Классическая физика, таким образом, вступила в противоречие с самим фактом существования атомов. Примирение здесь было невозможным. Нужна была новая радикальная идея.
И такая идея появилась. Нильс Бор предположил, что по каким-то непонятным причинам электроны, движущиеся по своим орбитам внутри атомов, не излучают энергию. Для каждого атома существует вполне определенный набор допустимых орбит. Ни по каким из других мыслимых орбит электроны в нем двигаться не могут. Если это так, если, вращаясь по своим орбитам, электроны не теряют энергии, то они могут перемещаться по своим орбитам вечно, как планеты вокруг Солнца.
Наука не признает гипотез, придуманных специально для объяснения одного непонятного факта. Если бы Бор ограничился этой гипотезой, она не вошла бы в золотой фонд науки и была бы забыта. Однако Бор выдвинул еще одну гипотезу. Он предположил, что электроны могут (каким-то неведомым образом, он не пытался описать этого в подробностях) переходить с одной орбиты на другую. При этом электроны теряют или приобретают извне квант энергии. Теряют, если переходят с удаленной орбиты на более близкую к ядру, и приобретают, переходя с нижней орбиты на верхнюю. Далее Бор предположил, что при этом закон сохранения энергии не нарушается. Энергия не исчезает и не рождается из ничего. Просто, теряемая электроном, она превращается в квант света — фотон и излучается в окружающее пространство. А при переходе электрона с нижней орбиты на верхнюю атом поглощает энергию фотона из окружающего пространства.
Если наука не признает нарочитых гипотез, то что можно выиграть, предложив не одну, а сразу три гипотезы? Но в том и проявился гений Бора, что эти три гипотезы, известные теперь как постулаты Бора, не только непринужденно объяснили факт существования атомов, но объединили между собой множество различных фактов, казавшихся до того таинственными и совершенно независимыми.
Прежде всего, и это произвело на ученых потрясающее впечатление, постулаты Бора выявили связь между строением атомов и их оптическими спектрами. Ключ к прочтению спектрограмм был найден!
Более полувека спектральные закономерности оставались книгой за семью печатями. Ученые собирали все больше и больше сведений о спектрах. Сводили их в толстые многотомные атласы и справочники. Все более совершенствовали спектроскопы и методы спектрального анализа. Но никто не мог сказать, почему спектр одного элемента отличается от спектра другого, как возникают эти спектры и что из них можно узнать, помимо самого факта наличия или отсутствия какого-либо элемента.
И вот выяснилось, что расстояние между орбитами, между которыми может прыгать электрон, определяет «цвет» кванта так же точно, как положение музыкальных нот на нотных линейках определяет высоту звука. То есть в том и в другом случае расстояние между уровнями определяет частоту излученной энергии (правда, в одном случае электромагнитной, в другом — звуковой). И теперь, зная строение атома данного элемента, можно заранее сказать, какие линии увидишь в его спектре излучения.
Бор при помощи своих постулатов рассчитал закономерности спектра водорода, и его вычисления удивительно точно совпали с опытом. Для более сложных атомов вычисления становились очень громоздкими, но ни у кого не было сомнения в том, что эти трудности будут преодолены.
Постулаты Бора позволили понять, сделали совсем наглядной картину строения атомов. Вот атом с простейшим, наиболее легким ядром. Вокруг него обращается один электрон. Это атом водорода. Рядом с ним более тяжелый атом, ядро которого удерживает два электрона. Это гелий. Перемещаясь вдоль таблицы Менделеева, мы встречаем все более тяжелые атомы, содержащие все большее число электронов.
Менделеев, создавая свою систему, опирался на периодическое повторение химических свойств, сопутствующее возрастанию атомных весов. При этом ему в нескольких случаях пришлось отдать предпочтение периодичности и поставить более тяжелые атомы перед более легкими. Теория, построенная на постулатах Бора, показала, что Менделеев сделал правильный выбор. Химические свойства атома определяются не его весом, а строением его электронной оболочки, количеством электронов, окружающих ядро, в конечном итоге электрическим зарядом ядра.
Стала ясной и связь между химическими свойствами атомов и их спектрами. В химических реакциях и в образовании оптических спектров участвуют только самые внешние электроны атома.
Бор, естественно, начал с самого простого атома, атома водорода. Применив к нему свои постулаты, Бор увидел, что единственный электрон этого атома может вращаться по различным орбитам. Чем больше орбита, тем больше и энергия движения электрона. При переходе электрона с удаленной орбиты на более близкую избыточная энергия излучается в виде фотона вполне определенной частоты. Для того чтобы перейти с внутренней орбиты на внешнюю, электрон должен получить добавочную энергию. Эту энергию он может получить, поглотив подходящий фотон из окружающего поля. Подходящий в том смысле, что энергия поглощенного фотона должна быть в точности равна той энергии, которая нужна электрону для перехода с орбиты на орбиту.
Если энергия фотона будет больше или меньше необходимой, фотон не будет поглощен. Не претендуя на точность, можно сказать, что, пытаясь поглотить такой нерезонансный фотон, электрон «не допрыгнет» до нужной орбиты или «перескочит» через нее и будет вынужден вернуться в исходное состояние, предоставив фотону лететь своим путем.
Еще одна драма
По мере развития квантовой теории физикам пришлось отказаться от наглядного представления орбит электронов в атомах. Но суть, заключающаяся в существовании определенного набора допустимых значений энергии, осталась. Теперь мы говорим об этих значениях энергии, как об энергетических уровнях и о переходах между уровнями.
Энергетические уровни присущи не только электронам внутри атомов. Колебания атомов в молекулах и вращение молекул тоже могут происходить только с вполне определенными частотами, а следовательно, и энергиями.
Поглощение и излучение изменяют внутреннюю энергию атома или целого коллектива атомов подобно тому, как приход и расход влияют на сумму денег, лежащую в кассе.
Поглощение и излучение входят во все рассуждения вполне равноправно. Между тем в каждом конкретном случае один из этих процессов преобладает.
Это звучит парадоксально. Как же может преобладать один из равновероятных процессов?
Здесь имеется небольшая хитрость. Природа такова, что равноправность соблюдается лишь для отдельного атома. Обладая избыточной энергией, он отдает ее так же охотно, как приобретает, если у него этого избытка нет.
Если бы удалось создать газ, все атомы которого обладают избытком энергии, они должны были бы дружно излучать ее.
Но во всех случаях, с которыми имели дело люди, в газах всегда преобладают атомы, стремящиеся поглотить энергию, атомы-приемники.
Поэтому газы всегда поглощают свет и радиоволны.
Соотношение между числом атомов-приемников и атомов-передатчиков, стремящихся избавиться от избыточной энергии, управляется законом, открытым в прошлом веке Больцманом. Этот закон чрезвычайно универсален. Вот простой пример его действия.
Уже давно определено, что давление воздуха над поверхностью Земли зависит от высоты. Причина этого выяснилась, лишь когда Больцман догадался связать изменение давления с энергией, необходимой для преодоления земного тяготения. Ведь молекулы воздуха движутся с различными скоростями. Быстрые, обладающие большими запасами энергии, могут забраться выше. Но таких молекул мало. Подавляющее большинство из них принуждено почти все время проводить внизу. Конечно, сталкиваясь между собой, молекулы постоянно обмениваются своими запасами энергии, и поэтому каждая из них имеет шанс подняться на большую высоту. Но барометр реагирует не на состояние отдельной молекулы. Давление — это результат действия огромной массы молекул.
Распределение молекул по их энергии в поле тяжести — самая наглядная иллюстрация закона Больцмана. Он применим не только к молекулам, но и к любым коллективам из большого числа частиц, в том числе и к коллективам, подчиняющимся квантовым закономерностям.
Конечно, как большинство законов, закон распределения 'Больцмана применим не всегда. Он неприменим, например, если вещество подвергается нагреванию или охлаждению. Но стоит подождать, пока установится тепловое равновесие, и в соответствии с этим законом частиц с большой энергией будет меньше, чем таких же частиц с малой энергией.
Вопрос о взаимодействии электромагнитного поля с веществом, который и привел Планка к открытию принципа квантования, таил в себе одну, казалось, непреодолимую трудность. Трудность, неразрешимую не только в рамках классической физики, но и с привлечением боровской теории строения атома.
Тупик возникал при попытке понять взаимодействие электромагнитного поля с атомами, если частота поля совпадала с частотой спектральной линии атомов.
За дело — вскоре после первой мировой войны — взялся Эйнштейн. Со свойственным ему стремлением отдавать предпочтение глубокому физическому анализу, а не сложной математике, он начал с осмысливания опытных фактов.
Оптикам и до Эйнштейна было известно, что самопроизвольное излучение атомов не зависит от внешних условий, а определяется только свойствами атомов. Напротив, поглощение растет вместе с интенсивностью падающего света. Но никто до него не обратил внимания на то, что эти твердо установленные факты приходят в противоречие с законами термодинамики.
Это был решающий шаг. Второй требовал интуиции и решимости. Вскрыв корень трудностей, нужно было найти выход. Эйнштейн предположил, что в природе существует третий, еще неизвестный процесс, обеспечивающий выполнение законов термодинамики, в справедливости которых убеждал весь опыт человечества. Этот процесс должен был приводить к излучению света, причем оно должно расти при освещении атомов внешним источником.
Очень простые вычисления показали Эйнштейну, что его догадка верна. Оказалось, что внешнее резонансное поле заставляет атомы испускать свет, совершенно неотличимый от падающего света, причем тем сильнее, чем сильнее падающий свет.
Это был чисто теоретический вывод. Вынужденное излучение не поддавалось наблюдению потому, что его маскировало более сильное поглощение. И это не удивительно. Ведь в обычных условиях атомов-приемников всегда больше, чем атомов-передатчиков. А из вычислений Эйнштейна следовало, что действие каждого атома-приемника способно скомпенсировать действие одного атома-передатчика. Значит, в избытке всегда остаются атомы-приемники и их поглощающее действие должно преобладать.
Несмотря на то, что и после работы Эйнштейна никому не удалось наблюдать вынужденного излучения, оно время от времени привлекало внимание ученых. Сам Эйнштейн вместе с М. Эренфестом в 1923 году вернулись к удивительному свойству вынужденного излучения увеличиваться вместе с падающим светом. Заинтересовался им и один из создателей квантовой физики, П. Дирак. Он подробно излагает все это в своем замечательном учебнике квантовой механики, особенно подчеркивая, что фотоны, рождающиеся при вынужденном излучении, неотличимы от потока падающих фотонов. Они вливаются в этот поток и усиливают его.
В 1939 году молодой в то время Валентин Александрович Фабрикант в докторской диссертации, которую он защищал перед ученым советом ФИАНа, посвятил специальный раздел вопросу о возможности наблюдения вынужденного излучения в лабораторных условиях. Он сказал, что это, по его мнению, вполне возможно, и даже указал, что для этого надо сделать. Достаточно добиться того, чтобы атомов, обладающих минимальной энергией, было меньше, а атомов с большей энергией стало больше, чем при равновесии.
Если равновесие будет нарушено так сильно, что атомов с максимальной энергией станет больше, чем атомов с меньшей энергией, утверждал он, то вместо поглощения света такая среда будет усиливать свет. Да, именно усиливать. Это следует из старой формулы Эйнштейна. Световая волна, попав в такую среду, встретит на своем пути больше атомов-передатчиков, способных испустить фотон, чем атомов-приемников, стремящихся его поглотить. Поэтому по мере продвижения волны в этой среде число фотонов будет возрастать, а энергия волны будет увеличиваться.
К сожалению, в то время ни сам Фабрикант, ни члены ученого совета не поняли, какие огромные возможности таит в себе небольшой раздел его докторской диссертации.
Таких случаев история науки знает немало.
Не раз формулы и уравнения, написанные и созданные учеными, оставались ими же непонятыми. «Невозможно избавиться от ощущения, что эти математические формулы существуют независимо от нас и живут собственной разумной жизнью, что они умнее нас и умнее даже их создателей», — сказал как-то Генрих Герц, который открыл те самые радиоволны, предсказанные теоретически Максвеллом, в которые сам долго не верил и в которые не верили другие ученые несколько десятков лет после гениального предсказания Максвелла. «Мы извлекаем из этих формул больше того, что было в них заложено», — добавляет он. А иногда и меньше, добавляем мы, потому что история науки дает нам десятки тому примеров.
Так было с Дираком в 1928 году, когда созданное им уравнение подкинуло ему первую античастицу
и он не узнал ее. Дирак не искал ее, у него не было намерения искать антимир, его подарила ему написанная им формула. И он настолько не был к этому подготовлен, что долго не мог ничего сообщить своим коллегам, требующим от него объяснения по поводу столь неожиданного поведения его уравнения. В течение нескольких лет существовал заговор молчания вокруг находки Дирака, пока он сам не понял поразительного факта: наряду с веществом в мире существует и антивещество. И это так же верно, как то, что он, Дирак, сделал гениальное открытие.
