Глава 1. Органы чувств и ощущения

Прямой контакт организма с внешним миром обеспечивается поверхностными (кожными) структурами. Осязание, температурное и химическое чувства являются первоначальными, наиболее древними чувствами. У высокоорганизованных животных контактная чувствительность также имеет огромное значение: без восприятия границы между Я и не-Я, между организмом и его окружением не может быть ощущения «самого себя». Граница эта не психологическая, а физиологическая, определяемая нервным аппаратом — жизненно важными поверхностными структурами кожи — этой первой «зоны раздела» между организмом и окружающим миром. Деятельность интероцепторов (т. е. рецепторов, расположенных во внутренних органах и тканях) как осознанная (например, ощущение напряжения мышц, движения в суставе, степени наполнения желудка и т. д.), так и неосознанная (например, деятельность мышечных рецепторов, обеспечивающих контроль движений) является также необходимой предпосылкой и частью комплекса ощущений, лежащих в основе адекватного отражения внешнего мира.

Опосредованный контакт с внешним миром обеспечивается дистантными органами чувств. Например, зрительная система воспринимает свет, представляющий собой электромагнитные волны с определенными периодическими свойствами, длинами волн. Слуховая система воспринимает звук — колебания частиц среды, чередование сгущений и разрежений. На основе слухового восприятия колебаний среды можно сделать вывод и о свойствах источника этих колебаний, о свойствах среды.

Мы знаем, однако, что частоты колебаний ниже и выше воспринимаемых ухом человека (инфра- и ультразвуки) также оказывают заметное влияние на ряд показателей деятельности животных и человека. Например, низкочастотные звуки большой интенсивности оцениваются человеком как прикосновение. С этой точки зрения подобные звуки являются воспринимаемыми. Известно, что многие животные слышат эти неслышимые человеком звуки и даже используют их для ориентации в пространстве. Известно также, что волны, находящиеся за пределами возможностей зрительного восприятия человека, в ультрафиолетовой части спектра, влияют на зрение рептилий и некоторых насекомых, а у человека вызывают четкие кожные реакции и изменение общего состояния организма. Недоступные зрению инфракрасные лучи являются мощным тепловым раздражителем кожных покровов.

Что же кроется в этом «безмолвии» неслышимых звуков и во «тьме» невидимых лучей? Как коснуться невидимого и услышать неслышимое? Можно ли использовать каким-либо образом в качестве раздражителей органов чувств те физические свойства внешнего мира, которые находятся за пределами уже известных возможностей восприятия их человеком или животным? Чтобы попытаться ответить на эти вопросы, необходимо в первую очередь рассмотреть некоторые данные о структурах, системах и процессах, обеспечивающих восприятие внешних раздражителей различного качества.

Информация и раздражители

Какими бы ни были механизмы и процессы, лежащие в основе восприятия и реализации различных форм поведения, они обусловлены прежде всего информационной структурой внешнего мира. И хотя большинство организмов воспринимают лишь малую часть информации, которая определяется физическими свойствами внешней среды, этого оказывается достаточным для формирования адаптивного поведения.

Между организмом и средой существует «зона раздела». Именно в этой зоне физические процессы, связанные с предметами, явлениями и событиями внешнего мира, превращаются в содержание той информации, которой оперирует организм. В качестве «зоны раздела» между источниками информации и организмом можно рассматривать не только поверхностные нервные структуры, воспринимающие раздражители, но и все «вспомогательные» структуры, преобразующие различные формы сигналов в тот вид, которым владеет организм на основе врожденных качеств или овладевает на протяжении жизни в процессе обучения. Итак, первые «зоны раздела» — это системы, преобразующие разные формы воздействия в так называемый нервный код. Код содержит информацию, которая, будучи преобразованной в воспринимающих структурах — органах чувств — и переданной в мозг, используется организмом для оценки качества внешнего мира и обусловливает основные качества биологического отражения (рис. 1).

Рис. 1. Информация о действующих сигналах и свойствах биологической воспринимающей системы.


Получаемая нервной системой информация, представленная уже в виде нервного кода, должна пройти следующую «зону раздела», где после формирования ощущения код превращается в «образ», и только тогда процесс воздействия на организм переходит в процесс восприятия воздействия. Именно процесс осознания, или интерпретации сенсорного сообщения, является той вехой, которая отделяет сенсорные процессы от перцептивных. Наконец, третья «зона раздела» — это переход от восприятия к ответу, к действию, которое предваряется принятием решения на основе наследованно закрепленных программ и обучения. Реакция организма может быть активной — реализуемой в движении, и пассивной — в бездействии, отсутствии видимого наблюдателем ответа. И в том и в другом случае — это ответ организма на воздействия, на поступившую, преобразованную и воспринятую информацию (рис. 1).

Биолог-экспериментатор, исследующий деятельность органов чувств, этих «входных ворот информации», содержащих несколько «зон раздела», сталкивается со множеством сложных, спорных, а подчас и неразрешенных вопросов. Условия здесь диктует природа, поскольку любая биологическая организация — это система, заданная длительной эволюцией, система многокомпонентная, саморегулирующаяся, единая и вместе с тем постоянно взаимодействующая со множеством других систем. Несомненно, что аналитический подход к изучению биологических систем, подход, широко использующий методы точных наук, является необходимым и первым шагом на пути раскрытия закономерностей деятельности системы как единого целого. Именно аналитическими методами, с использованием достижений физики, химии и других наук, изучены многие фундаментальные вопросы физиологии сенсорных систем. Очевидно также, что аналитический подход, столь плодотворно использующийся на протяжении последних 100 лет в экспериментальной физиологии и далеко не исчерпавший себя, должен дополняться системными изучениями организма как единого целого, с учетом деятельности его составных частей в их взаимодействии и взаимообусловленности.

В последнем случае, однако, возникают особо сложные в методологическом отношении проблемы. Известно, например, что значительная часть информации, получаемой организмом, не реализуется в виде конкретного образа, и более того, вообще не доходит до сферы сознания. Это не значит, однако, что организм не отвечает на данный раздражитель и, соответственно, на передаваемую сенсорной системе информацию. Отсутствие ощущения, двигательной реакции или речевого ответа отнюдь не означает полного отсутствия восприятия данного раздражителя. Используя психофизиологический эксперимент, направленный на изучение соотношения и соответствия раздражителя, ощущения и реакции, исследователь одновременно может применять методы оценки непроизвольных физиологических показателей, проводить параллели или корреляции между стимулами и реакциями, а также учитывать промежуточные этапы, которые в терминах нейрофизиологии описываются как процессы передачи и переработки информации в нервной системе животных. Особое значение приобретает использование идентичных стимулов в исследованиях реакций животных и человека, равно как и применения количественно сравнимых измерений стимулов и реакций. Системный подход к изучению сенсорных процессов, не расчленяющий целостный акт восприятия на процессы чисто сенсорные и прецептивные, является важнейшей задачей будущих исследований, хотя первые шаги в этом направлении делаются уже в настоящее время.

Независимо от пути, подхода и метода изучения сенсорного восприятия для исследователя очевидно, что полнота восприятия предметов и явлений окружающего мира обусловлена не только количеством информации, содержащейся в окружающей среде, но и свойствами, особенностями и ограничениями воспринимающих систем. И каким бы множеством качеств ни обладал воспринимаемый объект, его внутреннее разнообразие будет полнее представлено в более сложной высокоорганизованной системе, состоящей из множества элементов, способных фиксировать различные свойства воздействия (раздражителя).

Раздражители органов чувств можно разделить по крайней мере на две большие группы: адекватные (если для стимуляции применяется тот же вид энергии, к которому данный орган чувств наиболее чувствителен) и искусственные (если для стимуляции применяется любой вид энергии, вызывающий, однако, такие изменения в органах чувств, которые приводят к ощущению). Адекватные стимулы — это зрительные (световые), слуховые (звуковые), кожные (механические, температурные, болевые), вкусовые (растворы химических веществ), обонятельные (пахучие вещества) раздражители. Адекватная стимуляция может быть физиологической, если ее величина лежит в пределах диапазона нормальной функции органа чувств, и нефизиологической, если вызывает патологические изменения в соответствующем органе или в организме. Когда адекватная стимуляция состоит из элементов, присутствующих в естественной окружающей среде, то она рассматривается как натуральная. Примером натуральной стимуляции может служить использование зрительных раздражителей, моделирующих движение насекомого в поле зрения лягушки, для которой насекомое является добычей. Как натуральный слуховой стимул можно рассматривать звуковые сигналы животного, подтверждающие наличие пищи или сигнализирующие об опасности. В случае натуральной стимуляции экспериментатор имеет дело с множеством параметров, описываемых физическими и математическими или химическими методами. Оказывается необходимым также принимать во внимание биологические аспекты подобной стимуляции. Поэтому многие исследователи предпочитают иметь дело лишь с ограниченным набором легко контролируемых параметров стимуляции.

Искусственная стимуляция связана с применением раздражителей, не несущих тот вид энергии, который в обычных условиях раздражает данный орган чувств. Это, например, механическое раздражение глаза, электрическое раздражение рецепторов органов чувств и нервов. Во многих случаях искусственное раздражение нефизиологично и неадекватно. Например, электрическое раздражение нервов млекопитающих, которые в отличие от многих рыб не имеют специализированной электрорецепторной воспринимающей системы и в обычной естественной среде не встречаются с токами такой силы, которая может в экспериментальных условиях раздражать их нервы.

Искусственные раздражители, и в особенности электрический ток, несмотря на неадекватность, явились, однако, мощным инструментом аналитического изучения важнейших закономерностей деятельности органов чувств и нервной системы. Применение таких раздражителей в диапазонах, не вызывающих необратимых изменений тех структур, к которым они приложены, позволяет исследователям, например, надеяться на компенсацию утраченной сенсорной функции в тех случаях, когда повреждены воспринимающие поверхности — эти первые «зоны раздела», — за счет непосредственного действия на волокна сенсорных нервов.

