К числу явлений, которые мы считаем характерными для живых систем, относится способность обучаться и способность воспроизводить самих себя. Эти свойства, хотя и кажутся различными, тесно связаны между собой. Обучающееся животное — это животное, которое может преобразиться под действием своего прошлого окружения в другое существо и тем самым приспособиться к окружению в течение своей индивидуальной жизни. Размножающееся животное — это животное, которое может создавать других животных по своему подобию, по крайней мере приближенно, хотя подобие и не настолько полно, чтобы они не могли изменяться со временем. Если эти изменения сами окажутся наследуемыми, появляется сырой материал, над которым может работать естественный отбор. Если наследование касается поведения животного, то среди различных распространяющихся типов поведения некоторые окажутся благоприятными для продолжения существования расы и сохранятся, а другие окажутся вредными и будут устранены. Таким образом, происходит своеобразное расовое, или филогенетическое, обучение, в отличие от онтогенетического обучения индивидуума. И онтогенетическое, и филогенетическое обучение суть методы приспособления животного к окружающей среде.
Обе формы обучения, и в особенности филогенетическое, свойственны не только всем животным, но и растениям — и по существу всем организмам, которые в каком-либо смысле можно считать живыми. Однако значение этих двух форм обучения у различных видов живых существ может весьма различаться. У человека — и в меньшей степени у других млекопитающих — онтогенетическое обучение и индивидуальная приспособляемость достигли высшей точки. По существу, [c.253] можно сказать, что весьма большая часть филогенетического обучения человека была посвящена созданию возможности хорошего онтогенетического обучения.
Джулиан Хаксли в своем фундаментальном исследовании об уме птиц[179] показал, что у птиц способность к онтогенетическому обучению невелика. То же справедливо для насекомых, и в обоих случаях это может объясняться огромными требованиями, предъявляемыми к индивидууму полетом, и вытекающим отсюда поглощением способностей нервной системы, которые в противном случае могли бы быть применены к онтогенетическому обучению. Как ни сложны формы поведения птиц: полет, ухаживание, забота о птенцах, постройка гнезд, они выполняются правильно с первого раза, не требуя особого научения от матери.
Вполне уместно посвятить одну из глав этой книги двум взаимосвязанным проблемам: могут ли созданные человеком машины обучаться и могут ли они воспроизводить самих себя? Мы попытаемся показать, что они действительно могут и то и другое, и обрисуем технику обеих активностей.
Более простым из этих двух процессов является обучение, и здесь техническое развитие пошло дальше. Я буду говорить, в частности, об обучении играющих машин, которое дает им возможность совершенствовать свою стратегию и тактику на основании опыта.
Существует признанная теория игр — теория фон Неймана[180]. Она посвящена способу игры, который лучше рассматривать не с начала партии, а с конца. На последнем ходе партии игрок стремится сделать по возможности выигрышный ход, а если нельзя, то, по крайней мере, ход, приводящий к ничьей. На предыдущем этапе его противник стремится сделать ход, препятствующий другому игроку сделать выигрышный или ничейный ход. Если же он сам может сделать выигрышный ход, он сделает таковой, и это будет не предпоследний, а последний этап игры. Другой игрок на ходе, предшествующем этому ходу, будет пытаться действовать [c.254] так, чтобы все усилия его противника не помещали ему закончить партию выигрышным ходом, и т. д.
Существуют игры, как, например, в крестики и нулики, где вся стратегия известна и такую политику можно проводить с самого начала. Если это возможно, то это явно наилучший способ игры. Но во многих играх, как шахматы и шашки, наше знание недостаточно для полного осуществления подобной стратегии, и тогда мы можем лишь приблизиться к ней. Приближенная теория в стиле фон Неймана, как правило, учит игрока действовать с крайней осторожностью, исходя из допущения, что его противник — совершенный мастер.
Однако такая установка не всегда оправданна. На войне, являющейся родом игры, она, как правило, будет вести к нерешительным действиям, которые во многих случаях будут немногим лучше поражения. Приведу два исторических примера. Когда Наполеон сражался с австрийцами в Италии, его успех был обусловлен отчасти тем, что ему было известно ограниченное и традиционное военное мышление австрийцев. С полным основанием он мог полагать, что они не способны использовать новые, требующие решительных действий методы войны, введенные солдатами французской революции. Когда затем Нельсон сражался с объединенными флотами континентальной Европы, у него было то преимущество, что он командовал флотом, господствовавшим на морях в течение многих лет и выработавшим методы мышления, недоступные, как ему было хорошо известно, для противников. Если бы адмирал вместо того, чтобы полностью использовать это преимущество, действовал осторожно, исходя из допущения, что противник имеет такой же военно-морской опыт, он возможно, выиграл бы в конце концов войну, но не смог бы одержать столь быструю и решительную победу и установить непроницаемую морскую блокаду, которая в конечном счете привела к падению Наполеона.
Итак, в обоих случаях руководящим принципом была известная репутация командира и его противников, проявившаяся статистически в их прошлых действиях, а не стремление проводить совершенную игру против совершенного противника. Непосредственное применение метода фон Неймана в этих случаях не принесло бы пользы. [c.255]
Подобно этому, учебники шахматной теории написаны не с точки зрения фон Неймана. Они представляют собой собрания принципов, извлеченных из практического опыта шахматистов, игравших против других шахматистов высокой квалификации и больших знаний, и устанавливают определенные стоимости или веса, присваиваемые потере каждой фигуры, подвижности, господству над пространством, развитию сил и другим факторам, изменяющимся в ходе партии.
Не очень трудно сделать машины, которые будут играть в шахматы каким-то образом. Простое соблюдение законов игры, при котором делаются лишь разрешенные ходы, легко осуществимо на весьма простых вычислительных машинах. Для этой цели нетрудно приспособить обычную цифровую машину.
Теперь встает вопрос о политике в рамках правил игры. Всякие оценки фигур, господства, подвижности и т. д. внутренне допускают сведение к количественным выражениям, и, когда это сделано, становится возможным применить принципы шахматного учебника, чтобы на каждой стадии найти лучшие ходы. Такие машины созданы, и они будут играть очень хорошие любительские партии, но пока что не партии на уровне мастера.
Представьте себе, что вы играете в шахматы против такой машины. Чтобы сделать ситуацию справедливой, предположим, что вы играете заочно, не зная, что играете против машин, и, следовательно, без предубеждений. Естественно, как всегда бывает в шахматной игре, вы составите некоторое суждение о шахматной индивидуальности вашего противника. Вы обнаружите, что, когда на доске возникает дважды одно и то же положение, ваш противник будет реагировать каждый раз одинаковым образом, и вы решите, что его поведение весьма негибкое. Если какой-нибудь из ваших приемов достигнет цели, то этот прием всегда будет достигать цели при тех же самых условиях. Поэтому искусному игроку не очень трудно выработать надлежащую линию игры против противника-машины и все время обыгрывать ее.
Однако существуют машины, которые нельзя обыграть так тривиально. Предположим, что машина через каждые несколько игр делает перерыв и использует свои способности для другой цели. На этот раз она не [c.256] играет с противником, но исследует все предшествующие партии, записанные у нее в памяти, чтобы определить, какие веса различных оценок фигур, господства, подвижности и т. п. приводят чаще всего к выигрышу. Таким образом, она учится не только на своих неудачах, но и на успехах противника. После этого она заменяет свои прежние оценки новыми и начинает играть как другая, лучшая машина. Такая машина уже не будет иметь жесткой индивидуальности, и приемы, бывшие прежде успешными против нее, потерпят в конце концов неудачу. Более того, она может стечением времени усвоить нечто из стратегии своих противников.