Ведь так было и с Максом Планком — с его квантом. Квант энергии долго оставался каким-то пугалом, непонятным ни Планку, ни другим ученым. Некоторые из них, как известно, даже грозились отречься от физики, если возмутительная теория Планка не будет опровергнута.
Именно так и случилось с предсказанием Эйнштейна и Дирака относительно вынужденного излучения веществ. Эти формулы тоже не были прочтены учеными. Они не были прочтены и в диссертации Фабриканта! И самому ее автору, как видно, не показались настолько важными, чтобы бросить все дела и заняться только этим вопросом. А может быть, виной была начавшаяся вскоре война, которая перевернула многие жизни и судьбы и вытеснила собою все другие дела.
Теперь можно лишь гадать и строить предположения. А они у разных людей различны. Некоторые физики даже говорят, что в диссертации Фабриканта все сказано в такой завуалированной форме, что не мудрено было и не заметить самого главного. А другие считают, что иначе в то время быть не могло. Выразись Фабрикант более определенно, его могли обвинить в пренебрежении вторым законом термодинамики.
Эта подспудная часть предыстории лазеров и мазеров достаточно трагична, чтобы давать пищу для размышлений еще не одному поколению физиков. Это действительно драма, драма идей, как выразился однажды Эйнштейн.
А если… наоборот?
Шагнем теперь через десять лет, прошедших после полузабытого заседания ученого совета, и вернемся в Физический институт, где Басов и Прохоров при помощи радиоспектроскопии изучали строение молекул и свойства атомных ядер.
Для этого они, помните, помещали исследуемые вещества в волновод — прямоугольную металлическую трубу, по форме напоминающую внешнюю часть длинного спичечного коробка, — и пропускали через этот волновод сантиметровые радиоволны. Изменяя длину посылаемой волны, они наблюдали, как изменяется поглощение этой волны в газе, заполняющем волновод. Таким образом они получали спектр исследуемого вещества. Обрабатывая полученные данные при помощи квантовой теории, добывали новые данные о молекулах и атомных ядрах.
Мы оставили их в тот период, когда они реально ощутили, как вынужденное испускание части молекул притупляет чувствительность радиоспектроскопа. Это испускание приводило к тому, что в образовании изображения спектральной линии принимала участие только очень малая часть молекул, находящихся в радиоспектроскопе.
Басов и Прохоров знали, что спектральные линии, лежащие в сантиметровом диапазоне, возникают в результате переходов между очень близкими энергетическими уровнями. При комнатных температурах на этих уровнях находится почти одинаковое количество молекул. Точнее, число молекул на нижнем из этих уровней лишь на тысячную долю (или даже еще меньше) превосходит число молекул на верхнем из них.
Но, как доказал Эйнштейн, каждая молекула, находящаяся на верхнем уровне, должна под воздействием резонансной электромагнитной волны перейти на нижний уровень и излучить фотон с точно такой же вероятностью, с какой молекула, находящаяся на нижнем уровне, поглотит фотон из этой волны и перейдет на верхний уровень. Если из каждой тысячи молекул, находящихся на нижнем уровне, только одна не имеет пары, находящейся на верхнем уровне, то фактически поглощать электромагнитную энергию будет только она одна. Та энергия, которая поглощается остальными, будет полностью компенсироваться за счет вынужденного излучения. Молекулы-передатчики — вот кто мешал им наблюдать свойства молекул-приемников!
Басов и Прохоров, как и другие ученые, занимавшиеся радиоспектроскопией, знали, что, понизив температуру газа, они увеличат поглощение. Потому что молекул-передатчиков станет меньше. При понижении температуры они в буквальном смысле слова вымораживаются! Но, к сожалению, этим путем нельзя достичь многого. Дело в том, что давление большинства газов очень быстро падает при уменьшении температуры. А при температурах в 100–200 градусов ниже нуля большинство их превращается в жидкости. Поэтому чрезмерное понижение температуры вновь ухудшает работу радиоспектроскопа.
Нужно было искать другой путь увеличения чувствительности.
Многие спрашивают: почему молекулярный генератор был изобретен именно радиофизиками? Ведь и Басов, и Прохоров, и Таунс начали свой путь в науке как радиофизики. Почему молекулярный генератор не был изобретен Фабрикантом, который еще в 1939 году знал о принципиальной возможности лабораторного получения вынужденного испускания? Знали о ней и десятки других физиков, присутствовавших на защите его диссертации и читавших ее в трудах Всесоюзного электротехнического института, вышедших годом позже.
Более того, Фабрикант и его сотрудники в 1951 году подали заявку на изобретение способа усиления электромагнитных волн при помощи вынужденного излучения. К сожалению, публикация заявки состоялась только в 1959 году, когда молекулярный генератор уже работал. Впрочем, об этом немного позже. Все объяснится само собой.
Ничего не зная об открытии Фабриканта, Басов и Прохоров пришли к заключению о том, что наиболее радикальный путь увеличения чувствительности радиоспектроскопов состоит в создании условий, при которых молекул-передатчиков останется совсем мало и своим излучением они не будут компенсировать поглощение. Тогда поглощение увеличится. Увеличится и чувствительность прибора.
Но Басов и Прохоров были радиофизиками и, сделав первый шаг в рассуждениях, они должны были сделать и сделали второй. Поглощение и излучение — две стороны одного процесса, рассуждали они. Если поступить наоборот и оставить молекул-передатчиков больше, чем приемников, тогда преобладающим процессом будет излучение, а не поглощение. Тогда такое вещество будет усиливать подходящую волну, а не ослаблять! Добавляя к ее энергии свою, атомы сыграют роль усилителя.
Так мог рассуждать каждый спектроскопист. И спектроскопист предложил бы сделать спектроскоп, в котором можно наблюдать не спектры поглощения, а спектры вынужденного излучения. Трудно сказать, почему ни один спектроскопист этого все же не сделал.
По-видимому, так же рассуждал и Фабрикант. Он подошел к проблеме глубже, чем это сделал бы воображаемый спектроскопист, и предложил использовать такую среду для усиления электромагнитных волн.
Занимаясь радиоспектроскопией, Басов и Прохоров проделали весь путь этих умозаключений, но культура общей теории нелинейных колебаний, присущая школе академиков Мандельштама и Папалекси, не дала им остановиться. Они знали, что в новой неведомой области действуют те же общие законы, которые управляют обычной радиотехникой. А эти законы говорят: если у тебя есть усилитель, то, введя обратную связь, то есть подав усиленный сигнал обратно на вход усилителя, ты получишь генератор.
Как сделать усилитель, они уже знали (хотя только в принципе). Для этого нужно создать среду, в которой молекул-передатчиков будет больше, чем молекул-приемников. Осталось придумать, каким образом осуществить обратную связь.
Это показалось им нетрудным делом. Для этого достаточно поместить усиливающую среду в резонатор. Тогда электромагнитная волна, проходя через нее и отражаясь от стенок резонатора, будет усиливаться все сильнее и сильнее. При этом, конечно, нужно все время поддерживать среду в состоянии, при котором большинство молекул стремится излучать и лишь меньшинство из них способно поглощать радиоволны.
Законы теории колебаний далее гласили: если среда усиливает так сильно, что усиление превосходит все потери энергии в резонаторе, то система станет генератором. Это значит, что даже в отсутствие внешнего электромагнитного поля в ней возникает и быстро нарастает до определенной величины электромагнитное поле.
Так Басов и Прохоров пришли к мысли о возможности применения молекул и атомов не только для усиления, но и для генерации радиоволн. Будучи радиофизиками, они поняли, что радиоволны, полученные таким способом, должны обладать необычайно высокой, несравненно более высокой, чем где бы то ни было, стабильностью частоты. И если возможность применения молекул для усиления не показалась им в то время достаточно важной (как это было и с Фабрикантом), то возможность генерации сверхстабильных колебаний заставила их приняться за работу.
Прежде всего нужно было научиться создавать среду с преобладанием молекул-передатчиков. Такую среду они назвали активной — ведь она должна была усиливать, а при подходящих условиях и генерировать радиоволны. Неравновесное состояние, в котором должна находиться активная среда, они назвали инверсным (обращенным) состоянием, потому что распределение молекул при этом, грубо говоря, «обратно» обычному их распределению в природе.
Научиться создавать активную среду. Как буднично это звучит! Но им предстояло создать вещество, стремящееся избавиться от скрытой в нем избыточной энергии.
Вспомнив о порохе и атомной бомбе, читатель может улыбнуться. Ведь известно множество веществ, способных выделять огромные запасы внутренней энергии. Но такие вещества не подходили нашим ученым. Ведь при выделении энергии они разрушаются, превращаются в другие вещества. А Басову и Прохорову нужно было создать вещество, которое могло отдавать энергию, оставаясь самим собой, как остается сама собой расправляющаяся пружина.
Правда, незадолго до того, в 1951 году, Пэрселл и Паунд сумели на короткий миг получать активное вещество. Они быстро переворачивали кусок кристалла фтористого лития в магнитном поле. При этом буквально переворачивались и энергетические уровни ядер лития и фтора. А так как в начале опыта все было в равновесии и большинство частиц располагалось на нижнем уровне, то после переворота большинство оказывалось «наверху». И кристалл приходил в равновесие, испуская немного радиоволн.
Да, это было близко к тому, что им было нужно, но и очень далеко. Пэрселл и Паунд действительно воспроизвели своеобразную расправляющуюся пружину. Но ведь ее нужно снова сжимать (вновь и вновь переворачивать кристаллы). А Басов и Прохоров нуждались в постоянно самообновляющейся активной среде. Они должны были создать механизм, автоматически поддерживающий среду в активном состоянии, или придумать процесс, при помощи которого можно подавать в прибор только молекулы-передатчики. Причем каждый отработавший передатчик нужно немедленно автоматически выбрасывать вон и заменять новым. Или надо было научить прибор замечать момент, когда молекула-передатчик испустит фотон, и, не дав ей долго просуществовать в состоянии приемника, вновь впрыснуть в нее избыточную энергию.
Вы заметили? Физики рассуждают об атомах и молекулах так, словно это стулья или столы, которые можно двигать, переставлять с места на место и вообще делать с ними, что хочешь! Они совершенно спокойно раздумывают о том, что молекул-передатчиков надо иметь в веществе больше, чем молекул-приемников, что слабых надо как-то отделить от сильных, чтобы они не мешали друг другу! Но как это сделать?! Как осуществить?! Разделить можно яблоки: по цвету, величине, по спелости. Собак — по масти, росту; монеты — по стоимости. Разделить можно почти любые видимые предметы. Но как это сделать с невидимыми, абсолютно похожими друг на друга молекулами? Как в одну сторону отделить слабейших, в другую — сильных? Когда думаешь об этом, задача кажется просто фантастической, немыслимой — как, чем здесь орудовать?!
И тем не менее Басов и Прохоров придумали много способов получения активной среды. Расчеты показали им, что часть из этих способов можно реализовать в лабораторных условиях. С некоторыми из них мы еще встретимся в этой книге. Но начинать надо было с самого надежного, самого эффективного и простого.
Дух изгнанья
Они решили начать с метода, история которого восходит к знаменитым опытам О. Штерна и В. Герлаха, впервые доказавшим, что нейтральный атом может обладать магнитными свойствами наподобие маленького магнитика. Стремясь сохранить свою ориентацию в пространстве, он ведет себя как крошечный волчок-гироскоп.
В своем опыте, произведенном в 1924 году, Штерн и Герлах пропускали пучок атомов серебра вдоль полюсов сильного магнита. Пучок получался испарением капельки серебра в вакууме. Испарившиеся атомы вылетали через небольшое отверстие в камеру, где помещался магнит. Там, конечно, тоже поддерживался вакуум, чтобы атомы летели, не испытывая никакой помехи. Если бы полюсы магнита были плоскими, а атомы действительно вели себя как магнитики, то они летели бы по прямым путям. Но Штерн и Герлах сделали полюсы своего магнита не плоскими, а придали им форму клиньев, направленных остриями один к другому. Силовые линии магнитного поля между такими полюсами очень искривляются, а само магнитное поле сильно изменяется по величине. Пролетая вдоль таких полюсов, атомы-магнитики летят не по прямым, а по криволинейным путям.
В конце своей установки Штерн и Герлах поместили стеклянную пластинку. Если магнит в камере отсутствовал, то на пластинке постепенно осаждалось небольшое пятнышко серебра. Но вот магнит установлен и опыт начался. Он должен определить, подчиняются ли атомы серебра законам классической физики или к ним применима теория Бора.
Классическая физика говорит, что отклонение атомов должно зависеть только от того, как направлена в пространстве их магнитная ось. С точки зрения классической физики ни одно направление не может быть предпочтительным. Значит, и отклонения у различных атомов могут быть любыми. Таким образом, руководствуясь законами классической физики, можно было ожидать, что атомы серебра, прилетев к пластинке, осядут на ней не пятнышком, а длинной полоской.
