Тайны мироздания

Когда вверху не названо небо,

А суша внизу была безымянна,

Алсу первородный, всесотворитель,

Праматерь Тиамат, что все породила,

Воды свои воедино мешали.

Тростниковых загонов тогда еще не было,

Когда из богов никого еще не было,

Ничто не названо, судьбой не отмечено…

Энума элит. (Вавилонский эпос о сотворении мира. Пер. B.K. Афанасьевой).


Тайны нашего всеобщего происхождения окружают нас повсюду: они скрываются за завесой из космической пыли и излучения, покоятся под землей, по которой мы ступаем, сидят, запертые в недрах всего того, что мы видим, чувствуем, осязаем… Подобно прекрасному, но твердому бриллианту, играющему всеми цветами радуги, мироздание дает нам взглянуть на какую-нибудь одну свою грань, но не разрешает созерцать свой блеск во всей его полноте. А пытливый человеческий ум раз за разом прорывается сквозь наслоения, намереваясь однажды добраться до той истины из истин, что стоит за всем сущим. Из чего сделана Вселенная? Какие силы ею управляют? Как она родилась?

На роль фундаментальных частиц древнегреческие философы предлагали разных кандидатов. В V в. до н. э. основатели атомизма Левкипп и Демокрит считали, что тела можно разбивать на все более мелкие куски только до тех пор, пока не доберемся до элементарного кирпичика. В их представлении эти мельчайшие кусочки, «атомы» («неделимый» в переводе с древнегреческого), могли быть самых разных форм и размеров, как, например, галька и ракушки на морском берегу.

По другой версии, придуманной Эмпедоклом, все состоит из смеси четырех элементов: огня, воды, воздуха и земли. Аристотель добавил к ним еще пятую сущность - пустоту. В течение двух тысячелетий они традиционного играли роль строительных блоков мироздания, пока не появился научный эксперимент, подтолкнувший Европу к эмпирическому познанию природы. В своем трактате «Скептический химик» Роберт Бойль (1627-1691) показал, что на практике сочетания огня, воздуха, земли и воды не могут дать всего разнообразия материалов, встречающегося на Земле. Он предложил новое определение термина «элемент» как простейшей составной части любого вещества. Чтобы обнаружить ее, писал Бойль, химики должны разделить вещество на основные его ингредиенты, а не полагаться на философские измышления. Блестящая догадка Бойля помогла экспериментаторам с помощью различных методов открыть подлинные химические элементы. Это хорошо нам знакомые (в произвольном порядке) водород, кислород, углерод, азот, сера и др. Так что когда современные дети смешивают всевозможные жидкости и порошки из своих наборов юного химика и приходят в восторг от бурлящего раствора и разноцветных, пахучих и липких продуктов реакции, спасибо они должны говорить Бойлю.

Бойль был ярым сторонником атомизма и дотошным экспериментатором. Не желая мириться с гипотезой, основанной на чистом умосозерцании, он разработал оригинальный эксперимент, целью которого было проверить, состоит ли вещество из маленьких частичек - он их называл корпускулами - с пустым пространством между ними. Бойль взял изогнутую стеклянную трубку, запаянную с одного конца, а на другом сообщающуюся с атмосферой. Затем начал заливать через открытый конец ртуть, которая запирала оставшийся в трубке воздух во все меньшем объеме. Когда Бойль стал медленно убирать ртуть, он заметил, что объем запертого воздуха увеличивается обратно пропорционально давлению (сегодня этот факт известен как закон Бойля-Мариотта). Это, по мнению Бойля, доказывало, что воздух состоит из мелких частиц, разделенных пустыми промежутками.

А манчестерский химик Джон Дальтон (1793-1844), подающий надежды молодой квакер, интересовался тем, в какие реакции вступают различные вещества и что из этого выходит. Так он пришел к потрясающему выводу: каждому химическому элементу отвечает свой сорт атомов. По сути, Дальтон первым употребил слово «атом» в современном смысле - мельчайшая часть химического элемента, обладающая всеми его свойствами.