Все это очень трудно осуществить в шахматах, и на практике метод не был разработан настолько, чтобы создать машину, способную играть в шахматы как мастер. Шашки представляют более легкую задачу. Равноценность фигур значительно уменьшает число рассматриваемых комбинаций. Кроме того, отчасти вследствие этой однородности, шашечная игра гораздо легче делится на отдельные стадии, нежели шахматная. Даже в шашках главная задача эндшпиля уже не в том, чтобы брать фигуры, а в том, чтобы входить в контакт с противником, добиваясь позиций, позволяющих брать фигуры. Оценка ходов в шахматной партии должна делаться независимо на различных стадиях. Не только эндшпиль отличается от миттельшпиля в важнейших отношениях, но и в дебютах выдвижение фигур в положение, обеспечивающее свободу движений для нападения и защиты, имеет гораздо большее значение, чем в миттельшпиле. Поэтому мы даже приближенно не можем удовольствоваться равномерной оценкой различных весовых факторов для игры в целом, но должны разбить процесс обучения на ряд отдельных стадий. Только тогда можно надеяться на создание обучающейся машины, которая сумеет играть в шахматы как мастер.
В этой книге уже упоминалась, в связи с задачей предсказания, идея сочетать программирование первого порядка, которое может быть в ряде случаев линейным, с программированием второго порядка, в котором для выбора стратегии, применяемой при программировании первого порядка, используется гораздо больший отрезок прошлого. Предсказывающее устройство использует [c.257] ближайшее прошлое полета самолета для предсказания будущего при помощи линейной операции; но отыскание правильной линейной операции есть статистическая задача, в которой долгое прошлое этого полета и прошлое многих подобных полетов используются для получения статистической основы.
Статистические исследования, необходимые для того, чтобы почерпать из долгого прошлого стратегию, предназначенную для короткого прошлого, являются в высшей мере нелинейными. Так, при использовании для предсказания уравнения Винера — Гопфа[181] коэффициенты уравнения разыскиваются нелинейным методом. В общем случае обучающаяся машина действует при помощи нелинейной обратной связи. Шашечная машина, описанная Сэмьюэлом[182] и Ватанабе[183], может выучиться обыгрывать своего программиста вполне закономерным образом после 10—20 рабочих часов программирования.
Философские идеи Ватанабе о применении программирующих машин чрезвычайно интересны. С одной стороны, метод доказательства элементарной геометрической теоремы, оптимальным образом отвечающий определенным критериям изящества и простоты, рассматривается Ватанабе как обучение игре, но не против индивидуального противника, а против, так сказать, «полковника Боуги»[184]. Другая игра, исследуемая Ватанабе, ведется при логической индукции, когда, желая построить теорию, оптимальную в таком же квазиэстетическом смысле, исходя из оценки экономичности, прямоты и т. п., мы определяем значения конечного числа параметров, оставленных свободными. Несмотря на ограниченность такой логической индуктивной игры, она вполне заслуживает изучения. [c.258]
Теория играющих машин проливает свет на многие виды борьбы, которые мы обычно не считаем играми. Любопытный пример — борьба мангусты со змеей. Как отмечает Киплинг в «Рикки-Тикки-Тави», мангуста не является невосприимчивой к яду кобры, хотя она до некоторой степени защищена своей жесткой шкурой, которую змее трудно прокусить. По описанию Киплинга, эта борьба — настоящая игра со смертью, состязание в мускульной ловкости и проворстве. Нет основания считать, что у мангусты движения быстрее или точнее, чем у кобры. Тем не менее мангуста почти всегда убивает кобру и выходит из борьбы без единой царапины. Как же ей это удается?
Я даю здесь объяснение, которое мне кажется верным и которое я составил, когда посмотрел такое сражение, а также кинофильм о других подобных сражениях. Я не гарантирую правильности ни своих наблюдений, ни своих интерпретаций. Мангуста начинает с ложного выпада, который вызывает бросок змеи. Мангуста увертывается и делает еще выпад, так что противники действуют в некотором ритме. Но эта пляска не статическая, а постепенно прогрессирующая. Свои выпады мангуста делает все раньше и раньше по отношению к броскам кобры и, наконец, нападает в тот момент, когда кобра вытянулась во всю длину и не может двигаться быстро. На сей раз мангуста не делает ложного выпада, а точным броском прокусывает мозг змеи и убивает ее.
Другими словами, образ действия змеи сводится к одиночным, не связанным между собой броскам, тогда как мангуста действует с учетом некоторого, хотя и не очень большого отрезка всего прошлого хода сражения. В этом отношении мангуста действует подобно обучающейся машине, и действительная смертоносность ее нападения основана на гораздо более высокой организации нервной системы.
Как видно из шедшего несколько лет тому назад фильма Уолта Диснея, нечто очень похожее происходит, когда одна из наших западных птиц, кукушка-подорожник (road runner), нападает на гремучую змею. Хотя птица сражается клювом и когтями, а мангуста — зубами, их образ действия очень схож. Другой замечательный пример — бой быков. Не нужно забывать, что [c.259] бой быков не спорт, а игра со смертью, в которой обнаруживается красота переплетающихся, взаимосвязанных движений быка и человека. Честность по отношению к быку здесь неуместна, и мы можем оставить без учета предварительное подстрекание и ослабление быка, имеющие целью довести борьбу до той ступени, где полностью проявляется взаимодействие схем движений противников. Искусный тореадор имеет большой запас возможных действий, подобных размахиванию плащом, различным уверткам и пируэтам и т. п., которые должны привести быка в позицию, где он, остановившись после броска вперед, вытянулся во всю длину в то самое мгновение, когда тореадор готов вонзить ему шпагу в сердце.
Сказанное выше о борьбе мангусты с коброй или тореадора с быком можно отнести также к физическим состязаниям человека с человеком. Рассмотрим поединок на рапирах. Он состоит из последовательности обманных движений, парирований и выпадов, причем каждый из противников стремится отвести рапиру другого настолько, чтобы иметь возможность попасть в него, не раскрываясь самому и не подвергая себя ответному удару. Точно так же в теннисном чемпионате не достаточно хорошо подать или отбить мяч в каждом отдельном ударе; стратегия игры состоит в том, чтобы рядом отражений последовательных подач постепенно ухудшить положение противника настолько, что в конце концов ему трудно будет отразить мяч как следует.
И эти физические состязания, и игры такого рода, какие мы предполагали для играющих машин, содержат тот же самый элемент обучения через накопление опыта о навыках противника и о своих собственных. То, что верно относительно игр физического столкновения, верно и относительно состязаний, в которых умственный элемент представлен сильнее, таких, как война и игры, имитирующие войну, посредством которых наши штабные офицеры приобретают военный опыт. Это верно как для классической войны на суше и на море, так и для новой, еще не испытанной войны с атомным оружием. Во всех этих столкновениях можно применить некоторую механизацию, аналогичную механизации шашек при помощи обучающихся машин. [c.260]
Самая большая опасность сейчас — III мировая война. Заслуживает внимания вопрос: в какой мере эта опасность может корениться в неосмотрительном применении обучающихся машин? Много раз я слышал утверждение, что обучающиеся машины не могут подвергнуть нас каким-либо новым опасностям, потому что мы можем выключить их, когда захотим. Но действительно ли можем? Чтобы действительно выключить машину, мы должны получить информацию, что наступило опасное положение. То обстоятельство, что мы создали машину, еще не гарантирует, что мы будем иметь надлежащую информацию для такого вмешательства. Этот вывод уже содержится неявно в утверждении, что шашечная машина может обыграть своего программиста, и притом после очень небольшого времени подлаживания к нему. Кроме того, самое быстродействие современных цифровых машин может воспрепятствовать нам заметить и продумать признаки опасности.
Мысль о нечеловеческих устройствах, наделенных большим могуществом и большой способностью вести свою политику, и об их опасности не имеет в себе ничего нового. Ново лишь то, что теперь мы располагаем эффективными устройствами такого рода. В прошлом подобные возможности постулировались для методов магии и волшебства, составляющих тему множества легенд и народных сказок. В этих сказках тщательно разбирается моральное положение волшебника. Я уже рассматривал некоторые аспекты легендарной этики волшебства в своей предыдущей книге, озаглавленной «Человеческое использование человеческих существ»[185]. Повторю здесь кое-что из сказанного там, чтобы связать это с обучающимися машинами.