Основываясь же на квантовой теории Бора, Штерн и Герлах ожидали иного. По догадке Бора атомы-магнитики могут принимать в магнитном поле три положения. В этом случае ученые ожидали увидеть на пластинке не множество точек, образующих полоску, а только три точки.
Каково же было их удивление, когда они обнаружили на стеклянной пластинке вместо трех лишь две серебряные точки! Все оказалось гораздо сложнее. Опыт показал, что атомы серебра могут принимать в магнитном поле только два положения: вдоль поля и навстречу ему. Было ясно, что первоначальная квантовая механика Бора недостаточна для описания микромира. Нужно было построить более точную теорию. Впоследствии детали поведения микрочастиц во внешних полях были поняты и объяснены новой квантовой теорией, созданной Гейзенбергом, Шредингером и де Бройлем.
Этот опыт, впервые доказавший, что направление осей атомов в пространстве подчиняется законам квантовой механики, с первого взгляда не имеет отношения к нашей истории. Басов и Прохоров, изучив этот опыт и вооружившись новой теорией, вернулись к нему, чтобы использовать в своих целях. Они обратили внимание на то, что энергия атомов серебра в поле магнита в обоих пучках была различной. Штерн и Герлах просто об этом не думали. Цель у них была другой. Басов же и Прохоров обратили внимание на этот опыт именно потому, что он скрывал как раз то, что они искали. Разделив пучки при помощи простой диафрагмы, можно было получить готовый пучок активных атомов серебра!
Умение видеть скрытую суть явлений — одна из черт настоящего ученого. Басов и Прохоров рассмотрели в опыте Штерна — Герлаха то, о чем, несомненно, знали и другие. Знали, но оставляли без внимания. Ведь атомы, разделявшиеся на два пучка, отличались не только направлением своих осей, но и своей энергией в поле магнита. В одном летели атомы-передатчики, в другом — атомы-приемники.
Казалось, пути решения задачи ясны. Достаточно воспроизвести установку Штерна и Герлаха, дополнить ее диафрагмой, пропустить пучок атомов-передатчиков через подходящий резонатор, и атомы серебра начнут генерировать электромагнитные волны.
Но расчеты показали, что это не так. Таким простым путем невозможно получить настолько интенсивный пучок активных атомов, чтобы он не только компенсировал потери лучшего из резонаторов, но и излучил энергию в пространство.
К счастью, Басов и Прохоров были уже достаточно опытными исследователями, чтобы понимать, что простое повторение редко ведет к цели. Они знали, что избранное направление правильно, но надо искать дальше.
Теория подсказывала, что электрические поля в микромире действуют много сильнее, чем магнитные. Но, к сожалению, атомы не обладают электрическими свойствами, напоминающими свойства магнита. Значит, нужно было отказаться от применения атомов. Они перешли к молекулам. Почему? А потому, что многие молекулы оказываются электрическими двойниками магнитов. Молекулы в обычном состоянии электрически нейтральны, то есть у них положительные и отрицательные заряды равны. Но у многих из них центры, соответствующие расположению положительных и отрицательных зарядов, не совпадают. В результате в молекуле возникают «положительный конец» и «отрицательный конец», в какой-то мере похожие на северный и южный концы магнитной стрелки. Такие молекулы ведут себя в поле электрического конденсатора так же, как наэлектризованные палочки из бузины, которые обычно показывают в школе при опытах по электростатике. В электрическом поле плоского конденсатора они поворачиваются, как стрелка компаса в поле магнита. Неоднородные электрические поля отклоняют их так же, как неоднородные магнитные поля отклоняют атомы серебра.
Задолго до работ Басова и Прохорова ученики и последователи Штерна, к счастью, хорошо разработали установки для опытов с пучками различных молекул. В частности, были созданы конденсаторы специальной формы, которые способны фокусировать молекулы примерно так же, как стеклянные линзы фокусируют свет. Очень много в этой области сделали харьковские физики Корсунский и Фогель.
Осталось подобрать подходящую молекулу. Но и здесь им на помощь пришел коллективный опыт ученых.
Наиболее изученной радиоспектроскопистами в то время, а может быть и сейчас, была молекула аммиака. Именно у этой молекулы Клитон и Вильям еще в 1934 году обнаружили спектральные линии в сантиметровом диапазоне радиоволн. Уже в сороковых годах ее структура и электрические свойства были хорошо изучены. Естественно было проверить, не подойдет ли аммиак для новой работы?
Расчеты показали, что, пролетая вдоль оси конденсатора, состоящего из четырех стержней, попеременно заряженных положительным и отрицательным зарядом, более энергичные молекулы аммиака соберутся к оси конденсатора, а слабенькие уйдут в стороны.
Когда впервые был поставлен этот опыт, зрители могли воочию наблюдать картину борьбы между молекулами и силовым полем конденсатора. Водоворот поля захлестывал их, как прибой пловцов. Сильные пловцы обычно выбираются на берег, а слабых втягивает в пучину. Так и стихия электрических сил по-своему расправлялась с молекулами. Более слабые из них втягивались в область сильного поля к стержням конденсатора, другие, более сильные, пролетали мимо этой области, приближаясь к его оси. Поле сортировало молекулы. Оно оказалось своеобразным стрелочником, направляющим по различным путям молекулы, отличающиеся запасом энергии.
А затем, поставив за конденсатором резонатор с отверстием, совпадающим с осью конденсатора, можно было заставить активные молекулы проходить сквозь резонатор, не пуская в него молекулы, стремящиеся к поглощению.
При взгляде на квадрупольный конденсатор невольно вспоминается знаменитый «печальный демон, дух изгнанья». Максвелл призвал его, чтобы убедить сомневающихся в том, что без затраты энергии невозможно отобрать из сосуда с газом молекулы, энергия которых превосходит среднюю. Максвелл выпустил на сцену своего демона, чтобы доказать, что подобная работа не может быть выполнена никаким механизмом. Это запрещено одним из наиболее общих законов природы — вторым началом термодинамики. И нарушить его может только «нечистая сила». Многие пытались сразиться с демоном Максвелла. Это были не только изобретатели вечного двигателя, особого теплового вечного двигателя, который соблазнял людей возможностью получать работу без передачи тепла от нагретого тела к холодильнику. То есть без затраты топлива или без затраты энергии на работу холодильника. С демоном Максвелла сражались и ученые, которым казалось, что второе начало термодинамики не имеет всеобщей силы и его можно обойти. Все такие попытки терпели поражение. Демон брал верх. Но, применяя молекулярные пучки и электрические поля, ученым в полном согласии с коварным вторым началом термодинамики удалось найти способ отбирать молекулы, обладающие избыточной внутренней энергией, отсеивая те из них, которые имеют малую внутреннюю энергию. В полном согласии потому, что «платой» за отбор является энергия, затраченная на создание упорядоченного молекулярного пучка. Именно изолированность молекул в пучке, где они как бы выстраиваются в очередь перед конденсатором, чтобы он опознал, какие из них сильные, а какие слабые, позволила посрамить дьявола. Хоть затраты энергии на создание пучка и больше энергии радиоволн, которые Басов и Прохоров надеялись получить от пучка, но радиоволны эти должны были обладать недостижимой ранее стабильностью частоты.
Схема небывалого генератора приобретала конкретный вид. Нужно было взять большой сосуд. Откачать из него воздух. Впустить в него тонкий пучок молекул аммиака. Поставить на пути пучка конденсатор, а потом резонатор. Подать на конденсатор высокое напряжение. При этом в резонатор будут влетать только активные молекулы. И если таких молекул окажется достаточно много, генератор заработает.
Может быть, перед тем, как пойти дальше, следует попытаться ответить на вопрос, поставленный в начале этой главы. Почему же это сделали радисты?
Конечно, бесспорного ответа на этот вопрос не существует. Но, несомненно, важную роль сыграло то, что только радиофизики удачно сочетают знание квантовой теории и спектральных закономерностей с владением теорией колебаний и пониманием роли обратной связи. Важно и то, что радиофизики, как никто, понимали практическое и научное значение возможности получения сверхстабильных колебаний. Ученые, работающие в других областях физики, например оптики, хорошо знающие и квантовую теорию и спектры, равнодушны к проблеме стабильности; да и задача усиления света казалась им в то время интересной, но не очень важной для науки и техники.
Для радиофизика сверхстабильный генератор — это сверхточное измерение времени и расстояний, это новые навигационные системы, увеличение точности географических карт, новые возможности исследования космоса и многое другое.
Ради этого стоило потрудиться!
Штурм
Итак, расчеты показали Басову и Прохорову, что прибор, в котором молекулы будут излучать радиоволны — молекулярный генератор, осуществим. Принципиальная схема генератора была им ясна. Можно приступать к работе. Но даже ученых, имеющих большой опыт в области радиоспектроскопии, здесь на каждом шагу встречали неприятные сюрпризы.
Схема задуманного ими прибора только в основных чертах напоминала схему обычного генератора. При ближайшем рассмотрении на первый план выступали различия.
Прежде всего источник энергии. Обычные радиосхемы питаются от батарей или аккумуляторов или же от электрической сети через специальные выпрямители. Здесь источником энергии будут служить молекулы. Миллиарды миллиардов молекул аммиака должны ежесекундно превращать часть своей внутренней энергии в энергию радиоволн. Эту массу молекул необходимо направить в генератор, и не как-нибудь, а в виде упорядоченного пучка, в котором они летели бы почти параллельно одна другой, не сталкиваясь ни между собой, ни с молекулами воздуха.
Создать такой пучок можно только в вакууме. Иными словами, все детали молекулярного генератора должны находиться в сосуде, из которого воздух откачан специальными насосами так сильно, что давление в нем составляет примерно миллиардную часть нормального атмосферного давления.
Достигнуть такого разрежения в замкнутом сосуде не очень сложно. Современные вакуумные установки способны обеспечить и много более сильное разрежение. Но ведь во время работы генератора в него необходимо непрерывно впускать полчища молекул аммиака. Для того чтобы и при этом поддерживать в нем необходимый вакуум, пришлось бы прибегнуть к слишком мощным насосам.
Басов и Прохоров предпочли отказаться от решения задачи в лоб. Они задумали воспользоваться тем, что при температуре в -77,7 градуса Цельсия аммиак уже затвердевает. Конечно, эта температура еще недостаточна для обеспечения нужного вакуума, но экспериментаторы решили применить для вымораживания аммиака жидкий азот, температура которого еще на 123 градуса ниже. Попав на поверхность, охлажденную жидким азотом, почти каждая молекула аммиака крепко-накрепко примерзнет к ней. Как прилипает муха к липкой бумаге, при помощи которой заботливый повар «откачивает» мух из своей кухни. По отношению к аммиаку холодная поверхность действует как хороший насос. Задумали, испробовали и убедились в том, что избранный способ «откачки» аммиака работал безупречно! При этом для удаления остатков воздуха потребовался совсем небольшой насос.
Далее. Пучок молекул аммиака направлялся из источника в сортирующую систему, в которой сильное электрическое поле отбрасывало в стороны ненужные, слабенькие молекулы, а молекулы, которые могли участвовать в генерации радиоволн, собирались к оси сортирующей системы и направлялись в резонатор. Казалось бы, что особенного? Резонатор — одна из привычных частей любого радиоприемника или передатчика. Но при работе на длинных или коротких волнах резонатор состоит из конденсатора и катушки индуктивности — это всем известный простейший резонансный контур. В диапазоне же сантиметровых волн обычные конденсаторы, и катушки неприменимы. Их место занимают металлические полости, которым обычно придается форма цилиндров или прямоугольника — объемные резонаторы. Корпуса скрипок и других струнных инструментов, специальные отсеки в радиоприемниках высшего качества, органные трубы — это ведь тоже не что иное как резонаторы, только акустические. Их задача — выделять и подчеркивать колебания тех частот, на которые они настроены. Металлические полости делают это по отношению к радиоволнам.
Басов и Прохоров должны были подобрать для своего генератора резонатор такой формы, чтобы он обеспечил как можно большую стабильность частоты колебаний. Электрическое поле в нем они решили направить так, чтобы пучок молекул летел вдоль электрических силовых линий. Соответствующим образом надо было проделать и отверстия в резонаторе. Только когда молекулы будут лететь вдоль гребней волн электрического напряжения, тогда наверняка влияние резонатора на частоту колебаний будет минимально. Вот какую трудную работу задали они механикам. И пока те изготавливали экспериментальный прибор, Басов и Прохоров еще и еще раз просчитывали и проверяли теорию его работы. Вот что говорили им формулы.
