Глава II

1

В 1924 году учреждение, ведавшее в стране разработкой и производством самолетов, занимало всего четыре комнаты в доме два в Большом Черкасском переулке. Учреждение – кажется, оно называлось авиатрестом, – понятно, охранялось: у входа в него сидел инвалид с наганом и выписывал пропуска. Чтобы получить пропуск, надо было назвать свою фамилию. Только погромче назвать ее инвалиду, так как он был глуховат после контузии.

Однажды, не заметив эту охрану, с лестничной площадки в коридор попытался проникнуть озабоченный молодой военный довольно крупного чина – комбриг.

– Фамилия, товарищ?

– Бартини. – Военный говорил с сильным акцентом, да еще гул разносился по высокому коридору.

– Партийный? Это хорошо… Ну а фамилия-то все же как?

– Бартини.

– Фамилию спрашиваю!

– Бартини.

– Эка заладил… А какой партии?

– Итальянской.

– О! Итальянскую мы уважаем… Ладно, дуй, товарищ!

И все. Без канители. От таких воспоминаний старики, бывает, умиляются: вот, говорят, какое было время, а! Любые вопросы решались просто, безо всяких там…

Отчасти это верно. Просто решались у нас авиационные дела в начале 20-х годов, и, между прочим, куда более ответственные, чем пропуск в авиатрест. А повелось это с начала века, с «младенческих» лет авиации, с той довоенной поры, когда в самолете видели в основном цирковой аппарат для развлечения публики, а не боевую машину. В крайнем случае – спортивный снаряд. В самом крайнем – средство для разведки позиций противника… К началу первой мировой войны авиация России была первой в Европе по числу самолетов, но они оказались технически устаревшими, изношенными и безоружными. Даже штабс-капитану Петру Николаевичу Нестерову, герою, зачинателю высшего пилотажа, на просьбу дать пулеметы его отряду отвечено было сакраментальным «не положено» – и хоть головой бейся об стенку… Пишу это вовсе не для того, чтобы еще раз кивнуть на тогдашнюю российскую дикость: так было не только у нас. В частности, точка зрения на авиацию остальных членов антигерманского блока была такой же. Французская: «Самолет, может быть, и хорошее средство спорта, но для войны он ни к чему» (Фош, впоследствии верховный главнокомандующий вооруженными силами Антанты). Английские газеты писали: «Бой самолетов между собой – глупая и бесполезная игра, встретиться она может лишь случайно». Соображения? Пожалуйста! Их пропасть в тогдашних журналах – и популярных, и специальных. Бомб, считалось, аэроплан много не поднимет, да и в кабине, в ногах у летчика, много их не уложишь, а другого места для бомб в этой машине нет. Да и не попадешь ими сверху ни во что: летчик бросает их через борт, руками, отрываясь для этого от рычагов управления, не имея возможности хотя бы грубо прицелиться со своей зыбкой, парящей в облаках позиции. Бой между аэропланами совершенно бессмыслен: с винтовкой, а тем более с пулеметом в кабине не повернуться, а из пистолета далеко не стрельнешь…

Первая мировая война шла полным ходом, а об авиации все еще публиковали подобную чепуху, и подписывали ее порой известные генералы. Хуже того, принимали наивные, если не прямо злонамеренные решения. Военное министерство, сам «шеф» русской авиации великий князь Александр Михайлович приостановили тогда строительство в России тяжелых бомбардировщиков, проектирование самолета-истребителя объявили частной, не нужной государству затеей…

Но жизнь брала свое, прогресс остановить нельзя. Сводились в первое соединение стратегической авиации, в «Эскадру воздушных кораблей», четырехмоторные «Ильи Муромцы» с пятнадцатипудовыми бомбами (240 килограммов; руками такую не поднимешь) на внешних, из кабины управляемых подвесках, с пулеметами на оборудованных, удобных для стрельбы площадках, а некоторые уже с пушками (и даже с трехдюймовыми безоткатными, у которых отдача уравновешивалась пыжом, отбрасываемым при выстреле назад. Такую опытную пушку для «Ильи Муромца» сконструировали тогда подполковник Гельвиг и капитан Орановский). Появились уже, причем в России, прицелы для повышения точности бомбометания, а в Германии в 1913 году изобретатель Шнейдер запатентовал схему и конструкцию синхронного пулеметного привода для стрельбы с истребителя сквозь диск винта – чтобы пули пролетали между лопастями, не повреждая винт…

Важное значение имели первые решения Советского правительства об авиации. О закупках за границей самолетов, лицензий на самолеты и заводское оборудование, об использовании иностранной технической помощи и, главное, о всемерном развитии своей авиапромышленности, сильно пострадавшей от войны и разрухи. Еще в начале 1918 года, 24 марта, была создана исследовательская «Летучая лаборатория» под руководством профессора Николая Егоровича Жуковского; немного позже возник ЦАГИ; через два года – Научно-опытный аэродром, преобразованный затем в Государственный научно-испытательный институт ВВС Красной Армии. Организовывались летные школы, курсы, с 1922 года приступила к подготовке авиационных специалистов высшей квалификации Военно-воздушная инженерная академия имени Н.Е.Жуковского. В авиационном отделе ЦАГИ под руководством Андрея Николаевича Туполева строились аэросани, самолеты, велись поиски новых высокопрочных сплавов; начала проектирование легких самолетов группа Николая Николаевича Поликарпова; после пятилетнего перерыва вернулся в опытную авиапромышленность Дмитрий Павлович Григорович, конструктор летающих лодок, признанных в то время лучшими в мире…

С 1925 года закупки военных самолетов за границей прекратились, больше в этом надобности не было.

Однако в том же 1925 году, в январе, докладывая на Пленуме ЦК РКП(б) об итогах военной реформы, М.В.Фрунзе с тревогой говорил о настроениях, порожденных эпохой гражданской войны, – о все еще бытующей в Красной Армии недооценке значения новейшей техники, по всем показателям новейшей, ни в чем не уступающей лучшим иностранным образцам, по возможности превосходящей их: «Я утверждаю, что эти настроения очень опасны…»

Фрунзе смотрел далеко вперед, вскрывая эти настроения. Об авиации, по крайней мере, никто уже в то время не мог вслух утверждать без риска быть поднятым на смех, что она армии вообще не нужна. Наоборот, ею восхищались, гордились, пели о ней песни, основали массовое «Общество друзей воздушного флота»… Авиационная техника быстро совершенствовалась: самолеты строились боевые, всех назначений, а если гражданские, то обязательно с учетом требований ВВС. Улучшались их характеристики, повышалась надежность, усиливалось вооружение, обновлялись оборудование, конструкция, технология, становились легче и прочнее материалы. В 1924 году, 26 мая, взлетел первый советский цельнометаллический самолет АНТ-2 из разработанного нашими учеными сплава кольчугалюминия, в том же году был принят в серийное производство знаменитый стосильный мотор-звезда М-11 А.Д.Швецова, переживший потом Великую Отечественную войну (он стоял практически на всех наших легких самолетах) и лишь в 50-х годах отправленный на покой, в музеи. В 1925 году прошел летные испытания двухмоторный бомбардировщик ТБ-1 А.Н.Туполева, послуживший прототипом всех тяжелых бомбардировщиков у нас и за рубежом.

Я назвал только малую часть достижений советской авиапромышленности тех лет. Кажется, не было тогда показателя, по которому бы авиация не развивалась, за исключением одного: почти не росла скорость истребителей. И некоторые специалисты оправдывали этот факт, ссылаясь на четкую теорию, вернее, казавшуюся четкой, и на военный опыт.

Во-первых, считалось, что для истребителя не так уж и важна скорость. Рассуждали: на прямой дистанции от пули не уйдешь, пуля все равно летит быстрее, и, значит, истребитель надо делать не столько скоростным, сколько маневренным, чтобы он мог увернуться от атакующего противника и, в свою очередь, подойти к нему с незащищенной стороны. Во-вторых, тоже расчетами и практикой было установлено, что конструкция и аэродинамические формы самолетов достаточно хороши и нечего ломать голову над их совершенствованием. Чтобы повышать скорость дальше, оставалось, по мнению некоторых специалистов, лишь одно радикальное средство – увеличение мощности мотора, тяги винта. Причем расти она должна гораздо быстрее, чем скорость самолета, потому что именно так, с повышением скорости, увеличивается сопротивление воздуха летящему в нем, рассекающему его телу. Были вычерчены простые графики – какая нужна мощность мотора для полета истребителя с той или иной скоростью на разных высотах (плотность воздуха уменьшается с высотой). А чем мощнее мотор, тем он, очевидно, тяжелее, тем больше расходует бензина, масла…

Один из лучших в тот период серийных советских истребителей, И-5 Н.Н.Поликарпова и Д.П.Григоровича, «давал» всего 260—270 километров в час и пробыл на вооружении Красной Армии около девяти лет. Примерно такими же были тогда и лучшие серийные иностранные истребители. Опытный И-8 А.Н.Туполева в конце 1930 года показал рекордную скорость – 303 километра в час, но так и остался опытным. До 1933 года график изменения максимальных скоростей истребителей получается такой: в первое время после гражданской войны скорость росла, и значительно (за три года – без малого на сто километров в час), а потом почти на десятилетнем участке график идет, можно считать, горизонтально. Повышается, но настолько медленно, что нетрудно представить себе, с какими муками давались тогда конструкторам каждые десять – пятнадцать километров в час. Пять лет, с 1925 по 1930 год, – никакого прироста. В 1930 году – еле заметный прирост, и опять все замерло на два года. В 1932 году – еще километров пятнадцать – двадцать…

Такие временные задержки обычны в мировой науке и технике: периоды молодости открытий и изобретений, ускоренного движения вперед сменяются периодами замедленного движения. Потом вновь наступает период ускорения, когда появляются новые, ломающие привычные представления идеи. Но здесь приостановилось развитие самого скоростного типа самолета. Причем к началу 30-х годов мнение авиационных тактиков о скорости изменилось, она перестала считаться второстепенным качеством боевого самолета, тем более истребителя. Но как ее поднять быстро и существенно? На этот важнейший вопрос авиационная наука по-прежнему ответа не давала. Военные же в конце 1933 года категорически потребовали в ближайшем будущем повысить скорость истребителей до 450 километров в час…

Когда конструкторские бюро и заводы авиапромышленности получили это требование, в Управлении ВВС зазвонили телефоны: уж не машинистка ли там напутала, не стукнула ли по четверке вместо тройки?

