Март 2020
Ученые описали способ увеличения энергии частиц темной материи, что должно облегчить их регистрацию в детекторах. Предложенный метод основан на взаимодействии с ядрами в метастабильных состояниях, которое должно приводить к передаче энергии и ускорению частиц темной материи. Подходящие ядра встречаются как в природе, так и оказываются побочными продуктами работы атомных реакторов и медицинской аппаратуры, пишут в журнале Physical Review D.
На данный момент нет убедительных данных о существовании частиц темной материи, только верхние ограничения на параметры их взаимодействий с обычным веществом. Как правило, эти результаты получены в экспериментах, где физики ищут соударения частиц темной материи с электронами или ядрами обычных атомов, из-за чего последние приобретают заметную скорость и вызывают срабатывание детектора.
Однако частицы в рамках ряда гипотез о природе темной материи, в том числе неупругой темной материи и сильно взаимодействующей темной материи, не должны передавать значительное количество энергии, что делает существующие методы поиска неэффективными. Данные идеи остаются значительно хуже протестированными с помощью опытов по прямому поиску.
Максим Поспелов (Maxim Pospelov) из Института теоретической физики Периметр в Канаде и его коллеги из США предложили способ обойти данное ограничение. Для его реализации необходимо обеспечить взаимодействие низкоэнергетической частицы темной материи с ядром в метастабильном состоянии. В таком случае ядро вернется в основное состояние, а выделившаяся энергия будет распределена между частицей темной материи и излученным фотоном. В результате получается ускоритель для темной материи, который может перевести энергию искомых частиц в подходящий для регистрации диапазон.
Для реализации задумки рядом с обычным детектором темной материи необходимо поместить резервуар с метастабильными ядрами. Необходимо подобрать ядра с малой вероятностью спонтанного перехода в основное состояние, чтобы они могли оставаться метастабильными в течение долгого времени.
Теоретически, такой метод предоставляет три возможности наблюдать искомый сигнал: по излучению фотона при распаде метастабильного состояния, по вторичному рассеянию темной материи в теле детектора или по распаду самой частицы темной материи из-за получения большой энергии.
Авторы называют четыре изомера наиболее подходящими для этой цели: 180mTa, 177mLu, 137mBa и 78mHf. Для времени полураспада тантала существует лишь нижняя граница на уровне 1016 лет, у бария оно равно 2,55 минутам, у лютеция — 160 дням, а у гафния — 31 году. Тантал можно добывать из естественных источников, данный изомер настолько устойчив, что его распад никогда еще не наблюдался, барий накапливается в отходах атомных реакторов, лютеций — в отходах от радионуклидного лечения рака, гафний остался от неудавшихся старых экспериментов по попыткам сохранения энергии в метастабильных изомерах.
nplus1.ru, 2020
https://nplus1.ru/news/2020/03/04/dark-matter-accelerator
Журнал Physical Review D. 2020
Максим Поспелов (Maxim Pospelov) из Института теоретической физики Периметр в Канаде
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.055001