым депо, где он хранится в виде эфира.

А при щелочной реакции крови мало образуется частиц ЛПВП и много частиц ЛПНП, которым первые передают свой эфир, и поэтому в крови постоянно будет низкая концентрация частиц ЛПВП. Такая ситуация атерогенна, но мы ее до сих пор связывали не со щелочной реакцией крови, а с высокой концентрацией частиц ЛПНП и низкой концентрацией частиц ЛПВП. Но в действительности сами уровни и тех, и других частиц, как и уровень всего холестерина в крови, являются всего лишь следствием определенной реакции крови.

У многих видов животных, а особенно у пустынных с эволюционно низким водным обменом, реакция крови кислая, и, в связи с этим, у них наблюдается преобладание частиц ЛПВП над частицами ЛПНП.

Новая теория развития атеросклероза (недостаточного крови) включает в себя и все детали обмена кальция в организме. Не могло же изначально функционирование организма полагаться на какое-то дополнительное подкисление крови извне. По-видимому, организму достаточно было бы того подкисления, которое постоянно производится в нем углекислотой, если бы в крови был не столь высокий уровень кальция. Об этом более подробно говорилось во 2-ой главе, а здесь мы коснемся лишь отдельных моментов, связанных с кальцием и имеющих отношение к атеросклерозу.

Почти в каждой фиброзной бляшке имеются отложения солей кальция. Как правило, это углекислый или фосфорнокислый кальций. И та, и другая соль выпадает в осадок в щелочной среде. Это ли не первый сигнал о том, что, во-первых, кровь достаточно щелочная, а во-вторых, что соли кальция в крови находятся в состоянии, близком к насыщенному. Не говорит ли нам последнее обстоятельство и о том, что солей кальция в крови находится больше, чем это необходимо?

Кроме того, соли кальция, находящиеся в фиброзной бляшке, создают в ней еще более щелочную среду в сравнении с кровью. Не является ли и это обстоятельство дополнительным и достаточно влиятельным фактором для роста бляшки?

Мы уже знаем, что концентрация ионов кальция в крови может быть и низкой (до 4,8 мг/дл) - в районах с низким содержанием кальция в природных водах, и высокой (до 8,5 - 12,5 мг/дл) - в районах с высоким содержанием кальция в природных водах. При низком уровне кальция в крови организму легко поддерживать высокую эффективность своей антиоксидантной системы, а при высоком уровне кальция антиоксидантная система практически беспомощна и нам приходится надеяться только на антиоксиданты, потребляемые с пищей, или же на подкисление крови органическими кислотами.

Отложение солей кальция в артериях — известное и часто наблюдаемое явление. Артерии от этого становятся просто хрупкими и могут переломиться в любой момент. В Русском народном лечебнике П. Куреннова по этому поводу написано: "От употребления молока наши суставы черствеют, а артерии твердеют".

А вот что писал по этому поводу Поль Брэгг в книге "Чудо голодания":

Я вырос в той части Верджинии, где питьевая вода жесткая. Она насыщена такими неорганическими веществами, как натрий, железо и кальций. Многие мои родственники и друзья умирали от болезни почек. Почти все они преждевременно состарились, потому что неорганические вещества накапливаются на стенках артерий и вен, что ведет к их отвердению, а затем и к смерти человека. Один мой дядя умер, когда ему было лишь 48 лет. Врачи после вскрытия говорили, что его артерии были жестки, словно глиняные трубки — до такой степени их стенки пропитались неорганическими веществами.

Брэгг, конечно, допускает ошибку, относя натрий и железо к тем веществам, которые могут создавать жесткость воды и даже откладываться на стенках артерий. Только большое количество кальция делает воду очень жесткой в той части Верджинии, где жил Брэгг и его родственники. Но он верно заметил, что именно от жесткой виды проистекают многие болезни почек (смотрите главу 16-ую) и отвердевают артерии.

Высокое содержание кальция в крови сказывается не только на сдвиге реакции крови в щелочную сторону и на отложении солей кальция в организме, но и на тромбообразовании. Не зря же при всевозможных операциях для увеличения свертываемости крови оперируемому дают кальцийсодержащие препараты (например, хлористый кальций). В свертывании крови кальций играет одну из главных ролей.

В настоящее время идентифицировано 12 факторов свертывания крови, которым даны номера от I до XII.

Тромбообразованию способствует также и щелочная реакция крови, так как при такой реакции кровь становится более вязкой (а в скобках я еще раз замечу, что повышенная концентрация кальция в крови ведет к ощелочению последней).