Но Управление стояло на своем. Четыреста пятьдесят! Есть сведения, что наиболее вероятный противник уже приступил к решению этой задачи.

Спор пришлось вынести на расширенное совместное совещание представителей Наркомвоенмора и Наркомтяжпрома, куда входило тогда Главное управление авиационной промышленности. Вели совещание, сидя рядом, наркомы К.Н.Ворошилов и Г.К.Орджоникидзе. На стенах зала «промышленники» заранее развесили большие красочные плакаты для подтверждения своих соображений – таблицы и графики мощностей, тяг, сопротивлений и пр., чтобы они всем отовсюду были хорошо видны. Чтобы при объективном отношении к делу каждый мог убедиться, что защищаются здесь не чьи-то ведомственные интересы, что вопрос – в науке…

Военные плакатов с собой не привезли. Только на столе перед начальником вооружений РККА М.Н.Тухачевским лежала толстая синяя папка.

Первыми выступили докладчики от промышленности. Их доказательства свелись к сравнению так называемых потребных и располагаемых мощностей моторов. Графики были вычерчены для всех типов истребителей, для разных высот полета, в одних и тех же координатах «скорость – мощность». На малых скоростях моторы оказывались достаточно сильными, даже с избытком: кривая располагаемых мощностей лежала выше кривой потребных. Чем меньше требовалась скорость, тем больше был запас мощности. С ростом скорости мощность требовалась все большая, нижняя кривая, поднимаясь, приближалась к верхней, затем они пересекались. За точкой пересечения лежала, очевидно, область недостижимого. Причем, надо заметить, запас мощности – не роскошь для истребителя. Избыток мощности бывает нужен, чтобы догнать противника или уйти от него, совершить маневр.

Это было построено по результатам теоретических исследований, испытаний в аэродинамических трубах, сотен, если не тысяч, полетов, а также гонок моторов на земле, в испытательных боксах… Учитывались, по статистике, и возможные при расчетах ошибки: зоны таких предусмотренных ошибок были оттенены бледной штриховкой около кривых, выше и ниже каждой (можно ведь ошибиться в ту и другую сторону – из-за неточности измерений и расчетов завысить или занизить результат). Со всей наглядностью было показано, что существующие мощности могут одолеть 350 километров в час, а выше – абсолютная химера, если, конечно, не рассчитывать на мотор, которого пока нет и не предвидится.

Кончили выступать представители Глававиапрома. Что им можно было возразить?

Военные молчали. Тухачевский, склонившись к синей папке, что-то отмечал в ней карандашом.

Орджоникидзе насторожился: для чего тогда совещание собрали, людей от дел оторвали, если все ясно и сказать больше нечего?

– Товарищ Тухачевский, вам слово!

Тухачевский поднялся, но так неохотно, словно через силу…

– Да, теперь мы наконец все поняли, спасибо. Кривые пересекаются… Но поймите и нас: видите ли, машина-то такая уже построена! Почти такая. И уже летает. Четыреста двадцать километров в час – вот отчет об ее испытаниях в нашем НИИ!

И он передал синюю папку Орджоникидзе.

– …А вот сидит, просим любить и жаловать, конструктор самолета – комбриг Бартини Роберт Людовигович!

Эффект был сильный, умел Тухачевский провести «военную игру»… Орджоникидзе, найдя в папке дважды обведенную красным карандашом Тухачевского цифру 420, сказал сердито:

– Кончен разговор! Записываем решение: принять требование товарищей военных…

В 1933 году максимальная скорость истребителей подскочила сразу примерно на сто километров. А дальше, с этой новой отметки, опять на графике скоростей идут прибавления в десять – пятнадцать километров в час, но уже гораздо чаще.

Экспериментальный самолет «Сталь-6», типа истребителя, был построен в ОКБ НИИ Гражданского воздушного флота, испытали его летчики НИИ ВВС А.Б.Юмашев, П.М.Стефановский и Н.В.Аблязовский. В Главном же управлении авиационной промышленности о нем никто ничего не знал – до совещания у Ворошилова и Орджоникидзе. И в Наркомвоенморе об этой машине знали немногие; даже в цехе окончательной сборки НИИ ГВФ она стояла отгороженная от других машин брезентовым занавесом, потому что человеку искушенному один ее вид мог сказать больше, чем следовало. Когда начальник ВВС Я.И.Алкснис, отогнув угол брезента, все же показал ее издалека одному летчику, тот рванулся было к ней, но был схвачен за ремень могучим Яковом Ивановичем. «Я словно увидел там обнаженную девушку, – простодушно поделился потом этот летчик своей радостью с Тухачевским. – Просил, просил Алксниса: „Подпустите меня к ней, все равно же показали!“ А он говорит: „Нельзя, еще рано, и зря я тебя распалил, такого-сякого…“»

Тайна нужна была Тухачевскому и Алкснису, естественно, не для будущего эффекта на совещании, а только чтобы в работе над самолетом обойтись без преждевременных споров. Ради этого пошли и на некоторую вроде бы потерю времени (на самом деле его выиграли), и на лишние затраты: «Сталь-6» строили в не очень подходящих условиях НИИ ГВФ, которому боевые машины были «не по профилю»: там не было крупных авторитетов по ряду вопросов аэродинамики и технологии. Такие специалисты работали в других институтах и КБ, в промышленности.

А какие, собственно, новые идеи выдвинул Бартини? Такими ли уж спорными они были? Нельзя ли было изложить их заранее, привести свои таблицы и графики, обсудить их и построить самолет дружно, сообща, быстрее, – может быть, сделать его еще лучше? Летчик-испытатель П.М.Стефановский считал, например, что в НИИ ГВФ «Сталь-6» тогда не «довели»: скорость этого самолета могла быть выше еще километров на двадцать – тридцать…

В среде, далекой от техники, существует стойкое убеждение, что инженерные профессии уже тем основательнее, а заодно и спокойнее всякого рода гуманитарных, что техническую идею всегда можно оценить цифрами, точно и, следовательно, отстоять или похоронить ее обоснованно. Что хорошо – то хорошо, а что плохо – то уж плохо, не взыщите… Или – или.

Это неверно. В технике не больше безупречно объективных критериев, чем в области гуманитарных наук. А может быть, еще меньше, потому что завораживающие цифры, как это ни парадоксально, удается подвести под любую инженерную оценку. И тот, кто их рассчитывает, часто сам попадает к ним в плен, отвергая все противоположные мнения, забывая старую истину, что математика – как мельница: что засыплешь, то и получишь. Из зерна получишь муку, из булыжников – пыль… Иными словами, чутье и интуиция в инженерном деле играют не меньшую роль, чем методики и расчеты.

Как любой создатель по-настоящему новой техники, Бартини сталкивался с этим все пятьдесят лет своей инженерной работы. Когда в 1929 году в ЦАГИ рассматривались его первые проекты (три проекта гидросамолетов и экспериментальный истребитель), к всесторонне технически обоснованному решению – объективному или хотя бы согласованному, единому – ученые, летчики и моряки так и не пришли. Но интуитивно определили, что, несмотря на веские возражения, есть все же в этих проектах нечто заманчивое, перспективное, и не ограничились требовавшейся от них только технической оценкой, обратились в ВСНХ и Реввоенсовет с предложением перевести комбрига Бартини на работу в промышленность: пусть сам построит эти самолеты… И предложение было принято, Бартини возглавил Опытное конструкторское бюро. В 1930 году он попал в еще более сложную ситуацию. Решалось, какой эскизный проект передавать на рабочее проектирование: Бартини, чьи самолеты еще никто не видел в воздухе, или известного во всем мире конструктора Дмитрия Павловича Григоровича. Естественно, Д.П.Григоровичу было крайне важно отстоять свой проект. И победить в споре он мог без особого труда: Бартини задумал машину невероятных по тогдашним представлениям размеров и веса. Сейчас такой вес неудивителен, он давно превзойден. Поэтому сравним, что в то время было и что предлагалось. Был тяжелый шеститонный бомбардировщик ТБ-1 (правда, готовился уже к первому полету и семнадцатитонный четырехмоторный ТБ-3, «наиболее выдающийся не только для своего времени» – так о нем и сейчас пишут), а Бартини предлагал сорокатонный морской бомбардировщик МТБ-2, да еще и новой тогда, в нашей авиации лишь незадолго перед тем опробованной схемы – катамаран. Двухлодочный, то есть тоже катамаранный, «морской крейсер» МК-1 А.Н.Туполева, весом около 30 тонн («уникальный и крупнейший из числа где-либо построенных самолетов этой схемы»), появился только четыре года спустя.

Так что от авторитетного Григоровича его сторонники ждали всего лишь сомнения в реальности бартиниевского катамарана. Одно это уже решило бы спор в пользу Дмитрия Павловича. А он заявил: «Я не сумею сейчас объяснить почему, но чувствую: то, что предлагает Бартини, – правильно. Поэтому свой проект я снимаю».