Если напряжение, подводимое к сортирующей системе, достигнет 25 тысяч вольт, то практически все молекулы-приемники будут отброшены к поверхности, охлаждаемой жидким азотом, и накрепко к ней примерзнут. В резонатор попадет «чистый» пучок молекул-передатчиков. Они будут пролетать сквозь резонатор вдоль его оси, излучая в нем кванты электромагнитной энергии.
Далее формулы предсказывали, что если резонатор удастся сделать достаточно хорошим, то электромагнитные волны, рожденные молекулами, будут неоднократно пробегать от оси резонатора к его стенкам и, отразившись от них, обратно к оси и снова к стенкам. Таким образом, волна, испущенная одними молекулами, будет заставлять излучать все остальные. И излучать не беспорядочно, а в такт с вынуждающей волной. Так резонатор осуществляет связь между молекулами, уже испустившими фотоны, и теми, которым еще только предстоит это сделать. Осуществляет то, что радисты называют обратной связью.
Наконец, предупреждали формулы, если молекулы достаточно активны и щедры, резонатор быстро, как ведро под весенним ливнем, начнет наполняться излученной ими энергией. И если снабдить резонатор антенной, энергия будет переливаться из «переполненного ведра» в окружающее пространство. Начнется трансляция своеобразной радиопередачи. Наполнение резонатора прекратится только тогда, когда электромагнитное поле внутри него станет столь сильным, что заставит молекулярный пучок излучать всю энергию, на которую он способен. Формулы даже определяли смысл этого расплывчатого выражения — «на которую он способен».
С первого взгляда может показаться, что лавинообразно возрастающее электромагнитное поле принудит к вынужденному испусканию каждую молекулу, пролетающую резонатор, и поэтому все они отдадут ему свою энергию. Но, увы… Это действительно было бы так, если бы не полная равноправность между процессами излучения и поглощения. Она приводит к тому, что, излучив полагающуюся им порцию энергии, часть молекул-передатчиков превращается в приемники. И переходит на иждивение к тем товаркам, которые не успели еще излучить. И начинает отбирать у них эту неизлученную энергию. И те, вместо того чтобы отдать энергию резонатору, отдают ее ослабевшим молекулам. В результате пучок активных молекул отдает резонатору не больше чем половину запасенной ими энергии.
Но это не было неожиданностью. Это, конечно, снижает кпд прибора, но с этим можно было мириться. Главное, чтобы прибор задышал. А формулы, сколь они ни верны, сколь оптимистические прогнозы из них ни вытекают, не могут обеспечить работы прибора. На пути к успеху нужны помощь механиков и радиотехников и филигранный эксперимент физиков.
В научной работе, как на любом фронте, действительность редко совпадает с планами. Многие стратеги убеждались в том, что планирование на бумаге по методу «первая колонна марширует, вторая колонна марширует» в действительности зачастую оборачивается пробками на дорогах.
Так случилось и с нашими друзьями. Через положенное время, которое казалось им непомерно долгим, в лабораторию принесли блистающий новизной металлический корпус генератора. К нему присоединили вакуумный насос. Теперь началась длительная и кропотливая работа, которую во всех лабораториях мира называют вакуумной тренировкой. Корпус оказался безупречным. Нужный вакуум получался неожиданно быстро. Можно было приступать к опробованию системы подачи аммиака.
И тут началось. Оказалось, что дозаторы, при помощи которых регулировалась подача исследуемых веществ в радиоспектроскопы, для аммиака не подходят. Они становятся жертвой коррозии. Пришлось срочно придумывать замену. В это же время принесли сортирующую систему. Электроды, отполированные до зеркального блеска, были промыты по всем правилам вакуумной гигиены. При испытании система выдержала заданное напряжение с большим запасом. Но через короткое время после пуска пучка молекул аммиака начались пробои. До этого никто не совмещал в условиях вакуума химическое действие аммиака с высоким напряжением. По-видимому, при этом из ничтожных загрязнений, оставшихся на поверхности электродов, начинали выделяться какие-то газы, что приводило к пробою. Пришлось подбирать новую технологию очистки электродов.
Много хлопот доставили и объемный резонатор с его системой точной настройки и приемник радиоволн. Этот приемник, рассчитанный на волну около 1,26 сантиметра, должен был работать и в режиме радиоспектроскопа, что необходимо в период наладки, и в режиме обычного приема. Причем в режиме приема нужно было обеспечить чувствительность намного большую, чем необходимо для приема расчетной мощности молекулярного генератора. Ведь никто не ждал, что расчетная мощность будет достигнута сразу. Для наладки нужны были и точная система измерения частоты и много других вспомогательных систем и устройств.
Нужно ли говорить, что в такие периоды ученые, которые и без того не знают, что такое нормированный рабочий день, засиживались в лаборатории до поздней ночи?
И вот наступил Этот День.
Победа
Два молодых человека не отрываясь смотрели на экран осциллографа. Они видели светящуюся линию, середина которой плавно уходила вниз и вновь вздымалась к прежнему уровню. Кривая больше всего напоминала парящую птицу. Так изображают птиц дети. Так рисовали их на своих картинах и старые японские мастера.
Один из физиков медленно вращал ручку прибора, и изгиб кривой постепенно уменьшался, пока она не превращалась в прямую линию. Затем на месте провала возникал плавный подъем. Действуя очень осторожно, можно было заставить кривую вознестись вверх так же, как она только что изгибалась вниз. Потом кривая опять выпрямлялась, и, наконец, на ней снова возникал провал.
Еще несколько дней назад это казалось очень интересным и важным. Но теперь изящная кривая вызывала досаду и отвращение. Ведь не для этого же, в самом деле, разбирали они прибор, полировали его детали, вновь и вновь откачивали из него воздух!
— Рискнем? — спросил Прохоров. Басов только кивнул. Движение руки. Стрелка вольтметра подскочила еще на несколько тысяч вольт. Вчера при этом неизбежно возникал пробой. Но теперь все было спокойно.
В который раз медленно вращается ручка прибора. И опять кривая превращается в прямую и начинает изгибаться вверх. Вдруг на ее вершине возникает узкая полоска.
Они переглянулись. Неужели?!
Все так же методично движется рука, вращающая рукоять прибора. Медленно увеличивается и расширяется полоска. И вот в ее середине отчетливо виден поясок.
Типичный бантик, — сказал один.
- Работает, — отозвался второй.
Так в лаборатории колебаний Физического института Академии наук СССР родился молекулярный генератор, поразительный прибор, сердцем которого был не мотор, не шестерни, не какие-нибудь другие детали. Главную роль в нем играли невидимые глазу молекулы аммиака. Они делали здесь то, чего никто никогда от них не ждал. Они излучали радиоволны.
Именно бантик на капризной кривой и возвестил ученым о долгожданной минуте.
Американскому ученому Франклину приписывают такие слова: «К чему новорожденный ребенок?»
Действительно, кто знает, что из него получится, что внесет он в жизнь.
Молекулярный генератор, как всякий новорожденный ребенок, обещал многое или ничего: все зависело от того, как пойдет дело дальше, чему его научат родители.
Никто не знает, как распространяются слухи. Физики убеждены, что они летят быстрее, чем свет. А это значит, что они не материальны. И на сей раз слух непостижимо проник через стены, полы и потолки. И распахнулась дверь, и в комнату начали входить научные работники, лаборанты, механики. Каждый хотел взглянуть на бантик, поздравить, а если позволят, и покрутить ручку. Конечно, такой чести удостаиваются далеко не все. Для этого нужно пользоваться большим уважением или принять хоть малое участие в работе, когда она еще безнадежно далека от завершения. И первым по праву положил руку на рукоять прибора В. В. Никитин, монтировавший и налаживавший радиосхемы, — в ФИАН он пришел радиотехником, потом стал студентом-заочником, а затем инженером, а позже научным сотрудником и кандидатом наук. Никитина сменил Д. К. Бардин, талантливый механик, сделавший, как говорят физики, «все железо». А «все железо» — это и точнейший резонатор из специального сплава — суперинвара, и корпус из нержавеющей стали, и конденсатор, и многое другое. И только потом к прибору прорвался маститый теоретик и неожиданно для всех закрыл вентиль баллона, из которого поступал аммиак. Бантик исчез и, к всеобщему восторгу, возник вновь, как только был открыт вентиль.
- Наука торжествует, — изрек теоретик и отошел в сторону.
Так физики празднуют победу. И при этом говорят только о том, что надо проверить, и измерить, и переделать. И праздник переходит в трудовые будни. И по-прежнему по утрам уборщица, выметая обрезки проводов и капли олова, вздыхает: «Кванты, кванты…» — и толкует своим подругам, работающим на других этажах:
- А мы запустили молекулярный генератор…
- Генератор. Что такое генератор? Генератор — это источник. Генераторы электрического тока достигли в наши дни огромных мощностей — в 300 и даже 500 тысяч киловатт.
Какова же мощность молекулярного генератора? Около одной миллиардной доли ватта. Жужжание комара куда мощнее.
Так что же привлекло к этому немощному прибору помыслы молодых ученых? Они стремились не к мощности, — а к точности. В их детище не было радиоламп, привычных конденсаторов и сопротивлений, всех этих деталей, порча которых терзает нервы владельцев радиоприемников и телевизоров. Нерукотворные молекулы, дружно-излучавшие радиоволны в новом приборе, сообщали ему свои качества — неизменность, постоянство, свойственное творениям природы. Расчеты показывали, что при помощи нового прибора можно измерять время так точно, как это никогда не удавалось людям. Часы, в которых функции маятника исполняет молекулярный генератор, и за 1000 лет не ошибутся ни на секунду. Конечно, в обыденной жизни такие часы ни к чему. Они необходимы для управления космическими ракетами, штурманам кораблей и самолетов, для решения многих технических задач.
Научные открытия зачастую рождаются близнецами. В это же время в США заработал прибор, которому его создатель Таунс и его сотрудники Гордон и Цайгер дали странное имя «мазер», составленное из первых букв фразы, описывающей на английском языке принцип действия прибора. После первых сообщений всем стало ясно, что в Физическом институте в Москве и в Колумбийском университете в Нью-Йорке независимо проводилась работа с одинаковым результатом.
Вскоре молекулярный генератор появился и в Институте радиотехники и электроники Академии наук, и в Метрологическом институте в Харькове, и во многих других местах. А затем в работу включилась и промышленность. Басов и Прохоров были вдохновителями всех основных работ в новой области науки, развившейся из их исследований.
…Приходилось ли вам следить за эстафетным бегом? Спортсмены, сменяя друг друга, несут палочку от старта до заветного финиша. И плох тот бегун, который, переминаясь с ноги на ногу, дожидается в начале своего участка, пока товарищ протянет ему эстафету. Такого никто не возьмет в команду. По его вине будут потеряны драгоценные мгновения. Хороший спортсмен начинает бег рядом с товарищем заранее, до того как тот окончит свою дистанцию, и палочка передается на полной скорости. Нелегко овладеть этим искусством.
Еще сложнее научная эстафета. Ее участники зачастую не видят друг друга и передают свою эстафету через редакции различных журналов. Реже им представляется возможность кинуть палочку в зал конференции или симпозиума. Поднимай, кто хочет, и неси дальше. И так, помогая друг другу и соревнуясь между собой, ученые несут светоч науки вперед и выше, к сияющим вершинам знания.
Вскоре после того, как приборы-близнецы заработали в Москве и Нью-Йорке, Прохоров и Таунс встретились на заседании Фарадеевского общества в Лондоне. Английские коллеги пригласили их, чтобы услышать о приборах, которые ознаменовали собой рождение новой области науки.
Прохоров прочитал подготовленный вместе с Басовым доклад, в котором излагалась созданная ими теория работы молекулярного генератора. В ней квантовая механика впервые объединялась с теорией колебаний. Этот союз позволил предвычислить условия, при которых генератор начинает работать, рассчитать даваемую им энергию, частоту его колебаний и определить влияние на эту частоту различных внешних воздействий. Такая теория очень напоминала теорию работы радиопередатчика, но молекулярный пучок заменял в ней и колебательный контур и источник питания обычного генератора.
Измерения, проведенные Басовым и Прохоровым в течение первых месяцев работы молекулярного генератора, подтвердили правильность их теории.
Таунс тоже рассказал о своих работах, но его теория оказалась более примитивной, а некоторые элементы конструкции делали американский прибор менее надежным. Дело в том, что, понимая необходимость вымораживания аммиака, Таунс и его сотрудники решили охлаждать жидким азотом непосредственно электроды сортирующей системы. В результате на электроды постепенно намораживался в виде белого инея твердый аммиак. Через некоторое время в сортирующей системе возникали пробои, и прибор приходилось выключать для размораживания и откачки аммиака. С этим, конечно, можно было бы примириться, но нарастание слоя аммиака еще задолго до наступления пробоев влияло на эффективность сортирующей системы. В результате постепенно менялась интенсивность пучка активных молекул, а это сильно воздействовало на частоту генерации. Не очень удачен был и выбор резонатора.