Хорошо известна волшебная сказка из стихотворения Гёте «Ученик чародея». В ней чародей оставляет своего ученика и помощника одного, приказав ему принести воды. Ленивый и хитрый юноша поручает эту работу метле, произнеся волшебные слова, слышанные им от учителя. Метла покорно делает за него работу и не [c.261] хочет остановиться. Юноша едва не тонет. Он обнаруживает, что не выучил или забыл второе заклинание, которое должно остановить метлу. В отчаянии хватает он метлу, переламывает ее о колено и к ужасу своему видит, что обе половины продолжают носить воду. К счастью, прежде чем он погиб, возвращается учитель, произносит Властное Слово, останавливающее метлу, и задает порядочный нагоняй ученику.
В «Тысяче и одной ночи» есть сказка о рыбаке и джине. Рыбак вытащил сетью кувшин, запечатанный печатью Соломона. В этот сосуд Соломон заключил мятежного джина. Джин выходит в виде гигантского облака дыма и говорит рыбаку, что в первые годы своего заточения он хотел вознаградить своего спасителя могуществом и богатством, а теперь решил убить его тут же на месте. К счастью для рыбака, ему удается уговорить джина войти опять в бутылку, которую он бросает на дно океана.
Еще страшнее притча об обезьяньей лапе, принадлежащая перу английского писателя начала текущего столетия У.У. Джекобса. Старый, удалившийся на покой английский рабочий сидит за столом с женой и другом, вернувшимся из Индии британским сержантом. Сержант показывает хозяевам талисман в виде высушенной, сморщенной обезьяньей лапы. Один индийский святой человек, хотевший доказать, как безумно искушать судьбу, наделил эту лапу способностью исполнить три желания каждого из трех человек. Солдат говорит, что не знает первых двух желаний первого владельца, но последнее было — смерть. Сам он, объявляет сержант друзьям, второй владелец, но не будет рассказывать о своих страшных переживаниях. Он бросает лапу в огонь, однако его друг спасает лапу и хочет испытать ее силу. Его первое желание — получить 200 фунтов стерлингов. Вскоре раздается стук в дверь, и в комнату входит служащий фирмы, где работает его сын. Отец узнает, что сын убит машиной, но фирма, хотя и отклоняет от себя всякую ответственность, желает предложить отцу вознаграждение в 200 фунтов. Убитый горем, отец называет свое второе желание — чтобы сын вернулся, и когда опять раздается стук в дверь и она открывается, появляется нечто, представляющее собой — об этом много не говорится — призрак [c.262] сына. Последнее желание — чтобы призрак удалился прочь[186].
Суть всех этих историй в том, что волшебные силы выполняют все дословно, и если мы просим у них для себя какой-либо дар, мы должны просить то, что нам действительно желательно, а не то, что нам кажется таковым. Новые и реальные силы обучающейся машины также выполняют указания буквально. Если мы программируем машину на победу в войне, то должны ясно представлять себе, как мы понимаем победу. Обучающаяся машина должна программироваться опытом. Единственный опыт ядерной войны, который не приводит сразу же к катастрофе, — это опыт военной игры. Если мы хотим использовать этот опыт как руководство для нашего поведения в действительном кризисе, то ценности победы, которые мы принимали в играх программирования, должны быть теми самыми ценностями, к которым мы стремились бы в глубине души в действительной войне. Ошибка в этом отношении может означать лишь немедленную, полную и окончательную гибель. Мы не можем рассчитывать на то, что машина будет подражать нам в тех предрассудках и эмоциональных компромиссах, благодаря которым мы позволяем себе называть разрушение победой. Если мы требуем победы и не знаем, что подразумеваем под этим, мы встретимся с призраком, стучащимся к нам в дверь.
На этом расстанемся с обучающимися машинами. Теперь следует сказать кое-что о самораспространяющихся машинах. Здесь важны оба слова: «машина» и «самораспространяющаяся». Машина — не только материальная форма, но и средство для достижения определенных целей. И самораспространение — не просто создание осязаемой копии, но и создание копии, способной к тем же самым функциям.
Здесь мыслимы два разных подхода. Один из них, чисто комбинаторный, связан с вопросом: может ли машина иметь достаточно много частей и достаточно [c.263] сложную структуру, чтобы самовоспроизведение могло быть в числе ее функций? На этот вопрос дал положительный ответ покойный Джон фон Нейман. Другой вопрос касается действительной рабочей процедуры для построения самовоспроизводящихся машин. Здесь я ограничусь одним классом машин, который, хотя и не охватывает всех машин, отличается большой общностью. Я имею в виду нелинейные преобразователи.
Названные машины представляют собой устройства, где входным сигналом служит одна функция времени, выходным — другая. Выходной сигнал полностью определяется прошлым входного сигнала; но, вообще говоря, при сложении входных сигналов соответствующие выходные сигналы не складываются. Такие устройства называются преобразователями. Общим свойством всех преобразователей, линейных или нелинейных, является инвариантность относительно сдвига во времени. Если машина выполняет некоторую функцию, то при сдвиге входного сигнала назад во времени выходной сигнал сдвигается назад на такой же интервал.
Наша теория самовоспроизводящихся машин основана на некотором каноническом представлении нелинейных преобразователей. Понятия импеданса и адмиттанса, столь необходимые в теории линейных систем, здесь не вполне пригодны. Нам придется сослаться на новые методы получения такого представления, разработанные отчасти мною[187] и отчасти профессором Деннисом Габором[188] из Лондонского университета.
Хотя методы профессора Габора и мои собственные приводят к построению нелинейных преобразователей, они линейны в том смысле, что выходной сигнал нелинейного преобразователя представляется в них как сумма выходных сигналов комплекта нелинейных преобразователей, на которые подается один и тот же входной сигнал. Указанные выходные сигналы складываются с переменными линейными коэффициентами. Это [c.264] позволяет нам при расчете и задании нелинейного преобразователя применить теорию линейных разложений. В частности, можно разыскивать коэффициенты составляющих элементов методом наименьших квадратов. Если сюда еще добавить метод статистического усреднения по множеству всех входных сигналов, которые могут поступать в наше устройство, то получится, по существу, один из разделов теории ортогональных разложений. Такую статистическую основу для теории нелинейных преобразователей можно получить фактическим изучением прошлых статистик входных сигналов, используемых в каждом частном случае.
Таковы, в общих чертах, методы Габора. Мои методы по существу аналогичны, но статистическая основа моей работы несколько иная.
Хорошо известно, что электрический ток не является непрерывным, а представляет собой поток электронов, подверженный статистическим отклонениям. Эти статистические флюктуации можно описать достаточно хорошо с помощью теории броунова движения или аналогичной теории дробового эффекта (лампового шума), о которых я собираюсь говорить в следующей главе. Во всяком случае, можно создать прибор, производящий стандартный дробовой шум с весьма специфическим статистическим распределением, и такой прибор выпускается промышленностью. Заметим, что ламповый шум является в некотором роде универсальным входным сигналом, поскольку его флюктуации, если брать их за достаточно долгое время, будут рано или поздно приближаться к любой данной кривой. Для лампового шума существует весьма простая теория интегрирования и усреднения.
С помощью статистик лампового шума легко построить замкнутое множество нормальных и ортогональных нелинейных операций. Если входные сигналы, подвергаемые этим операциям, имеют статистическое распределение, присущее ламповому шуму, то среднее произведение выходных сигналов двух составляющих элементов нашего нелинейного преобразователя, взятое по статистическому распределению лампового шума, будет равно нулю. Кроме того, средний квадрат выходного сигнала каждого устройства можно нормировать к единице. [c.265]
Тогда для разложения нелинейного преобразователя общего вида по этим составляющим элементам можно применить известную теорию ортонормальных функций.