Английский ученый к тому же придумал экономную систему обозначений, помогающую записывать различные комбинации атомов. Он изображал элементы с помощью кружочка с каким-нибудь знаком в центре. Для водорода это была точка, для натрия (его Дальтон называл «содой») - две вертикальные линии, а для серебра - буква «s». Дальтон насчитал 20 элементов. Сегодня известно 92 элемента, встречающихся в природе, и еще по крайней мере 25 мы умеем получать в лаборатории. Составляя из своих круглых значков разные схемы, Дальтон продемонстрировал, как из отдельных «кубиков “Лего” - водорода, кислорода и углерода - можно собрать воду и углекислый газ. Кроме того, он обосновал гипотезу, названную им законом кратных соотношений: элементы, образующие какое-либо вещество, всегда вступают в реакцию в определенных пропорциях.

Дальтон также попробовал приписать атомам относительные веса. Хотя многие его оценки оказались неточными, благодаря этой попытке химия обзавелась простыми арифметическими методами. В 1808 г. шотландский химик Томас Томсон, смешивая щавелевую кислоту* с некоторыми химическими элементами, включая стронций и калий, получил много разных солей. Взвесив их, он определил коэффициенты пропорциональности между весами тех элементов, которые он брал. Результаты Томсона, опубликованные им в книге «Система химии», помогли теории Дальтона завоевать доверие научного сообщества.

Теория Дальтона, однако, оказалась не всесильна: она не способна была предсказать новые элементы. Глядя на ряд атомов, расположенных в порядке возрастания или убывания их относительных весов, ученые не могли сказать, есть ли у этого ряда продолжение. Это как если бы мать привела троих своих сыновей в новую школу и сообщила бы только их имена и возраст. Так как учителя ничего больше про них не знают, они не могут сказать, есть ли у этих ребят старшие или младшие братья и сестры.

А на самом деле в семье химических элементов было гораздо больше членов, чем изначально думал Дальтон. К середине XIX в. количество известных элементов утроилось и достигло почти 60. Примечательно, что некоторые из них имели похожие свойства, хотя атомные веса у них иногда сильно разнились. Взять хотя бы натрий и калий - отличаясь своими относительными весами, они почти одинаково реагировали с другими веществами.

В конце 60-х гг. XIX в. русский химик Дмитрий Иванович Менделеев (1834-1907) взялся написать учебник по химии, отражающий последние ее достижения. Чтобы проиллюстрировать успехи атомной теории, он включил в него карту всех известных тогда химических элементов, расположенных в порядке возрастания веса. Причем - и это была гениальная догадка Менделеева - элементы с похожими свойствами ученый поставил в таблице в один столбец. Таким образом он показал, что все химические элементы укладываются в единую схему, которая состоит из повторяющихся блоков. Некоторые ячейки в схеме, известной сегодня как периодическая таблица Менделеева, химик оставил пустыми, утверждая, что в них должны стоять еще не открытые элементы. И его предсказание полностью сбылось: как в судоку, все пустые клетки в таблице Менделеева в конце концов заполнились.

Открытие Менделеева долгое время оставалось для ученых непонятным, пока десятилетия спустя на арену не вышла квантовая механика. Повторяющиеся блоки в периодической таблице свидетельствуют о том, что «атом» Демокрита не такой уж «неделимый».

Каждый атом - это целый мир, в котором механика Ньютона уже не действует. Действуют особые законы, которые устанавливают иерархию атомных состояний, подобную иерархии прав наследования королевского престола. Как при монархии первенцы имеют больше прав на престол, чем их братья, так и в периодической системе - одним элементам квантовая механика позволяет занять место в таблице Менделеева прежде других.

Атом иногда сравнивают с Солнечной системой. Хотя это довольно грубое сравнение (планеты не квантовые объекты), у этих двух систем есть две общие черты. Во-первых, и там и там есть центральное тело (так называемое атомное ядро и Солнце соответственно), а во-вторых, в обеих системах действуют силы, обратно пропорциональные квадрату расстояния. Из «закона обратных квадратов» следует, что если увеличить расстояние между парой тел в два раза, сила взаимодействия упадет в четыре раза, если расстояние утроить, сила ослабнет девятикратно и т. д. Физики поняли, что систему, где действует закон обратных квадратов, легко сделать стабильной. Напоминает добротный электронный собачий поводок: тот дает свободно ходить вокруг дома, но сбежать с ним не получится.

Одни ученые, такие как Бойль, Дальтон и Менделеев, посвятили свою жизнь поиску частей, из которых состоит наш мир, а другие в это время пытались открыть и понять те невидимые силы, что заставляют тела взаимодействовать и переходить друг в друга. Сэр Исаак Ньютон, чей день рождения в 1642 г. пришелся на Рождество, обладал редким талантом улавливать связи в природе и угадывать законы, управляющие ее поведением. Сформулированные Ньютоном законы механики превратили физическую науку из пестрого набора отрывочных фактов в стройную систему, обладающую невиданной доселе предсказательной силой. Они дают описание того, как силы - сближающие и удаляющие - направляют все тела в мире по присущему им пути.