Но каковы бы ни были отдельные особенности обоих молекулярных генераторов, это, по существу, приборы-близнецы, сходства между ними много больше, чем различий.
Различия касались деталей. Общность охватывала основные принципы — получение энергичных молекул методом сортировки в электрическом поле и введение обратной связи при помощи резонатора.
Главную трудность в каждом деле представляет правильное определение цели работы и первый шаг в новом неизведанном направлении. Какие бы трудности ни возникали дальше, сколько остроумия и труда ни потребуется для их преодоления, они будут преодолены, если генеральный курс проложен верно. Весь прогресс человечества обеспечивается сочетанием бесстрашных прорывов в неизвестное, совершаемых одиночками, и титанического труда по освоению целины и уборке урожая, остающегося на долю большинства.
К чести Басова, Прохорова и Таунса, они не застыли на постаменте, подняв в будущее указующие персты, они не отошли от дальнейшей работы. Более, того, как мы увидим дальше, они не ограничились и разработкой найденной ими жилы. Все трое, как истинные новаторы, и в дальнейшем с успехом прокладывали новые тропы в незнаемое, с неутомимостью истинных тружеников прорубали широкие просеки в неведомую страну квантовой электроники.
Басов и Прохоров заботились и о расширении фронта исследований. Они размножили чертежи своего первого молекулярного генератора и щедро раздавали их всем желающим идти их путем.
Лаборатория колебания ФИАНа стала местом паломничества, в которое непрерывным потоком шли посетители, унося с собой не только чертежи, но и советы и, пусть небольшой, опыт обращения с новорожденным прибором. Теперь каждый желающий работать в области квантовой электроники мог погрузиться в ее истоки, покрутить ручки молекулярного генератора, наблюдая при этом за кривыми на экране осциллографа.
За первой ласточкой
Первый младший брат молекулярного генератора заработал в Институте радиотехники и электроники АН СССР, или попросту ИРЭ, если следовать принципу бытующих у нас сокращений.
И это произошло совсем не случайно. При организации ИРЭ в 1954 году в него из лаборатории колебаний ФИАНа перешла группа под руководством М. Е. Жаботинского. Он принадлежал к младшему поколению школы Мандельштама — Папалекси. Еще студентом он посещал семинары Л. И. Мандельштама, а дипломную работу выполнил под руководством М. А. Леонтовича. В ней развивалась теория рамочной антенны, работающей под землей, и теория распространения электромагнитных волн в трубах (в то время, в 1940 году, еще не было придумано слово «волновод»). В армии он, как и Прохоров, попал в разведку, но бес изобретательства не оставил его и на фронте. Войну он кончал в лаборатории, прерывая научную и конструкторскую работу для участия во фронтовых испытаниях. После войны под руководством С. М. Рытова прошел аспирантуру ФИАНа, защитив диссертацию через год после Прохорова. Помогал Прохорову в работе с синхротроном, а затем занялся применением спектральных линий для стабилизации частоты.
Еще в старом ФИАНе на Миусах Жаботинский вместе с аспиранткой Наташей Ирисовой и дипломником Виктором Веселаго создал систему, позволяющую управлять частотой клистрона (генератора сантиметровых волн) с помощью спектральной линии аммиака. Они научились сверять убегающую частоту клистрона с неизменно точной частотой молекул аммиака, как сверяем мы время от времени свои наручные часы по часам Спасской башни Кремля. Это была хитрая задача. Чтобы поставить наручные часы на точное время, нам нужно просто подвинуть стрелки. И все. Чтобы сверить частоту излучения радиогенератора с «позывными» такой крошечной радиостанции, как молекула, нужны особая изобретательность, своеобразная ловкость и обширные знания. Системы сравнения — это сплав физики и радио. Это узел, в котором завязаны фотоны и молекулы, волноводы и провода. Наука о квантовых стандартах частоты — это особая наука, без которой двадцатый век в электронике, возможно, не стал бы двадцатым.
На первых порах молодых ученых постигла неудача. Спектральная линия аммиака, получавшаяся в радиоспектроскопе и игравшая роль своеобразной стрелки, была слишком широкой и не позволяла добиться нужной им точности. Разве можно было бы прочесть точное время на циферблате, если бы часовая стрелка была толщиной в час или даже в минуту?
Тогда они обратились к другим «часам» — атомы цезия в установке, разработанной американским физиком Рэмси, обещали более узкие линии. Такие спектральные линии могли блестяще сыграть роль частотомера. С их помощью можно было очень точно мерить частоту колебаний генератора радиоволн и управлять его частотой.
Однако, узнав о рождении молекулярного генератора, они, естественно, решили применить его в своих работах. Не удивительно, что, опираясь на дружескую помощь Басова и Прохорова, они смогли сделать это сравнительно быстро.
Главное внимание в ИРЭ было обращено на создание специальных радиосхем, позволяющих использовать выдающуюся стабильность молекулярного генератора для проверки других приборов, работающих в радиодиапазоне. Без этого он оставался бы в какой-то мере «вещью в себе». Прежде всего они создали установку, позволяющую за несколько секунд калибровать кварцевые генераторы по сигналу молекулярного генератора. И делали это с фантастической точностью. Ошибка при этом не превышала двадцатой части от миллиардной доли измеряемой величины. Такая точность была достигнута впервые.
Работая в тесном контакте с. Басовым и Прохоровым, они занялись усовершенствованием молекулярного генератора. Прежде всего они подумали о том, что не везде есть жидкий азот и не всегда под рукой мощные вакуумные установки.
Как обойтись без них, не снижая выдающихся качеств молекулярного генератора?
Начались эксперименты. Ученые отыскивали наилучшие режимы работы генератора, видоизменяли его детали, подбирали более удачные источники, мудрили с откачкой.
Наконец, изменив устройство источника пучка молекул аммиака, им удалось сделать пучок гораздо более узким. Теперь большинство молекул попадало в отверстие резонатора. Для нормальной работы генератора в него достаточно было впускать в сотни раз меньше молекул аммиака, чем в старых малонаправленных источниках.
Это, казалось незначительное, достижение не замедлило дать плоды. Теперь можно было обойтись без вымораживания аммиака. С откачкой могли справиться сравнительно небольшие вакуумные насосы. Так ученым удалось создать молекулярные генераторы, способные работать в условиях, при которых обеспечение жидким азотом связано с большими трудностями.
Но жизнь многообразна. Встречаются и такие случаи, когда жидкий азот имеется в изобилии, но применению молекулярного генератора мешают вакуумные насосы. Они громоздки, требуют большого расхода энергии. Некоторые из них вызывают вибрацию и шум.
Новый экономичный источник молекулярного пучка помог решить и эту задачу. На его основе был создан молекулярный генератор, работающий без обычных вакуумных насосов. Их ролы с успехом выполнял древесный уголь, охлаждаемый жидким азотом. Еще замечательный химик Зелинский, изобретатель противогаза, использовал в нем способность древесного угля жадно поглощать различные газы. 'При охлаждении эта жадность чрезвычайно возрастала. Древесный уголь превращался в своеобразный вакуумный насос. Конечно, он не был ненасытным. Но в сочетании с новым экономичным источником молекулярного пучка очень небольшое количество угля не насыщалось в течение нескольких суток. А во многих случаях это вполне достаточный срок.
Наряду с такими чисто техническими усовершенствованиями в ИРЭ велись настойчивые поиски путей повышения точности генерации.
В некоторых случаях радистам недостаточно иметь одну стабильную частоту. Недаром говорят, что требования практики — одна из сил, движущих науку. Пока не возник этот заказ, никто не догадался спросить уравнения — не слишком ли много хотят от первенца новой науки? Но когда вопрос был поставлен, уравнения ответили — это возможно, и даже подсказали, как зажечь свечу с двух концов.
В этой работе принимала активное участие молодая сотрудница ИРЭ Галя Васнёва, окончившая тот же МИФИ, в котором в свое время учился Басов. Еще дипломницей она пришла в ФИАН и, включившись в работы по стабилизации частоты, продолжила эти исследования в новом институте. Когда я с ней познакомилась, это была тоненькая застенчивая девушка; защитного цвета блуза с погончиками, какие были модны в послевоенные годы, особенно подчеркивала ее женственность и юность. Как-то не верилось, что Галя может стать серьезным и деловым ученым. Однако уже через пару лет я увидела ее портрет в одной из московских газет. То, над чем она работала, привлекло внимание. Это была важная и серьезная работа даже для зрелого физика.
Она начала с того, что позади резонатора, в котором молекулы генерировали радиоволны, поставила второй резонатор, настроенный на другую частоту. На что она рассчитывала? Зачем пошла на усложнение?
Проследим за нитью ее рассуждений. Она обратила внимание на то, что не все молекулы, отбираемые сортирующей системой, обладают одинаковой энергией. Оказывается, пучок содержит несколько «сортов» активных молекул. Каждый из этих сортов немного отличается от других и поэтому способен излучать радиоволны, чуть-чуть различающиеся по частоте.
Галя знала: для того чтобы молекулярный генератор заработал, резонатор должен быть точно настроен на частоту определенного «сорта» молекул. Но при этом работает только одна часть пучка активных молекул. Остальные пролетают резонатор без всякой пользы. Перестроить резонатор на частоту, соответствующую другому «сорту» молекул? Но тогда они начнут генерировать новую частоту, а генерация прежней частоты прекратится. Как же использовать пропадающие зря молекулы? Что… если поставить один за другим два резонатора и каждый настроить на свой «сорт» молекул? И Галя заставила прибор излучать сразу две стабильные частоты. Это было неожиданно и ново. Как это скажется на качестве работы молекулярного генератора?
Галя не успела довести проверку до конца, как стало известно, что за океаном ученые тоже построили молекулярный генератор с двумя резонаторами. Это были А. Джаван и Т. Ванг, сотрудники Таунса, и работавший независимо от них В. Хига. Однако они настраивали оба резонатора на одну и ту же частоту. Трудно сказать, какую цель они преследовали. Ведь в соответствии с существовавшей в то время теорией пучок активных молекул должен был уже в первом резонаторе излучить всю энергию, которую он мог отдать. Может быть, именно это и думали проверить ученые? Впрочем, Хига хотел испытать двухрезонаторный прибор и в качестве усилителя. Он добивался таких условий, когда генерация в первом резонаторе еще не наступала, и тут вводил в него извне слабый сигнал. Слабую радиоволну, которую хотел усилить. И действительно, этот сигнал действовал на переполненные до краев энергией молекулы, как хлыст, и они отдавали радиоволне все свои энергетические избытки — волна за их счет усиливалась.
Этот опыт открыл новые детали в поведении двухрезонаторного генератора. Когда внешнего сигнала не было, никаких колебаний ни в первом, ни во втором резонаторах не возникало. Это, однако, ни в коей мере не могло удивить ученых. Поразительным оказалось другое.
Заставив пучок генерировать в первом резонаторе, обе группы ученых обнаружили во втором колебания на той же частоте и почти столь же сильные, как в первом! Но второй-то был настроен на другую, хотя и близкую частоту… В чем же дело? Теория не только не могла этого объяснить, но полностью противоречила такой возможности. На этом сюрпризы не кончились.
В обычном однорезонаторном генераторе частота колебаний, хотя и слабо, зависела от настройки резонатора. В двухрезонаторном приборе от настройки первого резонатора зависела не только частота генерации в нем самом, но и частота колебаний во втором резонаторе! Вскоре обнаружился еще более невероятный факт. Частота колебаний во втором резонаторе совсем не зависела от его собственной настройки — к всеобщему изумлению, она в точности следила за настройкой первого. Это уж никак не согласовывалось с формулами. Созданные в соответствии со строгой теорией приборы начинали жить своей собственной жизнью, озадачивая ученых все новыми и новыми сюрпризами.
В дополнение ко всем неожиданностям, в момент, когда первый резонатор оказывался расстроенным так сильно, что колебания в нем прекращались, колебания во втором продолжались как ни в чем не бывало. Они лишь скачком меняли свою частоту, подлаживаясь теперь уже под настройку не первого, а своего собственного резонатора. Как бы потеряв одного хозяина, они прислушивались к другому.
Можно только удивляться, почему столь неожиданные наблюдения не вызвали большого интереса и лавины исследований. Лишь через год В. Велс попытался объяснить, как это все происходит, а еще через два года Ф. Редер и С. Бикарт повторили эти опыты, допустив, впрочем, некоторые ошибки в своих наблюдениях.
Прошло еще около двух лет, и загадкой двухрезонаторного генератора увлеклись Басов и его сотрудники. Задачу атаковали сразу с двух сторон. Теорию разрабатывал А. Н. Ораевский, бывший дипломник, а в то время
аспирант Басова. Наблюдения проводил опытный экспериментатор, в то время кандидат, а потом доктор физико-математических наук Г. М. Страховский со своими аспирантами.