И все-таки многолетний опыт, накопленный трудом физиологов, биологов и врачей-клиницистов, свидетельствует о том, что непременным условием нормального восприятия являются неповрежденные рецепторные воспринимающие структуры и вовремя обученный, «компетентный» мозг.

Рецепторы и проблема сенсорной специфичности

Рецепторы — это специализированные структуры биологического объекта, сигнализирующие об изменениях в окружающей внешней и внутренней среде организма. В самом общем виде по локализации рецепторы разделяются на «экстероцепторы» и «интероцепторы». Первые расположены в местах, открытых для воздействия внешних раздражителей, и воспринимают прикосновения, изменения температуры, звуковые колебания, освещенность, запахи, электрические поля и другие стимулы. Интероцепторы находятся в глубинных тканях и органах — мышцах, сухожилиях, надкостнице, внутренних органах и мозге. Они воспринимают мышечные сокращения, положение частей тела и всего организма в пространстве, давление крови в сосудах, ее химический состав, степень наполнения кровью полых органов, сигнализируют о внутреннем состоянии и деятельности биологического объекта. Рецепторы — это окна во внутренний и внешний мир живого организма, это посредники между окружающей средой и нервной системой, это преобразователи одной формы энергии в другую.

В зависимости от вида раздражителей, существующих как во внешней, так и во внутренней среде, рецепторы разделяются на механо-, фото-, хемо- и электрорецепторы, реагирующие соответственно на механические, световые, химические и электрические стимулы. По виду вызываемого ощущения рецепторы классифицируются как слуховые, зрительные, обонятельные, вкусовые, тактильные, температурные, болевые. По дальности расположения воспринимаемого раздражителя рецепторы рассматриваются как «дистантные» и «контактные». Разделяются рецепторы также по их структурным признакам.

Даже простое перечисление существующих классификаций рецепторов свидетельствует о том, что в некоторых отношениях эти классификации несовместимы, хотя может быть принята любая из них, в зависимости от задач исследования и описания существующих данных. Всякий человек, например, у которого хоть раз в жизни болел зуб, знает о том, что боль вызывается и механическими, и температурными, и химическими воздействиями. В связи с этим возникает вопрос: почему болевые (по ощущению) рецепторы воспринимают одинаково совершенно различные по своим физическим свойствам раздражители? Может быть, специализированных рецепторов боли вообще нет, а передается она теми же рецепторами, которые при нормальном состоянии организма воспринимают механические, тактильное или температурное, а возможно, и химическое раздражение?

Рассмотрим другой пример. Слуховые рецепторы воспринимают звук, источник которого располагается на значительном расстоянии от уха, и с этой точки зрения являются «дистантными». Оказывается, однако, что непосредственным раздражителем для слуховых рецепторов являются перемещения жидкостей внутреннего уха, возникающие в результате действия колебательных процессов (звука), происходящих во внешней среде. Следовательно, по механизму действия слуховые рецепторы являются «контактными». С другой стороны, осязание, обеспечивающееся деятельностью тактильных и температурных рецепторов, формируется как ощущение только при условии непосредственного контакта раздражителя с соответствующей рецепторной поверхностью. В то же время прикосновение предмета к кожной поверхности позволяет человеку составить его характеристику по разным качествам (гладкость, форма, температура), получить образ, спроецировать его во внешнюю среду.

Обонятельные рецепторы реагируют на запахи предметов, располагающихся на известном расстоянии, т. е. «дистантно», но по механизму действия молекул пахучих веществ представляют собой типичный пример контактного рецептора.

Даже ограниченный набор приведенных примеров, который можно было бы продолжить, свидетельствует о том, что рецепторы пока не поддаются рациональной классификации на единой, непротиворечивой во всех отношениях основе.

Приведем варианты классификации рецепторов:

1) по ощущению — зрительные, слуховые, вкусовые, обонятельные, тактильные, температурные, болевые,

2) по механизму действия — хеморецепторы, механорецепторы, электрорецепторы, фоторецепторы, терморецепторы, осморецепторы,

3) по восприятию дальности раздражителя — дистантные, контактные,

4) по локализации — экстероцепторы, интероцепторы,

5) по месту приложения стимула — первично чувствующие, вторично чувствующие,

6) по структуре — свободные нервные окончания, инкапсулированные нервные окончания, специализированные сенсорные нейроны, сенсорные эпителиальные клетки, ресничные рецепторы

Для удобства дальнейшего представления материала мы выбрали классификацию рецепторов по типу вызываемого у человека ощущения.

Каково же строение рецепторов, обеспечивающих различные типы ощущений? Свободные нервные окончания являются наиболее многочисленными рецепторами у человека и многих млекопитающих животных (рис. 2) Они находятся в поверхностных слоях кожи и эпителиальных покровах — в мышцах, связках, суставах и надкостнице. Эти окончания широко ветвятся, и зоны их ветвления перекрываются (рис. 3). Обнаружено, что свободные нервные окончания связаны с ощущением боли, чувствительны к изменению температуры и механическому раздражению, а также служат для обеспечения химической чувствительности, как например свободные нервные окончания тройничного нерва

Инкапсулированные нервные окончания (рис 4), т. е. окруженные капсулой, как следует из их названия, расположены в коже обычно на глубине, большей, чем свободные нервные окончания. Считается, что многочисленные рецепторы этого типа (тельца Пачини, Руффини, Мейснера, колбы Краузе и другие, названные по имени описавших их авторов) передают сведения о механической деформации лежащих вокруг них тканей и о температурном воздействии. Данные, представленные в приводимой ниже таблице, содержащей далеко не полный перечень рецепторных структур, обнаруженных у человека и животных, свидетельствуют о том, что тактильная, болевая и температурная чувствительность обеспечиваются широким спектром рецепторов.

Рис. 2. Свободное нервное окончание (I) и миелиновая оболочка нерва (II).

При механической деформации открываются «поры» (1), через которые идет ток ионов (2). Этот ток в электровозбудимой части нерва (3) генерирует электрический нервный импульс.


Специализированные сенсорные нейроны (первичные сенсорные клетки) обнаружены в различных поверхностных структурах животных. Например, вкусовые рецепторы насекомых, рецепторы внутренней поверхности брюшка рака, так называемые сенсорные волоски (например, вибриссы), соприкасающиеся с корнями волос, по мнению большинства исследователей, являются рецепторами изменений давления. Описаны также рецепторы такого типа, воспринимающие токи воздуха, положение суставов, вибрации. Наиболее высоко специализированными сенсорными нейронами с длинными центральными отростками являются обонятельные клетки (рис. 5).

Рис. 3. Сенсорные образования в подушечках лап домашней кошки.

Цифры — процент встречаемости. Ясно, что существует множество разновидностей рецепторных структур. Есть точка зрения, согласно которой уровни развития и сложности структур образуют последовательность от свободных нервных окончаний к специализированному рецептору — тельцу Пачини, показанному на рис. 4.


Рис. 4. Тельце Пачини (схема) — поперечный разрез.

1 — капсула, 2 — чувствительное окончание, 3 — перехват Ранвье. Капсула имеет слоистое строение, а центральный стержень, представляющий собой чувствительное нервное волокно, со всех сторон «одет» в капсулу


Вторичные сенсорные клетки (или сенсорные эпителиальные клетки) отличаются тем, что, являясь модифицированными эпителиальными клетками, контактируют с одним или несколькими афферентными нейронами, несущими информацию о раздражителе к центрам мозга. Это вкусовые клетки (рис. 6, А), многие так называемые волосковые клетки, расположенные, например, в статоцистах — органах равновесия, различные слуховые рецепторы (рис. 6, Б). В таблице прослеживается соотношение структуры и функции различных рецепторных образований. Это, однако, их основная функция. Помимо нее, как уже отмечалось, каждый вид рецепторов может воспринимать и другие виды раздражителей. Тактильные рецепторы, например, реагируют на звуки и вибрации, вкусовые рецепторы возбуждаются также механическим и температурным стимулом, а зрительные рецепторы при сильном механическом раздражении вызывают ощущение вспышки света. Таким образом, мы сталкиваемся здесь с одним из кардинальных вопросов физиологии органов чувств — с сенсорной специфичностью. Очевидно, что только разрешив его, мы найдем ответы на поставленные выше вопросы о функциональной предопределенности различных рецепторов.


Типы рецепторов кожи и внутренних органов, их локализация и возможная функция

Тип рецептора Структура Локализация Установленная или предполагаемая функции
Свободные нервные окончания Простые и ветвящиеся немиэлинизированные волокна Кожа, эпителий, внутренние органы, структуры опорно-двигательного аппарата Температурная, болевая, тактильная чувствительность
Инкапсулированные нервные окончания Тельца Пачини Глубокие слои кожи, подкожная клетчатка, брыжейка кишечника, поджелудочная железа, мочевой пузырь, др. внутренние органы, сосуды Восприятие механической деформации, высокочастотной вибрации, давления
Диски Меркеля Волосистая часть кожи, кожа пальцев рук Ощущение прикосновения
Тельца Мейснера Кожа стоп, ладоней, губы, язык, соски, половые органы Тактильная чувствительность
Колбы Краузе Области кожи в местах перехода в слизистую оболочку Ощущения холода, тепла, прикосновения
Органы Руффини Глубокие слои кожи, суставы Разнообразные виды тактильной чувствительности
Тельца Гольджи — Маццони То же То же
Корпускулярные рецепторные органы Язык, лишенные волос части кожи половых органов То же
Пластинки Пиикуса Покрытая волосами кожа человека То же
Сухожильные органы Гольджи Граница мышечной и сухожильной тканей То же

В 1826 г. немецкий исследователь И. Мюллер опубликовал выдвинутую им доктрину о специфической энергии органов чувств. Согласно основному положению этой доктрины, чувствительность каждой возбуждаемой стимулом системы, качество ощущения, вызываемого раздражителем, зависят не от свойств действующего внешнего агента, а от свойств «специфической чувствительности субстанции органов чувств». «Энергии света, темноты или цвета, — писал он, — не принадлежат внешним предметам, причине возбуждения, они присущи самой субстанции зрения» (цит. по: Сомьен Дж. Кодирование сенсорной информации. М.: Мир, 1975, с. 43).