«О Григоровиче я был наслышан еще в Италии, от институтских преподавателей, – рассказывал Бартини. – При знакомстве он показался мне человеком нелегким. Старый специалист, служивший стране не за страх, а за совесть и по недоразумению на время потерявший высокое положение, он мог бы таить в душе обиду… А ведь не таил! Ну а мне, я считаю, тогда повезло: видимо, веря в силу здравого смысла, справедливости, Дмитрий Павлович что думал о моем проекте, то и выложил, без „тактических“, деляческих расчетов. Редкая способность! Способность чистой и честной души…»

Эскизный проект катамарана приняли, но на этом для Бартини сложности не кончились. Появились новые. В том же 1930 году по настоянию административных инстанций целый ряд до этого самостоятельных и очень разных по традициям конструкторских коллективов – группы Д.П.Григоровича, Н.Н.Поликарпова, С.А.Кочеригина, А.Н.Рафаэлянца, Р.Л.Бартини и другие – вошли в состав огромного учреждения, Центрального конструкторского бюро. Опытные машины в ЦКБ предполагалось строить общими дружными усилиями, «набрасываясь всем миром» на каждую по очереди, и таким образом, опережать плановые правительственные сроки. Надежды покоились опять же на простом основании: лучше действовать вместе, чем вразброд. Ну а такие «тонкости», как интуиция, несхожие представления об эстетике технических решений, как, наконец, совместимость или несовместимость характеров людей, да еще талантливых и – что поделаешь! – знающих себе цену, во внимание не принимались. Наука, формулы для всех ведь едины? Вот и ищите по ним единственно правильные решения…

Ничего хорошего из этой затеи не получилось. «Организация была многолюдная и бестолковая, расходы большие, а отдача слабая», – писал впоследствии о ЦКБ А.С.Яковлев.

Конструкторы предлагали другой путь: не трогать, не разваливать с трудом сработавшиеся коллективы, не нарушать деликатный творческий процесс, а вот производство – объединить. Составить для него план не последовательного изготовления машин, а как бы полупараллельного: детали, узлы и агрегаты всех машин изготавливать одновременно, а на окончательную сборку подавать их последовательно – так, чтобы цехи не простаивали и не было авралов, чтобы не «облеплять» единственную машину со всех сторон, мешая друг другу. Тогда самолеты, хотя и разные по конструкции, опытные, можно будет строить быстро, почти как на серийных заводах, и квалифицированных рабочих для этого понадобится меньше.

Руководители ЦКБ не посчитались с мнением конструкторов и с поддержавшей их парторганизацией.

Бартини послал об этом докладную записку в ЦК ВКП(б). Через несколько дней его и секретаря парткома вызвал начальник ЦКБ. Секретаря – первым, но пробыл он «на ковре» недолго, заявив: «Я здесь представляю парторганизацию, и вы не вызывать меня должны, а ко мне приходить!» Такой отпор озадачил начальника. Бартини он уже предложил стул… Тем не менее после объяснения был издан приказ: уволить Бартини, а его группу расформировать.

Узнав об этом, М.Н.Тухачевский и заместитель начальника Главного управления ГВФ Я.Я.Анвельт добились, чтобы Бартини назначили главным конструктором ОКБ НИИ ГВФ.

Только задание он получил другое: разработать экспериментальный самолет, близкий по производственным и эксплуатационным характеристикам к серийному истребителю, но со скоростью более 400 километров в час.

2

Еще раз подчеркнем, что, считая такую машину нереальной, специалисты из Глававиапрома были по-своему правы. Они действительно знали все о самолетах всех типов и назначений, в том числе и об истребителе, имевшем скорость 450 километров. Знали, какой он должен будет иметь вес, с какой силой встречный воздух будет давить на крыло, фюзеляж, оперение, на шасси, на радиатор системы охлаждения мотора… Силы получались огромными, двигателя для их преодоления не было. Все это явствовало из расчетов и статистики.

Среди аргументов, подготовленных в Глававиапроме к спору с ведомством Ворошилова и Тухачевского, одним из самых сильных был вес самолета. Вес получался непомерно большой – и за счет мотора с нужным ему запасом топлива и масла, и за счет конструкции самолета, которая должна была выдержать аэродинамические и инерционные нагрузки в таком полете. Причем немалая доля аэродинамической нагрузки приходилась на «торчащие» в воздушном потоке стойки и колеса шасси и на радиатор системы охлаждения мотора.

Как можно было обойти эти соображения и расчеты?

Предположим, сказал однажды Бартини, что у вас никак не решается шахматная задача. И решить ее нельзя, это доказано. А вы, не считаясь с правилами игры, достаете из кармана еще одну пешку – и все у вас получается!.. Прием, я согласен, недопустимый в шахматах, но кто его запретил в технике?

Расставив только законные фигуры в задаче создания истребителя на 450 километров в час, специалисты не предусмотрели, что шасси и радиатор можно убрать из потока воздуха – совсем убрать, и не на что ему станет давить! – а конструкцию самолета, применив в ней новое сочетание старых материалов и новую технологию сварки, удастся сделать намного легче.

Шасси «Стали-6» полностью убиралось в полете и было не трех-, а одноколесным (впервые в истории нашей авиации) – с одним колесом под фюзеляжем, с небольшим костылем на хвосте и с двумя тоже убираемыми стойками на концах крыльев. Стойки поддерживали самолет на стоянке, в начале разбега перед взлетом и в конце пробега после посадки. Теперь похожую схему шасси применяют даже на тяжелых самолетах. Вместо колеса можно было поставить лыжу, об этом просил Тухачевский, так как фронтовому истребителю базой должен служить не только благоустроенный аэродром с бетонными взлетно-посадочными полосами, а любая ровная поляна подходящих размеров. «Наша страна снежная, – сказал Тухачевский Анвельту и Бартини. – Полгода полевые аэродромы в заносах, и расчищать их пока нечем. Не заключать же нам с противником перемирие на зиму…» Лыжа в полете прижималась к фюзеляжу и практически не давала дополнительного сопротивления.

В безрадиаторной, или, как ее еще называют, испарительной, системе охлаждения мотора «Стали-6» вода, отнимая тепло у цилиндров, не просто нагревалась до 80 градусов, как в обычных системах, применявшихся на других самолетах, а все время кипела и испарялась. Пар уходил в радиатор, но особого типа: в зазор, щель, образованную двойной обшивкой крыла, – там, остывая, снова превращался в воду, которая опять подавалась в двигатель для охлаждения цилиндров. Работать этому мотору было тяжелее, жарче, но на такой режим его и рассчитывали. Система получилась довольно сложная, зато части ее во встречный поток воздуха не высовывались и как нельзя лучше вписались в небольшие габариты машины. Это помогло сделать ее обводы плавными, такими, что сопротивление воздуха сразу заметно упало. Намного позже немцы применили испарительное охлаждение мотора на рекордном истребителе «Хейнкель-100»; а сейчас такая система, несмотря на ее усложненность, разработана для доменных печей, где радиаторов можно ставить сколько угодно и каких угодно размеров, – значит, оказалась выгодной. Лицензии на нее купили Япония, ФРГ, Голландия, Австралия и другие страны.

А конструкция самолета получилась необыкновенно легкой потому, что в ней были применены в наивыгоднейшем сочетании тонкостенные детали из разных сталей, нержавеющей и хромомолибденовой. Очень тонкие стенки этих деталей удалось соединить точечной электросваркой, хотя раньше специалисты были уверены, что стали эти друг с другом не свариваются.

До Бартини построить такой самолет никто не догадался, хотя все три находки никак нельзя было назвать открытиями, ранее науке неизвестными. Шасси на одном колесе? Бартини всего лишь использовал на суше опыт морской авиации (разумеется, переосмыслив этот опыт): с одной опоры взлетают и на одну опору садятся «летающие лодки». Убирающееся шасси? И до этого были в авиации поднимаемые шасси, назад отводимые, появилось уже и полностью убираемое – у пассажирского ХАИ-1 в 1932 году…[4] Что вода, кипя и испаряясь, отнимает тепло у сосуда, в который налита, не дает ему нагреться выше температуры кипения, что пар, попадая на холодные стенки конденсатора, оседает на них каплями, вновь превращается в воду, тоже не было новостью.

И только проблема сварки сталей разных марок потребовала сложного научного решения. Хотя опять-таки задумались об этом конструкторы не впервые.

Еще в начале века К.Э.Циолковский разработал дирижабли с оболочкой из гофрированных железных листов, потом из стальных. По расчетам, такая оболочке могла быть очень тонкой и легкой, потому что сталь была тогда самым прочным материалом. Но соединить такие листы не удавалось, их слишком тонкие кромки сминались и рвались под болтами и заклепками. А точечную электросварку в то время еще не изобрели. Даже в конце 20-х годов конструкторы ее еще не знали. В Англии, куда специальная древесина и дюраль ввозились из других стран (а в случае войны, морской блокады импорт был бы затруднен), некоторые фирмы пытались заменить эти материалы сталью, но тоже без сварки, и также успеха не добились.

В те годы у нас в Военно-воздушной академии имени Н.Е.Жуковского начались опыты по точечной электросварке тонкостенных стальных конструкций. Затем в НИИ ГВФ появился Отдел опытного самолетостроения, руководил им один из соратников А.Н.Туполева, главный конструктор Александр Иванович Путилов. В этом отделе в 1930—1933 годах были построены два пассажирских самолета, «Сталь-2» и «Сталь-3», оба они пошли в серийное производство, в эксплуатацию, а «Сталь-3» летал на линиях ГВФ до самой войны. Самолеты эти были легкие, соединения тонкостенных деталей – сварные, точечные.

Оставалось сделать еще один шаг на этом пути: объединить в одной сварной конструкции лучшие свойства разных сталей – прочность, пластичность, стойкость против коррозии и т. д. Наивыгоднейшую комбинацию свойств давали хромомолибденовая и нержавеющая стали.