Конкретно, наши устройства дают выходные сигналы, представляющие собой произведения многочленов Эрмита от коэффициентов Лагерра для прошлого отрезка входного сигнала. Это подробно изложено в моих «Нелинейных задачах в теории случайных процессов».
Конечно, трудно найти среднее непосредственно по множеству возможных входных сигналов. Эта трудная задача становится разрешимой только потому, что дробовые входные сигналы обладают свойством, которое называется метрической транзитивностью или эргодичностью. Любая интегрируемая функция от параметра распределения дробовых входных сигналов имеет почти во всех случаях среднее по времени, равное среднему по множеству. Вследствие этого мы можем взять два прибора, на которые поступает один и тот же дробовой шум, и найти среднее их произведение по всему множеству возможных входных сигналов путем перемножения их выходных сигналов и усреднения полученного произведения по времени. Для всех этих процессов необходимы лишь операции сложения напряжений, перемножения напряжений и усреднения по времени, для которых имеются соответствующие устройства. Фактически для методики Габора требуются те же устройства, что и для моей методики. Один из его учеников изобрел весьма эффективный и недорогой перемножитель, основанный на пьезоэлектрическом эффекте в кристалле, находящемся в поле двух магнитных катушек.
Итак, любой неизвестный нелинейный преобразователь мы можем имитировать суммой линейных членов, обладающих каждый заданными характеристиками и регулируемым коэффициентом. Коэффициент можно найти как среднее произведение выходных сигналов неизвестного преобразователя и соответствующего известного преобразователя, когда их входы подключены к одному и тому же генератору дробового шума. Более того, вместо того, чтобы считывать результат на шкале прибора и переносить его вручную в соответствующий преобразователь, моделируя устройство по частям, [c.266] можно без большого труда осуществить автоматический перенос коэффициентов в цепи обратной связи. В итоге нам удалось создать белый ящик, потенциально способный приобрести характеристики любого нелинейного преобразователя, и затем сделать его подобным данному преобразователю — черному ящику, подав на входы приборов одну и ту же случайную функцию и соединив их выходы таким образом, чтобы получить надлежащую комбинацию без всякого вмешательства с нашей стороны.
Я спрашиваю, будет ли это философски очень разниться от того, что происходит в организме, когда ген действует как шаблон, формирующий другие молекулы того же гена из неопределенной смеси аминокислот и нуклеиновых кислот, или когда вирус формирует другие подобные себе молекулы того же вируса из тканей и соков организма-хозяина. Я совсем не утверждаю, что процессы одинаковы в деталях, но утверждаю, что философски они представляют собой весьма сходные явления. [c.267]
В предыдущей главе я рассматривал вопросы обучения и самораспространения в применении к машинам и, по крайней мере по аналогии, к живым системам. Здесь я повторю некоторые соображения, которые высказал в предисловии и которые намереваюсь использовать сейчас. Как уже отмечалось выше, эти два явления тесно связаны между собой: первое служит основой для приспособления индивидуума к окружению через опыт, что можно назвать онтогенетическим обучением, а второе, поскольку оно дает материал, с которым может работать изменчивость и естественный отбор, служит основой для обучения филогенетического. Как я уже указывал, млекопитающие, и в частности человек, приспособляются к своему окружению в значительной мере путем онтогенетического обучения, а у птиц, с их весьма разнообразными типами поведения, которые не приобретаются при жизни особи, гораздо большее значение имеет филогенетическое обучение.
Мы видели важность нелинейных обратных связей в возникновении обоих процессов. Настоящая глава посвящена изучению одной конкретной самоорганизующейся системы, в которой нелинейные явления играют большую роль. Здесь описывается то, что происходит, по моему мнению, при самоорганизации электроэнцефалограмм, или электрических волн головного мозга.
Прежде чем обсуждать эту тему по существу, я должен сказать несколько слов о том, что такое волны головного мозга и как их строение можно подвергнуть точному математическому исследованию. Уже много лет было известно, что деятельность нервной системы сопровождается определенными электрическими потенциалами. Первые наблюдения в этой области восходят к началу прошлого столетия и были сделаны Вольтой и Гальвани на нервно-мышечных препаратах лягушачьей [c.268] ноги. Так родилась наука электрофизиология. Однако до конца первой четверти нашего столетия указанная наука развивалась довольно медленно.
Стоит подумать, почему развитие этой ветви физиологии было таким медленным. Для исследования физиологических электрических потенциалов сперва применялись гальванометры. Они имели два недостатка. Во-первых, вся энергия, необходимая для перемещения катушки или стрелки прибора, поступала из самого нерва и была очень мала. Второе затруднение заключалось в том, что в тогдашних гальванометрах подвижные части имели довольно значительную инерцию и для приведения стрелки в строго определенное положение необходима была значительная устанавливающая сила, т. е. гальванометр неизбежно был не только регистрирующим, но и искажающим прибором. Самым лучшим из прежних физиологических гальванометров был струнный гальванометр Эйнтговена, в котором подвижные части сведены к одной нити. Как ни превосходен был этот прибор по тому времени, он не был достаточно хорош, чтобы регистрировать малые электрические потенциалы без больших искажений.
Таким образом, электрофизиологии пришлось дожидаться появления новой техники. То была электронная техника в двух формах. Одна из них восходит к открытию Эдисоном некоторых эффектов проводимости газов, откуда пошло применение электронной лампы для усиления. В результате стало возможным преобразовывать достаточно верно слабые напряжения в сильные и тем самым перемещать оконечные элементы регистрирующего прибора при помощи энергии, не исходящей от нерва, но управляемой им.
Второе изобретение также связано с электрическим током в вакууме и называется катоднолучевым осциллографом. Благодаря осциллографу стало возможно применять в качестве подвижной части прибора гораздо более легкий якорь, нежели в любом предыдущем гальванометре, а именно поток электронов. С помощью двух этих устройств, взятых порознь или вместе, физиологи нашего столетия сумели точно проследить изменение во времени малых напряжений, что было совершенно вне возможностей точных приборов XIX века.
Подобными методами смогли получить точные [c.269] записи изменения во времени весьма малых потенциалов между двумя электродами, помещенными на кожу головы или введенными в мозг. Хотя эти потенциалы наблюдались и в XIX веке, возможность получения новых точных записей возбудила 20—30 лет тому назад большие надежды у физиологов. Ведущими в использовании таких приборов для непосредственного изучения деятельности мозга были Бергер в Германии, Эдриан и Мэттьюс в Англии и Джаспер, Дэйвис и супруги Гиббсы в Соединенных Штатах.
Надо признать, что последующее развитие электроэнцефалографии не оправдало розовых надежд, которые питали первые исследователи в этой области. Полученные ими данные записывались чернильным самописцем. Это чрезвычайно сложные и неправильные кривые; и хотя можно было различить некоторые преобладающие частоты, как, например, альфа-ритм с частотой около 10 колебаний в секунду, записи чернилами были мало пригодны для дальнейшей математической обработки. В результате электроэнцефалография стала больше искусством, чем наукой, и зависела от способности тренированного наблюдателя распознавать определенные свойства чернильной кривой на основании большого опыта. Это вызывало весьма серьезный упрек, что истолкование электроэнцефалограмм делается в значительной мере субъективным.
В конце 20-х — начале 30-х годов я заинтересовался гармоническим анализом непрерывных процессов. Хотя физики ранее уже рассматривали такие процессы, математическая теория гармонического анализа почти вся ограничивалась изучением либо периодических процессов, либо процессов, стремящихся в некотором смысле к нулю с возрастанием времени в положительном или отрицательном направлении. Моя работа была первой попыткой поставить гармонический анализ непрерывных процессов на твердую математическую основу. При этом я нашел, что главным здесь является понятие автокорреляции, которое уже применял Дж. И. Тэйлор (ныне сэр Джеффри Тэйлор) при изучении турбулентностей[189]. [c.270]
Автокорреляция для функции времени f(t) представляет собой временно́е среднее от произведения f(t+τ) на f(t). Удобно вести комплексные функции времени, если даже в реальных случаях мы рассматриваем действительные функции. Тогда автокорреляция становится равной среднему произведению f(t+τ) на величину, сопряженную с f(t). Работаем ли мы с действительными или с комплексными функциями, спектр мощности функции f(t) равен преобразованию Фурье от ее автокорреляции.
