...не существует больших талантов без большой воли... Если талант — это развитая природная склонность, то твердая воля — это ежеминутно одерживаемая победа над инстинктами, над влечениями, которые воля обуздывает и подавляет, над прихотями и преградами, которые она осиливает, над всяческими трудностями, которые она героически преодолевает.
Рассказывают, что предки Курчатова — крепостные крестьяне были вывезены из Подмосковья владельцем Симского чугунолитейного завода на Южном Урале Балашовым.
Симский завод входил в состав огромной горнозаводской дачи. Лес подступал к поселку со всех сторон. На горизонте темнели покрытые густой растительностью горы.
В этом поселке 30 декабря (по ст. ст.) 1902 года в семье помощника лесничего Василия Алексеевича Курчатова родился сын Игорь. Запись о рождении была сделана спустя девять дней, 8 января 1903 года.
Дед Игоря Алексей Константинович к тому времени из простых горнозаводских рабочих выбился в казначеи. Ценой многих лишений он дал сыну Василию, как и его шестерым братьям и двум сестрам, среднее образование.
Василий Алексеевич сначала окончил Благовещенское двухклассное училище, потом Уфимское землемерное и получил звание частного землемера. Мы знаем теперь, что его сыну суждено было стать выдающимся физиком. Но отец, судя по отметкам, а также по воспоминаниям близких знакомых Василия Алексеевича, особой склонности к физике не имел. В аттестате, выданном ему Уфимским землемерным училищем, по физике стоит оценка 2,96 балла, то есть удовлетворительно.
Но что, безусловно, унаследовал Игорь от своего отца и деда — это трудолюбие. Любовь к труду проходит через жизнь всей этой старой рабочей семьи. Уже в документе, выданном Василию Алексеевичу симским лесничеством, говорилось, что он «...во все время своей службы проявлял полное знание своего дела и всегда исполнял его добросовестно и аккуратно, постоянно проявлял большой интерес к своему делу при безукоризненном поведении».
И дома Василий Алексеевич был покладист, уравновешен, деловит. Мать Игоря Мария Васильевна отличалась твердостью и решительностью характера, незаурядным умом. Муж относился к ней с большим уважением и всегда прислушивался к ее советам. Она окончила училище с правом на звание домашней учительницы, до замужества некоторое время работала помощницей учителя.
Игорь — второй ребенок в семье. Сестра Антонина была на пять лет старше. В 1905 году родился третий ребенок — его назвали Борисом.
Первые уроки русского языка и арифметики Антонине, как, впрочем, потом Игорю и Борису, давала мать. В 1908 году Василий Алексеевич отвез дочь в Симбирск, где она поступила в гимназию. Вскоре и вся семья перебралась в город на Волге. Василий Алексеевич определился на службу в Симбирскую землеустроительную комиссию.
В 1911 году Игорь начал ходить в приготовительный класс казенной мужской гимназии. Но в Симбирске он проучился всего год — у сестры обнаружился туберкулез, и семья спешно уехала в Крым. Спасти Антонину не удалось. Она умерла пятнадцати лет от роду.
Жили Курчатовы на окраине Симферополя. Почти все свободное время Игорь и Борис проводили в прогулках, дальних походах.
Василий Алексеевич каждое лето ездил на землемерные работы в разные районы Крыма. По времени они совпадали с каникулами, и Василий Алексеевич неизменно брал с собой сыновей, которые во всем помогали ему.
В одну из таких поездок Игорь и Борис впервые увидели паровые молотилки. Богатые немцы-колонисты устанавливали их за околицей. Равномерный шум многих машин, шипение пара, дымящие трубы — все это волновало и манило ребят. Они крутились возле машин с утра до вечера, мечтали поработать на них. Как-то им доверили самим обслуживать паровик, и мальчишки с особым удовольствием подбрасывали солому в топку, накачивали воду в котел, следили за давлением пара, числом оборотов маховика. Запах дыма и горячего масла, колебание почвы в такт ходу машины надолго запомнились Игорю.
Первая встреча с морем оставила у Игоря и Бориса неизгладимое впечатление. В 1912 году, когда они ехали с отцом в Алушту, море неожиданно открылось их взору в лучах утреннего июньского солнца.
Большую часть времени мальчики проводили у воды. Купались, играли, с восхищением следили за утлыми суденышками рыбаков, в любую погоду бесстрашно выходивших в море.
— Вот это люди! — восторженно говорил Игорь. — Знают, что опасно, но идут...
Он старался закалять свою волю, купался в любую погоду. Отец не только не препятствовал этому, но даже сам учил его нырять под накат волны, когда она, пенясь и шумя, набегает на берег.
В эти дни мальчишки увлекались ими же придуманной игрой: увидев вдали корабль, они как можно дольше следили за ним, сочиняли историю его плаваний, воображали встречи с пиратами. Самим им приходилось плавать лишь на волжских пароходах, когда семья выезжала из Симбирска на дачу. Оказаться на борту морского судна стало их пленительной мечтой. Не она ли звала потом Курчатова-студента на кораблестроительный факультет, а когда он уже стал видным физиком, — работать на флот?
К концу лета окрепшие, загорелые Игорь и Борис возвращались в город. Начинались учеба, работа.
Игорь учился легко, много помогал товарищам. После занятий он часто оставался в гимназии на репетициях оркестра, в котором играл на мандолине.
Материальное положение семьи было нелегким, а с началом мировой войны стало совсем трудным. Игорь, еще будучи гимназистом, старался хоть как-нибудь заработать, помочь семье. Пытался заняться репетиторством, но городок был небольшой, и уроков найти не удалось. Он пошел в мундштучную мастерскую. Обрезки вишневого дерева, груши, яблони, шиповника в руках мастера превращались в изящные мундштуки. Игорь скоро овладел секретами «производства». По свидетельству брата, Игорь мог буквально несколькими взмахами напильника придать кусочку дерева наиболее выразительную форму.
Игорь решил еще освоить слесарное дело. Нашел мастерскую, договорился с хозяином и начал учиться. Домой стал приходить еще позднее, чумазый, поначалу с отбитыми пальцами, с мозолями...
Игорь вполне сознательно готовил себя к инженерной деятельности. В редкие минуты, остававшиеся у него от занятий в гимназии и работы в мастерской, он изучал аналитическую геометрию, решал задачи. Учитель математики прочил ему большое будущее. Впрочем, и преподаватель словесности видел в Игоре подающего надежды литератора. Он руководил его чтением, снабжал книгами, покупать которые Курчатовы не имели возможности.
Только одну книгу Игорь купил, чтобы всегда иметь ее при себе: «Успехи современной техники» итальянского профессора Корбино.
Все яснее чувствовалась напряженность, приближение грозы. В Симферополе бастовали заводские рабочие, железнодорожники. Первым новости об этом приносил Игорь, часто вcтречавшийся с рабочими.
— Вы слышали, депо забастовало! Что же будет? Что же будет? — возбужденно говорил он, едва переступив порог.
Родители не в силах были ответить на все вопросы, волновавшие ребят. Но одно было ясно: приближается что-то новое, какая-то очистительная гроза, после которой все должно быть — и будет! — твердо заявлял Игорь, — по-другому. Будущее рисовалось ему справедливым, с равными для всех возможностями в жизни, в учебе.
И будущее пришло раньше, чем ему думалось. В январе 1918 года в Крыму утвердилась Советская власть. Крым стал свободной советской республикой. Радостное вторжение нового, всеобщий подъем, атмосфера необычайной активности — кто пережил все это, тот сохранил в своей душе романтику тех дней навсегда. Под знаком первых дней революции прошла вся дальнейшая жизнь и Игоря Курчатова.
Впечатления молодости — самые сильные впечатления. И счастьем Игоря было то, что его юношеские годы совпали с годами обновления России.
Никакие перемены в жизни, временные поражения не в силах были ослабить влияния первых дней революции, вошедших в сердце, ставших плотью и кровью юноши.
С ненавистью встретил он интервентов1. Чувство ненависти к интервентам разделяли и его друзья по гимназии. Среди них новичок — Владимир Луценко. Потом он долгие годы шел рука об руку с Игорем.
Семья Луценко приехала в Симферополь глубокой осенью 1918 года, и Владимир поступил в 7-й класс с опозданием. Инспектор гимназии подвел к нему рослого паренька в форменной одежде и сказал:
— Это Курчатов. Он у нас первый ученик и сумеет помочь тебе наверстать то, что ты пропустил.
Игорь пригласил Владимира к себе, и он скоро стал своим в семье Курчатовых.
Весной 1919 года во второй раз в Крыму утвердилась Советская власть. Игорь и Владимир окончили 7-й класс гимназии и летом определились в землеустроительную экспедицию, направлявшуюся к подножью горы Чатыр-Даг. Там они проработали около месяца. Игорь с колышками и лентой, Владимир с теодолитом прошагали не один десяток километров. Свободное время использовали, как они говорили, для исследования гор. Любознательность Игоря была беспредельной. Путешествовать, подниматься к вершинам, «открывать» новые гроты и пещеры было его страстью.