Если задать положения и скорости системы тел и учесть все до единой силы, действующие на них, законы Ньютона однозначно предскажут, что с этой системой случится потом. В отсутствие внешних сил или же если все силы уравновешивают друг друга, покоящееся тело будет и дальше оставаться в покое, а движущиеся тела будут продолжать двигаться с постоянной скоростью, по инерции. С другой стороны, если сумма сил не равна нулю, тело начнет разгоняться с ускорением, пропорциональным равнодействующей всех сил. Величина этого ускорения определяется физическим свойством тела под названием масса. Чем тяжелее тело, тем труднее его ускорить заданной силой. Например, при прочих равных эвакуатор будет тащить громадную фуру гораздо дольше, чем крошку «Дэу Матиз».

Как известно, Ньютон показал, что гравитация - универсальная сила, действующая между любыми массивными телами. Луна, Международная космическая станция или крошка хлеба, сброшенная с закусочного столика своенравным муравьем, - все они притягиваются к Земле. Чем больше у тел массы, тем сильнее между ними сила притяжения. Таким образом, в физике масса играет двоякую роль: характеризует силу тяготения и определяет величину ускорения. Из-за этого она полностью исчезает из уравнения, определяющего ускорение под действием силы тяжести. Другими словами, когда тела притягиваются, например, к Земле, они ускоряются одинаково независимо от массы. Если бы не свистящий в ушах воздух, (вымерший) водный слон и мышь, соревнующиеся в прыжках с 10-метровой вышки, вошли бы в воду одновременно. Тот факт, что гравитационное ускорение тела не зависит от его массы, ставит гравитацию на особое место среди сил природы.

Силы притяжения - хорошее средство, с помощью которого можно собирать большие системы из маленьких, во всяком случае, в астрономических масштабах. Возьмите медленно блуждающие тут и там комочки, подождите, пока сила притяжения возьмет свое, и вы увидите, как они начинают скучиваться (если, конечно, нет более мощных сил отталкивания). Притяжение естественным образом объясняет, как материя может собираться из более мелких частей. Неудивительно, что Ньютон выбрал атомизм. Он считал, что из крошечных корпускул состоит не только материя, но и свет.

В своем трактате об оптике Ньютон писал: «При размышлении о всех этих вещах мне кажется вероятным, что Бог вначале дал материи форму твердых, массивных, непроницаемых, подвижных частиц таких размеров и фигур и с такими свойствами и пропорциями в отношении к пространству, которые более всего подходили бы к той цели, для которой он создал их. Эти первоначальные частицы, являясь твердыми, несравнимо тверже, чем всякое пористое тело, составленное из них, настолько тверже, что они никогда не изнашиваются и не разбиваются в куски. Никакая обычная сила не способна разделить то, что создал сам Бог при первом творении»9.

Вера Ньютона в то, что это Бог придумал атомы, отражает его глубоко религиозные взгляды на происхождение мироздания. Великий ученый считал, что только бессмертное существо способно сконструировать, запустить и время от времени регулировать в остальном механическую Вселенную. Пример Ньютона наряду с не менее набожным Бойлем показывает, как атомизм и религия могли уживаться в одном человеке.

Из работ Ньютона следовало, что Солнечная система управляется силами тяготения. Они выходят на передний план на астрономических масштабах, но вот чтобы удерживать вместе атомы, гравитация слишком слаба. В связанном состоянии атомы существуют благодаря электростатической силе, представляющей собой частный случай электромагнитного взаимодействия. В то время как сила тяжести определяется массой, электростатическое притяжение или отталкивание действует на тела, обладающие электрическим зарядом - особой физической характеристикой.

Знаменитый американский государственный деятель Бенджамин Франклин, живший в XVIII в., первым стал разделять электрические заряды на положительные и отрицательные. Под влиянием трудов Франклина и Ньютона британский естествоиспытатель Джозеф Пристли предположил, что электростатическая сила, как и сила тяготения, подчиняется закону обратных квадратов, только роль массы играет заряд. В отличие от гравитационных сил, которые всегда являются силами притяжения, электростатические могут приводить как к притяжению, так и к отталкиванию. В 80-х гг. XVIII в. эти гипотезы были подтверждены на опыте французским физиком Шарлем Огюстеном де Кулоном, чье имя и носит сегодня закон электростатического взаимодействия.