Я уже говорил о непригодности чернильных записей для дальнейшей математической обработки. Прежде чем ожидать многого от идеи автокорреляции, необходимо было заменить чернильные записи какими-либо другими, более пригодными.
Одним из лучших способов фиксации малых флюктуирующих напряжений для дальнейшей обработки — применение магнитной ленты. Она позволяет сохранять флюктуирующее электрическое напряжение в виде постоянной записи, которую можно затем использовать когда угодно. Один из таких приборов был придуман около десяти лет тому назад в научно-исследовательской лаборатории электроники Массачусетсского технологического института под руководством проф. Уолтера А. Розенблита и д-ра Мэри А. Б. Бразье[190].
В этом приборе применяется запись на магнитную ленту с частотной модуляцией. Дело в том, что считывание всегда связано с некоторым стиранием магнитной ленты. При записи с амплитудной модуляцией стирание приводит к изменению хранимого сообщения, и при последовательных считываниях ленты мы по существу имеем дело с меняющимся сообщением.
При частотной модуляции также происходит некоторое стирание, но приборы, посредством которых мы читаем ленту, сравнительно нечувствительны к амплитуде и считывают только частоту. Пока лента не сотрется настолько, что станет совершенно неразборчива, частичное стирание ленты не искажает значительно сообщения, которое она хранит. Поэтому ленту можно [c.271] читать много раз почти с такой же точностью, как и при первом считывании.
Как следует из самого понятия автокорреляции, нам понадобится механизм, задерживающий считывание ленты на регулируемый интервал времени. Если отрывок записи длительности А пропустить через прибор с двумя последовательными считывающими головками, то образуются два одинаковых, но сдвинутых во времени сигнала. Временной сдвиг зависит от расстояния между считывающими головками и от скорости подачи ленты, и его можно менять по нашему желанию. Мы можем обозначить один сигнал через f(t), а другой — через f(t+τ), где τ — временной сдвиг. Произведение этих сигналов можно, например, получить при помощи квадратических детекторов и линейных смесителей, используя тождество
4ab = (a+b)2—(a—b)2 (10.01)
Это произведение можно приближенно усреднить на интегрирующей реостатно-емкостной цепи, имеющей большую постоянную времени сравнительно с длительностью А нашей выборки. Полученное среднее [c.272] пропорционально значение автокорреляционной функции при задержке τ. Повторение процесса при различных τ даст некоторый ряд значений автокорреляции (или, вернее, выборочной автокорреляции за большое время включения А). На рис. 9 показан график одной реальной автокорреляции такого рода[191]. Заметим, что здесь показана лишь половина кривой, так как автокорреляция для отрицательных времен совпадает с автокорреляцией для положительных времен, по крайней мере, в случае, когда мы отыскиваем автокорреляцию действительной кривой.
Рис. 9. Автокорреляция
Заметим, что подобные автокорреляционные кривые применялись уже много лет в оптике и что прибором, с помощью которого их получали, был интерферометр Майкельсона (рис. 10). Интерферометр Майкельсона посредством системы зеркал и линз разделяет световой луч на две части, которые посылаются по путям разной длины и затем вновь соединяются в один луч. Различные длины путей вызывают различные задержки во [c.273] времени, и результирующий луч будет равен сумме двух отражений входящего луча, которые можно опять обозначить через f(t) и f(t+τ). Если измерить чувствительным фотометром силу луча, то его показание будет пропорционально квадрату суммы f(t)+ f(t+τ) и, следовательно, должно содержать член, пропорциональный автокорреляции. Другими словами, яркость интерференционных полос даст нам автокорреляцию (с точностью до линейного преобразования).
Рис. 10. Интерферометр Майкельсона
Все это неявно содержалось в работе Майкельсона. Нетрудно видеть, что при выполнении преобразования Фурье над интерференционными полосами интерферометр дает нам энергетический спектр света и тем самым по существу является спектрометром. Более того, это самый точный из известных нам типов спектрометров.
Спектрометр такого типа получил должное признание лишь в последние годы. Мне говорили, что теперь он принят в качестве важного средства прецизионных измерений. Отсюда видно, что методы обработки автокорреляционных записей, которые я сейчас изложу, применимы также в спектроскопии и позволяют довести до предела ту информацию, которую может дать спектрометр.
Рассмотрим, как получить спектр мозговой электрической волны по автокорреляции. Пусть C(t) — автокорреляция функции f(t). Тогда C(t) можно записать в виде
(10.02)
Здесь F всегда является возрастающей или по меньшей мере неубывающей функцией от ω; мы будем называть ее интегральным спектром функции f. Вообще говоря, этот интегральный спектр состоит из трех аддитивных частей. Линейчатая часть спектра возрастает лишь на счетном множестве точек. После ее исключения останется непрерывный спектр, равный, в свою очередь, сумме двух частей: одна из них возрастает только на множестве меры нуль, а другая абсолютно непрерывна и является интегралом положительной интегрируемой функции.
Будем впредь полагать, что первые две части спектра: дискретная часть и непрерывная часть, возрастающая [c.274] на множестве меры нуль, — отсутствуют. В этом случае можно написать
(10.03)
где φ (ω) — спектральная плотность. Если φ (ω) принадлежит к классу Лебега L2, то можно написать
(10.04)
Как видно по автокорреляционной кривой мозговых волн, преобладающая часть мощности спектра сосредоточена в окрестности частоты 10 гц. В таком случае φ (ω) будет иметь форму, подобную следующей диаграмме:
Два пика около 10 и —10 суть зеркальные изображения друг друга.
Известны различные способы численного выполнения разложения Фурье, включая применение интегрирующих приборов и цифровые вычислительные процессы. В обоих случаях неудобством является то, что главные пики расположены около 10 и —10, а не около 0. Но существуют способы переноса гармонического анализа в окрестность нулевой частоты, которые весьма сокращают объем работы. Заметим, что
(10.05)
Другими словами, если умножить С(t) на е20π it, то новый гармонический анализ даст нам полосу вблизи нулевой частоты и другую полосу вблизи частоты +20. Таким образом, если произвести такое умножение и исключить полосу вблизи +20 методами усреднения, равносильными применению волнового фильтра, то мы сведем наш гармонический анализ к гармоническому анализу в окрестности нулевой частоты. [c.275]
Но
(10.06)
Следовательно, действительная и мнимая части функции С(t)е20πit равны соответственно
С(t) cos 20πt и iС(t) sin 20πt.
Частоты в окрестности +20 можно исключить, пропустив эти две функции через фильтр нижних частот, что равносильно усреднению по интервалу в одну двадцатую секунды или более.
Пусть мы анализируем кривую, у которой бо́льшая часть мощности сосредоточена вблизи частоты 10 гц. Умножив эту кривую на косинус или синус от 20πt, получим кривую, являющуюся суммой двух составляющих: одна из них ведет себя локально примерно так:
а другая — примерно так:
Усреднив вторую кривую по интервалу в 0,1 сек, получим нуль. Усреднив первую кривую, получим половину максимальной высоты. Таким образом, сглаживая С(t) cos 20πt и iС(t) sin 20πt, мы получим хорошие приближения соответственно к действительной и мнимой части некоторой функции, имеющей все свои частоты в окрестности нуля, и эта функция будет обладать таким же распределением частоты вокруг нуля, какое одна часть спектра кривой C(t) имела вокруг 10.