Но сваривать их надо было по-разному. Нержавеющую – быстро, коротким электрическим «ударом» большой силы, иначе, если процесс чуть-чуть затягивался, из капли расплава успевали выпасть некоторые вещества, делающие сталь нержавеющей, и в сварном шве она становилась обычной. А хромомолибденовую надо было, наоборот, варить медленно, слабым током, дающим относительно низкую температуру, иначе перегретая сварная точка, быстро охлаждаясь на воздухе, перекаливалась, делалась хрупкой и шов рвался. Противоположные требования делали эти режимы сварки несовместимыми.

В беседе с молодыми инженерами Р.Л.Бартини сказал как-то, что один из первых пароходов, ходивших по Неве, всем был хорош, рационален, изящен – русские кораблестроители всегда отличались мастерством – только труба у него была почему-то кирпичная. И никому эта несуразица в те времена не резала глаз. Видимо, на основании долгого заводского опыта считалось, что у паровой машины труба должна быть обязательно из кирпичей.

Этот разговор с Бартини вспомнил, выступая перед историками техники, известный в прошлом авиаконструктор И.Ф.Флоров. Вспомнил к тому, что сам Бартини обладал удивительным по остроте инженерным зрением, способностью замечать «кирпичные трубы» там, где они вовсе не обязательны, но никому другому почему-то не бросались в глаза, и из вроде бы общеизвестных научных истин делать совершенно неожиданные практические выводы.

Так было и со сваркой хромомолибденовой и нержавеющей стали. Бартини и инженер Сергей Михайлович Попов разработали новую технологию: сначала давали сильный, но такой короткий ток, что хромомолибденовая сталь не успевала перегреться, затем через реостат снижали его до температуры, при которой из нержавеющей стали вещества не выпадали. И в итоге нержавеющая и хромомолибденовая стали сваривались без внедрении в эту технологию каких-либо открытий. Регулирование процесса, своевременные смены режимов были переданы автоматике (человек с этим не справился бы), протекали они в сотые доли секунды, так что не вид и на слух ничего особенного в этой сварке не было. Машина работала как всегда, медные электроды сжимали края деталей, сшивали их точками: тик-тик-тик-тик… Точка – точка – точка… А что в ее стрекотании после каждого короткого «тик» было еще чуть более долгое «та-ак» – этого не улавливали даже самые опытные сварщики. Один из них и сейчас работает в том же цехе и до сих пор считает, что нужный режим сварки был тогда просто подобран вслепую. Пробовали, пробовали – и нащупали…

3

Разумеется, тупик был преодолен главным образом не технический, поскольку в самолете «Сталь-6» была использована в основном уже имевшаяся техника, а психологический. И то зашли в него лишь некоторые специалисты. Другие в те же годы стремились преодолеть рубеж в 400 километров в час независимо от Бартини – хотя бы потому, что не знали об этой его работе. Например, в 1933—1934 годах появились принятые потом на вооружение ВВС Красной Армии И-14 (АНТ-31 бис) А.Н.Туполева и П.О.Сухого, знаменитый И-16 Н.Н.Поликарпова, скоростные истребители за границей и т. д. Успешный поиск этих конструкторов сразу облегчал другим борьбу с теоретически вычисленными «невозможно», приводил к важным решениям. Так, в результате обсуждения «Стали-6» в Наркомтяжпроме была приобретена лицензия на авиадвигатели «Испано-Сюиза», организовано их производство и дальнейшее совершенствование в ОКБ генерального конструктора В.Я.Климова.

На том же совместном совещании представителей Наркомвоенмора и Наркомтяжпрома Г.К.Орджоникидзе предложил одобрить исследовательскую деятельность конструктора Бартини, но теперь поручить ему разработку уже настоящего, не экспериментального истребителя (на экспериментальном не было некоторых важных для боевого истребителя агрегатов, прежде всего вооружения), положив в основу «Сталь-6». По этому заданию в ОКБ НИИ ГВФ был спроектирован истребитель «Сталь-8» с максимальной скоростью 630 километров в час, то есть с новым, еще большим скачком скорости – в целых 200 километров… Но, к сожалению, достроить «Сталь-8» не удалось, в конце 1934 года работа над ним остановилась. Аэрофлот, как организация гражданская, считал, что военная тема ему ни к чему, а Глававиапрому ее не поручили… Имелось тут, правда, и одно техническое соображение. Утверждали, что испарительная система охлаждения мотора слишком уязвима в бою: достаточно одной пулевой пробоины, чтобы весь пар вышел. Но можно было, например, разделить систему на отсеки. Способ этот также давно известен в кораблестроении, заново здесь изобретать нечего. А может, и на отсеки конденсатор делить не пришлось бы: степень уязвимости испарительной системы охлаждения, не разделенной на отсеки, была проверена на «Стали-6» в нескольких испытательных полетах. В конденсаторе вырезали кусок обшивки, и оказалось, что пар из этой большой «пробоины» в полете не выходит, воду система не теряет. Наоборот, воздух туда засасывается, так как в системе образуется вакуум. Летал А.Б.Юмашев – каждый раз дольше чем по полчаса.

А выигрыш в скорости получился бы гигантский для тех лет. Скоростей 630—650 километров в час наши серийные истребители достигли лишь в 1939—1940 годах, с такими примерно скоростями они летали в начале войны. Первым у нас за этот рубеж вышел ракетный БИ-1 А.Я.Березняка и А.М.Исаева в 1942 году.

В 1934 году «Сталь-6» была в НИИ ГВФ показана Комиссии Коминтерна – как отчет Роберта Бартини в верности клятве. От Италии в комиссию входили один из основателей ИКП Эджидио Дженнари и писатель Джованни Джерманетто.

4

У Бартини было много книг на разных языках, в основном по естественнонаучным знаниям. Книги – единственное, кажется, что он хранил в относительном порядке, стеллажи в коридоре даже укрыл пленкой от пыли. А «ценных» вещей в этой квартире не было; вот разве что несколько искусно сделанных моделей самолетов и гипсовый бюст под старую бронзу на деревянной дорической колонке – портрет Бартини, подарок Андрея Петровича Файдыш-Крандиевского. А.П.Файдыш лепил Королева, Циолковского; как всякий художник, пристрастно искал в своих моделях наиболее ему самому интересные и близкие черты их характеров. У его «авиаконструктора Бартини» спокойное лицо, сжатый, непривыкший к смеху рот, сдвинутые брови с крутым переломом… Бартини был красив, «по-римски» красив, и в самом деле редко смеялся. А вот что касается спокойствия, то тут, опять скажу, проявлялась не столько его природа, сколько выработанное умение загонять вглубь свои порывы, не давать им воли хотя бы на службе. (Дома я его впоследствии не раз видел расстроенным, даже обозленным. Ему всегда бывало неловко, что он не сумел сдержаться; и я спрашивал: «Вы устали?» – «Немножко…»)

Шутил он тоже редко и как-то задумчиво… Однажды ему привезли статью о его работах, написанную для популярного издания. Он ее прочитал, вздыхая, и не завизировал:

– Здесь много непонятной техники.

– Ну что вы, Роберт Людовигович! Статья побывала у консультантов, в редакции ею очень довольны…

– Да? Очень?.. Значит, постеснялись признаться, что запутались.

– Что же в ней непонятного? Кому?

– Да… Кому? Мне непонятно.

Кроме книг в квартире Бартини царили модели и фотографии самолетов: «Сталь-6», ДАР, «Сталь-7», какой-то большой самолет в ночных огнях бежит по мокрой бетонной полосе… И здесь же, на стенах, рисунки– простым карандашом и в цвете. Работы самого Бартини. Насколько они совершенны по исполнению, судить не берусь: не специалист, а сюжеты – неожиданные для авиаконструктора и не всегда сугубо реалистические. Значит, их надо было увязывать с чем-то оставшимся «за кадром». Вот потухающий костер в глухом лесу, сквозь сизый дым еле просматриваются склонившиеся над костром тени. Олень у горного озера. Торжественное шествие, поющая толпа, впереди – странный персонаж: одна сторона лица у него ласковая, другая – жестокая. Дикари катят шестами огромное бревно, на них смотрят великан и девушка. Юноша и девушка рядом ночью, а в небе горит не то нездешне яркая луна, не то чересчур близкая звезда. Автопортрет: Бартини, но почему-то за ним грязное узкое оконце, сквозь которое с ужасом вглядывается в него молодая женщина…

Зачем все это человеку, по горло занятому совершенно конкретным, земным, очень важным делом?

– Это еще что! – сказал мне сотрудник одного на научных институтов, где Бартини работал в 50-х годах. Работая у нас, он обставил свое жилье, пожалуй, еще чуднее. Одну комнату в квартире он попросил маляров выкрасить и ярко-красный цвет, другую сам разрисовал таким образом: на голубом потолке – солнце, чуть ниже, на стенах, – поверхность моря, волны в белых барашках, кое-где островки. Чем «глубже», ниже по стенам, тем зелень воды становилась гуще, темнее, и в самом низу – дно. Камни, длинная полегшая трава, рыбы, всякие донные твари… Уж не знаю, как это стало всем известно, потому что из самого Роберта слова о его частных делах не вытянуть было в то время, но как-то узнали, что в красной комнате он, видите ли, настраивался на фантазии, а в зеленой – отрешался от привычной обстановки: там, сидя на «дне», без помех размышлял о деле…

Человеческую жизнь Роберт Людовигович считал составленной из примерно двадцатипятилетних, заметно отличающихся один от другого периодов. И сам он после 75 лет очень изменился, стал, что называется, контактнее. Познакомились мы, когда ему было немного за шестьдесят, и в первое время я думал, что просто еще не заслужил его откровенности, но скоро заметил, почувствовал непреодолимую границу, которую он провел и перед людьми гораздо более ему близкими. При этом он вовсе не был бирюком. Наоборот, иногда звонил, просил приехать, подолгу не отпускал. Но после 75-ти звонил чаще, очень часто, хотя врачи установили для него тогда строгий домашний режим. Как раз это его угнетало: он не хотел признавать, что силы на исходе. Последнее наше свидание прервал шофер: Бартини надо было ехать в КБ. Я попытался подать ему пальто – ничего из этого не получилось:

– Лет через десять, Игорь!