Помимо электростатической силы есть еще одна сила, которая тоже может быть силой притяжения или отталкивания, - магнетизм. Аналогом положительных и отрицательных электрических зарядов здесь являются северный и южный полюса магнита. Древним был известен магнитный железняк, и они знали, что если подвесить кусочек магнитной руды в воздухе, то он выстроится вдоль направления север-юг. Само слово «магнетизм» происходит от греческого названия этой руды, а «электричеству» дал начало янтарь, по-гречески «электрон», ведь именно этот материал легко электризуется.

Ньютону в его модели силы представлялись своего рода невидимыми канатами, тянущимися через пространство между телами и связывающими их. Мальчик в церкви, стоящий внизу, тоже, дергая за тонкую веревку, заставляет звонить подвешенный в башне колокол. Эту концепцию называют действием на расстоянии. В каком-то смысле это продолжение идей Демокрита об атомах, движущихся в абсолютной пустоте. Два тела почему-то «чувствуют» друг друга, хотя между ними нет никакой среды, через которую могло бы передаваться взаимодействие.

Британскому физику Майклу Фарадею (1791-1867) идея о действии на расстоянии была интуитивно непонятна. Поэтому он предложил концепцию электрических и магнитных полей, своеобразных посредников, способных переносить электрические и магнитные силы. Поле можно себе представлять в виде океана, заполняющего собой все пространство. Тогда заряд в электрическом поле или магнитный полюс в магнитном - это все равно что пароход, вокруг которого бурлит вода, заставляя мелкие катера отклоняться от курса. Допустим, вы отплыли от калифорнийского побережья на лодке, и вдруг вас начинает шатать из стороны в сторону. Первое, что придет вам в голову: сюда идет большое судно - это от него волны. Так и у заряда с магнитом: они чувствуют возмущение электрического или магнитного поля, произведенное другими зарядами или магнитами.

Ребенок, играющий с бруском магнита в освещаемой электрическими лампами комнате, вряд ли догадается, что у этих двух явлений много общего. Между тем Фарадей, датский физик Ганс Христиан Эрстед и другие ученые XIX столетия экспериментально доказали, что электричество может вызывать магнитные явления и наоборот. Например, заметил Эрстед, если во время включения и выключения рубильника к нему поднести компас, магнитная стрелка у того отклонится. Аналогично если поводить магнитом у провода, то, как показал Фарадей, в нем возникает электрический ток (движение зарядов) - явление, называемое индукцией. Так что сообразительный ребенок мог бы запросто осветить свою детскую, будь у него магнит, лампочка и провод.

И теория дождалась своего создателя. Выдающийся физик Джеймс Клерк Максвелл разработал математический аппарат, с помощью которого удалось объединить электрические и магнитные явления в рамках единой теории электромагнетизма. Родился Максвелл в 1831 г. в Эдинбурге, в Шотландии, а детство провел в сельской местности, где и зародилась его любовь к природе. Он любил прогуливаться вдоль илистых берегов речушек и следовать за их замысловатыми изгибами. Будучи уже взрослым, в Королевском колледже Лондонского университета, где он возглавлял кафедру физики и астрономии, Максвелл заинтересовался другим типом течений - фонтанами электрического и магнитного полей, бьющими из своих источников.

Уверенный в том, что электричество и магнетизм должны описываться одной системой уравнений, в 1861 г. Максвелл собрал воедино все известные тогда факты, указывавшие на взаимосвязь этих на первых взгляд разнородных явлений. Электрическое поле, создаваемое зарядом, а значит, и электростатическая сила описывались законом Кулона. Затем работы Эрстеда помогли Андре-Мари Амперу (1775-1836) установить закон взаимодействия двух токов.[5] Закон Фарадея, в свою очередь, говорил, что изменяющиеся во времени магнитные поля индуцируют электрические поля, и, кроме того, было известно, что и меняющееся электрическое поле рождает магнитное. Максвелл свел все эти законы воедино, ввел дополнительный член в связь между магнитным полем и создающим его током и в своей классической работе «О физических силовых линиях» выписал полную систему уравнений.