Обозначим теперь через K1(t) результат сглаживания произведения С(t) cos 20πt, а через K2(t) — результат сглаживания произведения С(t) sin 20πt. Мы хотим найти [c.276]
(10.07)
Выражение (10.07) должно быть действительным, так как это спектр. Следовательно, оно будет равно
(10.08)
Другими словами, если найти косинус-преобразование от K1 и синус-преобразование от K2 и сложить их друг с другом, то мы получим смещенный спектр функции f. Можно показать, что K1 будет четной, a K2 — нечетной функцией. Стало быть, если определить косинус-преобразование от K1 и прибавить или вычесть синус-преобразование от K2, мы получим спектр соответственно справа и слева от центральной частоты на расстоянии ω. Этот метод получения спектра мы будет называть методом гетеродинирования.
Коль скоро автокорреляционные кривые локально представляют собой почти синусоиду с периодом, скажем, 0,1 сек (как в случае автокорреляции мозговых волн на рис. 9), то вычисления, связанные с методом гетеродинирования, можно упростить. Мы берем нашу автокорреляцию через интервалы в 1/40 сек. Затем берем последовательность значений при 0, 1/20, 2/20, 3/20 сек и т. д. и меняем знак на дробях с нечетным числителем. Усредняя по очереди эти значения по достаточно длинному отрезку, получим величину, приблизительно равную K1(t). Взяв аналогично значения автокорреляции при 1/40, 3/40, 5/50 сек и т. д. с чередующимися знаками и проведя такое же усреднение, получим приближенную величину K2(t). Дальнейшая процедура очевидна.
Оправдание этой процедуры следующее. Распределение массы, равное
1 в точках 2πn,
—1 в точках (2n+1)π и
0 во всех остальных точках,
если его подвергнуть гармоническому анализу, будет [c.277] содержать косинусоидальную составляющую с частотой 1 и не будет иметь синусоидальной составляющей. Точно так же распределение массы, равное
1 при (2n+1/2)π,
—1 при (2n—1/2)π и
0 во всех остальных точках,
будет содержать синусоидальную составляющую с частотой 1 и не будет иметь косинусоидальной составляющей. Оба распределения будут содержать также составляющие с частотами N; но поскольку исходная наша кривая не содержит или почти не содержит таких частот, эти члены будут незаметны. Это значительно упрощает наше гетеродинирование, так как нам нужно умножать лишь на множители +1 или —1.
Мы нашли метод гетеродинирования очень полезным при гармоническом анализе мозговых волн, когда в распоряжении имеются лишь ручные средства и когда объем работы становится подавляющим, если выполнять все шаги гармонического анализа без помощи гетеродинирования. Все наши первые исследования по гармоническому анализу спектров мозга выполнены методом гетеродинирования. Но поскольку со временем появилась возможность применять цифровую вычислительную машину, для которой объем работы не столь существен, многие из последующих анализов были проведены прямыми методами, без гетеродинирования. Однако еще немало работы придется делать в местах, где нет цифровых вычислительных машин, и я не считаю метод гетеродинирования устаревшим в практическом отношении.
Я привожу здесь куски одной автокорреляционной кривой, полученной при наших исследованиях. Ввиду того, что она охватывает большую серию данных, воспроизвести ее полностью затруднительно, и мы даем только се начало, в окрестности τ =0 и один из дальнейших кусков.
Рис. 11 изображает результат гармонического анализа автокорреляционной кривой, часть которой показана на рис. 9. В данном случае результат был получен на быстродействующей цифровой вычислительной машине[192], [c.278] но мы обнаружили хорошее согласие между этим спектром и вычисленным ранее вручную методами гетеродинирования, по крайней мере вблизи сильной части спектра.
Рис. 11. Спектр
Рассматривая кривую, мы обнаруживаем замечательное падение мощности в окрестности частоты 9,05 гц. Точка, в которой спектр по существу исчезает, выражена весьма отчетливо и дает объективную величину, которая может быть проверена с гораздо большей точностью, чем любая величина, встречавшаяся до сих пор в электроэнцефалографии. Существуют указания, что на других кривых, которые мы получили, но которые несколько сомнительны в своих подробностях, за этим внезапным падением мощности довольно скоро следует крутой подъем. Таким образом, кривая имеет здесь как бы впадину. Но даже если догадка не верна, многое говорит за то, что концентрация мощности в пике соответствует отсасыванию мощности из области, где кривая идет низко. Стоит отметить, что в полученном спектре основная часть пика лежит в диапазоне шириной 1/3 гц. Любопытно, что на другой электроэнцефалограмме того же субъекта, записанной через четыре дня, ширина пика почти не изменилась и, насколько можно судить, форма его также сохранилась в [c.279] какой-то мере. Есть основание полагать, что у других субъектов ширина пика будет другой и даже меньшей. Для вполне удовлетворительной проверки этого необходимы дальнейшие изыскания.
Весьма желательно, чтобы исследования, здесь упомянутые, были продолжены более точными инструментальными работами, с лучшими приборами, и чтобы благодаря этому гипотезы, высказанные здесь, могли быть окончательно подтверждены или окончательно опровергнуты.
Теперь я хочу перейти к вопросу выборки. Для этого мне понадобятся некоторые идеи из моих предыдущих работ об интегрировании в пространстве функций[193]. С помощью этого аппарата мы сможет построить статистическую модель непрерывного процесса с заданным спектром. Хотя такая модель не воспроизводит в точности процесса формирования мозговых волн, она достаточно близка к нему, чтобы доставить статистически значимую информацию о том, какой среднеквадратической ошибки можно ожидать в спектрах волн, подобных представленному выше.
Здесь я сформулирую без доказательств ряд свойств некоторой действительной функции х(t, α), уже излагавшихся в моей статье по обобщенному гармоническому анализу и в других работах[194]. Действительная функция х(t, α) зависит от переменной t, изменяющейся от —∞ до ∞, и от переменной α, изменяющейся от 0 до 1. Она изображает одну пространственную координату броунова движения, зависящую от времени t и параметра α статистического распределения. Выражение
(10.09)
определяется для всех функций φ(t) класса Лебега L2, [c.280] в интервале от —∞ до +∞. Если φ(t) имеет производную, принадлежащую L2, то выражение (10.09) понимается как
(10.10)
и затем определяется для всех функций φ(t) из L2 некоторым вполне определенным предельным процессом. Другие интегралы
(10.11)
вводятся аналогичным образом.
Основная теорема, используемая нами, утверждает, что
(10.12)
можно найти, положив
, (10.13)
где переменные τk образуются всеми возможными способами путем отождествления всех пар переменных σk, друг с другом (если n четно)[195], и образовав
(10.14)
Если n нечетно, то
(10.15)
Другая важная теорема, касающаяся этих стохастических интегралов, гласит: пусть F{g} — функционал [c.281] от g(t), такой, что F[x(t, α)] есть функция, принадлежащая к L по α и зависящая только от разностей x(t2, α)—х(t1, α); тогда для любого t1 и почти всех α
(10.16)
Это эргодическая теорема Биркгоффа, доказанная некогда автором[196] и другими.
В упомянутой статье из «Acta Mathematica» установлено, что если U — действительное унитарное преобразование функции K(t), то
, (10.17)
где β отличается от α только сохраняющим меру преобразованием интервала (0, 1) в себя.
Пусть теперь К(t) принадлежит к L2, и пусть
(10.18)
в смысле Планшереля[197]. Рассмотрим действительную функцию
, (10.19)
изображающую отклик линейного преобразователя на броунов вход. Она будет иметь автокорреляцию
, (10.20)
[c.282]
которая, в силу эргодической теоремы, почти для всех значений α будет равна
(10.21)
Тогда спектр почти всегда будет равен
(10.22)
Но это истинный спектр. Выборочная автокорреляция за время усреднения А (в нашем случае 2700 сек) будет равна
(10.23)
В результате выборочный спектр почти всегда будет иметь временно́е среднее
(10.24)
Следовательно, выборочный спектр и истинный спектр будут иметь одно и то же среднее значение по времени.