Потом, уже с другой экспедицией, друзья отправились на строительство аэродрома. В конце работ произошла неприятность: лошадь наступила на ногу Владимиру и сильно повредила ботинок. Конечно, было больно — но ботинок!.. Починить его уже было невозможно. И Владимир плакал не столько от боли, сколько потому, что остался без обуви. Игорь, прибежавший на крик, хорошо понимал горе своего друга.
Осенью словно зловещая туча вновь закрыла небосвод в Симферополь вошли белые. Начались репрессии. Восстанавливались старые порядки. Жизнь населения становилась все более трудной. Игорь и Владимир, стараясь помочь своим семьям, осень и зиму 1919 года работали расклейщиками объявлений. С ведерками с клеем и рулонами объявлений шагали они по притихшим улицам. Вывешивали объявления со смыслом: «белые агитки» задерживали как могли, а то и потихоньку отправляли на свалку.
Игорь очень много занимался. Весной 1920 года он закончил гимназию с золотой медалью. Правда, медаль ему так и не выдали, ее просто не нашлось в Симферополе. Но разве в этом дело?
Отец, обычно сдержанный на ласку, обнял сына:
— Ну, молодец, порадовал...
И, обращаясь к младшему брату, Борису, наставительно добавил:
— Вот и тебе так надо, сынок.
Жизнь в Крыму под игом врангелевцев становилась все тяжелее. Только благодаря волоките, происшедшей в свое время с оформлением дня рождения в Симе, Игорю удалось избежать призыва во врангелевскую армию.
Вопроса о том, что делать после окончания гимназии, для Игоря и его родных не было. Все сошлись на одном: надо продолжать учиться. Вопрос о том, где учиться, тоже не стоял. Таврический университет, созданный в годы гражданской войны усилиями профессоров, волею судьбы заброшенных в Крым, был единственным высшим учебным заведением отрезанного от всей страны полуострова.
Первые месяцы учебы в университете были для Игоря и его товарищей омрачены тягостной обстановкой дикого разгула врангелевцев. И словно гром новой грозы, прозвучали раскаты орудийных залпов у Перекопа. Все изменения обстановки на фронте студенты безошибочно угадывали по поведению симферопольских богатеев: чем ближе были красные, тем торопливее, забывая степенность, бегали эти тузы, тем длиннее становились обозы удиравших.
С красными бантами на груди встречали молодые симферопольцы в ноябре 1920 года полки Красной Армии. По ходатайству студентов Крымскому университету было присвоено имя освободителя Крыма — Михаила Васильевича Фрунзе.
С победой Красной Армии совсем иная атмосфера воцарилась в университете. Свобода, равенство, братство перестали быть отвлеченными понятиями, они словно шагнули в аудитории и кабинеты, прочно вошли в жизнь. В университете были созданы комитеты служащих, студентов. Демократия была полной. Даже оценки решили упразднить. Каждый студент сам должен был оценивать свой ответ, в ведомости же проставлялось лишь «зачтено» или «не зачтено». По факультативным дисциплинам отметка была еще проще: прослушал такой-то курс.
Но главное — студентам стали выдавать такие же пайки, как и служащим.
С тех пор, отмечает один из университетских товарищей Курчатова, мы по-настоящему получили возможность учиться.
Игорь Курчатов, поступая в университет, избрал математическое отделение физико-математического факультета. В группе их было девятнадцать. Самый старший — Иван Пороиков — пришел в университет по путевке общественных организаций города Херсона. Он единственный из всех был женат. Его жена Анна по ночам переписывала конспекты, которые на лекциях почти дословно вел один из студентов, друживших с Курчатовым, — Ризниченко. Во время перерывов друзья затачивали ему не менее пяти карандашей. Такое внимание к конспектам легко объяснить — ведь учебников не хватало.
Чтобы иметь силы учиться, надо было заботиться о пропитании. Игорь не отказывался ни от какой работы. Летом 1920 го да Игорь и брат Владимира Луценко Мстислав поступили на строительство железнодорожной ветки Бахчисарай — Бишуйские угольные копи.
В 1921 году Игорю довелось поработать и воспитателем в детском доме, и диспетчером в автоколонне, и даже сторожем в кинотеатре «Лотос». Днем он слушает лекции в университете, вечером, пока нэпмановская публика наслаждается кинематографом, готовится к экзаменам. А ночью сменяет билетершу Анну Поройкову, жену товарища по курсу, в «Лотосе» и, расположившись на прилавке буфета, остается с... крысами.
Будучи уже известным ученым, Курчатов, встречаясь с По ройковыми, нередко вспоминал этот период их жизни и, представляя Анну товарищам, шутя говорил:
— Я был ее сменщиком в кинотеатре «Лотос»... Непонятно только, почему крысы облюбовали это довольно мрачное помещение, что им там нравилось, особенно ночью?
Пытаясь заснуть под яростную возню голодных крыс, он с особым удовольствием вспоминал дни, проведенные вместе с друзьями в одном из пригородных садов, где он также работал сторожем. Им, как сторожам, разрешали лакомиться капустой и свеклой.
Вспомнилось и неприятное и самое горькое для Игоря — разочарование в товарище. Как-то, когда Игорь остался один в саду, к нему пришел бывший одноклассник Андриевский. Завязалась дружеская беседа. Игорь разделил с товарищем ту скудную еду, которая полагалась ему самому на день. Потом показал огород, поливной насос, установленный у колодца, сад.
Вечером Андриевский собрался уходить. Игорь проводил его и решил обойти сад. Внезапно он услышал откуда-то из-за шалаша легкое позвякивание металла. Обогнул кустарник и, пораженный, остановился: от колодца, пригнувшись, бежал Андриевский с чем-то круглым и тяжелым под мышкой.
Несколько прыжков — и Игорь у колодца. Возле двигателя валяются гайки. Магнето нет.
Потрясенный вероломством товарища, Игорь погнался за ним. Быстро темнело, вдали видна была фигура убегавшего.
Андриевский, видимо почувствовав, что ему не уйти с тяжелой ношей, на ходу бросил магнето и уже налегке побежал быстрее. Игорь был близко и слышал, как что-то упало. Он нашел магнето, отнес и установил на двигатель.
Пришел Володя Луценко, стороживший сад вместе с Игорем, но в тот день отлучавшийся в город. Игорь не хотел спать, неохотно отвечал на расспросы и лишь заметил:
— Кто способен предать товарища, тот способен на все...
И в этих словах прозвучали такая непримиримость и презрение, что они запомнились Луценко на всю жизнь.
...Как-то Игорь с Владимиром Луценко пилили дрова на мельнице, принадлежавшей местному богачу, жирному, коротконогому человечку с совиными глазами. Оглядев нанятых пильщиков, он хлопнул в пухлые ладошки, хохотнул и сказал:
— Э, да я вас знаю, мой Лера с вами в гимназии учился!
— А мы его не знаем, — заявил, разогнувшись, Игорь. Его лицо c проступившим сквозь смуглость кожи румянцем и серьезными черными глазами выражало такое презрение, что хозяин мельницы осекся.
А когда подбежал его отпрыск, узнавший, что у них работают бывшие однокашники, они демонстративно не подали ему руки. Гордость пролетариев, как они потом говорили, не позволила им сделать это.
...Трудные были годы. В Крыму было очень плохо с продовольствием, с одеждой. Иван Васильевич Поройков, потом профессор автодорожного института в Москве, вспоминал, как, будучи членом студенческого комитета Крымского университета, он из фонда помощи нуждающимся выхлопотал для Игоря комплект... нижнего белья, чем доставил Игорю большую радость.
Владимир Иванович Луценко, работающий ныне в заочном Ленинградском политехническом институте, рассказывает, как им с Игорем удалось обзавестись обувью. Красноармейцы, стоявшие в их доме, как-то забили быка, а шкуру отдали студентам. Те кое-как ее выделали и стали шить себе из нее постолы — грубую обувь, изготавливаемую из целого куска кожи, стянутого сверху ремешком.
Но заботы об одежде, о хлебе насущном не заслоняли от Курчатова и его товарищей главного в их жизни. Не было внимательнее слушателей в аудитории, прилежнее экспериментаторов в лаборатории, чем они. Дома Игорь подолгу сидел над конспектами при слабом свете колеблющегося язычка коптилки. Вставал от книги с закопченными бровями и ресницами.
Курсы в университете читались на очень высоком уровне.
Здесь преподавали профессора Кошляков, Вишневский, Тихомандрицкий, Усатый, Кордыш, Оглоблин, Воронец, Франк. Сначала ректором был академик В. И. Вернадский, потом академик А. А. Байков. На их лекции собиралось особенно много народу.
Часто приезжал из Петрограда академик А. Ф. Иоффе, один из основоположников отечественной школы физиков.
Читая лекцию, Абрам Федорович Иоффе всматривался в сидящих перед ним слушателей. Но вряд ли он думал тогда о том, что среди них находится один из будущих его ближайших и любимейших учеников, тот, кого он сам назовет достойным поднять главную научную ношу века. А этот будущий титан науки, совсем юный, с чуть ли не детским овалом лица, буквально не отводил восхищенного взгляда от доски с формулами и расчетами, начертанными рукой самого Иоффе!..