Максвелл показал: одно из ее решений предсказывает, что ходящий вверх и вниз по антенне электрический ток будет создавать переменные электрическое и магнитное поля, свободно распространяющиеся в пространстве и колеблющиеся под прямым углом друг к другу. То есть если электрическое поле колеблется в вертикальной плоскости, магнитное будет располагаться в горизонтальной, и наоборот. Получается электромагнитная волна, расходящаяся от источника, как рябь от брошенного в озеро камня.

Электромагнитное излучение - это нечто вроде танца, который совершают стоящие друг за другом мужчины и женщины, причем мужчины двигают руками вверх-вниз, а женщины вправо-влево. Допустим, первым идет мужчина. Когда стоящая позади женщина замечает, что он начал опускать руки, она совершает движение руками вправо-влево. Увидев это, следующий за ней мужчина, в свою очередь, принимается поднимать и опускать руки и т. д. Так волна из сменяющих друг друга движений рук бежит от начала цепочки к ее концу. Подобным же образом сменяют друг друга электрические и магнитные «жесты» в электромагнитной волне, выбрасываемой источником в пространство.

Из открытия Максвелла следовал невероятный вывод. Когда великий физик посчитал скорость электромагнитных волн, оказалась, что она совпадает со скоростью света. Максвеллу ничего не оставалось, как сделать смелое заключение: свет есть электромагнитная волна. Были сорваны покровы с тайны, мучившей человечество с древних времен, - свет не один из элементов («огонь» древних греков), а излучение движущихся электрических зарядов.

До рубежа XIX и XX вв. науке был известен только видимый спектр: цвета радуги, на которые распадается солнечный свет. Каждому чистому тону соответствует своя длина волны и частота электромагнитных волн. Длина волны - это расстояние между двумя последовательными пиками горной цепи электромагнитных колебаний. Частота - количество пиков волны, которые за секунду проходят через определенную точку в пространстве. (Представьте, что вы стоите на платформе и считаете, сколько вагонов идущего мимо экспресса пронеслось за секунду.) Поскольку без материи свет всегда бежит с одной и той же скоростью, следующей из уравнений Максвелла, его длина волны и частота обратно пропорциональны друг другу. У красного, цвета с наибольшей длиной волны, частота самая низкая, как если бы мимо станции проезжал неторопливый грузовой состав. Цвет с наименьшей длиной волны, фиолетовый, наоборот, колеблется быстрее всех, напоминая просвистывающий мимо поезд на магнитной подушке.

Но видимая глазом радуга цветов занимает довольно скромное место в полном электромагнитном спектре. В 1800 г. британский астроном Вильям Гершель, первооткрыватель планеты Уран, решил измерить температуры различных цветов. Каково же было его удивление, когда он увидел, что в невидимой части за красным концом спектра термометр давал высокие показания. Измеренное Гершелем низкочастотное излучение, которое располагается непосредственно у границы видимого спектра, известно сегодня как инфракрасный свет.

Годом позже немецкий физик Иоганн Риттер, узнав про опыты Гершеля, принялся исследовать область на фиолетовом конце спектра. Он обнаружил, что невидимые лучи из этой части спектра, позже названные ультрафиолетовыми, сильно воздействовали на хлорид серебра, который, как было известно, реагирует на свет.

Следующими в электромагнитном спектре на очереди стояли радиоволны. В конце 80-х гг. XIX в. для проверки теории Максвелла немецкий ученый Генрих Герц собрал излучатель в форме гири, который производил электромагнитные волны с частотами ниже, чем у инфракрасного света. Приемник, расположенный рядом, принимал эти волны, сигнализируя об этом искрой. Измерив скорость и другие свойства волн, Герц доказал, что это невидимые аналоги света. Гипотеза Максвелла получила блестящее подтверждение.

Границы спектра продолжали расширяться. В 1895 г. немецкий физик Вильгельм Рентген обнаружил, что электрический разряд, идущий от спирали, запаянной внутри стеклянной трубки, дает высокочастотное излучение. Невидимые лучи выходили из трубки, преодолевали черный картон, в который Рентген ее оборачивал, пролетали около метра и заставляли светиться бумагу, покрытую химическими солями. Благодаря своей проникающей способности рентгеновское[6] излучение как нельзя лучше подходит для создания изображений. Гамма-излучение, открытое французским ученым Полем Вилларом пять лет спустя после экспериментов Рентгена, обладает еще более высокой частотой и замыкает известный нам электромагнитный спектр.