Одаренные люди часто к старости сосредоточиваются на собственных заботах и заслугах. Роберта Людовиговича тоже тревожило, что его заслуги будут забыты; это одна из причин, почему он в последние годы стал несколько разговорчивее. Другая причина, по-видимому, нездоровье, боязнь подолгу оставаться одному. Но о болезни своей он упоминал без жалоб, а, прикладывая руку к груди, говорил изредка: «Я его прошу, ну пожалуйста, ну еще немного постучи…»

Он отлично понимал, что по ряду объективных обстоятельств его работы не оказались своевременно на виду. Всего четыре-пять летавших машин, из которых три – опытные… И знал свой главный недостаток, подводивший его, когда надо было осуществлять проекты: он увлекался замыслами, но, как только они начинали материализовываться, как только доходили до «железа», быстро терял к ним интерес, чувствуя – в принципе правильно чувствуя! – что остальное можно сделать и без него, и, захлестнутый новыми идеями, редко доводил прежние до практических результатов. Говорят, что занимаясь «чистой» наукой, он чувствовал себя конструктором, создавал один за другим интереснейшие проекты, а попав в ОКБ, тут же превращался в ученого, исследователя. Однако он понимал значение своих разработок для развития авиации в целом, понимал, что многими его идеями пользовались другие конструкторы. И сам не пренебрегал удачными чужими разработками, например сразу оценил «Стрелу» А.С.Москалева, взял ее для работы, считая, что так и надо поступать. Предлагал даже создавать по-разному ориентированные опытные конструкторские фирмы, чтобы в одних только проверять «сумасшедшие» идеи, а в других проектировать по ним небывалые машины, уже с прицелом на серийное производство, на эксплуатацию. Но для этого потребуется, повторял он, мало того что организационная, а и психологическая перестройка. Надо будет научиться говорить «мы сделали» вместо привычного сейчас «я сделал».

Поэтому, я думаю, не совсем верно, что он был «конструктором в ученом мире и ученым в мире конструкторов» и, как еще про него иногда говорят, – «героем-одиночкой». Я не достигну своей цели, если мои читатели воспримут его таким. Нет, он был оригинальным, как любой крупный талант, как Туполев, Королев, Антонов, Ильюшин, Григорович, он порой находил решения задач, перед которыми пасовали просто грамотные инженеры, но при этом никогда не замыкался в себе.

Как-то я сказал Бартини, что его разыскивает инженер, которого он должен хорошо помнить: «Он у нас всю войну работал…»

– Не знаю такого.

– Как не знаете? Он же был у вас ведущим по двигательной установке!

– У меня?.. Что-то вы не то говорите. У МЕНЯ такой конструктор не работал, а вот СО МНОЙ – работал, помню…

Пятьдесят один год прожил Бартини в Советском Союзе, почти сорок пять из них был главным конструктором. С ним работали тысячи специалистов (с ним, а не у него, – Роберт Людовигович неизменно поправлял собеседников при таких оговорках, его простота и уважение к людям проявлялись в этом четче даже, чем в поступках), и он работал с ними.

В моих записях его рассказов собраны в самых неожиданных соседствах, с одинаково уважительным к ним отношением, как к коллегам по одному общему делу создания новой техники, Королев, Глушко, Келдыш, физик Вавилов, конструкторы Туполев, Лавочкин, Антонов, уполномоченный по особо важным заданиям Наркомтяжпрома «пушкарь» Курчевский, «парашютист» Гроховский, менее известные, но очень талантливые главные конструкторы Шавров, Москалев, Калинин, знаменитые летчики Стефановский, Юмашев, Чухновский, профессор Остославский, фотограф Белов, военпред Ключенков, ведущие конструкторы Берлин, Ценципер, начальник медницкого цеха Озимков, сотрудники ОКБ Казневский, Косулина, Дмитриев, слесарь-сборщик Пыль, сварщик Моравин…

И еще есть тысячи неназванных. Они не пришлись к слову, а пришлись бы – многих вспомнил бы Роберт Людовигович. В конструкторских бюро, особенно опытных, объединены после тщательного отбора в основном специалисты самой высокой квалификации, и по меньшей мере каждый десятый из них талантлив. Думаю, что не ошибаюсь. Чем же в таком созвездии отличается от остальных звезд главный конструктор? Чем – кроме врученной ему власти, официального руководящего положения, которое кто-то все равно должен занимать в любом коллективе? Размерами таланта? А как его измерить? Как найти такого человека, вовремя дать ему возможность проявиться, пока он еще не главный конструктор, а, например, студент?

Рецепты на этот счет пока не сформулированы, кроме единственного: надо быть внимательным к своим помощникам и ученикам, не забывать, что они работают не у вас, а с вами.

Об одном таком студенте, в котором его преподаватель вовремя заметил качества главного, рассказали писатели Анатолий Аграновский и Михаил Арлазоров. А.Я.Березняк учился в МАИ, его дипломным проектом руководил профессор, главный конструктор В.Ф.Болховитинов. Проект не залежался в архиве института, а получил заключение ВВС. Заместитель начальника ВВС Герой Советского Союза комкор Я.В.Смушкевич написал о нем в наркомат, и Березняка направили в ОКБ Болховитинова, где он вскоре вместе с молодым инженером А.М.Исаевым разработал ракетный истребитель БИ-1.

Но эго было давно, когда многое зависело от инженерского вдохновения. А что сейчас? В эпоху все большей механизации и автоматизации уже и инженерного труда, когда сами конструкторы иногда говорят; дайте нам только реальные требования на машину и средства – и мы вам общими силами любую сделаем…

Академик П.Л.Капица тоже допускает, что в какой-то мере одаренных одиночек можно заменять хорошо организованными, грамотными коллективами, тем более что на практике это и проще, и надежнее, чем иметь дело с «гениями», которые к тому же, что естественно, часто бывают людьми непокладистыми. Но хотя успех дела, говорил П.Л.Капица на XIII Международном конгрессе по истории науки, безусловно, полностью зависит от качеств всего коллектива, житейский опыт свидетельствует, что зависимость эта – очень крутая, чувствительная к колебаниям в составе участников. Поэтому достаточно упустить хотя бы один большой талант, чтобы творческая деятельность всей фирмы почти сразу же стала гораздо менее плодотворной. «Но так же справедливо и обратное: появление даже одного крупного ученого сразу будет сильно повышать эффективность деятельности всего коллектива».

Вот и посчастливилось мне полтора десятка лет близко видеть одного такого, безусловно крупного… Генеральный авиаконструктор О.К.Антонов назвал его недавно, причем с трибуны, то есть сугубо взвешивая слова, – гениальным. Ссылаюсь на О.К.Антонова, сам не рискую давать столь ответственное определение…

И сейчас вижу Бартини; пока помню – он для меня жив. Вижу, что очень самолюбив. В то же время приветлив, быстро к себе располагает, хорошо улавливает ваше душевное состояние, интересы, «понимает» вас. Но скрытен. Отвечает лишь на некоторые вопросы, остальные пропускает мимо ушей. Повторять вопросы бесполезно: он их опять пропустит… Я бываю у него примерно раз в месяц, иногда засиживаюсь, и не просто допоздна, а до утра, соображая: не пора ли честь знать? Угадываю это по его реакциям, когда смотрю на часы или встаю. Если нервничает, значит, надо задержаться. Снова углубляюсь в его бумаги. Говорим мы в последние годы мало, разговоры быстро его утомляют, он заметно ослаб. А бумаги – в моем распоряжении, и в них важные детали событий, хотя в основном о его делах мне все давно известно. Бартини работает в кабинете, оттуда доносится негромкое сердечное покашливание. Телефон звонит все реже; за тяжелой шторой, чуть шевелящейся под ночным сквозняком, стихает уличный шум, на кухне свистит в десятый раз уже, наверное, вскипевший за вечер чайник. Приношу его, зову Роберта Людовиговича. У него и в чаепитии свой вкус, едва ли приемлемый для настоящих любителей: он смешивает в стакане заварку и сгущенный кофе. Минут пятнадцать тратим на вопросы-ответы и расходимся. Часов около трех, слышу, ложится. Уйти нельзя. Если бы можно, он сказал бы, а раз молчит, это надо понимать как просьбу подежурить. Через час устраиваюсь вздремнуть: на диване для меня, будто невзначай, оставлены подушка, свернутое одеяло, в нем белье…


Ну и что? Любой человек дела, тем более талантливый, много работает, как правило самолюбив, о пустяках не болтает. И все они очень разные, эти люди, так что установить связь их привычек и характеров с оригинальными решениями технических задач затруднительно. Ильюшин, скажем, сам вникал в узкоспециальные вопросы и в сотрудниках КБ ценил такие склонности. Сам проверял расчеты заклепочных швов на прочность – не всех, разумеется, швов, но при случае проверял, выбирал защитные покрытия для деталей, удивлялся, выходил из себя, если инженер не мог назвать на память механические свойства или химический состав основных конструкционных материалов. Как будто все это при надобности нельзя найти в справочниках…

А Королев, рассказывают, когда у него однажды попросил совета конструктор (и едва ли к Королеву обращались с пустяками), встал из-за стола и ехидно предложил:

– Давай-ка сядь в мое кресло! Чувствуешь, как оно жжет?.. Теперь иди и сам решай свои проблемы, а мне хватит моих!