И. Мюллер первый утверждал, что любое раздражение зрительного нерва вызывает зрительное ощущение. Мы знаем теперь также, что температурные рецепторы реагируют, например, на химическое раздражение ментолом или давление, инициируя ощущение холода, а слуховой нерв можно раздражать электрическим током и получить слуховое ощущение. Перечисление подобных примеров можно продолжить. И сегодняшнее обращение к взглядам Мюллера обусловлено несомненным его влиянием на последующие исследования ученых, его глубоким пониманием того, что качество каждого сенсорного раздражителя зависит от активности и специфических свойств определенного сенсорного образования. Фактически в настоящее время, несмотря на более чем 150-летнюю историю вопроса, изучение сенсорной специфичности продолжается и еще далеко от своего окончательного разрешения.

Рассмотрим два аспекта сенсорной специфичности: 1) «локальный знак», показывающий место нахождения стимула в пространстве (для дистантных систем) и 2) модальность, т. е. качество стимула — свет, звук, прикосновение. Основное допущение, которое делали сторонники и последователи закона специфических энергий, состояло в том, что предусматривалось наличие ряда нервных окончаний, чувствительных к различным, но характерным для каждого типа окончаний видам стимуляции (в коже, например, тепло, холод, прикосновение и боль).

В 1862 г. немецкий физик и врач Г. Гельмгольц расширил представления И. Мюллера, высказав предположение о том, что каждое волокно слухового нерва вызывает ощущение звука определенной высоты. Такая детализация нервных элементов, создающих мозаику восприятия, неизбежно привела к представлению о наличии «линий связи» нейронов мозга с определенными периферическими нейронами. И когда к 1884 г. гистологами были открыты и описаны различные нервные окончания и рецепторные органы в коже, а также показаны дискретная природа кожной чувствительности и различия модальности раздражителей в определенных точках кожи, подавляющее большинство исследователей пришло к выводу, что должна существовать непременная зависимость между строением концевых рецепторных органов и специфической энергией органов чувств.

Рис. 5. Рецепторные клетки обонятельного эпителия млекопитающих.

1 — реснички, 2 — рецепторные клетки с аксонами (4), окруженные опорными клетками (3).


Рис. 6. Схемы вкусовой (А) и наружной волосковой слуховой клетки (Б).

А: 1 — рецепторная клетка, 2 — окончания чувствительного нерва. Прерывистые линии обозначают электрический ток, идущий при стимуляции. Б: 1 — стереоцилии — волоски на рецепторной поверхности клетки, 2 — базальное тельце волоска киноцилии, 3 — ретикулярная мембрана, 4 — пластинчатое тельце, 5 — плазматическая мембрана клетки, 6 — митохондрия, 7 — субмембранные пластинки, 8 — пальцевидный отросток, 9 — ядро, 10 — тельце Рециуса с множеством митохондрий, 11 — афферентное (передающее к мозгу) нервное окончание, 12 — эфферентное (передающее в клетку) нервное окончание, 13 — опорная клетка Дейтерса, от которой к поверхности кортиевого органа идет пальцевидный отросток.


В 1895 г. немецкий ученый М. Фрей предложил классификацию рецепторов, соотносящуюся с различными модальностями кожной чувствительности. За последующие 50—70 лет эксперименты Фрея неоднократно проверялись, но полученные разными авторами результаты были противоречивы или в лучшем случае сомнительны. В качестве примера рассмотрим данные, полученные при исследовании роговицы глаза. По Фрею, роговица глаза должна обладать чувствительностью только к холоду и боли, поскольку в ней обнаружены колбы Краузе и свободные нервные окончания. Однако, как выяснилось после проведения множества очень тонких в методическом отношении экспериментов, роговица оказалась чувствительной также к прикосновению и к теплу. Другой пример. Волосистая часть кожи головы и руки чувствительна ко всем видам стимуляции — прикосновению, вибрации, боли, теплу и холоду. А ведь здесь вокруг волосяных луковиц обнаруживаются преимущественно, а местами исключительно, свободные нервные окончания.

Результаты экспериментов, опровергающие точку зрения М. Фрея, были получены и с другой стороны. На тех местах кожи, где отмечаются те же четыре модальности кожных ощущений, обнаруживаются семь и более различных в структурном отношении рецепторов.

Структурное разнообразие рецепторов представляет собой широкое поле для научного поиска их структурнофункционального соответствия и выяснения истинного смысла подобного многообразия. И в то же время следует признать, что жесткая структурная специализация не является обязательным условием восприятия различных модальностей стимула. Перед нами вновь вопрос: каким же образом определить специфическую сенсорную функцию в восприятии различных модальностей раздражителя, если при исследовании каждой сенсорной системы — в особенности системы кожной чувствительности — мы имеем дело со множеством противоречащих друг другу, а подчас и взаимоисключающих фактов о соотношении структуры и функции?

Известно, что стимуляция рецепторных поверхностей различных органов чувств может осуществляться различными видами энергии. Например, в определенных условиях тактильные рецепторы, рецепторы давления в коже, фасциях, мышцах и связках, вестибулярные и даже болевые рецепторы способны реагировать на звуки и вибрации значительной интенсивности. Но ни один из перечисленных видов рецепторов нельзя сравнить с органом слуха по степени чувствительности к воздействию малых акустических энергий и по количеству получаемой таким образом информации о внешнем мире.

По-видимому, та или иная сенсорная система может рассматриваться в качестве специализированной к восприятию определенного вида энергии лишь в том случае, если из всех существующих видов энергии только один оказывается для данной системы наиболее эффективным как по возможности воздействия малых величин этой энергии, так и по количеству получаемой таким образом информации о внешнем мире.

Итак, специализированные сенсорные системы должны быть как можно более чувствительны к определенного рода сигналам, приходящим извне. В то же время необходимо, чтобы в них сохранялось как можно больше деталей энергетической картины, соответствующей нынешнему сигналу. Эти два непременных требования к сенсорной специфичности реализуются различными структурными и функциональными способами, обнаруженными в сенсорных системах.

На рис. 7 представлено расположение рецепторов одной из сенсорных систем — фоторецепторов глаза. Световая энергия распределяется по поверхности, образованной рецепторными элементами. Повышение чувствительности в такой системе достигается тем, что несколько рецепторных клеток присоединяется к одной клетке последующего слоя — к ганглиозной клетке. Поверхность рецепторов, которая проецируется на одну нервную клетку, отдающую волокно в центральную нервную систему, называется рецептивным полем. Чем больше рецепторов присоединено к ганглиозной клетке, тем с большей поверхности «собирается» энергия, тем более чувствительна система. Но при этом выявляется противоречие: чем с большей поверхности суммируются реакции рецепторов, тем ниже способность фиксировать отличия энергетической картины в пределах той же области — рецептивного поля.

Рис. 7. Связи фоторецепторов глаза (1) с ганглиозными клетками сетчатки (2).

Заштрихованные зоны — рецептивные поля ганглиозных клеток.


Каким же образом сенсорные системы выходят из этого противоречия? Реализуется один из важнейших механизмов переработки информации, действующих в нервной системе, — включается так называемое латеральное, или боковое, торможение. Функцией этого торможения является ограничение рецептивного поля. Ограничение рецептивного поля достигается за счет подавления активности рецепторно-нервных элементов, располагающихся в периферических (боковых) зонах по отношению к максимально стимулируемому раздражителем рецептору. Этот механизм, первоначально детально описанный и проанализированный для глаза, вероятно, реализуется во всех сенсорных системах.

Другой механизм ограничения энергетического распределения на рецепторах — вариации ширины рецептивных полей, осуществляемые за счет различий в их структуре. Это особенно демонстративно представлено во внутреннем ухе позвоночных животных (рис. 8). Здесь, как известно, рецепторы, возбуждаемые звуком одной и той же частоты, лежат вдоль определенной области мембраны, колеблющейся с максимальной амплитудой при действии звука этой частоты Но рецепторы этой части мембраны имеют структурно разную иннервацию; множество наружных волосковых клеток связано с одним волокном клетки спирального ганглия, внутренние волосковые клетки иннервируются в соотношении 1:1 или реже 1:2. Тем самым обеспечивается высокая чувствительность (за счет рецептивных полей, связанных с наружными волосковыми клетками) и возможность определения тонких различий энергетической картины звука за счет узких рецептивных полей внутренних волосковых клеток.

Рис. 8. Поперечный разрез через орган слуха — улитку млекопитающих (схема).

1 — внутренняя волосковая клетка, к ней подходит одно афферентное и одно эфферентное волокно, 2 — покровная мембрана, контактирующая с волосками рецепторных клеток, 3 — наружные волосковые клетки. Несколько клеток связаны с одним афферентным и одним эфферентным волокном, 4 — эфферентные волокна (обозначены прерывистыми линиями), 5 — афферентные волокна (обозначены сплошными линиями), 6 — основная мембрана, на которой расположены рецепторные клетки.


Итак, после преобразования энергии в рецепторах специфического вида в сигнал-код последний направляется в высшие нервные центры, располагающие дополнительными механизмами выделения особенностей возбуждения рецепторного слоя сенсорных систем.