Страховский принадлежит к старшему поколению. Он, пожалуй, ровесник Прохорова. И не уступает ему в росте. Статная фигура спортсмена. Твердая рука. Острый взгляд следопыта, следопыта науки.
Увидев Ораевского впервые и еще не зная, с кем имею дело, я сразу подумала: о, это теоретик! Спокойное, задумчивое выражение лица. Глубокие глаза. Скупые, почти ленивые движения. У доски он преображается. Пишет и орудует тряпкой очень быстро, хотя говорит медленно, четко произнося каждое слово. Кажется, он хочет вбить его в вашу память. Так было, когда к доске выходил дипломник, таков и доктор физико-математических наук.
Он слывет среди физиков глубоким теоретиком. Я думала, что он кончил Московский университет. Там готовят хороших теоретиков. Оказывается, он из Физтеха, как коротко называют Физико-технический институт в Долгопрудной, где физики получают самую серьезную и разностороннюю подготовку. И Ораевский кончал вовсе не как теоретик. В дипломе у него значится «инженер-физик». Только в лаборатории Басова он специализировался в теории, сделал диссертацию по квантовым генераторам, много красивых расчетов по стандартам частоты, по лазерам. Ораевский всегда в центре интересов лаборатории. И вообще особенность теоретиков, работающих с Басовым, в том, что они всегда в лаборатории. Везде теоретики трудятся дома — так, я знаю, принято и у математиков Боголюбова и у учеников Ландау. Басовцы на своих местах с девяти до девяти. Они все время в гуще событий. Экспериментаторы просят что-то рассчитать, дать рецепт технологам, подсчитать примеси, температурные режимы, прикинуть напряжения и токи в схемах. Теоретики здесь нарасхват.
Дружный натиск дал свои плоды. И надо сказать, плоды неожиданные. Читая статьи того времени, я освоилась с мыслью, что пучок активных молекул способен отдать первому резонатору не больше и не меньше, чем половину энергии, запасенной молекулами того «сорта», на частоту которых настроен резонатор. Но когда Басов читал это место в рукописи, он подумал, а потом загадочно сказал: — Может, и больше…
Значит ли это, что прежний расчет его не удовлетворяет? Сомнение положило начало новым раздумьям, которые прояснили непонятное поведение молекул. Более подробное исследование дало неожиданный результат. Оказывается, под действием электромагнитного поля первого резонатора молекулы начинают вести себя совсем по-новому — они образуют своеобразный коллектив. И этот коллектив бдительно контролирует все акты испускания и поглощения фотона отдельной молекулой. Причем коллектив отдает предпочтение или, можно даже сказать, поощряет акты испускания фотонов и как бы подавляет акты поглощения!
Кстати, возможность такого коллективного состояния молекул еще раньше, без всякой связи с молекулярным генератором, предсказал американский ученый Р. Дики. Он назвал это состояние сверхизлучающим, так как стремление к излучению при этом зависит не от числа молекул, а от квадрата их числа, то есть растет очень быстро.
Молекулы, находящиеся в сверхизлучающем состоянии, могут излучать до тех пор, пока пучок не излучит всей запасенной в нем энергии! Такое излучение может наблюдаться и при полете молекул в свободном пространстве, только при этом оно будет происходить медленно. Если же пучок молекул, приведенный в сверхизлучающее состояние в первом резонаторе, попадет во второй резонатор, настроенный на подходящую частоту, то сверхизлучение произойдет очень интенсивно. При этом пучок коллективизировавшихся молекул снова излучит ровно столько же, сколько он уже излучил в первом резонаторе, то есть вторую половину первоначально запасенной в нем энергии.
После этих работ стало ясно, что двухрезонаторный молекулярный генератор обладает преимуществом перед обычным молекулярным генератором.
Ведь несмотря на то, что свойства самих молекул чрезвычайно неизменны, частота колебаний молекулярного генератора была далеко не так стабильна, как этого ожидали его создатели. Оказалось, что она определяется не только свойствами молекул, но и настройкой резонатора. А настройка резонатора, к сожалению, не остается постоянной.
Если зимой в лаборатории открывают окна, одним из первых замечает это резонатор и расстраивается. Конечно, его можно держать в теплице, как огуречную рассаду зимой. Для этого существуют термостаты. Но это уже лишние заботы. Можно поступить и иначе. Соорудить резонатор из особого материала, инвара, который слабо реагирует на изменение температуры. Так конструкторы и поступают. И все же полностью изолировать резонатор от внешнего мира нельзя. Ведь молекулярный генератор и создан для того, чтобы транслировать свою «радиопередачу» во внешний мир. И хочешь не хочешь, а через тот же волновод, по которому энергия молекулярного генератора передается потребителю, внешний мир влияет на него, на настройку его резонатора, генерируемую частоту.
Инженеры, естественно, стараются уменьшить этот вредный эффект, ставят специальные развязки, через которые электромагнитная волна способна проходить только в одну сторону и не может пройти в обратную. Однако такие развязки не идеальны. Они уменьшают влияние внешнего мира на резонатор молекулярного генератора, но не изолируют его полностью.
Конечно, читателю уже давно стало ясно, как двухрезонаторный молекулярный генератор помогает справляться с этой трудностью. Ведь в таком генераторе частота зависит только от первого резонатора, а сигнал берется от второго, никак не влияющего на частоту. При этом к первому резонатору не присоединяется никакой волновод. Он в электрическом отношении совершенно изолирован от внешнего мира. Это особенно важно для генераторов, подверженных тряске, вызывающей неизбежные деформации волноводов. Исследования двухрезонаторного молекулярного генератора, проведенные в Физическом институте АН СССР, были вскоре подтверждены работой английских физиков. Но это было лишь одно из направлений развития новой области науки. Впрочем, было бы удивительно, если бы все ограничились одним направлением!
Вскоре после работ Басова и Прохорова молекулярные генераторы заработали в Харьковском институте мер и измерительных приборов, где их применили для периодической проверки кварцевых часов, в Горьковском университете и в других местах Советского Союза.
Глава 4.
Познавательное меню периодики.
Раунд «безумных» идей
Двадцатое столетие застало ученых в приятном заблуждении. Им казалось, что они знают все или почти все об окружающем мире.
На рубеже XX века это благополучие было подвергнуто серьезному испытанию.
Макс Планк, берлинский профессор, уже завоевавший себе известность трудами по термодинамике, рассматривая процесс обмена энергией между раскаленным телом и окружающим пространством, предположил, что этот обмен совершается не непрерывно, как утверждала «волновая» теория, а в виде небольших порций. Это подтвердили расчеты физика Рубенса. Так в науку вошло представление о минимальной порции энергии — кванте. В фундаменте классической физики появилась основательная трещина.
Столетов и Герц, русский и немецкий физики, подробно изучили к этому времени, как свет выбивает электроны из поверхности твердых тел. Были установлены все подробности этого явления, названного фотоэффектом. Но никто не мог понять, почему энергия вылетающих электронов не зависит от яркости падающих лучей, а определяется только их цветом.
Никто не мог объяснить и существования красной границы фотоэффекта — того удивительного факта, что для каждого вещества в спектре солнечного света существует своя «индивидуальная» граница. Лучи, лежащие «в красную сторону» от границы, никогда не вызывают фотоэффекта, а лежащие «в фиолетовую сторону» от нее — легко выбивают электроны из поверхности вещества. Это было тем более удивительно, что существование цветовой границы прямо противоречило волновой теории света, господствовавшей в науке около 300 лет. В соответствии с волновой теорией можно было ожидать «накопления» действия света. Яркий свет должен был приводить к вылету электрона скорее, чем слабый.
С «волновой» точки зрения красной границы вообще не должно было быть. Световая волна любой длины должна быть способна выбить электрон. Для этого нужно или подождать подольше, или взять свет поярче.
Загадку решил Эйнштейн. Он пришел к выводу, что квантовая теория Планка, созданная только для объяснения механизма обмена тепловой энергией между электромагнитным полем и веществом, должна быть существенно расширена. Он установил, что энергия электромагнитного поля, в том числе и световых волн, всегда существует в виде определенных порций — квантов.
Так Эйнштейн извлек квант из его колыбели и продемонстрировал людям его поразительные возможности. Представление о кванте света (фотоне) как об объективной реальности, существующей в пространстве между источником и приемником, а не о формальной величине, появляющейся только при описании процесса обмена энергией, сразу позволило ему создать стройную теорию фотоэффекта. Это подвело фундамент и под зыбкую в то время формулу Планка.
Действительно, если свет не только излучается и поглощается квантами, но и распространяется в форме квантов — определенных порций электромагнитной энергии, то законы фотоэффекта получаются сами собой. Нужно только сделать естественное предположение, что квант-фотон взаимодействует с электроном один на один.
Энергия каждого отдельного фотона зависит только от частоты световых колебаний, то есть от его цвета. Красному цвету соответствует почти вдвое меньшая частота, чем фиолетовому; значит энергия «красных фотонов» почти вдвое меньше энергии «фиолетовых фотонов».
Так как электроны удерживаются в твердом теле вполне определенными для каждого вещества силами, то энергии «красного фотона» может не хватить для преодоления этих сил и освобождения электрона, а «фиолетовый фотон» легко это сделает. Так возникает красная граница, характерная для каждого вещества.
Столь же непосредственно объясняется и независимость энергии вылетевшего из вещества электрона от яркости вырвавших его лучей. Ведь энергия электрона — это остаток, разность между энергией фотона и той энергией, которую он затратил на вырывание электрона. Яркость света, то есть число квантов, попадающих в секунду на квадратный сантиметр поверхности тела, тут ни при чем. Ведь кванты света падают независимо один от другого, и каждый поодиночке выбивает (или не выбивает) электрон. Они не могут дождаться друг друга, чтобы совместными усилиями вырвать электрон, поэтому фотоэффент не зависит ни от яркости света, ни от времени освещения.
Квантовая теория света, успешно справившаяся с загадкой фотоэффекта, отнюдь не была всесильной. Наоборот, она была совершенно беспомощной в попытках описать ряд общеизвестных явлений. Например, таких, как возникновение ярких цветов в тонких слоях нефти, разлитой на воде, или существование предельного увеличения микроскопа и телескопа. Волновая же теория света, бессильная в случае фотоэффекта, легко справлялась с этими вопросами.
Это вызвало непонимание и длительное недоверие к квантовой теории света. Ее не принял и отец квантов Планк.
При создании теории фотоэффекта и гипотезы световых квантов проявилась особенность гения Эйнштейна — вместо введения частных гипотез, отвечающих на некоторые вопросы, давать революционные решения, одновременно проясняющие множество сложных и разнообразных проблем.
Эта черта во всем блеске проявилась в основном деле жизни Эйнштейна — в создании теории относительности, приведшей к революции в современной науке.
Глубоко проанализировав всю сумму опытных данных, накопленных физиками более чем за двадцать веков, скромный двадцатипятилетний чиновник патентного управления в Берне Эйнштейн принял в качестве основного закона, что скорость света неизменна при всех условиях.
Эйнштейн понял также, что любые явления и процессы происходят совершенно одинаково во всех телах, движущихся по инерции. Этим он распространил на всю физику принцип относительности Галилея, имевший до этого силу только для механики, — принцип, который заставляет пассажира, сидящего в вагоне, думать, что его поезд пошел, хотя двинулся только состав, до этого стоявший на соседнем пути.
Из этих предположений родилась теория относительности, вначале ее простейшая часть — специальная теория относительности, объяснявшая опыты, проводимые в лабораториях, а затем и общая, охватывающая также ускоренные движения и силы тяготения.
Но эта теория привела к выводам, показавшимся современникам безумными, — размеры тел, их масса, само течение времени потеряли свой абсолютный характер.
Еще Галилей понял, что никакими техническими приборами невозможно обнаружить движение кареты, если она движется по инерции, а окна закрыты и трение, тормозящее карету, мало. По мысли Эйнштейна, это невозможно установить не только механическими приборами, но никакими другими опытами, в том числе и оптическими. Это значило, что во всех телах, движущихся по инерции при одинаковых условиях, все процессы происходят совершенно одинаково. Только так совершенно исключается возможность оценивать при помощи этих процессов движение по инерции само по себе. По мысли Эйнштейна, для такой оценки всегда необходимо второе тело, относительно которого движется первое.
Движение по инерции не имеет абсолютного характера, оно по своей сути относительно.
Сочетание принципа относительности движения с фактом постоянства скорости света повлекло за собой много неожиданного. Оказалось, что законы физики, верные и несомненные при малых скоростях, оказываются неверными, приближенными при скоростях, близких к скорости света. Не останавливаясь подробно на эффектах теории относительности и не объясняя их, приведем лишь некоторые из них, чтобы оттенить их внешнюю парадоксальность.