А Туполев «видел» технику «насквозь»… Увидел готовую к первому полету опытную машину, сказал: «Не полетит!» – и она не взлетела. Бегала потом по аэродрому, а от земли оторваться так и не смогла.

В лаборатории прочностных испытаний ЦАГИ должны были испытать самолет, определить его слабые места. Андрей Николаевич показал: «Вот здесь сломается!» И конструкция сломалась именно там. Опытный торпедный катер, сконструированный в туполевском ОКБ, не развивал предусмотренной максимальной скорости. Туполев попросил поднять катер из воды, обошел его, остановился у винта, взял молоток, постучал им по кромкам лопастей – и катер достиг скорости выше расчетной.

О Туполеве, конструкторском старейшине, подобных историй ходит среди инженеров больше, чем о ком-либо другом, некоторые из них уже и в психологические труды попали (есть теперь такая ветвь этой науки – инженерная психология). Принесли Андрею Николаевичу чертеж – решение стыка крыла и фюзеляжа, зоны, в которой легко рождаются в полете различные вредные воздушные вихри. Поэтому стыки конструкторы продумывают особо, тщательно сглаживают, «зализывают». А Туполев принялся мягким карандашом, толстыми линиями исправлять чертеж безо всяких расчетов, на глаз. Главный аэродинамик ОКБ молча страдал у него за спиной, «старик» же продолжал рисовать, стирал нарисованное резинкой, а то и пальцем, и снова рисовал… Совсем «извозил» чертеж, приговаривая: «Эдак-то оно лучше смотрится, а ты, знаешь, не расстраивайся зря…»

Эти примеры удивительной способности А.Н.Туполева проникать в скрытую пока от науки суть явлений – способности, основанной на воспринятом им опыте десятков поколений конструкторов, – записаны со слов ветеранов его ОКБ. Допустим, в чем-то они здесь преувеличивают, как принято у бывалых людей: удивили, а вы хотите – верьте, хотите – нет… Но вот что вспоминает уже не просто ветеран во время перекура, а академик А.Н.Крылов о кораблестроителе Петре Акиндиновиче Титове. Главный инженер франко-русского судостроительного завода в Петербурге, конструктор крейсеров и броненосцев П.А.Титов не имел специального образования. Алгебры и то не знал. Размеры силовых деталей судового корпуса намечал только на глаз, иначе просто не умел, но, как бы потом эти назначенные им размеры ни проверяли расчетами, ошибок не находили.

Сам Туполев уверял, что мать его интуиции – информация. Возможно, так оно и было лет тридцать назад, а сейчас память машин уравнивает в этом отношении, талантливого инженера с просто грамотным. Считается, и справедливо, что иные длительные споры о наилучшем решении технической задачи надо попросту вовремя прекращать твердым словом: делать так! И все будет как надо, ведь очень хороших, блестящих решений в технике почти всегда бывает несколько. И ахнут рядовые конструкторы: поразительно!..

Это бывает. Меня же изумил другой случай. Я работал тогда в ОКБ генерального авиаконструктора П.О.Сухого. Однажды Сухой просматривал чертежи поворотного стабилизатора и сказал нам, что опорный ролик, который при отклонении стабилизатора должен катиться по рельсу, поставлен неправильно: его нужно повернуть так-то и так-то, иначе он не покатится, а станет скрести по рельсу. В высшей степени корректный, в английском, как у нас про него говорили, стиле. Сухой ни на чем не настаивал (хотя в решительные моменты мог сказать в той же безукоризненно вежливой манере: «Я вас прошу – и прошу считать мою просьбу приказанием!»), а всего лишь советовал еще раз проверить взаимное положение ролика и рельса, когда вся эта конструкция изогнется под воздушной нагрузкой.

Принесли расчеты. Все было проверено-перепроверено.

– Как хотите…

Сделали в цехе стабилизатор, нагрузили его в лаборатории прочностных испытаний – и ролик стал скрести по рельсу. Прав был Сухой…

Особенность работы Р.Л.Бартини, то, что в наибольшей степени отличало его от других крупных конструкторов, тоже «особенных», – физико-математический подход к техническим задачам и способность находить простые, наглядные модели сложнейших явлений и делать эти модели, а с их помощью и явления доступными научному анализу. Остановимся на истории некоторых его решений, поскольку сейчас этот путь становится все более популярным у инженеров.

Еще в Милане Роберто аналитически искал наивыгоднейшие профили крыла самолета. Не открыв тогда никому ранее не ведомую перспективу такого анализа, он все же увидел ее яснее, чем иные признанные авторитеты, – не подозревая еще, что и в XX веке первооткрывателю в науке приходится защищать не только свои находки, но и способы поиска и даже инструмент, которым добываются клады природы. Для инженера математика – всего лишь инструмент, им задолго до Бартини с блеском пользовались в аэро– и газодинамике Н.Е.Жуковский, Л.Прандтль, С.А.Чаплыгин, Т.Карман, но в те же примерно годы Роберт Годдард, впоследствии первым произведший запуск ракеты с жидкостным ракетным двигателем, писал в книге «Метод достижения максимальных высот», что математически этот метод непостижим. А директор авиационной школы в Лозанне – что «аэродинамика есть наука вполне эмпирическая», и об аэродинамических законах – что «нет ничего более опасного, чем применять математический аппарат с целью достичь построения этих законов».

Вот как: нет ничего более опасного! Совершенно то же настроение, что у коллежского регистратора в чеховской «Свадьбе»: «А по моему взгляду, электрическое освещение – одно только жульничество… Ты давай огня – понимаешь? – огня, который натуральный, а не умственный!»

Аналитически найденные профили обтекания Бартини применял впоследствии на всех своих машинах. И, уже проектируя первую из них, «Сталь-6», он сделал, наметил следующие шаги в этом направлении: приступил к физико-математическому исследованию взаимодействий отдельных частей летательного аппарата, в первую очередь крыла и мотора, в воздушном потоке. В то время считалось, что функции у всех частей самолета разные, несовместимые. Крыло самостоятельно, почти независимо от смежных агрегатов, создает подъемную силу, двигатель – тягу, в фюзеляже размещаются грузы, пассажиры, экипаж… Чтобы несколько уменьшить суммарное аэродинамическое сопротивление самолета, все стыки его частей, все переходные зоны делались плавными, укрывались зализами, формы агрегатов, в частности силовых установок, облагораживались разного рода обтекателями, капотами, но для поршневого двигателя с винтом эти возможности были уже как будто исчерпаны. Речь здесь могла идти лишь о мелких усовершенствованиях, хотя в условиях жестокой борьбы за десяток-другой километров в час нельзя было пренебрегать и ничтожными процентами выгоды. Начиная примерно с 1932—1933 годов, пишет немецкий исследователь Г.Бок, «дальнейшее улучшение летных данных пошло по пути применения все более мощных моторов…»

Первой попыткой Бартини объединить функции крыла и мотора, заставить их помогать друг другу как раз и была убранная в крыло система охлаждения мотора на «Стали-6». Не все посвященные в проект этой машины оценили ее сразу и в полной мере, а вот летчик-испытатель Андрей Борисович Юмашев «увидел» ее мгновенно, не будучи еще знаком ни с интуитивными соображениями конструкторов, ни с расчетами, ни с сомнениями, которых тоже хватало. По программе испытаний, он должен был сначала погонять «Сталь-6» по земле, потом доложить конструкторам и начальству, как она себя ведет при пробежках, «просится» ли в воздух… Так он и поступил: покатался по земле, разгоняясь, тормозя, а потом махнул рукой механикам, которые бежали рядом, придерживая машину за концы крыльев (так полагалось при первой пробежке), – отцепитесь! – и взлетел без разрешения.

Был скандал, сам Бартини скандалил, насколько он вообще умел это делать, – но победителей не судят. Юмашев был доволен машиной.

Вдохновленный удачей со «Сталью-6», Бартини, работая над дальним арктическим разведчиком, ДАРом, доложил Всесоюзному совету по аэродинамике, что в некоторых случаях воздушное сопротивление вообще может не мешать, а помогать полету: может повернуться на 180 градусов, изменить знак, превратиться в дополнительную тягу. Не верите? Но ведь и это в принципе вовсе не новость: ходят же парусные корабли против ветра, маневрируя парусами! Бартини, говоря строго, предложил не совсем ту же «физику», что у парусников, но конечный результат – похожий.

На одном из вариантов ДАРа отрицательное сопротивление, дополнительную тягу, рождала мотогондола – большое, особым образом спрофилированное кольцо, внутри которого были установлены двигатели с винтами. Кольцо так выправило поток от винтов, породило такую «игру» воздушных сил, давящих на всю эту конструкцию, что к результату, полученному при испытаниях, даже Бартини оказался морально неподготовленным. Расчеты – расчетами, а вот когда вживе… ну, скажем, дуешь на пушинку, а она, вместо того чтобы удаляться, вдруг летит тебе навстречу!

На испытаниях было вот как. Сначала включили укрепленные внутри кольца двигатели, и они дали нормальную, заранее рассчитанную тягу. Потом направили на эту работающую силовую установку мощный внешний воздушный поток от аэродинамической трубы, – и вдруг, в нарушение всех привычных представлений, установка рванулась навстречу потоку. Тяга винтов, показали приборы, словно подскочила на тридцать процентов!..

Это парадоксальное явление назвали тогда «эффектом Бартини», по предложению известного аэродинамика профессора И.В.Остославского. Сейчас этот эффект используют для повышения коэффициентов полезного действия воздушных винтов и турбинных установок.

На пассажирском самолете «Сталь-7» и, соответственно, на бомбардировщиках ДБ-240 (Ер-2) и Ер-4 места стыков крыла и фюзеляжа также имели форму примерно четвертей кольца. Полные кольца там не получились по другим конструктивным соображениям. Но и эти четвертушки, обдуваемые потоками от винтов, вместе с еще кое-какими аэродинамическими новшествами сделали машину настолько непривычной для глаза да и для «руки» бывалых авиаторов, что взявшийся было за испытания летчик вскоре от них отказался:

– Она неуправляема!