Из профессоров, постоянно работавших в университете, особенно любила молодежь Семена Николаевича Уса; не только великолепный лектор, но и человек, прекрасно понимавший молодежь, умеющий зажечь в ней интерес к научным идеям, пробудить дремлющие в ней силы и возможности. Игорь был счастлив, когда с помощью любимого профессора получил место препаратора на кафедре физики! Вместе с ним препараторами стали работать также Кирилл Синельников и Борис Ляхницкий.
Все студенты их группы учились так, что видавшие виды столичные профессора только диву давались. Силой своего стремления к знаниям они как бы поднимались над повседневными неурядицами.
Игорь очень любил представлять себя у невиданных машин, воображать, как он делает послушными неведомые аппараты. Об этом грезилось наяву и снились сны...
К обязанностям препаратора Игорь приступил с жаром. Если он начинал готовить опыт или демонстрацию к лекции — не уходил, пока не кончит. При удручающей скудости учебной базы университета от препараторов требовалось немало изобретательности, чтобы все, что должно было по ходу лекции взрываться, отклоняться, распадаться, действительно взрывалось, отклонялось, распадалось!
Руками Игоря и других студентов-препараторов под руководством профессоров буквально из «консервных банок» и всяких бросовых материалов была оборудована физическая лаборатория университета. В ней проводились самые сложные опыты и демонстрации, вплоть до передачи сигналов на расстояние. Прием происходил с помощью когерера — прибора, которым пользовался еще изобретатель радио А. С. Попов.
Совместная работа препараторами сблизила Игоря с Кириллом Синельниковым.
Кирилла и его сестру Марину привела в Симферополь горькая дорога: их отец — земский врач из Павлограда — умер в 1919 году от сыпного тифа, а мать заболела туберкулезом и ее нужно было везти в Крым.
Она умерла в 1920 году, и Кирилл и Марина остались одни в незнакомом городе. Поселились в комнате с земляным полом. Марина работала сначала в потребительском обществе, потом в Наркомате труда Крымской республики в отделе, как тогда его именовали, трудгужповинности, а Кирилл учился в университете.
Однажды Кирилл взял у Игоря какой-то конспект. За ним Игорю пришлось зайти к Синельниковым и забрать его у Марины. Так он познакомился со своей будущей женой.
Вскоре на свой день рождения Марина попросила Кирилла пригласить и Игоря. Он не пришел — постеснялся.
Но знакомство не прекратилось. Мать Игоря, возвращаясь иногда с городского базара, оставляла у Синельниковых покупки, говоря:
— Гарик зайдет, заберет, а то мне в гору тяжело.
И Игорь, как всегда несколько смущенный, заходил, рассказывал о новостях, уносил продукты.
Семьи сблизились. Кирилл и Игорь вместе пилили зимой дрова, весной вскапывали огород, сажали капусту, морковь, огурцы...
Работая на строительстве, в автогрузоколонне, в детском доме, в лаборатории, Игорь постигал «науку» жизни. Так что в юности у студента Курчатова главной учебной аудиторией была жизнь!
Шел 1923 год. Видные профессора, занесенные в Симферополь случайными ветрами, разъезжались по своим городам. Из их рассказов студенты знали о первоклассных институтах страны, таких, как Петроградский политехнический, Московский химико-технологический. Многие мечтали продолжить там образование. Среди этих мечтателей были три студента предпоследнего курса: Игорь Курчатов, Иван Поройков и Борис Ляхницкий. По предложению Игоря они решили за лето пройти четвертый курс самостоятельно и закончить университет досрочно.
Полуденный зной вливается в открытые окна аудитории. Дышать становится все труднее. Сейчас бы к реке или в лесную тень. Устало откинулся на спинку стула Борис, сник Иван, но Игорь словно и не замечает ни жары, ни времени.
В памяти тех, кто оказывался свидетелями этих занятий, запечатлелась такая картина. На кафедре в аудитории маленький столик. За ним двое студентов что-то торопливо пишут. У доски высокий, с короткими черными волосами ежиком Игорь. Заглядывая в учебник математики на французском языке, он тут же переводит главы из труднейшего раздела — теории поля, иллюстрирует их формулами и расчетами. Проходит час, другой, третий. А он все у доски...
Дней было мало, а разделов программы — много. Студенты дружно штурмовали науку, дружно «болели» за успехи каждого. Иван Васильевич Поройков припомнил в этой связи один типичный эпизод. Как-то в шесть часов вечера «троица» явилась к доценту Коробову сдавать упражнения по интегрированию дифференциальных уравнений. Первым у доски был Игорь.
— Можете быть свободны, — с удовлетворением заключил Коробов, не дав даже Игорю вопреки своей обычной пунктуальности довести ответ до конца.
— Я бы хотел подождать товарищей, — попросил Игорь. И еще пять часов просидел в аудитории, даже не подумав о том, что о результатах экзамена можно узнать на следующий день.
Между тем приближался срок последнего экзамена в университете. Надо было решать, что делать дальше.
Сохранились анкеты тех дней, заполненные Игорем. На вопрос, в какое учебное заведение желает поступить, Курчатов в одной из анкет отвечал: в химико-технологический институт на механическое отделение, в другой — в политехнический институт на металлургическое отделение. Безусловно, твердой ясности о профиле своей будущей специальности Игорь еще не имел. Главное для него было — трудиться в области новой техники. Но самое интересное и примечательное в обеих анкетах — это совершенно ясная цель, которую ставил перед собой Игорь Курчатов, намереваясь продолжать образование. На вопрос анкет: «Чем обусловливается ваше желание поступить именно в это учебное заведение», двадцатилетний Курчатов отвечал: «Стремлюсь отдать свои силы и знания на укрепление хозяйственной мощи республики».
Наглядное представление об объеме знаний, полученных Игорем в университете, дает справка о сданных дисциплинах. Первое, что сразу бросается в глаза, — это хорошая математическая подготовка. Среди обязательных курсов отмечены введение в анализ, высшая алгебра, аналитическая геометрия, дифференциальное исчисление, интегральное исчисление, приложение анализа к геометрии, теория поверхностей, теория аналитических функций, интегрирование обыкновенных дифференциальных уравнений, интегрирование дифференциальных уравнений в частных производных, вариационное исчисление и теория вероятностей. И по каждому разделу упражнения. Среди необязательных курсов два математических — сферическая тригонометрия и теория функциональных последовательностей. Очень широко были представлены физика, механика, термодинамика, метеорология, физическая география, теория электромагнитного поля и электроника. И по всем этим курсам предусматривались лабораторные работы и упражнения В качестве необязательных курсов Игорь изучал еще химию, теорию относительности. Из общественных дисциплин в программе были исторический материализм и основы политического строя РСФСР.
Высокий уровень преподавания, желание, с которым занимались студенты, дали в сплаве добротную подготовку и завидную эрудицию выпускникам университета. Группа студентов из девятнадцати человек, в которой учился Игорь Курчатов, не осталась в долгу перед Родиной. Из нее, кроме академика Курчатова и действительного члена Академии наук УССР К. Д. Синельникова, вышло еще шесть профессоров.
Поезд отходил от симферопольского вокзала. Кончилась юность. Перед Игорем Курчатовым лежала широкая дорога в будущее.
Долго стоял Игорь у окна старенького вагона. Грустно было на душе, вспоминались подавленный вид обычно веселого отца, его особая предупредительность в последние дни, хлопоты матери, слезы на ее глазах, когда она приникла к нему на прощанье.
Спутник Игоря Борис Ляхницкий тоже молча глядел на бегущую за окном степь. Дома осталось все привычное, близкое. Что-то их ждет впереди?..
Собственно, будущее было в какой-то мере определено. У обоих уже продуманы первые шаги. В кармане толстовки с матерчатым поясом, в которую обрядили Игоря домашние, аттестаты, справки, направление местного отделения Всероссийского союза работников просвещения в политехнический институт на металлургический факультет.
Может показаться удивительным, почему он избрал металлургический факультет, когда друзьям не раз говорил, что мечтает стать кораблестроителем. Видимо, в Симферополь не пришло других вакансий.
В Петрограде Игорь снял уголок на Старо-Парголовском проспекте, в доме 17а,квартире 2. Отсюда он и отправился в Лесное, где в конце Сосновки находился политехнический институт. Игорь сдал документы и, по-видимому, попросил, чтобы его зачислили на кораблестроительный факультет.
Сохранилось постановление приемной комиссии, проверявшей знания Курчатова. В нем указано лишь обществоведение и проставлена оценка: «Удовлетворительно». Здесь же решение комиссии: «Принят». На опросном листе размашистая уточняющая надпись. «Принят на 3-й курс кораблестроительного».
Хорошо оборудованные по тому времени лаборатории и лекционные залы, отлаженный механизм учебного процесса приятно поразили Игоря. Но жить было не на что. Попытка найти работу поближе к институту не удалась: кругом царила безработица. Борису Ляхницкому повезло больше: его приняли на временную работу в гидромелиоративный институт.
Один из профессоров политехнического порекомендовал Игорю съездить в Павловск в магнитно-метеорологическую обсерваторию. Игорь прикинул: туда и обратно проехать — и почти день долой! Но делать нечего, где-то надо устраиваться. Тем более что ему обещали разрешить самостоятельно вести наблюдения.