Хорошо известен факт неодинаковой чувствительности кожной поверхности к различным видам раздражения. Почему различается чувствительность к разным модальностям раздражителей в одних и тех же точках кожи? Эти вопросы привлекают внимание исследователей на протяжении более 100 лет.

В конце прошлого века детальные работы немецких ученых показали, что чувствительность кожи в одних и тех же точках к различным стимулам неравномерна. Эти данные послужили отправным пунктом для множества исследований на модели кожной чувствительности. Было показано, например, что точки кожи, где ощущалось малейшее прикосновение, не совпадали с теми, где преимущественно возникала боль. Кроме тактильных и болевых точек были обнаружены точки, максимально чувствительные к теплу или холоду. Выявлено, что место максимальной чувствительности к одному раздражителю не совпадает с местом максимальной чувствительности к другому. На основе этих фактов было сделано заключение, что в каждой чувствительной точке должен быть расположен специализированный рецептор.

Впоследствии было показано, что чувствительные точки не остаются постоянно в определенных местах на поверхности тела, а перемещаются в течение дня. Места расположения точек, установленные утром, не совпадали анатомически с теми, которые выявлялись на том же участке кожи в вечернее время. Иногда различия обнаруживались спустя всего несколько часов. Возможно, что подобные изменения места расположения чувствительных точек обусловливаются тремя факторами: во-первых, тем, что точка на самом деле представляет собой более широкую область распределения чувствительных нервных окончаний, характеризующихся определенным градиентом чувствительности за счет различия в порогах. Во-вторых, чувствительность рецепторов может меняться при повторном раздражении (например, привыкание к действию стимула), а также в результате воздействия различных факторов внешней и внутренней среды организма. И наконец, в-третьих, на чувствительность рецепторов к сенсорным раздражителям могут также влиять периодические изменения активности живых систем, так называемые биоритмы. Все эти возможные факторы изучены еще недостаточно, и решение вопросов, связанных с выяснением зависимости сенсорной чувствительности от различных причин, ждет своей экспериментальной разработки.

Интерес исследователей к проблеме «чувствительных точек» связан с тем, что до настоящего времени окончательно не разрешен вопрос о кодировании качества стимула посредством так называемых меченых линий, т. е. о том, обладает ли импульс в определенном волокне неким сенсорным качеством. Пристальное внимание к проблеме точечной чувствительности обусловлено также развитием исследований в области акупунктуры. И здесь не решен ряд вопросов: например, существует ли сенсорная специфичность так называемых точек акупунктуры? В наших работах (см. главу 3) было показано, что при простой перемене места стимуляции импульсным точечным фокусированным ультразвуком может меняться и качество ощущения. В одних точках кожи возникало ощущение прикосновения, в других — укола, в третьих — зуда, в четвертых — тепла или холода. В то же время оказалось, что в одной и той же чувствительной точке могут быть зарегистрированы все типы ощущений — в зависимости от параметров стимуляции и температуры окружающей среды. И если первая группа фактов в некоторой степени свидетельствует в пользу возможного существования меченых линий уже на периферии сенсорной системы, то вторая говорит об ином. В соответствии с ней качественно различные ощущения могут быть вызваны исключительно благодаря различиям параметров стимуляции, их соотношения с характеристиками окружающей среды и расположенных вокруг рецепторов тканей. В последнем случае напрашивается предположение, что качество ощущений зависит не от каких-либо структурных особенностей рецепторов или качественно различных меченых линий, а скорее всего от «структуры ответа» нервной системы.

К обсуждению многих вопросов, связанных со спецификой раздражения и качеством ощущения, мы вернемся в главе 3. Здесь ограничимся лишь несколькими замечаниями. Противоречивые факты можно рассматривать не только как исключающие ту или иную точку зрения исследователей, но и как проявление богатых возможностей организма, используемых им по-разному, в различных ситуациях. Вряд ли перечислением всех «за» и «против» в пользу той или иной точки зрения можно установить единственный и лучший способ получения мозгом информации. На этот вопрос лучше всего мог бы ответить сам мозг, если бы ученые располагали инструментом для получения такого ответа! И вполне вероятно, что вариант, представляющийся исследователю лучшим, мог быть просто отброшен в процессе эволюции, а удачное техническое решение, которое часто заставляет проводить аналогии с биологическими процессами, может оказаться на деле очень далеким от истинного положения вещей. Не будем забывать, что мозг человека располагает тем, чего до настоящего времени нет ни в одной технической системе передачи и обработки информации: он состоит из 1010 нервных клеток, которые в свою очередь содержат нервные отростки. Число же последних на несколько порядков больше указанной цифры. Значительная часть этих отростков представляет собой надежно изолированные самостоятельные линии приема и передачи информации.

Преобразователи и сигнализация

Любое техническое устройство, которое переводит энергию одного вида в энергию другого вида, называется преобразователем. Микрофоны, например, преобразуют звуковые колебания в электрические, а громкоговорители — электрические колебания в звуковые; фотоэлементы преобразуют световой поток в электрические сигналы, и т. д. Рецепторы также можно назвать преобразователями различных видов внешней энергии в электрические сигналы. Это преобразователи, творцом которых была сама природа, совершенствовавшая их в течение длительной эволюции жизни на Земле. Мы знаем, что разнообразные механические стимулы, такие, как прикосновение, давление, вибрация, действующие на кожный покров, воспринимаются рецепторами кожи — либо свободными, не покрытыми оболочкой нервными окончаниями, либо включенными в капсулу. В органах слуха и зрения раздражение воспринимается высокоспециализированными, дифференцированными чувствительными клетками, а затем, после преобразования в электрический сигнал, передается на нервные клетки.

Рис. 9. Соединение рецептора с окончанием нейрона (А) Электрические сигналы рецепторов и афферентных нейронов (Б).

Прерывистой линией показано возникновение электрического тока в результате действия стимула (I) и соответственно повышение ионной проницаемости рецептивной поверхности. Деполяризация в рецепторной клетке приводит к возникновению рецепторного потенциала (II) В окончании нейрона возникает генераторный потенциал (III), который при значительной величине запускает потенциалы действия (III, IV).


Электрический сигнал, возникающий на уровне рецепторных структур в «зоне раздела» между внешней средой и мозгом, называется рецепторным потенциалом. Он представляет собой изменение электрического напряжения в рецепторе (рис. 9, II). При достаточной величине изменения этот потенциал вызывает в нервном окончании, контактирующем с рецептором, так называемый генераторный потенциал (рис. 9, III). Последний не распространяется, а удерживается в преобразующем участке нервного окончания. Такой потенциал может быть зарегистрирован как изменение напряжения на небольшом ограниченном участке в районе того места, где происходит процесс преобразования энергии. Если величина генераторного потенциала достигает определенных значений, то в нервном волокне возникает распространяющийся импульс (рис. 9, III, IV). Генераторные потенциалы целиком зависят от действующего стимула, их временные параметры определяются параметрами стимула. Эти потенциалы градуальны (постепенны), проводятся пассивно и затухают по экспоненциальному закону.

Как уже отмечалось, чувствительность органов чувств к специфическому для них виду энергии огромна. Наука о рецепторах пока не может дать исчерпывающего ответа на вопрос о том, что же в сенсорной клетке обусловливает такую исключительную чувствительность. Нет ответа и на вопрос о том, в чем заключаются отличия нервных стволов, проводящих сигналы к мозгу от разных рецепторов. Не определено также, что же исключительно специфического в конечных проекциях рецепторов в высших центрах мозга и что, например, было бы, если зрительный нерв связать с центрами слуха, а слуховой — с центрами зрения. Быть может, можно увидеть звук и услышать свет? Известно ведь, что любой раздражитель достаточной силы, будучи приложен к специфическому рецептору или отходящему от него нервному проводнику, вызывает ощущение той же модальности, как и при действии адекватного раздражителя. Сдавливание, скручивание, растяжение, удар по нерву вызывают обязательный поток импульсов.

Каждый может испытать ощущение света при быстром надавливании на глазное яблоко, а также резкое, неприятное, а иногда и болезненное ощущение при ударе локтя о твердые выступы, когда под ударом оказывается локтевой нерв. Мы знаем также, что подобные ощущения, сохраняя модальность, соответствующую органу чувств, ничего общего не имеют с нормальным ощущением света, кожной боли или прикосновения. Эти наблюдения из повседневной жизни часто приводятся как примеры неспецифических ощущений данной модальности, однако в научной литературе сведения о возможности использования раздражителей, действующие факторы которых резко отличаются от специфических видов энергии, чрезвычайно скудны.

И тем не менее существует предположение о том, что специализация ощущения — это скорее вопрос степени, градации, дифференциации раздражения и места его восприятия мозгом, нежели какого-то специального качества этого раздражения. Как будет описано в соответствующих главах (2 и 3), применение в наших исследованиях фокусированного ультразвука — искусственного раздражителя с физически точно определенными параметрами, количественно дозированного, действующего как на поверхностные, так и на глубокие воспринимающие структуры биологических объектов, дало возможность получить новые существенные факты, расширяющие представления о сенсорной специфичности.

Нейроны и синапсы

Сигнализация, возникающая в «зоне раздела» между организмом и внешней средой и представляющая собой рецепторные и генераторные потенциалы, передается в центральную нервную систему нейронами (нервными клетками). Нейроны состоят из тела клетки, называемого также сомой, дендритов, или ветвей тела клетки, подводящих к нему нервные сигналы, и длинного волокна — аксона, или осевого цилиндра, отводящего сигналы от тела клетки (рис. 10). Когда речь идет о центральной нервной системе, то такое деление отростков клетки на дендриты и аксоны совершенно оправдано, так как они отличаются по форме и функции. Если мы говорим о периферических нервах, в этом случае разница не столь очевидна, ибо периферические нервы содержат нервные волокна, часть из которых проводит сигналы от двигательных ядер центральной нервной системы, а часть — от органов чувств к телам нервных клеток, расположенных в ганглиях, лежащих вблизи головного или спинного мозга. И если первые являются истинными аксонами, то вторые следовало бы рассматривать как дендриты. Однако, поскольку по строению и функции эти волокна не отличимы друг от друга, то независимо от направления проведения в них нервных сигналов они часто называются одними и теми же словами: «аксоны» или «нервные волокна».