Тогда, чтобы проверить, послушна ли «Сталь-7» рулям, на ней трижды вместе с главным конструктором слетали А.Б.Юмашев, П.М.Стефановский и начальник НИИ ВВС И.Ф.Петров.

– В этих полетах я еще раз увидел, как талантлив Юмашев и что значит, когда опытная машина попадает к такому летчику, – рассказывал Бартини. – «Сталь-7» он заранее не изучал, как и «Сталь-6» (это было возможно в те времена, сейчас – едва ли. – И.Ч.); спросил только, уже заняв командирское кресло, где какая ручка, где какая кнопка, и – поехали… Выполнил что положено, а после такие вдруг начал закладывать сверхпрограммные виражи, что тут уж мы все трое на него заорали. Левый вираж делал с левым выключенным мотором, правый – с правым. То есть свались машина при этом в штопор – нечем было бы ее поддержать, выправить. А Юмашев только усмехался в ответ на наши вопли, будто сидел дома… как это говорится, у печки, да… и спрашивал: это что за тумблер, а это для чего?..

…Сам Андрей Борисович Юмашев говорит, что дело тут было прежде всего в машине: она великолепно слушалась рулей. На неуправляемой или недостаточно управляемой он такие колена выкидывать не стал бы, их неспроста запрещала инструкция.


«Сталь-7»


Но «Сталь-7» хоть имела все, что полагалось в то время иметь самолету: фюзеляж, длинные крылья впереди, оперение сзади, двигатели в мотогондолах… Поэтому можно себе представить, сквозь какие препятствия, сквозь какой скепсис пробивался в начале 40-х годов проект бесхвостого истребителя "Р", с коротким крылом очень большой стреловидности, с целиком убранными в крыло, слитыми с ним реактивными двигателями.

Проект обсудили, но дальше обсуждений дело не пошло. Надо было ждать. И не столько технических возможностей постройки такого самолета – они уже были, – сколько перемен в мироощущении тех, кто должен был согласиться участвовать в этой работе, дать на нее заказ и средства. То есть опять ждать преодоления психологического барьера, известного своей ролью в истории техники.

Между прочим, раньше этот барьер по большей части ругали за то, что он вечно путался в ногах прогресса, а сейчас и к нему отношение изменилось. Он даже называется теперь в некоторых психологических работах по-новому: антисуггестивным – сознательным, интуитивным и этическим барьером против внушений, против логически хорошо обоснованных и все же пустых, а то и вредных идей. Важно лишь, чтобы высота этого барьера была оптимальной. При слишком высоком наступает творческий застой, бесплодие, при слишком низком зря тратятся силы. Хороши бы мы были, легко соглашаясь с любыми, лишь бы новыми, идеями, с готовностью отказываясь от старых, проверенных!

Уже прослеживается и история развития, и история изучения этого свойства – отбрасывать все, что вызывает чувство недоверия живого существа к окружающему, только еще познаваемому, а значит, небезопасному миру. И оказалось, что его давно учитывали в своей практике врачи, актеры, педагоги и… демагоги. Причем в гуманитарной области идеи внушаются (по Бехтереву, пересаживается психическое состояние без усилия воли, без ясного осознания воспринимающим) легче, чем в естественной. В 1919 году основавший фашистскую организацию бывший журналист Муссолини некоторое время еще вынужден был в статьях и речах доказывать, что он, только он поведет Италию к социальной справедливости и благоденствию. Через три года, после государственного переворота, итальянцам внушалась более простая «истина»: «Дуче не ошибается! Да здравствует дуче!» А в 30-х годах Джерманетто с горечью рассказал Роберту, что теперь фашисты воздействуют на их соотечественников совсем просто: весь огромный пассаж в Милане исписан тысячи раз повторенным одним словом – дуче…

Математика, как отражение жизни, давно смоделировала психологический барьер новому в известной теореме Гёделя. На нее часто ссылался Бартини. Житейски ее можно интерпретировать приблизительно так: во всяком самом широком классе понятий обязательно есть вопросы, ответить на которые удается, только расширив сам этот класс.

Иначе говоря, познание мира нескончаемо и драматично, поскольку оно требует не просто накопления знаний и расстановки их по известным полочкам, а выхода за пределы привычного круга понятий, представлений. "Развитие сознания у каждого отдельного человеческого индивида и развитие коллективных знаний всего человечества на каждом шагу показывает нам превращение непознанной «вещи в себе» в познанную «вещь для нас», превращение слепой, непознанной необходимости, «необходимости в себе», в познанную «необходимость для нас». Гносеологически нет решительно никакой разницы между тем и другим превращением, ибо основная точка зрения тут и там одна – именно: материалистическая, признание объективной реальности внешнего мира и законов внешней природы, причем и этот мир и эти законы вполне познаваемы для человека, но никогда не могут быть им познаны до конца"[5]. И дальше: "Как ни диковинно с точки зрения «здравого смысла» превращение невесомого эфира в весомую материю и обратно, как ни «странно» отсутствие у электрона всякой иной массы, кроме электромагнитной, как ни необычно ограничение механических законов движения одной только областью явлений природы и подчинение их более глубоким законам электромагнитных явлений и т. д., – все это только лишнее подтверждение диалектического материализма"[6].

Бартини старался по мере сил не возмущаться порой безосновательным недоверием коллег, большинство которых он искренне уважал, а терпеливо их переубеждать. И противники часто бывали обезоружены, ошеломлены его неподдельным интересом к их мнениям. А бывало, и не раз, что он принимал их критику. И считал, что это само собой разумеется, коли причина справедлива.

…Надо было ждать. В 1935 году на Римском международном конгрессе, о котором мы уже упоминали, специалисты по аэродинамике без особого внимания выслушали сообщение немецкого исследователя А.Буземана о положительном влиянии стреловидности на обтекание крыла околозвуковым и сверхзвуковым потоками и, видимо, никак не связали это сообщение с предыдущими трудами других ученых, например с работой С.А.Чаплыгина «О газовых струях», опубликованной еще в 1902 году. (При скоростях полета примерно до 800 километров в час воздух, обтекающий летательный аппарат, можно считать как бы несжимаемой жидкостью. При больших скоростях и, соответственно, давлениях его приходится уже рассматривать как сжимаемый газ, изменяющий под давлением свой объем. Сжимаемость воздуха и принесла все беды, когда достигалась и преодолевалась скорость звука). И опять жизнь заставила авиаторов отказаться от этой успокоенности. В Советском Союзе в предвоенные годы над теорией крыла малого удлинения работали академик Н.Е.Кочин, член-корреспондент Академии наук СССР В.В.Голубев, в ЦАГИ – В.П.Горский, А.Н.Волохов, затем Б.Я.Кузнецов, в Военно-воздушной академии имени Н.Е.Жуковского – профессор Г.Ф.Бураго, в МГУ – аспирант Кудашев, погибший в 1941 году. Изучение особенностей полета на больших дозвуковых скоростях начал в 1939 году и С.А.Христианович, возглавивший затем советскую школу газодинамиков. Во время войны, с 1942—1943 годов, в ЦАГИ и ЦИАМЕ (Центральный институт авиационного моторостроения) исследовались варианты аэродинамических компоновок скоростного реактивного самолета. Результаты этих исследований, обобщенные в трудах И.В.Остославского, Г.С.Калачева, М.А.Тайца, Я.М.Серебрийского, Г.П.Свищева, В.В.Струминского, Г.С.Бюшгенса, легли в основу проектов наших первых реактивных истребителей со стреловидным крылом.

На Западе конструкторы и аэродинамики тоже шли вперед. Первые итальянские реактивные самолеты «Кампини – Капрони» – КК-1 и КК-2 – взлетели в 1940—1941 годах, английский «Глостер» – в 1941-м, американский «Р-59 Эркомет» – в 1942-м, затем «Р-80 Шутинг стар», потом «Р-84 Тандерджет»… Часть великолепно оборудованного аэродрома на западе пустыни Мохаве в Калифорнии, где климат резко континентальный – 350 дней в году стоит солнечная погода, – американцы отвели под секретный испытательный центр боевых реактивных самолетов. Потом этот центр назвали «Эдвардс» – по имени погибшего летчика-испытателя. И еще один такой аэродром построили в Райт-Филде…

Были успехи и у немецких ученых. Об опасности их секретных работ, к счастью до конца войны так и оставшихся лишь потенциально опасными, западные союзники рассказали в 1946—1947 годах в целой серии докладов (в том числе и об истребителе Егер Р-13, очень похожем на москалевскую «Стрелу»). Материалы для докладов дали объединенный англо-американский комитет и различные экспертные комиссии по немецкой науке и технике.

Выяснилось, что в годы, когда скорость 700—750 километров в час считалась очень хорошей для серийных истребителей, в Германии конструкторы уже знали, что будет с летательным аппаратом, когда он разовьет скорость вдвое, вчетверо большую, как будет вести себя машина в зоне скорости звука и далеко за ней… Все годы войны немцы, оказывается, упорно вели соответствующие исследования, и не только теоретические, а уже в лабораториях и на полигонах: «продувки» в аэродинамических трубах Геттингена, Гамбурга, Фолькенроде, Детмольда, Травемюнде, Пьенемюнде, в гигантской трубе Отцале в Альпах; снимали подробные фильмы о полетах крылатых ракет, о падении экспериментальных бомб с большой высоты (чтобы они, падая, успевали разогнаться до нужной скорости). Научились надежно, с ошибкой не более чем в один процент, определять параметры сверхзвукового воздушного потока в любой точке обтекаемого им профиля, учитывать влияние на такой поток различных физических и геометрических факторов и еще многое другое, – и в результате в 1944 году в Германии уже строилось не менее восьми опытных реактивных самолетов, не менее семи находилось в стадии проектирования.