Заведующий обсерваторией профессор В. Н. Оболенский вскоре действительно поручил новому сотруднику самостоятельное исследование. И тема его по поразительному совпадению оказалась близкой к тому, с чем в дальнейшем связал свою жизнь Курчатов. Ему поручили исследовать радиоактивность снега.
Нельзя без волнения смотреть на пожелтевшие страницы отчета об этой работе: «К вопросу о радиоактивности снега». Он был опубликован в 1924 году. И до и особенно после этой работы радиоактивности снега посвящалось немало трудов. Но вот эту всего в семь листиков историки науки берут в руки с особым чувством. С нее начинался путь Курчатова-ученого.
Каким образом снег становится радиоактивным? «Падающие капли и хлопья, — пишет Курчатов, — захватывают и увлекают с собой вниз подвешенные в атмосфере радиоактивные частицы». Для подтверждения этого объяснения он ссылается на опыт одного американского ученого, который измерил содержание активных веществ в воздухе около Ниагары и в находящемся в стороне от реки городке. В последнем содержание активных частиц оказалось в пять раз выше, чем у водопада, где они увлекались брызгами.
Краткая работа Курчатова обращает внимание обстоятельным обзором мировой литературы по интересующему его вопросу.
Много позже он удивит одного из сотрудников своим замечанием о его работе:
— Нет, вам это непростительно. Ученых многих стран перечислили, а японских забыли. И совершенно незаслуженно.
Оказывается, с первых самостоятельных шагов в науке Курчатов берет за правило: прежде чем двигаться вперед, надо оценить все, сделанное до тебя другими. Но к работам предшественников Курчатов обращается именно для того, чтобы самому продвинуться вперед. Он рассматривает научные сообщения критически, стремится проверить их экспериментом.
По методике, разработанной вместе с профессором В. Н. Оболенским, он проводит 25 наблюдений со 2 по 29 января 1924 года. В течение 10 минут он собирает в чашку свежевыпавший снег, помещает его в ионизационную камеру. В ней электрически нейтральные частицы воздуха под действием радиоактивного излучения превращаются в заряженные частицы — ионы. Электрометр фиксирует степень ионизации, а по ней уже можно судить о степени радиоактивности снега.
Полученные результаты хорошо согласуются с данными других исследователей. Кажется, можно успокоиться... Но нет. Ведь радиоактивное излучение неоднородно. Оно состоит из альфа-, бета-частиц и гамма-лучей. Предшественники измеряли активность снега по гамма-излучению, и они по-своему были правы — это самое проникающее излучение. Но у него есть и минус — оно слабее альфа— и бета-частиц ионизует молекулы воздуха. Значит, его действие труднее обнаружить и измерить. А если взять альфа-частицы? Они оставляют в камере самый сильный след. Наблюдать за ними легче.
Курчатов уменьшил размеры камеры, настроил ее на наибольшую чувствительность к альфа-частицам. Попробовал измерить активность снега по-новому. Чашка со снегом в камере, все внимание на электрометр. Отсчет сделан. Вечером произвел расчет, убедился: первая «прибавка» точности есть.
Этот успех раззадорил Игоря.
...Чашка с только что собранным снегом принесена в комнату. Ее надо поместить в камеру. А снег постепенно тает, его становится все меньше и меньше. Так ведь радиоактивный материал переходит в воду. Какая разница? Но ведь вода сильно поглощает радиоактивное излучение. А снег? Тоже. Выходит, альфа-лучи поглощаются и снегом и талой водой. Так явилась догадка об еще одной «прибавке» точности.
Потом он с удовлетворением запишет в отчете, что поглощение альфа-лучей водой «упускалось из виду всеми предыдущими исследователями... Поправка имеет очень большую величину». Игорь Васильевич вывел формулу вычисления этой поправки, годную для других аналогичных исследований. До Курчатова порядок радиоактивности снега в среднем был определен в 10^-12 кюри на грамм, а Игорь дал новую цифру — 5,51*10^-11.
Это в среднем. Но Игорь определил и, так сказать, мгновенное значение радиоактивности снега. «Этот результат дан, — пишет он, — со всеми поправками, то есть определяет радиоактивность снега (в количестве одного грамма) в момент его выпадения на почву». Он изучил и описал также изменение радиоактивности снега через час после его выпадения.
Заканчивается отчет такими словами: «В заключение должен сказать, что все результаты, полученные на основании 25 наблюдений, ни в какой степени не могут быть высказаны категорически и должны считаться лишь предварительным решением вопроса, исследование которого будет продолжено в дальнейшем».
Значит, свои результаты он также рассматривал критически.
Исследование Игорь выполнял в труднейших условиях. По воспоминаниям И. В. Поройкова, он жил в Павловске в неотапливаемой комнате. Морозы стояли сильные. Когда Поройков приехал к нему, Игорь уступил гостю из Симферополя свою кровать, а сам спал на столе, накрывшись старым полушубком.
Немало трудностей было и с учебой. Не тем, что надо было что-то осваивать и сдавать, а поездками, требовавшими много времени. И тем не менее Игорь успешно сдавал зачеты. В справке, полученной им позже, говорится, что он сдал высшую математику, начертательную геометрию, теоретическую механику, физику, химию, сопротивление материалов, термодинамику и уже чисто морской предмет — торговые порты.
Но с весны 1924 года учеба в политехническом неожиданно обрывается. По-видимому, одна из комиссий высказала мнение: Игорю Курчатову, имеющему университетский диплом, нет необходимости получать еще одну специальность. Мест в институте мало, а кандидатов, мол, много. И он был отчислен из института.
Как ни тяжело было Игорю отказаться от заветной мечты — стать кораблестроителем, он недолго предавался унынию. Он стал задумываться о том, что исследования в области физики, начатые в Пайловске, могли бы стать целью его жизни. Научные руководители его, видя одаренность юноши и трудное положение, в котором он оказался, помогали как могли.
Профессор Н. Н. Калитин, старший физик обсерватории, узнав об отчислении Игоря из института, предложил ему поработать с ним в Феодосии, куда собирался в командировку. Летом Игорь выехал в Симферополь, чтобы оттуда направиться в Феодосию.
Дома его встретили с нежностью и теплотой, которые утроились, когда родные узнали о его неприятности. Брат подрос и возмужал, радовал своими успехами в том же университете, который окончил Игорь. Владимир Луценко сдавал экзамены, но это не помешало старым друзьям проговорить много часов подряд.
Оказалось, что очередной зачет Владимиру надо было сдавать профессору Усатому, с которым Игорь хотел посоветоваться о своем будущем. В университете они узнали, что профессор уехал в Баталиман на дачу. Друзья решили ехать следом. До Севастополя добрались «зайцами» на товарном поезде, на платформе с корпусами донных мин. В пустых корпусах мин они и прятались. В Севастополе ночевали на братском кладбище под зданием панорамы. А с рассветом тронулись в путь, прошли Байдарские ворота и к вечеру добрались до утопающего в зелени тихого Баталимана.
Семен Николаевич Усатый усадил Луценко готовиться к ответу, а сам с Курчатовым вышел в сад.
— Ну что ж, будем считать, что физика выиграла, — сказал Усатый, выслушав Игоря. — В Феодосии задерживаться долго нет смысла. Осенью я переезжаю в Баку, в Азербайджанский политехнический институт. Милости прошу ко мне ассистентом.
Луценко сдал зачет. Друзья переночевали у профессора и утром пешком двинулись дальше, в направлении Ялты, чтобы оттуда вернуться в Симферополь.
В Феодосии у профессора Калитина Игорь Курчатов стал работать вместе с Мстиславом Луценко.
Жили друзья в одной комнате с профессором Калитиным, у сторожа маяка в Карантине — на окраине города. Дома здесь стоят далеко друг от друга, а за ними — степь. В дверях, окнах и даже в стенах комнаты . зияли широкие щели. Внутри стол, несколько стульев, три койки и какой-то несуразный сундук. Керосинка, лампа, ручной умывальник — вот и все...
Через щели в комнату лезла всякая живность — тарантулы, черные сколопендры толщиной с мизинец и длиной в два десятка сантиметров (жильцы собственноручно измеряли их «габариты»).
«А однажды, уже после отъезда Калитина, — вспоминает М. Луценко, — придя поздно домой и открыв двери, мы услышали какое-то странное шипение. Я чиркнул спичкой и... о, ужас! Почти у ног Игоря — целый клубок гадюк! Таких крупных я никогда не видел. Мы сейчас же выбежали, схватили лопаты и уничтожили опасных гостей».
Гидрометеорологический центр размещался в специальном здании в центре Феодосии и был богато оснащен приборами и оборудованием, имел мастерские и литографию, где систематически печатались бюллетени, свою радиостанцию. Кроме метеорологических измерений, в гимецентре регулярно выполнялись гидрологические и аэрологические наблюдения. Штат был небольшой, объем же работы основательный.
Новичков определили для начала в бюро погоды, но они должны были также помогать делать измерения и знакомиться с аппаратурой. Наблюдения производились три раза в день — в 7, 13 и 21 час. Кроме того, каждые пять дней — гидрологические выходы в море. Управление порта обычно выделяло для этого небольшую моторную лодку. Экипаж состоял из наблюдателя, Игоря, Мстислава, моториста и рулевого. Район наблюдений был довольно обширным: от Феодосийского залива почти до Судака, и измерения приходилось делать в нескольких точках.