Несмотря на то что волокна в периферических нервах идут в непосредственной близости, активность одного волокна весьма мало влияет на соседние волокна благодаря специальному изолирующему слою, создаваемому так называемыми шванновскими клетками, или клетками-сателлитами (в центральной нервной системе клетки-сателлиты называют глией). Природа взаимоотношений нейронов и сателлитов до настоящего времени не представляется ясной.

Истинное взаимодействие между самими нейронами осуществляется в области контактов, называемых синапсами. Аксонная веточка одного нейрона подходит к дендриту, телу или аксону другого нейрона. В зоне контакта остается узкая щель, называемая синаптической. Типичный нейрон центральной нервной системы может иметь до 10 000 синапсов и получать информацию от тысяч других нейронов.

Рис. 10. Схема нейрона с конечной ветвью аксона, образующего синаптический контакт с дендритом.

А — один синаптический контакт; Б — несколько синаптических контактов Контакты являются возбуждающими (в) и тормозными (т). На возбуждающем окончании может также заканчиваться пресинаптическое тормозное окончание (пт). Между окончаниями показаны части глиальных клеток (г). Значительная часть синапсов сосредоточена на дендритах.


Как уже отмечалось, при достаточной величине рецепторного потенциала возникает нервный импульс, распространяющийся по волокнам на большие расстояния. Передача импульсов определяется разностью потенциалов по обе стороны мембраны волокна и является следствием изменений ее ионной проницаемости. Когда нервный импульс доходит до конца аксона, он вызывает усиленное выделение из окончаний аксона химического агента — медиатора. Можно провести аналогию между действием медиатора на следующий нейрон с действием стимула на рецепторную клетку. Если медиатор выделяется в достаточном количестве, он вызывает постсинаптический потенциал. В соответствии с типом нейрона (возбудительный или тормозный) различаются и типы медиаторов, вызывающих эффекты возбуждения или торможения.

В зоне соединения нейронов происходит трансформация, перекодирование нервного сигнала. У млекопитающих к каждой постсинаптической клетке подходят окончания от множества других клеток. И тормозные, и возбуждающие синапсы сосуществуют бок о бок на одних и тех же клетках. Считается, что торможение, возникающее после синапса, — это мощное противодействие возбуждению из любого источника, а торможение, возникающее до синапса, — это как клапан, который выключает только часть потока, но дает возможность пройти другой его части.

Итак, нейроны осуществляют передачу и обработку информации. И если передача осуществляется в основном в двоичной форме, по закону «все или ничего», то обработка, вероятно, идет в аналоговой форме, поскольку к одной постсинаптической клетке подходят сотни окончаний, выделяющих медиатор. Возникающая постсинаптическая реакция в результате является градуальным непрерывным процессом: двоичный импульсный код пресинаптических волокон преобразуется в аналоговую форму в синапсе, а затем в аксоне постсинаптической клетки опять превращается в импульсный код.

Двойной — импульсный и аналоговый — способ кодирования имеет несомненные преимущества. Импульсная передача надежна, быстра и точна. Синаптическое преобразование обусловливает изменение частоты, отражающее действия миниатюрного нелинейного аналогового устройства, в котором входящие события взвешиваются, а выходная система дает оценку этого взвешивания. В таких устройствах возможны различные виды трансформаций. Это усиление, которое может изменить объем афферентации. Это также переключение направления афферентации. Кроме того, это фильтрация, снижающая шум или изменяющая вес отдельных составляющих афферентного потока, а в предельном случае — полное его подавление. Это также извлечение определенных свойств потока за счет исключения избыточных деталей (другими словами, усиление контраста). И, наконец, это изменение шкалы времени за счет изменений постоянных времени основного процесса.

Богатейшая картина внешнего мира, преобразованная в периферических рецепторных структурах сенсорных систем, приводит в действие механизмы мозга, деятельность которых завершается трансформацией чувственного «изображения» — ощущения в акт восприятия. Результаты внешнего воздействия преобразуются в определенный код, носителем которого являются нейроны. Они генерируют электрические разряды — импульсы или медленные электрические потенциалы. Весь разнообразный поток раздражителей, которые воспринимают органы чувств из внешней среды, заключен в этих двух типах электрических сигналов. Каким бы совершенством и разнообразием не были бы представлены периферические структуры, ориентировка в огромном и удивительном внешнем мире была бы невозможна без участия множества нейронов — этих маленьких кирпичиков в здании сенсорного восприятия.

Для понимания специфической, уникальной функции нейронов и смысла передаваемых ими электрических сигналов, в которых заключена информация от соответствующих органов чувств, необходимо решить ряд чрезвычайно сложных задач. Требуется, в частности, проследить пути распространения электрических сигналов в различных структурах мозга, оценить преобразования, которые эти сигналы претерпевают на своем пути, выяснить, какими изменениями в сенсорной или двигательной функции они при этом сопровождаются. Следует подчеркнуть, что при решении перечисленных задач исследователи сталкиваются со множеством трудных методологических и методических вопросов. И только совместными усилиями ученых, представляющих различные области знания, секреты механизмов сенсорного восприятия будут открыты и изучены.

Центральное представительство сенсорных систем

Каждая сенсорная система является сложным многозвеньевым образованием, в состав которого входят рецепторы и центры мозга. Она обеспечивает эффекторную реакцию и находится под воздействием сложнейших механизмов регуляторных и управляющих систем мозга. Результаты восприятия и активности биологических объектов меняют «нервную модель стимула», создают «образ результата действия», а также компоненты последующей стимуляции.

Различные рецепторы в специальных органах чувств, разумеется, чувствительны к разным видам стимуляции. Однако нервные импульсы проводниковых систем, отходящих от рецепторных структур, в основном одинаковы. И зрительный, и слуховой, и обонятельный нервы — все они состоят из нервных волокон, проводящих импульсы примерно одинаковой величины. Зачастую эти нервные волокна проводят потенциалы действия одной и той же частоты. По-видимому, головной мозг узнает о типе воздействующего на организм стимула не только на основании того, какие рецепторные образования реагируют на воздействие, но и на основании того, в какую структуру головного мозга поступают импульсы. Особый код, представляющий собой пространственно-временную конфигурацию возбуждения в специфических путях и центрах, несет информацию о качествах стимулов, о состоянии различных структур мозга, возникшем в результате предшествующей стимуляции. Включение механизмов памяти также модифицирует восприятие раздражителя.

Сравним деятельность одиночной клетки простейших организмов и сенсорной системы высокоорганизованных животных. У простейших клетка является и рецептором, и эффектором одновременно. Изменение условий внешней среды вызывает реакцию мембраны клетки. Внутри клетки активируются белки типа актина и миозина, а это вызывает движение простейшего. У высших животных мышечные клетки, сохраняя древнее свойство реагировать на местные раздражения сокращением, приобретают высоко специализированные свойства, в нормальных условиях реагируя на химическое вещество (медиатор), выделяемое нервным волокном в области концевых пластинок, заканчивающихся в мышце. Таким образом, команда к реакции на раздражитель отгорожена от внешнего мира сложнейшей системой структурно-функциональных отношений рецепторов и центров мозга.

Если предположить, что сенсорная информация в зонах переключений, расположенных в различных отделах мозга, не перерабатывается, а только передается в некоторый конечный «главный» пункт, то неясно, зачем необходимо несколько переключений, почему количество их больше у высших животных, чем у низших, и вообще зачем нужны синапсы. С точки зрения теории связи для обеспечения неискаженной передачи информации значительно выгоднее длинные аксоны нейронов, нежели несколько короткоаксонных нейронов, включенных последовательно. Следовательно, можно утверждать, что в зоне синаптических контактов происходит переработка сенсорной информации, ее преобразование. Эти зоны обычно расположены в так называемых ядрах, представляющих собой скопление тел нервных клеток, в которых происходит переключение длинных аксонов. Отметим при этом, что любое преобразование, или, как принято говорить, перекодирование, грозит утратой той части информации, которая воспринимается рецепторами и трансформируется в активность нервных элементов. Измененная под влиянием внешней стимуляции, а затем и внутреннего процесса преобразования сенсорного сигнала активность нервной системы является тем реальным субстратом, который в свою очередь уже в модифицированном по сравнению с исходным виде воспринимает последующие стимулы. А в целом это значит, что перекодирование, трансформация в сенсорных ядрах нервных сообщений не только имеет большое биологическое значение, но и направлена на увеличение эффективности деятельности нервной системы.

Рассмотрим принципиальный план строения различных сенсорных систем, их центральное представительство. Наиболее эволюционно древними и широко представленными в структурах мозга низших позвоночных являются обонятельная и вкусовая системы — хеморецептивные органы чувств. Не вдаваясь в детали строения, отметим некоторые основные черты этих систем. Охватывая почти все передние отделы мозга у низших позвоночных (рыб и амфибий), обонятельная и вкусовая системы занимают ничтожно малую долю нейронных систем мозга млекопитающих. У всех представителей позвоночных хеморецептивные сенсорные системы являются преимущественно ипсилатеральными (односторонними). Это значит, что информация, поступившая на рецепторы одной стороны туловища, передается в центры мозга с той же стороны, либо без, либо с очень малым количеством перекрещенных волокон, идущих к другой половине мозга. Эти системы имеют сравнительно малое число синаптических переключений и соответственно сенсорных релейных ядер: они составлены 2- или 3-нейронными путями. Обонятельная и вкусовая системы представлены в наиболее древних, с эволюционной точки зрения, участках коры большого мозга. Эти системы связаны с вегетативными и мотивационными зонами мозга, а также с пищевыми центрами коры головного мозга четко прослеженными и обширными связями. Это наиболее древние, рано возникшие в эволюции сенсорные системы, имеющие аналоги в химической чувствительности низших беспозвоночных животных.