Для многих целей нам интересен приближенный спектр, в котором интегрирование по т производится только по интервалу (0, В), где В в описанном выше частном случае равно 20 сек. Напомним, что f(t) — действительная функция, а автокорреляция — симметрическая [c.283] функция. Поэтому интеграл от 0 до В можно заменить интегралом от —В до В:
(10.25)
Эта величина будет иметь среднее значение
(10.26)
Квадрат приближенного спектра в интервале (—В, В) будет равен
а эта величина будет иметь среднее значение
[c.284]
. (10.27)
Как известно, если m обозначает среднее, то
(10.28)
Таким образом, среднеквадратическая ошибка приближенного выборочного спектра будет равна
(10.29)
Но
(10.30)
Следовательно, интеграл
(10.31)
равен величине 1/А, умноженной на текущее взвешенное среднее от g(ω). Если усредняемая величина приблизительно постоянна в малом интервале 1/А, как [c.285] можно здесь разумно предположить, мы получим как приближенную главную часть среднеквадратической ошибки в любой точке спектра выражение
(10.32)
Заметим, что если приближенный выборочный спектр имеет максимум при u=10, то величина этого максимума
(10.33)
Эта величина при гладкой функции q(ω) мало будет отличаться от │q(10)│2. Среднеквадратическая ошибка спектра, отнесенная к этой величине как единице измерения, будет равна
(10.34)
и, следовательно, не превосходит
(10.35)
В рассматриваемом случае она равна
(10.36)
Если допускать реальность явления провала, или, по крайней мере, реальность крутого падения нашей кривой на частоте около 9,05 гц, то будет уместно поставить по этому поводу несколько физиологических вопросов. Три главных касаются физиологической функции наблюденных нами явлений, физиологического механизма, производящего их, и применения, которое они могли бы найти в медицине.
Заметим, что резкая линия частоты эквивалентна точным часам. Так как мозг есть в некотором смысле управляющее и вычислительное устройство, естественно спросить, находят ли часы применение в других формах управляющих и вычислительных устройств. И действительно, многие из них содержат часы. Часы применяются [c.286] в таких устройствах в целях стробирования[198]. Все такие устройства должны комбинировать большое число импульсов в один импульс. Если импульсы передаются простым включением или выключением цепи, их синхронность не имеет большого значения и стробирование не нужно. Однако при подобном способе передачи импульсов вся цепь оказывается занятой вплоть до смены сообщения и значительная часть аппаратуры выводится из действия на неопределенное время. Поэтому желательно, чтобы в вычислительном или управляющем устройстве сообщения передавались комбинированным сигналом включения-выключения. Тогда аппаратура будет сразу же свободна для дальнейшего использования. Достичь этого можно, если сообщения будут запоминаться, чтобы их всех можно было послать одновременно, и затем быстро комбинироваться, пока они еще в машине. Здесь необходимо стробирование, а стробирование удобно осуществлять при помощи часов.
Хорошо известно, что, по крайней мере в длинных нервных волокнах, нервные импульсы переносятся пиками, форма которых не зависит от способа их возникновения. Комбинирование этих пиков — функция синаптического механизма. В этих синапсах несколько входящих волокон соединяются с выходящим волокном. Если надлежащая комбинация входящих волокон возбуждается в течение некоторого весьма короткого промежутка времени, то возбуждается и выходящее волокно. В такой комбинации действие входящих волокон в некоторых случаях аддитивно: если возбуждается больше известного числа волокон, достигается порог, вызывающий возбуждение выходящего волокна. В других случаях некоторые из входящих волокон производят тормозящее действие, совершенно не допускающее возбуждения или, во всяком случае, увеличивающее порог для других волокон. В обоих случаях существен короткий период комбинирования, и если приходящие сообщения не попадают в этот короткий период, они не комбинируются. Поэтому необходим какой-то стробирующий механизм, позволяющий сообщениям прибывать [c.287] почти одновременно. В противном случае синапс не может действовать как комбинирующий механизм[199].
Желательно, однако, найти дальнейшее подтверждение тому, что стробирование действительно имеет место. Здесь уместно упомянуть работу проф. Дональда Б. Линдсли с психологического факультета Калифорнийского университета в Лос-Анджелесе. Он исследовал время реакции при зрительных сигналах. Как хорошо известно, когда приходит зрительный сигнал, возбуждаемые им мышцы действуют не сразу, а с запаздыванием. Линдсли показал, что эта задержка непостоянна и, судя по всему, состоит из трех частей. Одна из них имеет постоянную длительность, тогда как две другие, по-видимому, равномерно распределены в интервале около 1/10 сек. Представляется, что центральная нервная система может воспринимать приходящие импульсы только каждую 1/10 сек и что импульсы от центральной нервной системы могут приходить к мышцам только каждую 1/10 сек. Это является экспериментальным доказательством стробирования, и весьма вероятно, что связь стробирования с одной десятой секунды, составляющей приблизительный период альфа-ритма мозга, не случайна.
На этом закончим обсуждение функции центрального альфа-ритма. Возникает вопрос о механизме, создающем названный ритм. Здесь нужно указать, что альфа-ритм может дрейфовать при мелькании света. Если свет мелькает перед глазом с интервалами, близкими к 1/10 сек, то альфа-ритм мозга изменяется и приобретает сильную составляющую того же периода. Несомненно, мелькание света вызывает электрическое мелькание в сетчатке и, почти наверное, — в центральной нервной системе.
Мы располагаем, однако, прямыми данными, что чисто электрическое мелькание способно вызвать действие, подобное действию светового мелькания. Такой [c.288] опыт был проведен в Германии. В комнате был сделан проводящий пол и к потолку подвешена изолированная проводящая металлическая пластина. Испытуемые помещались а комнату, и потолок и пол соединялись с генератором переменного электрического потенциала. Частота этого потенциала, по-видимому, была близка к 10 гц. Действие потенциала на испытуемых было весьма неприятным, что очень похоже на неприятное действие аналогичного мелькания света.
Конечно, эти опыты нуждаются в повторении при более контролируемых условиях, с непременным снятием одновременных электроэнцефалограмм испытуемых субъектов. Тем не менее мы имеем повод думать, что электрическое мелькание, создаваемое электростатической индукцией, может произвести такое же действие, как мелькание света.
Важно отметить, что, если частоту генератора можно изменять импульсами другой частоты, действующий механизм должен быть нелинейным. Действие линейного механизма на колебание данной частоты может произвести лишь колебание той же частоты, в общем случае с некоторым изменением фазы и амплитуды. Это перестает быть верным для нелинейных механизмов, которые могут производить колебания с частотами, равными суммам и разностям различных порядков от частоты генератора и частоты возмущения. Такой механизм может вызвать сдвиг частоты, и в рассматриваемом случае этот сдвиг будет иметь характер притяжения. Отнюдь не исключено, что притяжение окажется долговременным, вековым явлением и что в течение коротких промежутков времени система будет оставаться приближенно линейной.
Представим себе, что головной мозг содержит ряд генераторов частот, близких к 10 гц, и что в некоторых пределах эти частоты могут притягиваться друг к другу. При таких обстоятельствах частоты, вероятно, будут собираться в одну или несколько небольших групп, по крайней мере, на некоторых участках спектра. Частоты, собранные в эти группы, должны быть перемещены откуда-то, а потому в спектре образуются провалы, где мощность будет меньшей, чем следовало бы ожидать в противном случае. О том, что такое явление действительно могло иметь место в случае индивидуума, [c.289] автокорреляция которого показана на рис. 9, свидетельствует резкое падение мощности на частотах выше 9,0 гц. Падение это было бы нелегко обнаружить с теми низкими разрешающими способностями гармонического анализа, какие были доступны прежним авторам[200].