Выходили в море утром. Придя на место, точно определяли свои координаты, промеряли глубину и отдавали якорь. Теперь надо было измерить скорость и направление ветра, определить количество и форму облаков, температуру и влажность воздуха, состояние моря, цвет воды, скорость течения и температуру на различных глубинах. Кроме того, надо было взять пробы воды для определения солености и удельного веса. Бывало, и в нежаркую погоду после первого же сеанса основательно взмокали. Мстислав устало откидывался на сиденье, Игорь по привычке загребал в пригоршни морскую воду и устраивал себе своеобразный душ.
А времени на отдых было мало. Лодка уже подплывала к следующей точке, и все начиналось скачала — скрипели лебедки, опускающие приборы, сообщались результаты измерений...
Ежедневно Игорю и Мстиславу приходилось менять чуть ли не два десятка лент на различных самописцах, подвергать их обработке, составлять таблицы. В восемь утра поступали метеосводки. Их надо было расшифровать и нанести данные на синоптические карты. Сводки поступали также в час дня и в девять вечера. На работу друзья выходили в начале седьмого и приходили домой около четырех. А в семь вечера опять все собирались в бюро погоды, где и сидели обычно до поздней ночи.
Скоро новички стали полноценными работниками. Их освободили от выходов в море с наблюдателями, оставив за ними .расшифровку метеосводок. Им стали давать задания исследовательского характера.
Игорю поручили сконструировать прибор для определения мутности воды, и он, как всегда энергично, взялся за выполнение задачи, бегал из мастерской в будку мареографов, где было отведено место для сборки аппаратуры.
По воспоминаниям М. Луценко, принцип работы прибора, сконструированного тогда И. Курчатовым, состоял в том, что пучок света от мощной лампы проходил через слой мутной воды и падал на фотоэлемент, соединенный с гальванометром. Гальванометр был отградуирован по эталонам мутной воды, так что по его показаниям можно было прямо получать количество взвеси. Воду в сосуде во время опыта перемешивали (во избежание оседания взвеси). Все определение занимало несколько секунд.
Закончив эксперименты по определению мутности воды, Курчатов приступил к решению двух серьезных научных задач: «Опыт применения гармонического анализа к исследованию приливов и отливов Черного моря» и «Сейши в Черном и Азовском морях». Эти два исследования были проведены, по-видимому, по инициативе профессора Владимира Юльевича Визе, полярника, одного из участников экспедиции Седова. Во всяком случае, как вспоминает М. Луценко, Владимир Юльевич очень интересовался полученными результатами и не раз впоследствии расспрашивал о дальнейшей судьбе Курчатова. Обе эти работы, выполненные, кстати, очень тщательно и быстро, были опубликованы в бюллетенях гиме-центра.
В первой работе Курчатов сделал попытку математически осмыслить фактический материал, накопленный мареографическими измерениями колебаний уровня моря. Эти измерения уже помогли установить наличие в Черном море приливов и отливов.
Теперь же Курчатов решил пойти дальше — выявить основные составляющие приливов. Нужна была известная математическая виртуозность, чтобы «расщепить» единое движение масс воды на части.
Вспомнились, должно быть, Курчатову лекции академика Вишневского. Особенно увлекал слушателей «гармонический анализ», то есть разложение сложной периодической функции на простейшие гармонические составляющие. Почему бы не попытаться определить гармонику приливов Черного моря?
Составляя ряды тригонометрических функций, Курчатов постепенно сквозь хаос цифр стал прощупывать закономерности. Вот первая составляющая — лунная полусуточная волна. Еще расчеты, еще усилия — и определены солнечная полусуточная и солнечная суточная волны для Феодосии и отчасти для Поти.
Пришла мысль: можно ли нарисовать полную картину приливов для всего Черного моря? Можно, конечно, можно, отвечал себе Курчатов. Но нужны экспериментальные данные для всего бассейна. Вывод из всей работы звучал весьма оптимистично:
«Изучение приливов в Черном море обещает много важного и интересного; это море, так же как и Каспийское, одно из немногих, если не единственных, больших и глубоких бассейнов, в которых можно более или менее уверенно провести соприливные линии и тем поставить experimentum crucis (решающий эксперимент. — П. А.) для разных теоретических представлений».
Во второй работе Курчатов исследовал сейши — стоячие волны, возникающие на поверхности под действием внешних сил: атмосферного давления, ветра, сейсмических явлений. Они наблюдаются в озерах, проливах, бухтах, заливах, морях. В Черном море это явление тесно связано с приливами.
Курчатов впервые рассмотрел вопрос о сейшах в Азовском море, а для Черного моря использовал данные нескольких станций, тогда как до него авторы трудов пользовались мареографическими записями лишь какой-либо одной станции и не могли поэтому говорить о сейшах, общих для всего бассейна.
Все исследователи до него целиком исходили из теории известного английского ученого, сына творца эволюционного учения Чарльза Дарвина — Джозефа Дарвина, об образовании приливов.
Дж. Дарвин разработал в свое время методы предвычисления морских приливов. Изучая сейши Черного моря, Курчатов увидел, что расчетные данные и результаты практических измерений расходятся. По формулам Дарвина амплитуда прилива в Констанце получалась равной 13 сантиметрам, а по данным измерений она составила всего 7 сантиметров.
Конечно, Курчатов понимал, что Дарвин дал решение общего случая задачи. А что еще надо было учесть ему, Курчатову, применительно к Черному морю? Влияние Солнца, Луны? Оно есть везде. Замкнутость бассейна? Может быть. Ну, а в чем выразится ее влияние на приливы? Видимо, в собственных, свободных колебаниях уровня моря. Курчатов попробовал вывести свою формулу. В нее подставил данные по Черному морю. Для Констанцы амплитуда приливов получилась 7,7 сантиметра.
Это удача. Теория Дарвина была уточнена. Не случайно работу Курчатова о сейшах в Черном море цитировал через тридцать с лишним лет академик В. В. Шулейкин в монографии «Физика моря».
Однажды от бюро погоды, в котором работали Мстислав и Игорь, потребовались срочные данные о воздушных течениях в верхних слоях атмосферы в связи с ночным перелетом авиации.
Радиозондов тогда не было, и ночные аэрологические наблюдения производились примитивным способом: к шару-пилоту привязывали бумажный фонарик со свечкой, шар запускали, за его полетом следили с помощью теодолита. Зная подъемную силу шара и направление его полета, рассчитывали скорость воздушных течений на высоте.
Но в данном случае этот способ не подходил: был сильный ветер и темнота, и шар-пилот быстро бы потеряли из виду. Решили прибегнуть к помощи химии.
Пока наполняли шары водородом, Мстислав Луценко — по образованию химик — занялся приготовлением горючей смеси. Бертолетову соль смешали с азотнокислым стронцием и порошком магния. «Конфисковали» у сотрудников весь запас сахара. Для пробы подожгли небольшую порцию — получилась очень яркая вспышка. Этим составом наполнили длинную гильзу. Гильзу привязали к шарам, определили подъемную силу и, захватив теодолит, полезли на вышку над обсерваторией.
Чиркнула спичка, шары с гильзой взмыли вверх. Все вокруг осветилось ярким розовым светом. Наблюдать за полетом шара не представило труда...
Однако их эксперимент имел и другие, самые неожиданные последствия. На другой день, когда Игорь и Мстислав утром шли на работу, их остановила старушка:
— Ребятки, ночью-то знамение было! Свет огненный... Игорь с Мстиславом удивленно переглянулись, потом прыснули со смеху. Как могли, объяснили, в чем дело.
Друзья много купались в море. По пути к морю и особенно на воде Игорь любил напевать юмористические песенки. На ехидное замечание Мстислава, что до Карузо ему далеко, он бодро отвечал:
— Это ничего. Каждая собака, как говорил Чехов, должна лаять своим голосом!
Так прошло лето 1924 года. Наступила осень, она на некоторое время разлучила друзей. Мстислава направили на работу в Геническ, где заболел наблюдатель гидрометеостанции. Игорь 27 ноября получил командировочное предписание на выезд в Баку.
В Баку Игорь приехал в той же толстовке с матерчатым ремешком, в ношеных брюках, без шапки. Оклад ассистента, составлявший немалую по тому времени сумму около 90 рублей в месяц, позволил ему купить костюм, плащ, шляпу, галстук бабочкой. Именно в этой одежде он и запечатлен на многих снимках бакинского периода.
Семен Николаевич Усатый отвел ассистентам две комнаты своей квартиры. Старожилами себя уже считали Николай Правдюк, Кирилл Синельников, Сергей Ризниченко, Владимир Луценко. К ним и присоединился Игорь. Сюда впоследствии заглядывал и Мстислав Луценко, приехавший из Геническа и ставший помощником капитана, штурманом дальнего плавания на Каспийском море.
Ассистенты не только готовили все необходимое к лекциям, но и выполняли самостоятельные научные исследования.
Игорь часто засиживался допоздна в лабораторий, а готом до ранней зорьки работал дома — писал, чертил, рассчитывал.