Да, у света, который диктуют уравнения Максвелла, мало общего с ньютоновскими корпускулами. Электромагнитное излучение, скорее, должно стоять рядом с такими волновыми явлениями, как сейсмические толчки, морские волны и звук. Все эти колебания распространяются по какой-либо материальной среде. Возникает законный вопрос: по какой среде бежит свет? Разве он может бежать по абсолютному вакууму?

Многие ученые XIX столетия думали, что все пространство заполняет неуловимая субстанция под названием эфир, по которой, как по трубам, идут световые колебания. А значит, если измерять скорость света в разных направлениях, она должна меняться вместе с направлением эфирного ветра. Знаменитый эксперимент американских физиков Альберта Майкельсона и Эдварда Морли 1887 г. зарубил эту гипотезу на корню. Однако научному миру было по-прежнему трудно понять, как это свет может лететь в чистейшей пустоте, особенно если учесть почти полную аналогию с волнами в материальных средах.

Факт постоянства скорости света заставил задаться еще одним важным вопросом. В мысленном эксперименте, который много раз проигрывал молодой Альберт Эйнштейн (1879-1955), он пытался представить, что произойдет, если бежать наперегонки со световой волной и «сесть» на нее? Тогда она застынет, как выхваченный фарами из темноты олень? Или, по-другому, измерим ли мы в таком случае нулевую скорость света? Ньютоновская механика отвечает на этот вопрос положительно: если два тела двигаются с одинаковыми скоростями, друг другу они будут казаться покоящимися. В уравнениях Максвелла тем не менее нет никакого намека на скорость наблюдателя. Свет пролетает с одной и той же скоростью, подгоняемый неразрывной связью между электрическими и магнитными колебаниями. На решение этого кажущегося парадокса молодой Эйнштейн потратил немало творческих сил.

Его специальная теория относительности, опубликованная в 1905 г., сняла этот вопрос. Эйнштейн добавил в ньютоновскую механику множители, которые приводили к растяжению временных промежутков и укорочению расстояний для экспериментатора, движущегося почти со скоростью света. Эти два эффекта, известные соответственно как замедление времени и сокращение длины, так друг друга компенсируют, что все наблюдатели меряют одну и ту же скорость света. Как ни удивительно, но они в сущности заставляют нас приписать наблюдателям, летящим с разными скоростями, разный ход времени и разные измеряемые длины. Эту цену, Эйнштейн понимал, он должен заплатить, чтобы согласовать уравнения Максвелла и физику движущихся тел.

Отталкиваясь от нового подхода к измерению расстояний, времени и скорости, Эйнштейн вынужден был расширить и другие понятия физики Ньютона. Например, понятие массы, в которое он включил не только массу покоя, но и релятивистскую массу. Масса покоя характеризует количество содержащейся в теле материи. Эту массу можно поменять, только добавив или убрав часть материала, в то время как релятивистская масса зависит от скорости тела.[7] Покоящийся в начале кусок материи обладает только массой покоя, но, по мере того как его скорость растет, его релятивистская масса становится все больше. Эйнштейн пришел к выводу, что полную энергию тела можно приравнять к его релятивистской массе, умноженной на скорость света в квадрате. Из его знаменитой формулы Е = тс 2 следовало, что при определенных условиях энергия и масса, подобно воде и льду, могут переходить друг в друга.

Второй вопрос, на который Эйнштейн направил свой легендарный ум, звучал так: энергия светового луча зависит исключительно от его яркости, или свое влияние оказывает также и частота? Классическая теория волновых процессов связывает их энергию с величиной колебаний. Волны с крутыми горбами несут больше энергии, чем волны с пологим профилем. Скажем, чем крепче ударишь по барабану, тем более сильные колебания возбудишь, тем громче и энергичней будет звук. Громкость характеризует интенсивность звука и зависит от высоты, или амплитуды, звуковых волн. Так и яркость говорит об интенсивности света и точно таким же образом соотносится с амплитудой световых волн.