Например, если две ракеты летят навстречу одна другой и приборы в них показывают, что они сближаются со скоростью 240 тысяч километров в секунду, то приборы на Земле покажут иное. Они определят, что каждая из них имеет скорость 150 тысяч километров в секунду, а не 120 тысяч, как это кажется с первого взгляда и получилось бы из принципа относительности Галилея без учета постоянства скорости света. Простой закон сложения скоростей теряет силу и заменяется более сложным.
Но этим дело не кончится.
Земные приборы покажут, что метровые линейки на обеих ракетах укоротились и содержат только 85 земных сантиметров. В то же время приборы на обеих ракетах будут показывать, что укоротился метр на Земле и в нем тоже только 85 «ракетных» сантиметров. Более того, приборы на каждой ракете зафиксируют, что метр на другой ракете укоротился сильнее, чем земной, и что он содержит только 60 сантиметров той ракеты, где ведется измерение.
То же самое произойдет с часами. Земные часы покажут, что часы на обеих ракетах отстают и проходят только 51 минуту за земной час. А часы на ракетах столь же бесспорно покажут, что отстают земные часы, которые проходят только 51 минуту за «ракетный» час. Но часы чужой ракеты будут отставать еще больше и проходить лишь 36 минут за этот же час.
События, кажущиеся одновременными при наблюдении с Земли, будут неодновременными для пассажиров ракет.
Эти выводы кажутся парадоксальными, но они неизбежно следуют из того факта, что, находясь в состоянии невесомости внутри закрытой ракеты, летящей к звездам, космонавт не чувствует ее движения и не сможет обнаружить этого движения никаким опытом. Но, открыв иллюминаторы и наблюдая внешние явления, космонавт увидит бесконечное многообразие мира, причем то, что он будет видеть и что измерят его приборы, окажется зависимым от скорости его ракеты относительности внешних тел.
Это означает, что пассажирам двух космических ракет, движущихся с разными скоростями, окружающий их мир будет видеться различным. Звезды будут казаться и по цвету и по форме иными и совершенно не такими, какими они видны с Земли. События в различных точках пространства, которые космонавтам одной ракеты кажутся одновременными, другим будут казаться происходящими в разное время.
Из работ Эйнштейна следует, что в ракете, летящей со скоростью, близкой к скорости света, время заметно замедляет свой бег. Что за год, проведенный космонавтом в такой ракете, на Земле могут пройти сотни лет.
Конечно, возникает естественный вопрос, почему время замедляется на ракете, а не на Земле? Ведь их движения относительны и с точки зрения теории они равноправны.
Но так кажется только с первого взгляда. В действительности ракета и Земля равноправны только в то время, когда ракетные двигатели выключены и ракета движется по инерции. Парадокс возникает только тогда, когда ракета вновь приземлится и можно будет сверить часы, поместив их рядом. А для этого нужно включить двигатели, чтобы повернуть ракету на обратный курс и посадить на Землю. Но во время работы двигателей с ускорением движется именно ракета, а не Земля. В это время они не равноправны и бег времени в ракете изменяется.
До того казалось само собою разумеющимся, что время едино, что на Земле и на отдаленных неподвижных звездах течение времени совершенно одинаково. Однако из теории относительности следует, что не только на быстро движущихся телах, но даже на самой Земле время течет не равномерно, что если поместить одинаковые, достаточно точные часы на поверхности Земли, в глубине ее и высоко на горе, то они будут идти различно.
Правда, этот опыт при жизни Эйнштейна поставить было невозможно: часов, достаточно точных для проверки этого утверждения, не существовало. Они созданы лишь в наши дни, и теперь появилась возможность проверить на Земле положение теории относительности Эйнштейна, подтвержденное пока лишь наблюдениями спектров белых карликов — особых звезд.
Величайший гений нашего времени Альберт Эйнштейн, сам того не ведая, ввел в физику одно из основных понятий диалектического материализма об относительности некоторых наших представлений. Он бесспорно доказал, что даже пространство, масса и время относительны.
Но это не значит, что «все в мире относительно», как иногда вульгарно трактуют теорию относительности. В теории Эйнштейна есть понятия абсолютные: это и скорость света, и интервалы, и другие величины, сохраняющие в любых условиях свое абсолютное значение. Просто Эйнштейн понял, что многие понятия, которые до него считались абсолютными, на самом деле относительны. А то, что считалось относительным, оказалось абсолютным. Так что наименование «теория относительности» явно неудачно.
Поначалу выводы теории относительности даже ученым казались пугающими и обезоруживающими. Но когда Эйнштейн продумал все связанные с новой теорией вопросы, противоречия и неожиданные повороты, человечеству открылся мир в еще большей красоте и гармонии.
«Эйнштейн сумел перестроить и обобщить все здание классической физики, — писал Бор, — и тем самым придать нашей картине мира единство, превосходящее все, что можно было ожидать».
«Сельская молодежь» № 3, 1965 г.
Год из жизни Эйнштейна
Смысл жизни, как бы коротка и опасна она ни была, можно найти только в служении обществу.
Альберт Эйнштейн
1905 год… Волна народных волнений прокатилась по миру и вылилась в революцию в России. Это был год пробуждающегося сознания широких народных масс, год, богатый событиями — заметными, сразу сказавшимися на судьбах современников, и незаметными, что отозвались лишь через десятилетия.
Среди незаметных событий затерялись и пять научных статей, посланных из тихого швейцарского города Берна в редакцию берлинского журнала. Они дали толчок, повлекший за собой радикальное преобразование основ науки, какого не было за всю историю человечества.
Автором всех этих статей был совершенно неизвестный служащий — эксперт «Бюро духовной собственности» — так называлось тогда швейцарское патентное бюро.
Эксперту исполнилось 26 лет. У него были умные веселые глаза, становившиеся грустными, когда он вспоминал покинутую им родную Германию, где ему не удалось окончить гимназию — учитель немецкого языка сказал: «Из вас, Эйнштейн, никогда ничего путного не выйдет». А куратор старших классов вызвал его и попросту предложил покинуть гимназию, так как его присутствие разрушает у учащихся чувство уважения к школе: ученик не признавал авторитетов, был строптив и упорен, на замечания отвечал с язвительным достоинством.
Эйнштейну еще не раз придется столкнуться в жизни с двойниками этого куратора. Многие будут упрекать его в неуважении к авторитетам, в разрушении основ науки… Его, величайшего созидателя.
А пока тяжелые времена («Нужда была так остра, что я не мог размышлять ни над одной абстрактной проблемой», — напишет он потом) кончились. Он имеет постоянную службу. Он весел, играет на скрипке, он может думать!
Сегодня об огромных достижениях Эйнштейна в науке известно всем. Но не все знают, что самым важным в его жизни был именно этот, 1905 год. О нем я и хочу рассказать.
За конторкой патентного эксперта расцвел гений. Гений, не признанный тогда официальной наукой. Гений, не удостоенный даже докторской степени, степени, присуждавшейся в европейских университетах практически каждому рядовому ученому.
Двадцатишестилетний ученый выполнил несколько основополагающих исследований. Первое возникло из непризнанной, никем не понятой работы Планка, открывшего кванты энергии. Завершив работу, Планк осознал, что ее выводы противоречат основам общепризнанной физики, понял ее взрывчатую силу и остановился. В течение пяти лет ни он, ни другие ученые не отваживались признать эти результаты. Эйнштейн же увидел необходимость идти еще дальше.
Когда 17 марта 1905 года статья Эйнштейна была закончена, каждый мог узнать, что свет не только излучается и поглощается конечными порциями, как предположил Планк, но и распространяется в виде неделимых квантов энергии, которые теперь называют фотонами.
Каждый мог это прочесть, но никто не сумел понять. Вывод был столь неожидан, столь радикален, что его испугался сам Планк, отец квантов. И еще через семь лет, представляя Эйнштейна в Берлинскую Академию наук, он вместе с другими крупнейшими учеными просил «не ставить Эйнштейну в вину» его теорию световых квантов.
Эта теория, на основе которой впоследствии де Бройль создал волновую механику частиц, на фундаменте которой возникла вся квантовая физика с теорией атомов и элементарных частиц, с лазерами и мазерами, о которых теперь знают даже школьники младших классов, многие годы считалась заблуждением!
Поражает быстрота, с которой Эйнштейн работает. Всего полтора месяца понадобилось ему, чтобы завершить, пожалуй, самую важную из его работ. В ней он разрешил парадокс своей юности, скрывавший в себе зародыш теории относительности. Вот что он пишет об этом сам: «Парадокс заключается в следующем. Если бы я стал двигаться за лучом света со скоростью света, то я должен был бы воспринимать такой свет как покоящееся, переменное в пространстве электромагнитное поле. Но ничего подобного не существует».
Парадокс, поразивший Эйнштейна, когда ему было всего 16 лет, не давал ему покоя десять лет. Он понимал, что догнать световую волну и увидеть ее неподвижной невозможно. Теперь он осознал, что необходимы дальнейшие шаги. Следует признать, что не только большие тела, но и мельчайшие частицы вещества не могут двигаться со скоростью света. Что скорость света в пустоте постоянна и неизменна. Что законы природы объективны и не зависят от наблюдателя и его движения. Все это Эйнштейн принял за основу вопреки всей научной практике прошлого, всей укоренившейся системе знаний. Дальше требовалась только «техника», здесь ее роль играла филигранная математика.
Это была революция в науке. И если потом ее историки начали делить время на две эры: до Эйнштейна и после Эйнштейна, то рубежом служит 30 июня 1905 года, когда итог его труда — небольшая статья достигла редакции журнала, известив мир о том, что родилось новое мировоззрение: природа подчиняется принципу относительности.
А 27 сентября того же года, как эхо отдаленного взрыва, в редакцию пришла заметка того же автора всего на трех страницах. Теперь-то мы знаем, что в них таилась разрушительная сила атомной бомбы и созидательная сила атомной энергетики…
Прошло 40 лет, и степь в штате Нью-Мексико потряс взрыв атомной бомбы. Эйнштейн не принимал участия в ее создании. Но он обращал внимание президента Рузвельта на то, что нацисты пытаются изготовить такую бомбу. Эйнштейн тщетно пытался предотвратить трагедию — использование открытия науки для уничтожения людей. Но политические мотивы оказались для правительства США сильнее. Хиросима и Нагасаки вечно останутся пятнами позора на совести тогдашних правителей Америки.
После фонтанирующего открытиями 1905 года Эйнштейн продолжает интенсивно работать. Он понимает, что сделанное им — только начало. Главное, чему он посвящает силы в последующие годы, — расширение использования принципа относительности. В результате трудов ученого природа сил тяготения, считавшаяся величайшей загадкой природы, была объяснена. Непонятные аномалии движения планет стали простым следствием теории тяготения. Вся механика Ньютона оказалась частным случаем общей теории относительности.
Особенно потрясли воображение ученых два предсказания Эйнштейна. Первое-то, что луч света, этот символ прямолинейности, должен искривляться, проходя вблизи больших масс. Например, вблизи Солнца. Второе — часы должны идти медленнее вблизи больших масс, чем вдали от них.
Это был, пожалуй, единственный случай в истории науки, когда воображение отказывалось следовать за сухими математическими формулами. И вот 22 сентября 1919 года Эйнштейн получил телеграмму: «Эддингтон обнаружил смещение звезд у края Солнца… Привет, Лоренц». А ведь это открытие английского астронома предсказано теорией относительности.
Слава Эйнштейна охватила весь мир, все круги общества. О теории относительности беседовали в гостиных и пивных, в трамваях и школах. О ней рассказывали анекдоты. Но то, что после прихода к власти Гитлера фотография Эйнштейна была помещена в альбом главных врагов национал-социализма с надписью «еще не повешен», а теория относительности объявлена большевистской наукой, не анекдот.
Несмотря на мировую славу и на преследования мракобесов, труженик продолжает работать. Он поставил перед собой цель, казавшуюся поистине гигантской — создать теорию, способную объяснить все детали мироздания: от строения мельчайших частиц до устройства Вселенной. Теория должна была быть настолько очевидной, чтобы ее мог понять даже ребенок, — так хотел Эйнштейн.
Он не справился с задачей, хотя работал над ней около сорока лет. Несколько раз ему казалось, что он видит правильный путь и близок к цели. Он делился своей радостью и своими результатами с коллегами. Но как только ему указывали ошибку или он обнаруживал ее сам, признавал это без оговорок и начинал все заново. Это одна из его замечательных особенностей.
…К старости он изменил свои привычки. Еще мать привила ему любовь к музыке. Он часто музицировал с друзьями. Но когда дело его жизни потребовало полной отдачи и он почувствовал, что жизнь коротка и времени не хватает, он оставил даже игру на скрипке — слушал лишь граммофонные записи, помогавшие работать и переключаться. Он совершенно не уделял внимания одежде, светским обязанностям. Друзья беспокоились: у Эйнштейна стали такие грустные глаза…
Задача, поставленная Эйнштейном, не преодолена и поныне. В ее решении участвуют многие ученые. Старые и молодые. Теоретики и экспериментаторы. Время от времени им представляется, что они близки к цели. Но каждый раз надежда оказывается тщетной.