Вскоре Кирилл Синельников уехал в Ленинград — его пригласили в физико-технический институт, возглавляемый Абрамом Федоровичем Иоффе. Между Кириллом и Игорем завязалась оживленная переписка. Видимо, под влиянием идей, наполнявших атмосферу физико-технического института, и при поддержке Семена Николаевича Усатого Курчатов выбрал тему исследования: электролиз твердого тела, — которой посвятил две статьи.
Электролизом называют химические процессы, наблюдающиеся в ряде веществ при прохождении электрического тока. В те годы наиболее изучены были такие процессы для жидкостей. Электролиз же в твердом теле во многом казался загадкой. Один автор подсчитал, что в наиболее распространенном тогда учебнике физики почти сто страниц отводилось описанию электролиза жидкостей и только несколько строк посвящались электролизу твердого тела.
Разумеется, Курчатов не мог дать в своих работах полную картину электролиза в твердом теле. Для этого потребовались усилия многих ученых и его самого. Но несколько крупиц в «электролизную» копилку он внес уже тогда.
Обычно этим и ограничивают список трудов Игоря Курчатова в бакинский период. Но это не так. Он вместе с Николаем Правдюком участвовал летом 1925 года в экспедиции морской обсерватории на корабле по южным водам Каспия. Участники экспедиции делали гидрологические разрезы.
Но главное, пожалуй, состоит не в перечислении всего, что сделано Игорем в Баку. Важнее понять — именно здесь он окончательно нашел самого себя.
По воспоминаниям товарищей, в первые дни пребывания в Баку он еще с горечью вспоминал о прерванной учебе в политехническом. Но это было лишь вначале. Когда же он окунулся в работу лаборатории, другие планы, другие настроения вошли в его жизнь.
Получив как-то письмо от Кирилла Синельникова, Игорь прочел его и, потрясая им в воздухе, громко заявил друзьям:
— Учитесь, учитесь на инженеров, а мы пойдем в физику, искать то, без чего вам, узким техникам, жить нельзя будет.
И он переехал в Ленинград. 1 сентября 1925 года по рекомендации профессора С. Н. Усатого и при содействии академика А. Ф. Иоффе его приняли научным сотрудником в Ленинградский физико-технический институт.
Физико-технический институт, носящий ныне имя А. Ф. Иоффе, расположен на Политехнической улице. Сквозь высокую ограду видно двухэтажное желтое здание с колоннадой у входа. Рядом со входом — мемориальная доска: «В этом здании с 1925 по 1941 год работал выдающийся русский ученый Игорь Васильевич Курчатов».
Да, именно сюда каждое утро приходил он своей быстрой, энергичной походкой, обуреваемый новыми планами, мыслями, идеями...
В 20-е годы коллектив института сплошь состоял из молодежи и его неспроста называли «детским садом». Двадцатидвухлетний физик, по словам академика А. Ф. Иоффе, «пришелся как нельзя лучше к этой среде не только молодостью, но и своим энтузиазмом, своим стремлением и умением работать в коллективе, способностью заражаться его интересами».
В институте и сейчас хранится серенькая книжка — сборник работ, изданный в 1926 году. Среди десяти публикаций значится и такая: «И. В. Курчатов и К. Д. Синельников. К вопросу о прохождении медленных электронов через тонкие металлические фольги».
В комнате, где начиналась исследовательская жизнь И. В, Курчатова, сейчас другое оборудование. Но нетрудно себе представить стол в углу, стеклянный баллон на нем, батареи, электрометр, напряженные лица Игоря и Кирилла, озаренные боковым предвечерним светом ноябрьского солнца.
Прошел лишь месяц пребывания Курчатова в институте, а он уже с головой окунулся в исследования.
Изучая литературу по прохождению электрического тока в разных материалах, он натолкнулся на любопытное сообщение. Один из специалистов, Хартиг, писал, что нашел способ получения медленных электронов путем пропускания их через тонкие слои металла. Курчатов понимал, что создать источник медленных электронов было бы очень важно «Как в технике физических измерений, так и в некоторых вопросах вакуумной электротехники, — писали Курчатов и Синельников в своей работе, — уже давно ощущается потребность в таком источнике медленных электронов». Но то, как Хартиг объяснял действие своего источника медленных электронов, насторожило Курчатова. Он, по воспоминаниям сотрудников института, сразу же заметил:
— Не все вяжется в этом объяснении.Испытаем предложение Хартига на достоверность?
— Попробуем, — заинтересовался Синельников.
С «благословения» А. Ф. Иоффе они приступили к делу. Собрали схему, главными частями которой были стеклянный баллон с вольфрамовой нитью, источники питания для создания ускоряющего электрического поля, электрометр.
Поначалу казалось, что электроны, испускаемые вольфрамовой нитью, под действием ускоряющего поля, действительно без задержки летят к медному электроду — аноду, даже если он окружен тонкой алюминиевой фольгой. Проходя через нее, они замедляются. Первые результаты как будто подтверждали выводы Хартига, и можно было бы попросту присоединиться к его мнению.
Но настороженность не прошла, и друзья решили получше проверить фольгу. Ведь пока они, как и Хартиг, проверяли ее лишь на свет. Но, может быть, в ней есть незаметные, микроскопические отверстия, через которые свет не проходит, а электроны проскакивают?
В отчете молодые экспериментаторы писали потом: «Мы стали испытывать фольгу, опуская конец трубки с закрепленной фольгой в сосуд с жидкостью и осторожно вдувая воздух. Оказалось, что в тех случаях, когда фольга считалась пригодной при испытании на свет, испытание по второму способу обнаруживало существование очень малых отверстий».
И вот когда они повторили эксперимент — но с фольгой, проверенной еще и продуванием воздуха, — ни малейших следов прохождения сквозь нее электронов обнаружить не удалось.
Убедившись вопреки Хартигу, что электроны проходят не сквозь металл, а через отверстия в нем, Курчатов и Синельников обратили внимание на «отражение... электронов с воспринимающего анода» и даже на «многократные отражения электронов от анода и обратной стороны фольги».
Некоторые специалисты упрекали потом авторов, что напрасно они не пошли дальше в своих экспериментах с электронами, проходящими через тонкие металлические фольги, а остановились на пороге открытия волновой природы электрона. Ведь именно на основе изучения отражения электронов американские физики Девиссон и Джермер в 1927 году определили длину волны электрона и доказали, что электроны проявляют себя не только как частицы, но и обладают волновыми свойствами.
Но вряд ли следует упрекать ученых за не сделанное ими открытие. Первая работа Курчатова в физико-техническом институте характерна другим.
«Уже в первой этой задаче проявилась одна из типичных черт Игоря Васильевича — подмечать противоречия и аномалии и выяснять их прямыми опытами», — отмечал А.Ф. Иоффе. Абрама Федоровича Иоффе, в лаборатории которого начали работать Курчатов и Синельников, тогда интересовали главным образом диэлектрики — материалы, обладающие малой электропроводностью. На их исследование он, учитель, и направлял усилия своих учеников. Потому и осталась эпизодом эта интереснейшая по своим возможностям работа...
На естественный вопрос, почему именно диэлектрики привлекли внимание Курчатова, его научный руководитель тех лет (в одной из своих статей) ответил: «Таковы были интересы коллектива в то время — диэлектрики, механизм электрического пробоя, загадочная еще высоковольтная поляризация». Брат Игоря Васильевича, Борис Васильевич Курчатов развивает эту мысль: «Все эти вопросы были мало или совсем не изучены. А развивающаяся электрическая промышленность, электрификация страны в соответствии с ленинским планом ГОЭЛРО требовали научного обоснования электротехники изолирующих материалов».
В Ленинграде Курчатов поселился в квартире Синельниковых: в двух комнатах жили Кирилл и Марина, в третьей — маленькой — Игорь. В большой комнате стоял взятый напрокат рояль. Вечером здесь собиралась молодежь. Кирилл играл, гости пели. Их старший товарищ по науке, впоследствии известный ученый Я. И. Френкель неплохо играл на скрипке. Его концерты сопровождались беседами о музыке. Нередко возникали шумные споры о творчестве Маяковского, Есенина, Белого...
Спорили, конечно, и о науке. Марина с тревогой наблюдала, как распалялись спорщики.
— Так может думать о роли физики только безмозглый дурак! — безапелляционно говорил доведенный до кипения кто-нибудь из энтузиастов физики, которых здесь было большинство, собеседнику, неосторожно высказавшемуся в пользу химии.
Но резкие вспышки не влияли на взаимоотношения — они оставались теплыми и сердечными.
Курчатов с любопытством расспрашивал тех, кто где-то побывал, что-то видел новое. Анна Поройкова посещала лекторий культуры, и он просил ее делиться всем интересным, что она там услышит. Однажды она привела ему слова Дарвина: «Если бы мне пришлось вновь пережить свою жизнь, я установил бы для себя правило читать какое-то количество стихов и слушать какое-то количество музыки по крайней мере раз в неделю; быть может, путем такого упражнения мне удалось бы сохранить активность тех частей моего мозга, которые теперь атрофировались. Утрата этих вкусов равносильна утрате счастья и, может быть, вредно отражается на умственных способностях, а еще вероятнее — на нравственных качествах, так как ослабляет эмоциональную сторону нашей природы».