Тело, которое поглощает весь падающий на него свет, называется черным телом. Стоит взять черное тело, например в виде ящика (подойдет картонная упаковка от салфеток, обернутая черной бумагой), и нагреть его, как оно начнет излучать. Если предположить, что это электромагнитное излучение всевозможных частот, и попытаться посчитать, сколько излучается на каждой частоте, возникает серьезное препятствие. Как известно, в одну упаковку входит больше сложенных салфеток, чем несложенных. Такая же история с колебаниями: в ящике помещается больше коротковолновых колебаний, нежели длинноволновых. Следовательно, вычисления, основанные на классической теории волн, предсказывают, что львиную долю энергии захватят короткие волны, в то время как длинноволновые моды будут довольствоваться жалкими крохами. Другими словами, из ящика в изобилии будут выходить коротковолновые волны высокой частоты: ультрафиолетовое и более жесткое излучение. Такой сценарий, называемый ультрафиолетовой катастрофой, конечно, не имеет места. Иначе получилось бы вот что: едва вы поставили бы на стол горячий темный контейнер для еды, как он мгновенно превратился бы в солярий, излучающий ультрафиолет, а в придачу небезопасные рентгеновские и даже смертельные гамма-лучи. Так что предположение, что свет ведет себя как классическая волна, приводит к летальному исходу!

В 1900 г. немецкий физик Макс Планк придумал математическое решение парадокса черного тела. Взамен классической картины, в которой энергия волны меняется пропорционально ее яркости, он предложил считать, что световая энергия приходит в виде отдельных порций, квантов («квантум» по-гречески «порция»). Причем энергия в каждом кванте пропорциональна частоте. Коэффициент пропорциональности сегодня называется постоянной Планка. Идея Планка, фактически означавшая перераспределение энергии в низкие частоты, позволяла избежать ультрафиолетовой катастрофы.

Пять лет спустя Эйнштейн применил эту идею о квантах к явлению, получившему название фотоэлектрического эффекта, или просто фотоэффекта. Фотоэффект имеет место, когда свет падает на металл, выбивая из последнего электроны (отрицательно заряженные частицы). Эйнштейн показал, что световую энергию электроны получают в виде отдельных квантов. То есть свет иногда ведет себя как частица, а не как волна. Эта теория стала одним из первых робких шагов к полной квантовой теории материи и энергии. Специальную теорию относительности, работы по фотоэффекту и эквивалентности массы и энергии - все это Эйнштейн опубликовал в 1905 г., который стал для него, как говорят, «годом чудес»[8].

Вскоре русско-немецкий математик Герман Минковский придал специальной теории относительности изящную форму. Приняв время за четвертое измерение, вдобавок к пространственным (длине, ширине и высоте), он заметил, что запись теории Эйнштейна значительно упрощается. Положив конец розни между пространством и временем, Минковский провозгласил рождение четырехмерного «пространства-времени».

Эйнштейн быстро понял, что новоиспеченное пространство-время может сослужить хорошую службу при создании новой теории гравитации. Хотя Эйнштейн признавал успехи ньютоновской теории всемирного тяготения, ему хотелось объяснить гравитацию в чисто локальных терминах, в терминах геометрии самого пространства-времени. Взяв за основу факт независимости ускорения свободного падения от массы тела, Эйнштейн сформулировал так называемый принцип эквивалентности, который гласит: покоящиеся и свободно падающие системы отсчета физически неразличимы. От этой отправной точки он пришел к тому, что соотнес между собой гравитационные эффекты в заданной области пространства-времени с геометрией этой области. Материя, предположил Эйнштейн, прогибает пространство-время, и это искривление заставляет тела двигаться по изогнутым траекториям. Например, Солнце исказило пространство-время вокруг себя, поэтому Земле не остается ничего иного, как двигаться по эллиптической орбите. Получается, источником силы тяготения являются не эфемерные канаты, а кривизна пространства-времени. Свое элегантное объяснение сил тяготения - общую теорию относительности - Эйнштейн опубликовал в 1915 г.

Проиллюстрируем общерелятивистскую связь между материей и искривлениями пространства на простом примере. Представим себе пространство-время в виде матраса. Если на нем ничего не лежит, поверхность идеально ровная. Тут приползает ленивец и решает на этом матрасе прикорнуть. Когда он ложится, матрас под ним проседает. Поэтому, если у ленивца с собой есть еще детеныш, из-за неровной поверхности отпрыск будет скатываться к своему родителю. Так же и Солнце прогибает «матрас» пространства-времени в Солнечной системе, и все планеты, оказавшиеся поблизости, неизбежно двигаются по искривленным орбитам.