Чтобы сделать правдоподобным такое объяснение происхождения мозговых электрических волн, мы должны рассмотреть, существуют ли в головном мозгу предполагаемые генераторы и какова их природа. Профессор Розенблит из Массачусетсского технологического института сообщил мне о так называемом явлении остаточного разряда[201]. Если действовать на глаза световой вспышкой, то потенциалы коры головного мозга, которые можно коррелировать со вспышкой, не возвращаются сразу к нулю, а проходят через последовательность положительных и отрицательных фаз, прежде чем затухнуть. Форму этого потенциала можно подвергнуть гармоническому анализу, причем обнаруживается, что значительная часть мощности сосредоточена в окрестности 10 гц. Подобный результат по меньшей мере не противоречит изложенной здесь теории самоорганизации мозговых волн. Собирание таких кратковременных колебаний в одно непрерывное наблюдалось в других ритмах тела, каков, например, суточный ритм приблизительно в 231/2 часа, наблюдаемый во многих живых организмах[202]. Этот ритм изменениями во внешней среде может быть превращен в 24-часовой ритм дня и ночи. Биологически не существенно, равняется ли естественный ритм живых организмов в точности 24 часам, если только он может притягиваться к 24-часовому ритму под действием внешней среды. [c.290]
Интересным опытом, способным пролить свет на справедливость моей гипотезы о волнах головного мозга, могло бы, наверное, оказаться исследование светляков или других животных, подобных кузнечикам или лягушкам, которые могут излучать заметные световые или звуковые импульсы и также принимать их. Часто высказывалось предположение, что светляки на дереве вспыхивают в унисон, и это видимое явление приписывалось оптической иллюзии человека. Я слышал, что у некоторых светляков Юго-Восточной Азии это явление выражено столь резко, что его вряд ли можно приписать иллюзии. Но светляк действует двояким образом: с одной стороны, он излучает более или менее периодические импульсы, а с другой, — обладает рецепторами для этих импульсов. Не происходит ли здесь то же, предполагаемое, явление собирания частот?
Для такого исследования необходимы точные записи вспышек, чтобы их можно было подвергнуть точному гармоническому анализу. Кроме того, светляков нужно подвергнуть действию периодического света, например, от неоновой импульсной лампы, и определить, будет ли такой свет иметь тенденцию настраивать светляков на свою частоту. Если да, то нам следует попытаться получить точную запись этих спонтанных вспышек и подвергнуть ее автокорреляционному анализу, как в случае волн головного мозга. Хотя я не осмеливаюсь предсказать исход опытов, которые не ставились, подобное направление исследований кажется мне обещающим и не слишком трудным.
Явление притяжения частот возникает также в некоторых ситуациях, не связанных с живыми организмами. Представим себе ряд генераторов переменного тока, частоты которых регулируются регуляторами, приданными первичным двигателям. Эти регуляторы удерживают частоты в сравнительно узких полосах. Предположим, что выходы генераторов присоединены параллельно к сборным шинам, а с них ток идет на внешнюю нагрузку, которая в общем случае будет подвержена более или менее случайным флюктуациям, вследствие включения и выключения освещения и т. п. Чтобы избежать проблем, какие возникали на электростанциях прежнего типа в связи с участием человека в коммутации, предположим, что включение и выключение [c.291] генераторов происходят автоматически. Когда генератор доведен до скорости и фазы, достаточно близких к скорости и фазе других генераторов системы, автоматическое устройство подключает его к сборным шинам, а если случайно его частота и фаза отклоняются слишком далеко от надлежащих величин, аналогичное устройство автоматически отключает его.
В такой системе генератор, стремящийся вращаться слишком быстро и, следовательно, иметь слишком высокую частоту, берет большую долю нагрузки, чем ему полагается, а генератор, вращающийся слишком медленно, берет меньше своей нормальной доли. В результате частоты генераторов сближаются. Генерирующая система в целом действует как бы под управлением скрытого регулятора, более точного, чем регуляторы отдельных генераторов, и представляющего собой совокупность этих регуляторов вместе с электрическим взаимодействием между ними. Этим, по крайней мере частично, обусловлена точная регулировка частоты электрических генерирующих систем. Потому-то и возможно применение электрических часов высокой точности.
Я предлагаю, чтобы выходы таких систем были исследованы теоретически и экспериментально теми же самыми приемами, какими мы исследовали волны головного мозга.
С исторической точки зрения интересно, что на заре техники переменного тока делались попытки включать генераторы с постоянной величиной напряжения (такие же, как в современных генерирующих системах) не параллельно, а последовательно. Оказалось, что взаимодействие отдельных генераторов по частоте выражалось в отталкивании, а не в сближении. В результате такие системы были недопустимо неустойчивы, если только вращающиеся части отдельных генераторов не были жестко соединены общим валом или зубчатым механизмом. Напротив, параллельное подключение генераторов к общим сборным шинам оказалось внутренне устойчивым, что позволило соединять генераторы разных станций в единую автономную систему. Если воспользоваться биологической аналогией, то параллельная система обладала лучшим гомеостазом, чем последовательная система, и потому выжила, в то время как последовательная была устранена естественным отбором. [c.292]
Итак, мы видим, что нелинейное взаимодействие, создающее притяжение частот, может породить самоорганизующуюся систему, как в случае исследованных нами мозговых электрических волн или в случае сети переменного тока. Возможность такой самоорганизации отнюдь не ограничивается низкими частотами, свойственными этим двум явлениям. Представим себе, например, самоорганизующиеся системы на частотном уровне инфракрасного света или радиолокационных спектров.
Как нам уже приходилось говорить, одной из центральных проблем биологии является способ, посредством которого основные вещества, входящие в гены или вирусы, или, может быть, специфические вещества, вызывающие рак, воспроизводят себя из материалов, лишенных этой специфики, скажем из смеси аминокислот и нуклеиновых кислот. Обычно дается такое объяснение, что одна молекула этих веществ действует в качестве шаблона, с помощью которого меньшие молекулы компонентов смеси располагаются в определенном порядке и объединяются в аналогичную макромолекулу. По существу, это лишь оборот речи, лишь иной способ описания фундаментального феномена жизни, состоящего в том, что новые макромолекулы формируются по образу и подобию существующих макромолекул.
Как бы ни протекал такой процесс, это — динамический процесс, включающий какие-то силы или их эквиваленты. Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частотном строении ее молекулярного излучения, значительная часть которого лежит, по-видимому, в области инфракрасных электромагнитных частот или даже ниже. Может оказаться, что специфические вещества вируса при некоторых обстоятельствах излучают инфракрасные колебания, которые обладают способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое явление позволительно рассматривать как некоторое притягательное взаимодействие частот. Так как весь предмет остается еще sub judice[203] и подробности даже не сформулированы, я воздержусь от более [c.293] конкретных высказываний. Очевидный путь к решению состоит в том, чтобы изучить спектры поглощения и излучения большого количества вирусного вещества, например кристалла мозаичного вируса табака, и затем проследить действие света этих частот на образование дальнейших вирусов от существующего вируса в надлежащей питательной среде. Говоря о спектрах поглощения, я имею в виду явление, которое почти несомненно существует; что касается спектров излучения, то нечто подобное мы имеем в явлении флюоресценции.
Любое такое исследование потребует методов высокой точности для подробного расчета спектров в условиях чрезмерно сильного — в обычном смысле — света с непрерывным спектром. Мы уже видели, что подобная задача встает перед нами при микроанализе мозговых волн, и что математика интерференционной спектрографии по существу совпадает с той, какой мы пользовались здесь. Поэтому я делаю специальное предложение, чтобы возможности метода были полностью использованы при изучении молекулярных спектров, и в частности при изучении спектров вирусов, генов и рака. Сейчас преждевременно предсказывать значение этих методов в исследованиях по чистой биологии и в медицине, но я питаю большие надежды, что они могут оказаться чрезвычайно ценными в обеих областях. [c.294]