Слова эти произвели на Курчатова большое впечатление. Из дальнейшей его жизни известно, какое внимание даже в периоды самой сильной занятости уделял он музыке, театру, кино. Никак не хотел, выражаясь языком Дарвина, «...ослаблять эмоциональную сторону» своей природы.
Друзья примечали, что после каждой такой дружеской встречи Игорь все теплее говорит о сестре Кирилла Синельникова — Марине. 3 февраля 1927 года они объявили друзьям, что решили пожениться.
Для молодой семьи нужна была квартира. В доме, где жили Поройковы, на улице Красных зорь, как раз сдавалась комната. Иван Поройков представил Курчатова хозяйке.
— Рекомендую жидьца. Женатый, степенный человек.
Комната узкая и длинная, пол-окна закрыто стеной соседнего дома. Но жить можно. Хозяйка дала стол. Постелью служили ящики из-под яиц. Матрац набили стружками. Достали табуретки.
Новоселье и свадьбу отпраздновали шумно. Вместе с молодежью веселились А. Ф. Иоффе и С. Н. Усатый, нисколько не замечавшие скудость обстановки.
Игорь Васильевич и Марина Дмитриевна, оба любившие искусство, отметили начало семейной жизни посещениями оперного театра — слушали «Евгения Онегина» и «Пиковую даму».
В выходные дни они часто выезжали за город, в Токсово, в Разлив, куда Игоря Васильевича манили водные дали.
Летом они отправились к родителям Игоря, которые к тому времени переехали из Симферополя в Уфу.
Марина с большим волнением ждала этой встречи, так как знала, что мать Игоря не одобряла его выбора.
Но все обошлось благополучно. Мария Васильевна увидела в невестке союзницу, готовую, как и она сама, посвятить себя заботам об Игоре.
Вскоре Игорь и Марина «сколотили» группу молодежи и пустились в путешествие на лодках по реке Белой. Таков был любимый отдых Игоря Васильевича.
Уезжать от родителей не хотелось. Решили, как только найдут квартиру, заберут родителей к себе в Ленинград.
Вскоре в той же квартире, где жили Игорь с Мариной, освободилась полутемная комната, которую они и сняли для Бориса и родителей.
К тому времени Борис Васильевич закончил университет в Казани. В физтехе оказалась вакансия, и Игорь Васильевич написал брату, чтобы он ехал в Ленинград. Так братья Курчатовы стали работать в одном институте.
Февраль 1927 года стал своеобразным рубежом для Курчатова — в этом году началась его семейная жизнь и преподавательская деятельность. Преподавание было органическим делом Игоря Васильевича, испытывавшего настоятельную потребность передавать другим то, чем он овладел, передавать в яркой, увлекающей слушателей форме.
В архиве политехнического института сохранилась толстая папка с множеством чисел, перечеркнутых цветными карандашами, — личное дело доцента Курчатова. Автобиография его датирована 20 февраля 1927 года, 22 марта он был утвержден предметной комиссией в качестве кандидата для прочтения курса «Учение о диэлектриках». Пятнадцатью голосами против одного он был допущен к чтению курса в качестве сверхштатного доцента.
В папке написанная рукой Игоря Васильевича программа курса «Учение о природе диэлектриков».
Первый раздел курса посвящен электрической проводимости диэлектриков, ее закономерностям и механизму. В нем рассматривались диэлектрические свойства газов, жидкостей, твердого тела. Второй раздел: «Пробой диэлектриков по новым теориям», как можно судить из описания, был основан на самых последних данных мировой науки.
Игоря Васильевича и в физико-техническом и в политехническом неизменно окружали люди, как и он, фанатически влюбленные в науку. Он умел находить их, привлекать к себе. Так, в своей лаборатории однажды он сделал «открытие» хотя и не чисто научное, но имевшее большие последствия. Он заметил... аномалию в поведении служителя лаборатории Павла Кобеко, в обязанности которого входило убирать помещения и выполнять различную подсобную работу. Павел не участвовал в исследованиях, но он не уходил домой, пока не заканчивался очередной опыт. Иногда, когда что-то не ладилось или не работало, его рука первой тянулась к тому месту схемы, где таилась причина неполадок. Узнав, что Кобеко окончил высшую сельскохозяйственную школу и по специальности химик, Курчатов сказал ему:
— Вот что, химик, попробуй-ка определить характеристики вот этого образца, — и вручил ему кристалл каменной соли.
За первым поручением последовало второе. И вот среди авторов работы «К вопросу о подвижности ионов в кристаллах каменной соли» наряду с И. В. Курчатовым, А. К. Вальтером и К. Д. Синельниковым появилось новое тогда имя в науке — П. П. Кобеко. Курчатов и Кобеко в дальнейшем выполнили вместе еще десять важных научных работ. Кобеко стал потом известным специалистом, членом-корреспондентом Академии наук СССР.
Судьба в годы войны их разлучила. Курчатов уехал из Ленинграда на фронт, а Кобеко остался в блокированном городе, где возглавлял находившуюся там группу сотрудников ЛФТИ, разработал метод получения пищевых продуктов из олифы, много делал для обороны города.
Физико-технический институт стал «гнездом» выдающихся питомцев именно потому, что здесь сложилась своя школа требований к сотруднику и его научной работе. Сотрудник должен был критически относиться к тому, что сделано до него, на основе этого разработать собственный, не повторяющий ошибки прошлого, метод эксперимента. И наконец, последнее правило — обсуждение всеми результатов каждого.
Именно так шло исследование загадочной, по словам А. Ф. Иоффе, поляризации диэлектриков (процесса смещения в них зарядов под действием электрического поля), которая до сих пор остается важным направлением работы физиков.
Вот перед Курчатовым и Синельниковым статья Миколы и Эгучи, в которой приведена кривая поляризации. Прежде всего надо проверить их данные. Молодые исследователи точка за точкой строят такую же кривую. Стоп! Есть расхождение. Кто прав? Нужно несколько дней напряженных поисков, чтобы записать такое: «Первого участка кривой Микола не заметил по малой чувствительности его метода».
Другая работа — Шеринга и Шмидта. И в ней изъян: «На результаты опытов Шеринга и Шмидта оказало большое влияние неполное прилегание твердого металлического электрода к диэлектрику...» Курчатов и Синельников обнаружили, что в месте контакта образуются воздушные пузырьки, их-то и не учитывали Шеринг и Шмидт.
«Предположение Хике, что и в последнем случае будет происходить обмен зарядов на границе металл-диэлектрик, в данном случае, очевидно, лишено всякого смысла».
Курчатов и Синельников на опыте подтверждают свой категорический вывод. И наконец, еще одно решительное уточнение, показательное само по себе: «Что касается квадратичной зависимости силы тока от напряжения, то она не подтверждается опытом. Исследование же Мюнделя, как известно, привело к неправильным зависимостям, так как этот исследователь не учитывал обратной электродвижущей силы поляризации».
Такому же критическому обсуждению подверглась и их собственная работа в коллективе института. Академик И. К. Кикоин вспоминает, что он как раз впервые встретился с Игорем Васильевичем в 1927 году во время горячего научного спора на семинаре в Ленинградском физико-техническом институте по высоковольтной поляризации в диэлектрике. Докладчиком был Курчатов. Парируя возражения оппонентов, не успокаивался до тех пор, пока возражающий прямо не заявлял о своем согласии. Если такое согласие выражалось недостаточно определенно, он снова и снова возвращался к своей аргументации, подбирая новые доказательства и в конце концов добивался своего.
Следующий эксперимент И. В. Курчатова был очень важен в цепи исследований, проводившихся в лаборатории по выяснению поведения диэлектриков в сильных электрических полях и наступающего потом пробоя.
В слабых полях, как подтверждали и исследования Курчатова, соблюдался закон Ома, который, как известно, утверждает, что сила тока прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению. Но при определенной величине поля диэлектрик начинал сдавать. Его, так сказать, прочность падала, и вступали в действие невыясненные процессы, во много раз увеличивающие проводимость изолятора. Происходил пробой.
Какие же частицы играют решающую роль в том, что диэлектрик в сильных полях теряет свою стойкость — ионы или электроны?
И. В. Курчатов вместе с П. П. Кобеко подробно изучал электролиз в стекле. В процессе электролиза, как известно, на электродах — аноде и катоде — выделяются разные вещества. Стекло весьма совершенный изолятор. Продукты электролиза в нем можно едва заметить. А нужно было измерить — притом точно! — их количество. И Курчатов с Кобеко сделали это. В стекле электроны не были обнаружены. И хотя потом в некоторых кристаллах, например в слюде, отступления от закона Ома в сильных полях объяснялись наличием электронов, тот факт, что в стекле их не оказалось, надолго наложил свой отпечаток на развитие идей, которыми руководствовались в лаборатории.
В холодную ленинградскую весну 1927 года Игорь Васильевич сильно простудился. Долго не могли поставить диагноз. Марина Дмитриевна провела немало тревожных часов у постели больного, находившегося в сильном жару. Поначалу подозревали скарлатину, позже врачи сошлись на крупозном воспалении легких. Игоря Васильевича в тяжелом состоянии увезли в больницу. На вопросы близких следовал ответ врачей:
— Молодость — одна надежда.