Соматосенсорная система, или система кожной поверхностной и глубокой чувствительности двигательного аппарата животных, занимает важнейшее место в обеспечении жизнедеятельности организмов, стоящих на всех уровнях эволюционного развития. Она содержит 4—5-нейронный путь к коре большого мозга, имеет перекрещенные волокна, располагающиеся в головном мозге. Эта система также дифференцируется в процессе эволюции, приобретая не только черты более выраженной специализации, но и мощные, многократно дублирующиеся проекции в переднем мозге. По своему объему представительство соматосенсорной системы в мозге различных позвоночных по сравнению с хеморецептивными системами и системами дистантной рецепции меняется в процессе эволюции относительно мало.

Переход от водного к наземному образу жизни привел к изменениям соотношений представительств сенсорных систем в мозге. Преимущественное развитие получили те формации, которые связаны с передачей и переработкой информации о свойствах внешней среды дистантными рецепторами — зрительными и слуховыми. Можно без преувеличения сказать, что подавляющее большинство сведений о мире млекопитающие и человек получают с помощью зрительной и слуховой систем.

Несмотря на то что рецепторное восприятие направлено на получение информации о различных видах энергии и осуществляется различными способами, центральные представительства дистантной рецепции имеют ряд общих свойств. Это — топографически высоко организованные системы, содержащие от 3 до 6 и более нейронов между рецепторной поверхностью и высшими сенсорными центрами мозга. Это системы билатеральные, воспринимающие раздражители, попадающие на рецепторы одной стороны обеими половинами мозга, причем доля перекрещенных систем больше доли систем односторонних, неперекрещенных. Надежную основу восприятия пространства и локализации воздействующего объекта создают 3—5 крупных перекрестов, множественные дублирующиеся представительства периферических воспринимающих поверхностей в различных структурах мозга. И несмотря на то, что зрительная и слуховая системы имеют дело с различными представлениями мира (пространственным и временным), принципы организации их проекционных систем в мозге во многом сходны.

На примере слуховой системы хорошо прослеживаются основные анатомические преобразования периферической рецепторной части, обусловленные ее развитием и совершенствованием у позвоночных животных. Они отражают также все возрастающую специализацию приемника механических колебательных процессов, источник которых отдален от воспринимающего объекта. В. первую очередь следует указать на разделение вестибулярной и слуховой частей лабиринта внутреннего уха и появление у амфибий специализированных слуховых структур в нижней части лабиринта. Затем — обособление и дальнейшее развитие этих структур у рептилий. И, наконец, возникновение у примитивных млекопитающих и развитие у высших млекопитающих специализированного органа слуха — спирально закрученной улитки с расположенным в ней дифференцированным рецепторным аппаратом.

Как же эти существенные изменения в периферическом отделе соотносятся с эволюцией представительства слуховой системы в мозге? Центральные проекции внутреннего уха рыб имеют прямые выходы на группу крупных клеток самого нижнего центрального уровня продолговатого мозга, управляющих движениями туловища. Эти проекции у амфибий и рептилий преобразуются в двусторонне перекрещенную систему, достигающую уровня среднего и промежуточного мозга. У млекопитающих наблюдается дальнейшее развитие центрального представительства внутреннего уха, широко распространенное в мозге и связанное на всех его уровнях с различными двигательными, мотивационными и вегетативными центрами. По мере появления и развития четко ограниченного специализированного слухового отдела внутреннего уха происходит дифференцировка клеточного состава центральных проекций, появление новых групп ядер. Часть последних выполняет регуляторные и эфферентные функции, а часть обеспечивает координированную двигательную активность, связанную с восприятием акустических сигналов. После появления у рептилий и организации у примитивных млекопитающих, в частности у насекомоядных, специфических корковых проекций идет лавинообразное увеличение объема новой коры, в том числе и зон, связанных с деятельностью слуховой системы, достигающее максимального уровня у приматов и человека.

Закономерно возникает вопрос о том, какие же специфические сенсорные функции соотносятся со столь выраженным нейроанатомическим развитием центральных проекций, рассмотренным здесь на примере слуховой системы, но не менее существенным в отношении как зрительной, так и соматосенсорной систем. Электрофизиологические данные, полученные при изучении активности нейронов разных отделов этих трех сенсорных систем, свидетельствуют об усложнении функциональной организации их вышележащих отделов. Наиболее сложные формы активности и рецептивные поля регистрируются на уровне коры большого мозга. В связи с различиями рецептивных полей и их динамики в процессе последовательного действия раздражителей находятся также и функциональные свойства нейронов. Было, например, обнаружено, что по мере повышения уровня слуховой системы они усложняются и специализируются, равно как и возрастает количество таких нейронов, которые в специфических формах активности выделяют определенные сочетания физических параметров стимулов: ритмы и скорости амплитудной модуляции, направление и скорость частотной модуляции. Появляются нейроны «памяти» с выраженным разрядом последействия, возникающим только при определенных сочетаниях параметров стимулов.

Вместе с тем во всех отделах слуховой системы, включая кору больших полушарий головного мозга, существует система нейронов, не несущих специализированных функций и как бы дублирующихся от уровня к уровню. Схематическое изображение иерархического принципа организации слухового анализа, обоснованное нашими экспериментальными данными, представлено на рис. 11.

Множество черт сходства не только в принципах описания сенсорных стимулов, но и в особенностях организации систем центральной обработки информации можно найти и при рассмотрении зрительной и соматосенсорной систем. В зрительной коре высших млекопитающих обнаружены разные типы клеток, относящихся к различным слоям коры, причем в более глубоких слоях расположены относительно «простые» клетки, в функциональном отношении сходные с нейронами предыдущего анатомического уровня зрительной системы. Оптимальным стимулом для таких клеток являются прямые линии. В более поверхностных слоях расположены «сложные» клетки, у которых рецептивные поля шире и сложнее. Выше их лежат «сверхсложные» клетки, отличающиеся еще более замысловатой функциональной организацией. Оптимальными стимулами для клеток более высокого иерархического уровня обработки являются «решетки», составленные из светлых и темных полос. Другими словами, рецептивные поля сложных клеток являются узко настроенными фильтрами пространственных частот.

Рис. 11. Иерархический принцип организации анализа акустических стимулов в слуховой системе (схема).

Римские цифры — условный «уровень» анализа сенсорного сигнала от рецепторной поверхности (I) до таламо-кортикальной системы (IV); арабские цифры — «уровень» специализации нейронов. Светлые квадраты — отсутствие специализации, реакции возникают на широкий набор стимулов, заштрихованные — частичная специализация, двухцветные — высокая специализация, черные — блоки избирательной памяти. Стрелки — стимул.


Определенная часть нейронов соматосенсорной коры избирательно чувствительна к направлению движения стимула через периферические рецептивные поля. Это свойство центральных нейронов обнаруживается также после 2-ступенчатой переработки информации. На основе оценки нейронов различного уровня исследователи пришли к заключению, что в высших корковых отделах соматосенсорной системы картируются как дерматомная и модальная специализация, так и динамические переменные кожных сенсорных стимулов.

Заключая обзор данных, характеризующих центральное представительство сенсорных систем, необходимо подчеркнуть следующее. Получаемая на входе сенсорных систем информация широко распределяется по всем последующим нервным путям в головном мозге. Информация, необходимая для различения определенных свойств стимула, дублируется многими участками центральной нервной системы. И чем больше «этажей» в сенсорной системе, тем большими возможностями восприятия различных качеств стимула располагает организм, тем легче он компенсирует возможные дефекты обработки сенсорных сигналов. Наиболее сложные и тонкие функции сенсорных систем соотносятся с деятельностью их высших отделов — коры большого мозга.

После того как немецкие ученые Э. Гитциг (1869 г.) и Г. Фритч (1880 г.) показали, что электрическое раздражение определенных участков мозга вызывает двигательную активность, а выдающийся русский невролог В. М. Бехтерев (1907 г.) детально описал проекции различных систем в коре большого мозга, проблема функционального назначения разных областей коры привлекла к себе пристальное внимание ученых и стала предметом острых дискуссий. Этому во многом способствовало и развитие нейрохирургии, позволившей исследовать степень участия различных отделов мозга в реализации некоторых сенсорных и двигательных функций.

Для различных областей коры головного мозга составлены карты рецепторно-кортикального соответствия, которые многократно уточнялись и проверялись различными методами. При этом использовались и адекватные для каждой рецепторной поверхности стимулы, и электрическое раздражение различных областей рецепторов, равно как и идущих от них проводников, и функциональные методы оценки утраченных функций после разрушений, и морфофизиологические критерии. Было обнаружено, что рецепторно-кортикальная организация сенсорных проекций не сопровождается соответствием «точка в точку». Центральная проекция не является зеркалом внешнего мира или копией рецепторных областей, а имеет иные законы организации, часто подчеркивающие ту или иную особенность внешнего мира или, вернее, его рецепторного восприятия, специфику дальнейшей структурно-функциональной организации сенсорного анализа. Например, в ганглиозном слое сетчатки человека по сравнению с рецепторным количество клеток в 50—100 раз меньше. На следующем уровне переключений зрительной системы — в таламусе, ближайшей к коре подкорковой зоне, — число зрительных элементов приблизительно такое же, как и в сетчатке. Зато при переходе к коре головного мозга картина диаметрально изменяется. Одиночная клетка подкорковой таламической области связана с 5000 корковых нейронов, а каждый корковый нейрон в свою очередь через дендритные пути связан еще по меньшей мере с 4000 других корковых нейронов. Итак, огромная цифра: один нейрон периферического зрительного прибора и соответственно ближайшей зрительной подкорковой области оказывается связанным с 20 миллионами корковых клеток! Другой, не менее разительный пример: около 30 тысяч волокон слухового нерва разветвляется в ядрах продолговатого мозга в соотношении 1:5, а подкорковые таламические слуховые нейроны связаны примерно такими же соотношениями с корковыми клетками, как и в зрительной системе. Близкие к вышеописанным соотношения известны для соматосенсорного коркового представительства.