Препятствует подкислению крови, как мы уже знаем из 2-ой главы, и большая емкость буферной системы крови, которая находится в прямой зависимости от концентрации кальция в крови. При большой емкости буферной системы крови даже незначительная потеря организмом углекислого газа приводит к дополнительному ощелачиванию крови. Такая ситуация происходит у каждого из нас во время сна. Снижение энергозатрат во время сна, а также глубокое дыхание приводят к снижению концентрации углекислого газа в крови, что приводит к увеличению щелочности крови (смотрите 5-ую и 11-ую главы). И это небезопасно для нашего здоровья.

А теперь посмотрим, что говорит по поводу кальция академик Е. Чазов, бывший министр здравоохранения СССР ("К тайнам жизни", газета "Известия", 12 марта 1988 г.):

Известно, что, например, при некоторых формах тяжелой гипертонии и других болезней сердца одним больным лекарство помогает, а другим нет. Когда изучили тромбоциты пациентов, которые не поддаются лечению, то оказалось, что лекарство не действует на клетку из-за увеличенного содержания в ней ионов кальция. То же происходило у больных стенокардией, которых не брал нитроглецирин. Как же усмирить ионы кальция? С помощью химической реакции, в которой активно участвует простагландин Е2 .Его выпускает опытный завод в Таллине. После трех-четырех вливаний этого простагландина клетка нормально реагирует на лекарство, состояние больных намного улучшается.

Как мы теперь понимаем, состояние больных может улучшаться от одного лишь снижения уровня кальция в крови, а для этого не обязательно прибегать к очередному лекарству (простагландину), а можно естественным образом снизить и потребление кальция, и его концентрацию и в крови, и в клетках. И необходимо нам низкое содержание кальция в клетках не только для эффективного приема нитроглицерина.

В итоге мы приходим к выводу, что снижение уровня кальция в крови в сочетании с подкисленном ее дают нам гарантию не только предотвращения развития атеросклероза, но и полного излечения от него. В_моей практике был случай полного выздоровления 50-летней женщины (Ганюшкиной Раисы Борисовны) от ишемической болезни сердца. А стаж болезни был около 20 лет. Переход же на бескальциевую воду, отказ от молочных продуктов и подкисление способствовало полному выздоровлению в течение четырех месяцев. И никаких лекарств.

АРМСТРОНГ И УОКЕР О ЛЕЧЕНИИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ

Об излечивании болезней сердца говорится и у Армстронга в книге "Живая вода":

Больной И., возраст средний. Наблюдался у терапевта в течение года по поводу заболевания сердца (клапаны). Часто терял сознание на улице, ... Постепенно приступы участились. Он пришел ко мне и я рекомендовал ему пить свою мочу. Я объяснил больному как растирать тело мочой, а вначале растирал его около двух часов своей собственной. Через 12 недель осмотр показал, что он совершенно здоров.

Стоит ли мне напоминать читателям, что лечебное действие мочи заключается в подкислении крови. И в приведенной цитате речь идет, по-видимому, об отложениях солей кальция в клапанах сердца. Бывают случаи, когда отложения кальция в клапанах сердца делают последние настолько хрупкими, что они отламываются. При подкислении же крови отложения солей кальция вымываются (об этом говорилось во 2-ой главе).

Читаем далее у Армстронга:

... люди с больными клапанами сердца могут, бережно относясь к себе и соблюдая диету, дожить до 90 лет. Но все же болезнь считается неизлечимой, если лечить лекарствами. Уринотерапия ее вылечивает.

Еще нам интересно было бы познакомиться с мнением Н. Уокера по поводу атеросклероза и его рецептами по лечению этой болезни.

Читаем у него. ("Лечение сырыми овощными соками"):

Артерии, атеросклероз и т. д. - результат нехватки органического кальция и избыток неорганического кальция в принимаемой пище, от которого кровеносные сосуды теряют эластичность, а кровь свертывается в венах. Неорганический кальций превращает эластичные стенки кровеносных сосудов в твердые трубки. Только сама природа в состоянии избавиться от этого недуга, но лишь при условии самого активного содействия больного.

Мы уже знаем, что не следует делить кальций на органический и неорганический, а поэтому стоит признать, что Уокер был прав, считая причиной атеросклероза принимаемый с пищей кальций.

Читаем далее:

Обширный склероз. Состояние, когда разрушается нервная система вследствие голодания нервных и мозговых клеток. Эта болезнь представляет самое яркое доказательство разрушительного действия крахмалов и круп, употребляемых в качестве пищи для людей. За время моих 50-летних наблюдений я не встречал ни единого случая полного исцеления у больных, употребляющих хлеб, крупы и другую содержащую крахмалы пищу.