…Как же случилось, что мудрец, витавший, казалось бы, в абстрактных, далеких от повседневности сферах, так прочно занял место в сердцах людей?
Он был мудрец не только в области науки. Он зорко видел все, что происходит на Земле. Он умел отличить зло от добра, даже когда оно рядилось в одежды добра. Дав человечеству прозрение тайн Вселенной, Эйнштейн считал, что «самый важный вопрос… по сравнению с которым все прочие кажутся незначительными, это вопрос о войне и мире».
И теперь мне кажется не случайным, что именно 1905 год, ставший трамплином для революционного скачка в социальном творчестве народных масс, так много значил и в творчестве Эйнштейна. Он сразу же поверил Октябрьской революции и ее вождю Ленину. «Я уважаю в Ленине человека, — писал Эйнштейн, — который с полным самоотвержением отдал все свои силы осуществлению социальной справедливости. Люди, подобные ему, хранят и обновляют совесть человечества».
«Огонек» № 11, 1979
Нашедший незнакомку
Сенсация! Итальянский астроном Пиацци сообщил об открытии новой планеты. Разрушает ли он незыблемость Солнечной системы или ошибается?
Пока ученые и обыватели обсуждали этот вопрос, Пиацци следил за незнакомой планетой ночи напролет. Почти полтора месяца он любовался ею, но однажды… Пиацци не нашел свою планету на небосводе.
Это не погасило счастья астронома, он был уверен, что, обойдя вокруг Солнца, незнакомка вновь покажет свой лик.
Однако случилось иначе. Планета бесследно исчезла. Шел год 1801-й.
Примерно за тринадцать лет до этого нашумевшего события помощник учителя в одной из народных немецких школ попросил учеников просуммировать числа от 1 до 40. Задача несложная, требующая только внимания и некоторого времени. Учитель был поражен, когда бедно одетый застенчивый сын водопроводчика Карл, почти не задумываясь, назвал результат — 820.
Мальчик получил ответ в уме! Учителю Бартельсу еще не исполнилось двадцати лет — впоследствии он стал профессором и в Казани обучал создателя неевклидовой геометрии Лобачевского, — но и в свои юные годы он был незаурядным педагогом. Когда он узнал, как Карл пришел к ответу (а тот просто сгруппировал числа по парам: 1 плюс 40, 2 плюс 39 и так от краев к середине, заметив, что каждая пара дает 41, а таких пар 20), Бартельс понял, что его ученик заслуживает особого внимания. Он начал заниматься с мальчиком отдельно. Добился для него материальной помощи. Сделал все, чтобы дать ему возможность учиться в университете.
Карл не обманул надежд. С 14 лет он начал обгонять своего педагога. Он интересовался тем, чего не знал никто. Его увлекли тайны простых чисел. Его волновала древняя загадка параллельных линий. Действительно ли они нигде не сходятся, как утверждал Евклид?
Едва став студентом университета в Гёттингене, Карл завершает работу, казавшуюся невыполнимой со времен Архимеда. Он находит способ построить при помощи циркуля и линейки правильный 17-угольник. Древние научились строить треугольник, квадрат и пятиугольник, а также многоугольники, получающиеся простым удвоением сторон. Пойти дальше не мог никто. Но юный студент не только сделал следующий шаг, но и нашел закон, показывающий, для каких многоугольников это может быть сделано.
Один из профессоров настоял на том, чтоб об этом было напечатано хотя бы краткое сообщение. Его напечатали. Подпись под ним гласила: Гаусс из Брауншвейга, студент математики в Гёттингене.
Еще через год Гаусс нашел новое доказательство основной теоремы алгебры. Опубликование этой работы затянулось на два года, но, когда корректурные листы попали в Гельштедтский университет, ее автору — Карлу Фридриху Гауссу — была заочно присуждена докторская степень.
1799 год ознаменовался для Гаусса большим успехом: он стал приват-доцентом университета в родном Брауншвейге. Вскоре он узнал о наблюдениях Пиацци и об исчезновении новой планеты. И он решил отыскать ее.
Уже тогда Гаусс считал главным долгом математика помогать решению задач, возникающих в других областях науки. Он принимается за работу.
Однако традиционные астрономические методы не привели к успеху. Дело в том, что астрономы, хотя и знали со времен Кеплера, что планеты движутся по эллипсам, рассчитывали орбиты планет, как если бы они двигались по окружностям. Не удивительно, что первая практическая проверка традиционных методов на маленькой, с трудом видимой планете привела к неудаче.
Гаусс находит выход из положения: создает метод вычисления эллиптической орбиты всего из трех наблюдений. Ему теперь достаточно знать местонахождение планеты всего в трех точках небосвода, чтобы вычислить, где она была раньше и где будет в следующие периоды времени. Наблюдений Пиацци было достаточно, чтобы Гаусс мог опробовать свой метод и определить орбиту исчезнувшей планеты. В декабре того же года она была найдена вновь и оказалась именно там, где предсказывал Гаусс. Незнакомка, за которой охотились астроном и математик, получила имя Церера.
В пору зрелости Гаусс спустился с неба на землю. Ученый создает новую науку — высшую геодезию, — задача которой в установлении действительной, а не упрощенной формы поверхности Земли. Методы и результаты, полученные им сто пятьдесят лет назад, сохранили свое значение и поныне.
По окончании цикла геодезических исследований Гаусс занялся электричеством и магнетизмом. Он основывает магнитную обсерваторию для наблюдения магнитного поля Земли, создает теорию земного магнетизма и со свойственным ему практицизмом не забывает о конструировании нескольких приборов, помогающих при магнитных измерениях.
Работы Гаусса — в области электричества и магнетизма, фундаментальный вклад в оптику и теорию капиллярных явлений, в механику — являются серьезным словом в теоретической физике. Не менее значительны его практические достижения.
Особое место занимает созданная Гауссом единая система мер и весов. Ученый гордился тем, что устранил неразбериху в научных исследованиях, существовавшую из-за того, что одни мерили длину в дюймах, другие — вершками, третьи — локтями. То же происходило при измерениях времени, массы, веса. Гаусс положил этому конец.
Потомки ценят Гаусса не только за его научный вклад в прогресс, но и за моральную чистоту, за крайне высокую требовательность к себе. На его печати был выгравирован девиз: «Немногое, но зрелое».
Следуя этому девизу, Гаусс публиковал далеко не все свои работы. Когда его труды были посмертно обнародованы полностью, их оказалось 11 томов. Среди не опубликованных при жизни работ Гаусса остался вывод о возможности создания неевклидовой геометрии. Гаусс опасался, что его идея не будет понята, он прекратил работу в этом направлении. Но когда он узнал о работах Лобачевского, создавшего первую неевклидову геометрию, он отнесся к ним с большим вниманием. Именно Гаусс стал инициатором избрания Лобачевского членом- корреспондентом Гёттингенского научного общества.
«Огонёк» № 17, 1977 г.
Ошибка Ньютона
«…ошибки… могут таить в себе важные открытия».
Блэкетт
В 1671 году еще никому не известный за пределами своего колледжа преподаватель математики Ньютон собственными руками построил маленький зеркальный телескоп, позволявший видеть небесные тела лучше, чем самые крупные телескопы со стеклянными линзами. Зеркальце вместо увеличительного стекла приблизило к людям мир звезд.
Весть о новом телескопе вскоре вышла за пределы Кембриджа и достигла Лондона. Поэтому Ньютон, не стремившийся к славе, но побоявшись нарушить королевский декрет от 18 октября 1662 года, в силу которого всякое изобретение в области физики и механики должно быть испытано Королевским научным обществом, отправил прибор в столицу.
Члены Королевского общества (по нашей терминологии — Академии наук) и вместе с ними король осмотрели и испытали телескоп. Он работал лучше тех, которыми пользовались королевские астрономы, хотя линзы в этих телескопах были много больше, чем пятисантиметровое зеркало, изготовленное Ньютоном.
Всеобщее восхищение привело к тому, что 11 января 1672 года Ньютон был избран членом Королевского общества. Не будет преувеличением сказать, что начало нынешней славы Общества положило именно решение о принятии в него Ньютона.
Так Ньютон стал академиком, когда ему еще не исполнилось тридцати лет…
Линзовыми телескопами, в которых «главным действующим лицом» были знакомые всем увеличительные стекла в форме чечевицы, Ньютон интересовался еще в студенческие годы — в конспектах и тетрадях найдены заметки, относящиеся к полировке линз, к закону преломления световых лучей. Он знал, что даже великий Декарт, идейный учитель и кумир тогдашней молодежи, занят проблемой улучшения работы телескопов и предлагает для этой цели придавать поверхности линз не сферическую, а более сложную форму.
Но ни сам Декарт, ни лучшие мастера-оптики не могли изготовить такие линзы. Ньютон дает себе слово добиться успеха. Он изучает геометрию и алгебру и, думая, что решение задачи кроется в расчете сложных поверхностей линз, изобретает точнейшие математические методы для этих расчетов, применяет их с виртуозным искусством и изготавливает удивительные по форме увеличительные стекла. Но… на каком-то этапе работа застопорилась, и не по вине математики или из-за недостатка терпения. Наступил предел возможности увеличивать изображения далеких объектов. Мешали искажения — цветные радужные полоски.
… В Англии — тяжелые времена. Свирепствует чума. Ньютон покидает Кембридж и едет на родину — в деревню Вулсторп. Здесь он живет около двух лет — от августа 1665 года до марта 1667 года. И это оказались удивительные для науки годы. Здесь, в сельской тиши, молодой бакалавр достиг творческого подъема, не повторявшегося ни у него, ни у других за последующие триста лет. Именно здесь — тогда Ньютону шел двадцать третий год — он создал математический анализ бесконечно малых (по теперешней терминологии дифференциальное исчисление) и, применив его к физическим задачам, положил начало современной математической физике. Здесь он глубоко продумал проблему всемирного тяготения. Здесь он своими руками и на свои скудные средства создает оптическую лабораторию и проводит удивительные оптические исследования. Под впечатлением теории радуги, построенной Декартом на основе остроумных и точных методов, Ньютон начал знаменитые опыты с целью установить природу света. Именно здесь, в комнате материнского дома, Ньютон произвел свой легендарный опыт разложения солнечного света. Он поставил на пути солнечного луча стеклянную призму, и белый луч, пройдя через грани этого препятствия, рассыпался на семь цветных лучиков. Ньютон увидел на стене своей комнаты семь цветных полосок — искусственную радугу — красную, оранжевую, желтую, зеленую, голубую, синюю, фиолетовую. (Чтобы запомнить последовательность цветов солнечного спектра, надо заучить шуточную фразу: Каждый Охотник Желает Знать, Где Сидит Фазан.)
Как могло случиться, что столько людей изучали свет, видели многоцветье радуги и радужных полос, образуемых призмами, видели, но не поняли, что все эти цвета содержатся в белом свете?
Ньютон увидел и победил. Это было его великим прозрением.
Завершив эти изумительные опыты, он продолжает поиски в области оптики: наблюдает отражение и преломление лучей на границах разных сред. Все эти работы он проводит, используя призмы и линзы, без которых еще не обходился ни один оптик. Он сам шлифует и собирает их в сложные конструкции. Он пользуется не только призмами из стекла, но и наполненными водой. Все опыты без исключения убеждают его: процесс разложения белого света не зависит от состава призм, только от формы. Это не так, но ученый, готовя водяные линзы, добавлял к дождевой воде свинцовый сахар. Эта добавка делала воду еще более прозрачной, чем дождевая вода. Однако Ньютон не учел, что добавка свинца увеличит плотность воды и эта вода по оптическим свойствам станет близкой к его стеклу. «Значит, надо отказаться от использования в телескопах любых линз и искать радикально другое решение», — подумал ученый. Он пришел к мысли применить в телескопах зеркало и создал свой зеркальный телескоп. Так ошибка привела к открытию, а самого Ньютона — к славе.
Его зеркальный прибор-малютка был предком всех крупнейших современных телескопов, включая гигант с пятиметровым зеркалом на горе Маунт-Паломар и не превзойденный шестиметровый рефлектор советской Зеленчукской обсерватории.
«Огонёк» № 14, 1977 г.
Профессии лучистой материи
Это произошло ровно сто лет назад. Ученые, прибывшие в английский город Шеффилд, без особого интереса собирались на доклад Уильяма Крукса, объявленный под названием «Лучистая материя или четвертое агрегатное состояние».
Будущий президент Лондонского королевского общества Крукс уже тогда был хорошо известен химикам и физикам. Еще в 1861 году он при помощи спектрального анализа открыл новый химический элемент — тяжелый голубовато-серый металл. Его назвали таллий. Это поэтическое название происходит от греческого «таллос», что значит молодая зеленая ветка. На аналогию навела яркая зеленая линия в спектре нового элемента.