Увеличение объема новой коры в филогенезе позвоночных является одним из наиболее ярких показателей эволюции мозга вообще и центрального представительства сенсорных систем в частности.

Увеличение новой коры шло за счет возрастания ее поверхности. Хорошо известно, что своеобразная форма коры, так называемый складчатый плащ, составленный бороздами и извилинами, наиболее выражена у приматов и человека. Однако первичные корковые проекции в эволюции по объему изменяются очень мало. Это, в частности, детально прослежено относительно первичной проекционной зоны AI слуховой коры. При сравнении разных областей коры также выявляются интереснейшие цифры. Количество нейронов, расположенных по вертикали различных областей коры как бы в цилиндре диаметром 30 мкм, измеренное у четырех видов млекопитающих — мыши, кошки, обезьяны и человека, — постоянно и составляет 110. Эта цифра одинакова для соматосенсорной, лобной и височной областей. А вот толщина серого вещества варьирует у разных млекопитающих в три раза и различна для разных областей коры у одного и того же животного.

Показано, что различие в толщине серого вещества коры объясняется вариациями в размерах дендритного дерева и в количестве синаптических контактов в областях так называемого синаптического нейропиля. В то же время соотношение двух основных типов нейронов коры — пирамидных и звездчатых — постоянно и составляет 2:1 в совершенно разных с точки зрения цитоархитектоники и функции областях коры (моторной, соматосенсорной и зрительной) у разных видов животных (макака, крыса и кошка). Новых типов клеток в филогенезе позвоночных не отмечается.

В исследованиях корковых зон различных животных в специальных онтогенетических работах показано, что клеточный состав коры развивается постепенно: сначала возникают клетки глубоких слоев, позже — клетки более поверхностных слоев. До рождения плода цитоархитектонических различий корковых зон, характерных для взрослых животных, еще не существует. Завершение оргазации клеточного состава корковых зон связано с возникновением последних, наиболее поверхностных клеток, и относится к периодам, когда подкорковые таламические волокна достигают корковых зон. После рождения плода все изменения протекают уже в пределах сформировавшихся нейронных структур коры.

Каковы же корреляции видимых морфологических изменений и сенсорного опыта? Если животных, например новорожденных белых крыс, поместить в условия полной сенсорной депривации, т. е. изолировать от действия каких-либо раздражений органов чувств, то оказывается, что у них количество дендритных разветвлений и шипиков пирамидных клеток коры значительно меньше, чем у животных, развитие которых происходит в обычных условиях. Многочисленные экспериментальные данные говорят об увеличении числа дендритных контактов в постнатальном онтогенезе, что эквивалентно росту нервной ткани, хотя новых клеточных элементов не появляется. Существенное значение в формировании связей и объема дендритного дерева имеют сенсорная стимуляция и научение. Причем, как оказалось, особую роль играет не стимуляция вообще, например раздражение глаза рассеянным светом, а структурированные стимулы, характерные для деятельности органов чувств в естественных условиях. Такими стимулами для глаз являются изображения и их детали, для слуха — прерывистые звуки, изменяющиеся во времени по частоте и по амплитуде.

Регуляция и контроль сенсорных сигналов

Как уже отмечалось, в соответствии со специализацией и разрешающей способностью органов чувств человек и животные воспринимают лишь небольшую часть информации из внешнего мира. Но на самом деле даже из этой небольшой части теоретически воспринимаемой информации каждый конкретный индивид получает только ее ничтожную долю. Эта доля зависит от перцептивного обучения, предшествовавшего опыта, отраженного в памяти субъекта, и обязательно от избирательного внимания. Собственно внимание всегда является избирательным, ибо «внимания вообще» не существует. Каждому хорошо известно, что практически невозможно слышать два разных по смыслу разговора одновременно, можно лишь переключать внимание с одного на другой, невозможно рассматривать две картины и т. д.

Простейший подход к представлению о внимании состоит в том, что оно рассматривается как некий переключатель, пропускающий одни сигналы и блокирующий другие. Такой переключатель соотносится, естественно, с деятельностью высших уровней системы обработки информации в головном мозге и регулируется конкретными инструкциями или биологическими задачами организма. Психологические опыты свидетельствуют о том, что при отсутствии инструкции испытуемые замечают физические характеристики звуковых сигналов, но не интерпретируют их. Механизм отбора отделяет, вероятно, существенный материал от несущественного на основании физических параметров звукового потока в соответствии с целью прослушивания. Затем срабатывает «переключатель», пропускающий для интерпретации только важные для данной ситуации сигналы. Поскольку большая часть поступающей на вход сенсорной системы информации передается в мозг, необходимо допустить, что этот переключатель работает не по принципу «да—нет», а по принципу «больше—меньше».

Нейрофизиологические механизмы процесса внимания изучены мало, и в этой проблеме больше вопросов, чем ответов. В экспериментальных работах наиболее широко представлены подходы лишь к изучению тех процессов в сенсорных системах, которые связаны с включением систем обратной связи, с регуляцией поступления входных сигналов в центральную нервную систему, а также обусловлены влиянием раздражения различных участков головного мозга на активность специфических путей и центров сенсорных систем.

Обратная связь — одна из основных особенностей организации биологических систем. Механизмы саморегуляции и самоконтроля, в основе которых лежит деятельность систем обратной связи, преодолевают внутренние шумы, повышают степень надежности и функциональные возможности биологических сенсорных систем. Функции регуляции и контроля различных процессов, протекающих в мозге, осуществляются силами самого мозга, и негативный обратный контроль на каждом уровне является наиболее важным механизмом в сенсорных информационных процессах.

Регуляция и контроль информации, передаваемой по ходу сенсорных систем, осуществляется множеством путей, идущих от центральных отделов мозга к более периферическим. Одним из мощнейших и наиболее хорошо изученных путей является так называемая эфферентная сенсорная система, обеспечивающая влияние высших отделов слухового пути на нижележащие. Обычно электрическое раздражение волокон эфферентной системы вызывает торможение импульсации в восходящем пути. Именно поэтому нисходящая система обычно рассматривается как тормозная, суживающая или расширяющая путь прохождения афферентной информации в вышележащие центры. Ход эфферентной системы в основном идентифицирован. Ее центры расположены территориально очень близко к центрам восходящей системы, но эти две системы в одних и тех же клетках или волокнах всегда обособлены.

Помимо параллельных путей, полностью повторяющих расположение восходящей сенсорной системы, известны «кольцевые» системы обратной афферентации, центры которой располагаются в мультимодальных зонах мозга. Деятельность таких систем является предпосылкой интермодальной регуляции и взаимодействия специфических сенсорных систем.

Существуют и другие системы обратной связи. В частности, это системы сенсомоторной координации. Например, известны обратные связи от ядер V и VII пар черепномозговых нервов к костно-мышечному аппарату среднего уха, причем активация таких связей приводит к резкому уменьшению входного акустического потока за счет регуляции деятельности структур среднего уха. Активность этой системы контроля слухового входа координируется также и тактильными раздражителями.

Регулирующее действие на слуховой вход оказывают также те зоны мозга, которые управляют двигательной активностью звукопродуцирующего аппарата животных — их вокализацией. Подобная регуляция осуществляется в период звукопродукции и обусловлена определенными формами акустического поведения. Подобные системы контроля, связанные с центрами сенсомоторной координации, известны и для других сенсорных систем, в частности для зрительной и соматосенсорной.

Наконец, существует «ретикулярная» система регуляции, активные зоны которой расположены в сетевидной субстанции, или так называемой ретикулярной формации мозга.

Несмотря на то что ход ряда эфферентных и регуляторных систем мозга анатомически идентифицирован и установлена их регулирующая функция в условиях электрического раздражения, роль этих систем в поведении и нормальном функционировании мозга неизвестна. Одно из наиболее широко распространенных предположений состоит в том, что системы обратной афферентации обеспечивают избирательность внимания посредством контроля и блокирования информации в различных отделах сенсорных систем. Как и где осуществляется это блокирование, экспериментально не показано. Какие именно системы эфферентного контроля участвуют в процессах организации внимания, также до настоящего времени неизвестно.

Некоторые данные, полученные в экспериментах, проведенных с помощью испытуемых, позволяют судить о функциональной связи различных систем — сенсорной афферентной и системы контроля. В качестве примера можно привести тот факт, что нарушение обратной связи контроля звуков, поступающих в ухо, немедленно нарушает речь и приводит к искажению мелодии исполняемой человеком песни. Это явление используется как тест для выявления симуляции глухоты. Если говорящий или поющий человек слышит собственные звуки не сразу, как это бывает в обыденной жизни, а через наушники с некоторой задержкой во времени, то у него меняется произношение и появляются ошибки. Если задержка увеличивается, то человек вообще не может говорить или воспроизвести мелодию. Только при истинной глухоте качество речи не зависит от задержки во времени ее восприятия слуховой системой.