В этой цитате причиной склероза назван крахмал, что, конечно же, не соответствует действительности. Но надо отдать должное опыту и наблюдательности автора, когда он говорит, что за время его 50-летних наблюдений он не встречал ни единого случая полного исцеления у больных, употреблявших хлеб, крупы и другую, содержащую крахмалы, пищу.

Из 8-ой главы мы уже знаем, что неполноценные растительные белки (а это пшеница и некоторые другие крупяные) вызывают большое ощелачивание крови. Поэтому при систематическом употреблении таких продуктов без обязательного подкисления больные атеросклерозом никак не смогут исцелиться, что собственно и наблюдал Уокер. Но в том же хлебе и во многих крупах углеводов больше, чем белков, поэтому Уокер правильно называет их углеводными. А углеводы эти представлены в виде крахмала, поэтому, повидимому, Уокер и допускал ошибку, считая, что это именно крахмал повинен в атеросклерозе. Но нас больше интересует не взгляд Уокера на причину этой болезни, а каким образом он пытался воздействовать на нее.

Так что же предлагает Уокер для борьбы с атеросклерозом? Нам желательно было бы к нему прислушаться - ведь у него многолетний врачебный опыт. Естественно, что Уокер при всех болезнях предлагает использовать сырые соки. В данном случае он предлагает использовать сок моркови и шпината. Сок моркови входит во все рецепты Уокера, поэтому он не является специфическим при атеросклерозе. Главным же средством при лечении атеросклероза в методике Уокера является, безусловно, сок шпината. Этому соку Уокер уделяет особое внимание. Что же в нем содержится? В нем содержатся витамины С и Е, и в большом количестве щавелевая кислота. Уокер пишет: ...следует помнить, что щавелевая кислота является ценным для нашего здоровья продуктом и нам следует ежедневно употреблять свежие соки содержащих ее овощей и что ...наибольшее количество органической щавелевой кислоты содержится в свежем шпинате. Напомню еще и такие слова Уокера: Щавелевая кислота легко соединяется с кальцием. Если эти оба вещества органические, то такое сочетание полезно и конструктивно, ибо щавелевая кислота способствует усвоению кальция.

Уокер, конечно, ошибается, когда говорит, что щавелевая кислота способствует усвоению кальция. Щавелевая кислота, соединяясь с кальцием, всегда образует совершенно нерастворимый в воде щавелевокислый кальций. И вот Уокер предлагает нам ежедневно употреблять эту кислоту, пусть даже и содержащуюся в овощах. Да еще и выпивать до трех литров свежих сырых соков ежедневно. Согласитесь, что это немалое количество. Но нам надо помнить, что именно таким способом Уокер предлагает нам вылечиться от атеросклероза.

И теперь нас интересует только один вопрос — почему для лечения атеросклероза Уокер остановился на щавелевой кислоте? Уокер не дает ответа на этот вопрос, по-видимому, только практика подсказала ему, что это (щавелевая кислота) наиболее действенное средство против атеросклероза.

А как бы мы ответили на этот вопрос? Если вспомнить, что новая теория развития атеросклероза, изложенная в этой главе, предполагает достаточным условием для предотвращения развития этой болезни всего лишь кислую реакцию крови, то Уокер достигает этого крови большим количеством сока шпината, то есть щавелевой кислотой, кстати, очень сильной кислотой. Кроме того, мы знаем, что высокий уровень кальция в крови делает кровь щелочной, а если значительно понизить уровень кальция в крови, то реакция последней станет кислой. При подкислении крови щавелевой кислотой выполняется и это условие - щавелевая кислота прочно связывает кальций, имеющийся в крови, снижая таким образом содержание ионов кальция в ней.

Как видите, с помощью щавелевой кислоты тоже можно бороться с атеросклерозом, но еще лучше не пользоваться этой кислотой, так как мы не можем быть уверены, что все кристаллы щавелевокислого кальция выйдут из организма, что у нас не образуются труднорастворимые оксалатные камни в почках. Мы лишь дополнительно можем убедиться, что и Уокер боролся с атеросклерозом кислотой. Но вместо щавелевой кислоты для подкисления крови мы можем воспользоваться любой другой органической кислотой, а снижения уровня кальция в крови следует добиваться путем уменьшения его потребления и с питьевой водой, и с продуктами питания, полностью исключая при этом все молочные продукты. Таким образом, атеросклероза может не быть только при кислой реакции крови.

Загрузка...