У общей теории относительности есть еще одно удивительное свойство - она проливает свет на происхождение Вселенной. Вкупе с астрономическими наблюдениями она предсказывает, что у времени было начало, причем в этот момент космос находился в невероятно горячем и плотном состоянии. За миллиарды лет пространство расширилось и из крошечной области превратилось в огромный контейнер, вмещающий в себя свыше миллиарда галактик, от миллиардов до сотен миллиардов звезд в каждой.[9]

Эйнштейн не ожидал, что его теория вместо статической даст расширяющуюся Вселенную. Подставив в свои уравнения более-менее разумное распределение материи, он с удивлением увидел, что получающаяся геометрия оказывается неустойчивой: начинает расширяться или сжиматься от малейшего толчка. Так карточный домик рассыпается от любого ветерка. Что-то не то, подумал Эйнштейн, уверенный в неподвижности космоса в больших масштабах. Чтобы спасти свою теорию от неустойчивых решений, он добавил в уравнение дополнительное слагаемое, космологическую постоянную (или лямбда-член). Она могла служить своего рода «антигравитацией», не дающей материи скучиваться на больших масштабах.

Пришел 1929 г., год неожиданного открытия американского астронома Эдвина Хаббла. Из наблюдений, проведенных в обсерватории Маунт-Вильсон в Южной Калифорнии, следовало, что все остальные галактики во Вселенной, кроме разве что самых близких к Млечному Пути, от нас удаляются. То есть мы воочию видим расширение пространства. Обратив этот процесс назад в прошлое, ученые пришли к потрясающему выводу: когда-то Вселенная была гораздо меньше, чем сейчас. Эту гипотезу окрестили гипотезой Большого взрыва.

Когда Эйнштейн осознал значение открытия Хаббла, он отказался от космологического члена, назвав его своим «величайшим заблуждением». В итоге в науку вошла модель нестационарной Вселенной. Ее создатель русский математик и метеоролог Александр Фридман показал, что дальнейшее поведение Вселенной зависит от ее плотности. Если плотность больше или равна критической, расширение будет продолжаться, а если меньше, то сменится сжатием. Сравнительно недавние наблюдения указывают, однако, на то, что Вселенная расширяется, кроме всего прочего, ускоренно. Поэтому многие теоретики предложили вернуть космологическую постоянную, чтобы объяснить всемирное ускорение.

Сегодня благодаря подробным измерениям реликтового излучения, оставшегося от Большого взрыва, ученые в целом понимают, как развивалась ранняя Вселенная и как рождалась ее структура. Это излучение было испущено первыми образовавшимися атомами, а затем охладилось вместе с расширением Вселенной. Поэтому оно дает мгновенный снимок юной Вселенной, показывает, какие области были плотнее, а какие - разреженнее. Теоретические достижения Эйнштейна плюс современные астрономические данные открыли нам окно в прошлое. На сегодняшний день ученые могут уверенно рассуждать о том, что происходило спустя считанные секунды от начала времен.

Отвечая на фундаментальные вопросы об устройстве космоса, наука до сих пор шла семимильными шагами. Нашими всеобъемлющими знаниями о компонентах материи, фундаментальных силах и о строении Вселенной мы обязаны недюжинным успехам химии, физики, астрономии и смежных дисциплин. Но наша любознательность не оставляет нам иного выбора, кроме как попытаться перевести стрелки времени еще ближе к моменту рождения Вселенной - к одной триллионной секунды после Большого взрыва - и понять первопринципы, стоящие за всем сущим.

Заново увидеть Большой взрыв мы не сможем. Но некоторые условия этого огненного начала нам позволит воспроизвести Большой адронный коллайдер в столкновениях частиц высоких энергий. С помощью релятивистского конвейера, превращающего энергию в массу, он сможет породить частицы, которые существовали в ту эпоху, когда возраст физической реальности исчислялся считанными мгновениями. БАК также даст возможность нащупать у природных сил общие корни. В каше осколков, летящих от столкновения частиц на околосветовых скоростях, мы, может быть, найдем ключ к тайне разрушенного единства.

У жителей Женевы уже вошло в привычку в неразберихе улавливать ценные идеи. Всего в 10 км от БАК приютился очаровательный исторический центр Женевы. Старинным улицам и площадям революции не в новинку: здесь Жан Кальвин проповедовал религиозное свободомыслие, а Жан-Жак Руссо пропагандировал идею общественного договора. Вскоре Женева увидит еще один революционный переворот - переворот в понимании фундаментальных основ мироздания.

Загрузка...