Первыми были применены в военных действиях немецкие реактивные истребители Ме-262 и Me-163 и английский «Метеор». Заявку на проект Ме-262 Мессершмитт подал в министерство авиации в 1939 году, первый полет состоялся в марте 1942 года, в серию истребитель пошел летом 1944 года и тогда же появился на фронте. Скорость Ме-262 была больше 800 километров в час, а бесхвостого стреловидного Me-163 – около 1000 километров.

Таким образом, в конце 30 – начале 40-х годов авиация уже практически приблизилась к зоне скоростей, в которой скачком – сразу впятеро, вшестеро – поднималось воздушное сопротивление полету. Самолет вдруг начинало трясти, как телегу на булыжной мостовой. А если мощный двигатель все же тянул его дальше, к еще большей скорости, самолет переставал повиноваться рулям, затем неизвестные силы валили его набок или бросали носом вниз, в пике, из которого выйти удавалось не всегда.

Это был «звуковой барьер»: для хорошо обтекаемого самолета – сравнительно узкая полоса скоростей вблизи скорости распространения звука, звуковых волн, где воздух начинал показывать, что он газ, а не жидкость, где он заметно сжимался и классическая аэродинамика переставала быть для него законом. Силы менялись, быстро росли и по-иному распределялись по поверхности летательного аппарата. Машина «нормальной», то есть привычной ранее, конфигурации пробить этот барьер могла лишь с большим трудом.

Вот тогда-то и понадобились новые формы и профили обтекания. И естественно, прежде всего их принялись искать для истребителей, поскольку они должны быть и почти всегда были скоростнее бомбардировщиков, а также вообще для маленьких самолетов. Чем меньше летящее тело, тем меньше сопротивляется ему воздух. Маленькими были «Стрела», БИ-1, Ме-262 и Me-163, первые реактивные «Ла», «МиГи», «Яки». Поликарповский ракетный истребитель (он, как и "Р", остался в проекте) даже назывался «Малютка». 14 октября 1947 года маленький американский экспериментальный самолет «Белл Х-1» с ракетным двигателем впервые в истории авиации вышел за скорость звука. Но получилось это у него на большой высоте, где воздух разрежен и сопротивляется полету меньше, получилось после сложного разгона и на очень коротком отрезке пути: прожорливый двигатель Х-1 мог работать с полной тягой только две с половиной минуты, на больший срок запаса топлива не хватало, поскольку самолет был очень маленький. И на высоту эту Х-1 сам забраться не мог, туда поднял его самолет-носитель «Боинг», Б-29, обычный поршневой.

Так что это был скорее рекорд, победа науки, а не достижение настоящей практики. И в то же время сигнал, что в научный прорыв на малом участке надо без промедления вводить главные силы – силы конструкторских бюро.

К тому же после войны расстояние во времени между рекордами и практикой сильно сократилось: умения прибавилось, сказался военный опыт, авиация стала развиваться быстрее. Поэтому сразу же после того, как стало известно о полетах «Белл Х-1», наши конструкторы получили задание: срочно решить – сначала хотя бы в принципе, – можно ли будет в ближайшие годы построить тяжелый самолет, весом больше ста тонн, с длительностью полета пять-шесть часов без дозаправки топливом в воздухе, со скоростью в две – две с половиной скорости звука?

Сводная группа ведущих авиационных специалистов, собранных из разных НИИ и ОКБ, обследовала тогда, как было объявлено, абсолютно все мыслимые схемы пилотируемых, то есть управляемых человеком, атмосферных летательных аппаратов и пришла к заключению: невозможно! В природе не существует пригодная для такого полета схема.

Однако другие специалисты, и в их числе опять Александр Сергеевич Москалев, не поверили в столь категорическое «невозможно», провели на свой страх и риск очень трудоемкое и дорогое так называемое комплексное исследование темы силами нескольких организаций, со многими сотнями опытов, продувок моделей в аэродинамических трубах, и нашли, нащупали нужную схему самолета.

Поехали в Москву защищать проект. И в Москве узнали, что в это же самое время Роберт Людовигович Бартини без особенно дорогих продувок и вообще существенных затрат нашел очень похожую схему. Главным образом «вычислил» ее. От их схемы она отличалась незначительными деталями.


Тяжелый, дальний, сверхзвуковой. 1955 г


«Н-ну, было приблизительно так…» – сказал Бартини, дочитав мою черновую рукопись до этого места, и недовольно отодвинул ее от себя. Не понравилось ему, смутило его, что он получился героем, представал в некоем ореоле.

А он чудес не творил, иначе незачем было бы разбирать и пытаться перенять его методы. Да и неправильно называть их «его методами»; он лишь пользовался ими последовательно, больше пятидесяти лет, и, как правило, успешно (примеры этих успехов я здесь освобождаю от многих необязательных, мне кажется, подробностей, особенно технологических). Таков же вывод и А.С.Москалева. «Нет сомнения, – пишет он мне, – что у Роберта Людовиговича была громадная интуиция, знания и талант ученого и конструктора. Свою работу он показал нам на конференции в 1961 году, и мне неизвестно, когда он до нее додумался, но мы принципиально такое же решение предложили в 1953 году. Вот тогда и было проведено комплексное исследование темы, – мы здесь первые, американцы потом назвали такие исследования комплексным анализом – оптимизированы параметры, режимы и т. д.»

Думаю, что приоритет здесь легко не установишь, да и не в нем дело. Документы свидетельствуют, что оба решения были найдены практически одновременно, – первый отчет-рукопись Р.Л.Бартини в списке 72 отчетов по этой теме датирован 1952 годом, так что шли конструкторы одним путем независимо друг от друга. И когда у Бартини появилась возможность проверить свою найденную «на кончике пера» схему в опытах, он сделал это незамедлительно, с большой пользой. Провести дорогие эксперименты ему помог Сергей Павлович Королев.

С тех же физико-математических позиций Р.Л.Бартини в последние годы попробовал увидеть будущее всего транспорта, не только авиационного. В развитии этой техники было несколько революционных скачков: колесо, парус, пар, двигатель внутреннего сгорания, крыло… Между скачками были более или менее длительные периоды накопления опыта, усовершенствований. По многим признакам чувствуется, писал Бартини, что сейчас пришла пора для нового скачка. Какого?

Любой вид транспорта оценивается при сравнении с другими видами по многим характеристикам: скорость, дальность, грузоподъемность, зависимость от баз, от погоды и т. д.

Бартини взял все эти и другие свойства средств передвижения и сгруппировал их, свел к трем обобщенным. Затем в единой пространственной системе обычных прямоугольных координат построил для каждого транспорта свой параллелепипед – по трем обобщенным характеристикам, как бы по длине, ширине и высоте. Каждая их этих фигур, ее объем показывали, тоже в обобщенном виде, степень совершенства поезда, судна, самолета, ракеты, автомобиля, трубопровода… Отложились на осях и максимальные, притом уже достигнутые, значения обобщенных характеристик, и на них тоже был построен параллелепипед. Все остальные, понятно, оказались внутри этого, максимального. Таким образом была показана степень совершенства пока несуществующего, но в принципе возможного транспортного средства, поскольку все его характеристики уже сейчас реальны. И выяснилось с чрезвычайной наглядностью, что существующие виды транспорта заполняют лишь ничтожную часть этого возможного в принципе объема, то есть что все они очень далеки от идеала, все свойства, характеристики которого уже сейчас достижимы. А дальнейшие расчеты показали, какой транспорт нужно развивать немедленно и всенепременно, чтобы если не полностью, то хотя бы максимально занять этот возможный объем.

Нужны, оказывается, экранолеты – низко летящие аппараты на воздушной подушке. Но не обычные экранолеты, давно известные, давно оцененные, а с вертикальным взлетом и посадкой.

И опять он не открыл здесь ничего принципиально нового. Всего лишь бросил чуть более отрешенный взгляд на старые истины и с несколько иной стороны. Что это даст – покажет будущее. В 1971 году, беседуя с корреспондентом «Литературной газеты», Бартини остановился на противоречиях в свойствах самолета и вертолета:

– Самолет хорошо летает, – сказал Бартини, – но плохо поднимается и садится, вертолет хорошо поднимается и садится, но медленно летает. – И ответил на вопрос, есть ли выход из этих противоречий: – Есть. «Выход – в такой конструкции корпуса летательного аппарата, при которой достигается единство противоположностей – единство таких функций, как функции крыла, фюзеляжа, оперения. Я полагаю, со временем под корпусом аппарата вместо шасси начнут использовать аэродинамический экран. Образующаяся при этом воздушная подушка сделает летательные аппараты будущего – экранолеты – всеаэродромными или, если угодно, безаэродромными: они смогут садиться и взлетать всюду… Всеаэродромные и вертикально взлетающие аппараты позволят транспорту сделать новый скачок. По монорельсовым эстакадным дорогам с околозвуковыми и даже сверхзвуковыми скоростями пойдут поезда, скользящие по высоконапорной воздушной подушке. Таким способом будет осуществляться большая доля трансконтинентальных перевозок. Через океаны основной поток грузов будет переправляться не только сверхзвуковыми самолетами, но и крупными (грузоподъемностью в тысячи тонн) экранопланами-катамаранами».

Понятно, сказал корреспонденту Бартини, что частные задачи будут и в дальнейшем решаться «средствами специального назначения», что его оценка субъективна. «Но я уверен, что правильно организованная служба научного предвидения должна учитывать и подобные субъективные мнения наряду с использованием математических моделей, с тем чтобы в итоге выдать так называемый интегральный прогноз».

Загрузка...