Несмотря на огромное значение для организации процесса восприятия такого мощнейшего психологического фактора, как внимание, физиологи и психологи стали исследовать его лишь последние 20—25 лет. Наиболее широко распространенное представление о внимании как о способе отфильтровывать информацию на протяжении ряда лет подвергается пересмотру как с позиций нейрофизиологии, так и психологии. В одной из первых работ, посвященных электрофизиологическим исследованиям внимания, Р. Эрнандес-Пеон и сотрудники (1956 г.) писали, что электрические реакции слухового нерва кошки на звуковые щелчки ослабляются, если кошке показать мышь. Вот, казалось бы, и демонстрация блокирующего действия внимания на афферентную входную импульсацию. В дальнейшем, однако, результаты этих работ и их интерпретация подверглись серьезным сомнениям, подробно изложенным в работе Ф. Уордена, опубликованной в книге «Нейрофизиологические механизмы внимания» (1979 г.). Интересно отметить, что когда в 1971 г. в слуховом нерве человека в результате сдвига внимания не было обнаружено изменений электрической активности на звук, а позже этот результат был многократно подтвержден, то прямолинейное и однозначное толкование первоначальных результатов было пересмотрено. Несколько формальный подход к вниманию как фильтру входной информации получил самые различные теоретические толкования.

Из соображений, в основе которых лежит чисто биологический подход к проблеме отсечения или фильтрации части входной информации, представляется, что не должно быть таких процессов или механизмов, функция которых состояла бы в том, чтобы отклонять какой-либо стимул. Прецептивное научение и отбор — это позитивный процесс, в первую очередь определяемый выбором. В основе выбора — биологическая потребность, доминирующая мотивация, обученность (навык), инструкция. В изучении внимания при экспериментальных подходах, реализуемых с участием испытуемых, особую роль играет инструкция. Различные экспериментальные процедуры позволили показать, что даже при узко сфокусированном внимании периферическая сенсорная информация не блокируется — она поступает в центральные отделы, где не теряется, а оценивается с точки зрения ее адаптационного значения.

В качестве примера рассмотрим следующую экспериментальную ситуацию. Записанные на магнитную ленту два текста одновременно подаются испытуемому на разные уши с одинаковой громкостью. Предварительно дается инструкция о том, какой текст испытуемый должен слушать. Для проверки правильности исполнения инструкции испытуемый повторяет нужное сообщение по мере его поступления в ухо. Испытуемые легко выделяют нужное сообщение, полностью игнорируя другое, поступающее на противоположное ухо. Человек как будто не слышит второе, «ненужное» сообщение. Но если в тексте «ненужного» сообщения появляются слова, имеющие непосредственное отношение к испытуемому, типа его имени, обращения или важного эмоционального, особенно аффективного содержания, то испытуемый оценит также не только эти слова, но и в ряде случаев смысл второго сообщения.

Много остроумных экспериментов, показывающих, что акустический поток может в определенных условиях «не слышаться», но достигать высших центров мозга, было проведено за последнее десятилетие. Следует, однако, признать, что психологические интерпретации проблем, связанных с процессами и механизмами внимания, хотя и многочисленны, но в ряде случаев противоречивы. Нейрофизиологические аспекты этого вопроса пока еще не нашли должной экспериментальной и теоретической разработки.

Сенсорная стимуляция и ощущение

Первые попытки количественного определения соотношения между физическими параметрами стимула и вызываемым им ощущением относятся к 40-м годам прошлого столетия. В 1846 г. немецкий ученый Э. Вебер опубликовал работу, в которой сообщил, что величина прироста интенсивности, вызывающая отчетливую разницу в интенсивностях между двумя стимулами, находится в постоянном отношении к исходной интенсивности. Например, различия в весе двух грузов можно определить в том случае, если отношение их весов друг к другу составляет не меньше 29:30. В 1860 г. немецкий ученый Г. Фехнер, который считается основоположником специальной области сенсорной физиологии — психофизики, придал наблюдениям Вебера математическое выражение — ΔI/I = K, где ΔI — приращение раздражителя, при котором получается едва заметная разница в ощущении, а I — величина постоянная, представляющая собой исходную интенсивность раздражения. Иначе говоря, ощущение пропорционально логарифму раздражения. Установленное соотношение между величиной раздражения и ощущения в дальнейшем получило название закона Вебера—Фехнера, который длительное время являлся отправным пунктом психофизических исследований.

Впоследствии обнаружилось, что закон Вебера—Фехнера не подтверждается в том случае, когда используются очень малые или очень большие величины раздражителей. И почти через 100 лет американский ученый С. Стивенс предложил взамен отношения Вебера—Фехнера закон степенной функции, согласно которому ощущение пропорционально показателю степени, а именно, ощущение равно a(I—R)x, где а — константа, величина которой зависит от единиц измерения, I — стимул, R — пороговый стимул, х — показатель степени. Последний меняется в зависимости от того, какая сенсорная система исследуется. Например, для раздражения светом он составляет 0.33, запахом гектана 0.6, для вкуса хлористого натрия — 1.3, для громкости звука 0.6, для электрического раздражения пальцев 3.5, для тактильной вибрации с частотой 60 Гц — около 1.

Графически вышеупомянутые зависимости для трех ощущений представлены на рис. 12. Показано также, что наклон функции на графике зависит, в пределах одной модальности, от параметров раздражителя (рис. 13). Например, показатель степени для вибраторной чувствительности меняется обратно пропорционально частоте вибрации, для яркости показатель степени тем больше, чем короче вспышка. На величину показателя влияет также наличие маскирующего стимула: чем выше шум, тем больше показатель степени.

Чем же определяются вариации показателей степени для различных органов чувств? Одно из возможных предположений состоит в том, что показатель степени отражает различия в механизмах преобразований внешней энергии в ту форму информации, которая доступна нервной системе. Если при превращении энергии света в генераторный потенциал должны уменьшаться различия в уровнях световой энергии, то при электрическом раздражении пальцев различия увеличиваются.

Рис. 12. Зависимость ощущений от величины различных стимулов.

По оси абсцисс — величина стимула, произвольные единицы; по оси ординат — психологическая оценка, произвольные единицы. 1 — электрический ток, 2 — видимая длина, 3 — яркость. Наклон каждой кривой равен показателю степени функции. При изображении в двойной логарифмической шкале степенные функции имеют характер прямых линий.


Рис. 13. Зависимость оценки величины вибрации разной частоты.

По оси абсцисс — логарифм смещения, мкм; по оси ординат — логарифм оценки величины. Цифра у кривой — величина частоты, Гц. Видно, что наклон кривых меняется обратно пропорционально частоте вибрации.


Промежуточным этапом между стимулом и ощущением является то преобразование, которое осуществляет нервная система от момента возникновения генераторного потенциала, свидетельствующего об активности нейронов первых уровней сенсорной системы, до момента появления ощущения — включения в процесс высших уровней мозга. Сделанное английским нейрофизиологом Э. Эдрианом в 1930 г. открытие, что сенсорные проводники сообщают мозгу об усилении стимуляции повышением частоты разряда, послужило толчком для выяснения количественного соотношения физических параметров стимула и реакций нейронов первых и последующих уровней сенсорных систем. Многие физиологи подтвердили, что сенсорный ответ, определяемый по частоте импульсации нервного проводника, пропорционален логарифму раздражения. Однако логарифмическая зависимость оказалась не единственной для случаев оценки сенсорного ответа по данным электро-физиологического анализа. Достаточно часто встречалась степенная зависимость, а в более редких случаях — почти линейная зависимость.

В некоторых сенсорных волокнах обнаружена так называемая S-образная зависимость частоты импульсации от интенсивности стимула. Она особенно характерна для волокон вкусового и слухового нервов, а в ряде случаев такая зависимость связывает величину раздражителя и рецепторного потенциала, в частности телец Пачини и обонятельных рецепторов лягушки. Показано, что если стимул и реакция воспринимающего его сенсорного органа связаны логарифмической, степенной или S-образной зависимостью, то рецепторный потенциал и реакция одиночного нервного волокна, как правило, связаны линейными отношениями.

Как примирить эти многочисленные известные соотношения стимула и реакции с массой фактов, подтверждающих закон степенной зависимости ощущения? Возможно, что деятельность переключательных станций в сенсорных системах вносит свой вклад в изменение соотношений в процессе передачи информации. К какому же моменту отношения между стимулом и конечной реакцией становятся степенными? На эти вопросы в настоящее время нет ответов. Следует заметить, что хорошее соответствие, корреляция показателей функции, полученных разными объективными методами (морфо-функциональными, нейрофизиологическими), с закономерностями, свойственными ощущению, — это лишь косвенный, хотя и обнадеживающий показатель связи процессов разного уровня — физиологических и психологических. Отсутствия соответствия между единым и неделимым психологическим процессом и отдельными физиологическими функциями, исследованными аналитическими методами, еще не достаточно для заключения об отсутствии их взаимосвязи и взаимообусловленности. Один из крупных специалистов в области физиологии слуха Г. Бекеши считал, что объективные наблюдения электрофизиологов не обязательно полнее и содержательнее субъективных данных психологов: ведь электрофизиологические данные относятся только к одному параметру сложного феномена.

Рассмотренные выше количественные соотношения между величинами стимула и ощущением по существу отражают так называемый дифференциальный порог. В сенсорной физиологии широко принято измерение абсолютных порогов — т. е. чувствительности сенсорной системы к данному виду раздражителя.

В психофизической литературе понятие порога употребляется в двух разных значениях. В одном значении он определяется как барьер, разделяющий стимулы на воспринимаемые и невоспринимаемые. Этот барьер должен быть преодолен, чтобы возникло ощущение. В другом значении порог характеризуется некоторым числовым показателем. Он представляет собой значение, которое либо соответствует 50—70%-ному обнаружению или различению, либо определяется как средняя величина между возникновением и исчезновением ощущения, либо как одна из статистически принятых мер вариативности. Существует множество различных способов и процедур измерения порога реакции системы. Они описаны и проанализированы в специальной литературе (см., например: Бардин К. В. Проблема порогов чувствительности и психофизические методы. М.: Наука, 1976. 395 с.). В наших целях использованы различные способы пороговых измерений.

Загрузка...