Поправлялся Курчатов медленно. Бывало плохо с сердцем, врачи заметили признаки туберкулеза.
В первое же лето после выздоровления Курчатов провел отпуск в Крыму. И в последующие годы врачи постоянно направляли его в Крым, в Гаспру, где он лечился в санатории для научных работников.
Сразу же после выздоровления Курчатов вернулся к исследованию диэлектриков в сильных электрических полях.
В стекле и некоторых твердых солях механизм электролитической проводимости такой же, как и в водных растворах. Поэтому чего-либо принципиально нового установить тогда не удалось, хотя проведенные в лаборатории исследования и помогли накопить ценный 'экспериментальный материал по диэлектрикам.
Но новое возникало там, где его не ждали.
Первые же исследования пробоя дали удивительные результаты. Скажем об этом словами Игоря Васильевича: «В то время как до толщины в 0,01 мм прочность изолятора не меняется с толщиной и равна 500 тысячам вольт на сантиметр, при меньших толщинах она начинает расти, и довольно быстро, так что для слоя 0,001 мм пробивной градиент (значение пробивного напряжения изоляторов при толщине в 1 см. — П. А.) возрастает до 10 миллионов вольт...
Рост пробивной прочности не останавливается на значении в 10 миллионов вольт на сантиметр, а все время идет дальше по мере уменьшения толщины изолятора, достигая при толщине в 1/5000 мм значения 80 миллионов вольт, а для образцов 1/10000 мм — 150 миллионов».
Эти результаты вызывали оживленные споры. Волнение не могло не охватить молодежь, не вызвать интереса. Игорь Васильевич так оценил тогда последний результат: «Даже для физика сила, которая возникает в изоляторе при градиенте в 150 миллионов вольт на сантиметр, лежит вне привычных представлений».
Тому, что события развивались дальше со стремительной быстротой, способствовал и руководитель лаборатории Абрам Федорович Иоффе, также увлекшийся и выдвинувший свою идею пробоя изоляторов в результате образования лавины ионов.
«Явление это, — писал тогда Игорь Васильевич, — подобно горной лавине. Накопившийся снег, нависнув над пропастью, долго лежит спокойно. Но достаточно лишь сорваться одному камню, обвалиться куску снега, как этот небольшой толчок увлечет за собой несколько новых комьев, каждый из которых, в свою очередь, создает новые, и буквально в несколько мгновений рушится масса снега. Лавина вырывает с корнем деревья, сносит избы, засыпает селения».
Так вот, Иоффе предположил, что с уменьшением толщины изолятора число столкновений и вновь образующихся ионов падает и вероятность образования лавины, то есть пробоя, уменьшается. Ведь чем меньше толщина тела, считал он, тем меньше встреч ионов, тем больше сопротивление. Для того чтобы пробить тонкий изолятор, нужно приложить большие электрические силы.
Академик А. Ф. Иоффе пошел дальше — он сказал: раз все дело в том, чтобы изолирующий слой был достаточно тонким, то вместо одного толстого куска следует взять множество тонких. В каждом таком тонком слое ионизация будет очень слаба, она далеко не пойдет. Нужно только воспрепятствовать ионам переходить из одного слоя в другой, сделать для них непроницаемые перегородки. Так родилась идея о слоистых изоляторах, которые, как предполагали тогда, будут обладать сверхпрочностью и смогут сыграть огромную роль в производстве, передаче и потреблении электроэнергии.
Молодой Курчатов отнесся к этой идее с энтузиазмом, тем более что исследования А. Ф. Иоффе привлекли внимание физиков и электриков не только в Советском Союзе, но и за рубежом.
Курчатову виделся не только практический, но и научный интерес явления электрического упрочнения в тонких слоях изоляторов. Он считал, что «многие физические и химические свойства веществ изменяются под действием огромных сил, соответствующих градиенту в 150 миллионов вольт на сантиметр. Достаточно сказать, что сила притяжения двух капелек ртути, отделенных тонким слоем изолятора, при таком градиенте превышает давление пороховых газов в самых мощных орудиях современной артиллерии».
Испытания образцов тонкослойной изоляции как будто подтверждали мнение о том, что слоистая изоляция выдерживает во много раз большие напряжения, чем сплошная, и так как экспериментальные данные хорошо укладывались в готовую схему теории Иоффе, то возникавшим по ходу работы сомнениям никто не придавал должного значения.
Практика не подтвердила радужных надежд, а позже Анатолий Петрович Александров, новый сотрудник института, доказал, что в измерения вкрался источник ошибки, все увеличивавшейся с уменьшением толщины слоя. Это и приводило к тому, что приборы показывали величины, которых не было на самом деле.
Основным исполнителем этой работы был Курчатов («Наряду со стеклами, — писал Иоффе, — Игорь Васильевич тщательно изучал механизм токов и электрического пробоя в смолах и в особенности в олифе, которая считалась перспективным материалом для новой высококачественной изоляции. Эти надежды обосновывались тем, что, устраняя ряд пороков, свойственных в то время измерениям пробивных напряжений, Курчатову удалось получить результаты, далеко превосходящие все, что было известно».)
На вопрос, как внешне отразилась неудача на Игоре Васильевиче, Марина Дмитриевна ответила:
— И в радости и в горести он был скуп на внешние проявления. Достигнет какого-то успеха, с улыбкой скажет: «Вот смотри, какой у тебя муж...» И больше о нем не вспомнит, занятый уже новыми мыслями. Так и при неудаче — быстро переходил к новым делам. Когда узнал, что свойства тонкослойной изоляции не подтвердились, жалел только, что «зря раззвонили», как он выразился, по белу свету. А сам уже задолго до этого думал насчет другой проблемы, которой занялся одновременно с исследованием изоляции.
Неудача не обескуражила Курчатова. Она лишь разожгла его самолюбие, удвоила взыскательность к методике исследований, на всю жизнь оставила в нем недоверие к скоропалительным результатам.
Было бы неверно утверждать, что работы Игоря Васильевича по пробою ничего не дали теории и практике. В опубликованных в 1928 году исследованиях Курчатова, Кобеко и Синельникова по механизму электрического пробоя твердых диэлектриков имеется большой материал, не потерявший ценности и до настоящего времени. Эти работы привели к созданию новых изоляционных материалов — стирола, эскапона и других.
После неудачи творческая активность Курчатова еще более возросла. Он вел и большую организаторскую работу, обеспечивая лабораторию необходимым оборудованием, добиваясь практического внедрения ее апробированных выводов. Характерно в этом отношении его письмо того времени жене из Москвы, куда он выезжал в командировку: «Я целые дни мечусь по разным концам города, устраиваю разные дела, их появилось очень много за последнее время... Дома бываю редко, все на заводах, или в трестах, или же на дому у разных ответственных инженеров».
В коллективе молодых физиков за организаторский талант Курчатова прозвали генералом. Как вспоминает академик А. И. Алиханов, один из сотрудников лаборатории, отдыхавший на Волге и чуть не опоздавший на работу из-за задержки с пароходом, по приезде пошутил:
— Назначить бы туда Курчатова. Вот был бы управитель Волжского пароходства! Кораблики бегали бы как часы!
В двадцать семь лет старший инженер Курчатов был назначен заведующим отделом общей физики. Приказ об этом, датированный 1 октября 1930 года, хранится в архиве института.
В городском архиве удалось найти и справку о составе отдела, который возглавлял тогда Курчатов. У него работало восемь инженеров, один аспирант, десять лаборантов, два препаратора и один механик.
Коллектив трудился напряженно, порой дни и ночи напролет. Пример показывал молодой заведующий отделом. Когда в институт прибыла новая высоковольтная установка, Игоря Васильевича можно было видеть за ее монтажом вечерами и даже поздней ночью. Он вместе со всеми сотрудниками лаборатории монтировал трансформатор и ограждения к нему, кенотроны, изоляторы и другие детали. Отдых в лаборатории, состоял в уборке помещения. Любимым занятием уставшего Игоря Васильевича было красить столы и детали установок.
Академика Иоффе и его сотрудников давно уже заинтересовало необычное поведение в электрическом поле кристаллов сегнетовой соли (двойная натрикалиевая соль виннокаменной кислоты). Исследовалась эта соль пока мало, и было только известно, что она дает очень большие величины диэлектрической постоянной, причем при повторении опытов — разные.
Однажды, в конце 1929 года, когда А. Ф. Иоффе, профессор Н. Н. Андреев и И. В. Курчатов уточняли планы работ на будущее, зашла речь и о загадочных кристаллах.
— Пока достоверно известно лишь то, — хитровато поглядывая на собеседников, заметил Иоффе, — что эта соль примешивается к слабительному. Но никто из принимавших такие порошки понятия не имеет о природе ее электрических свойств.
И. В. Курчатов вызвался взяться за исследование странного диэлектрика и тут же получил добро от старших товарищей.
В марте 1930 года И. В. Курчатов и П. П. Кобеко предприняли широкое изучение диэлектрических свойств кристаллов сегнетовой соли.
Кристаллы выделяли из водных растворов в несколько приемов. Чтобы получить кристаллы в 20—30 кубических сантиметров, надо было выпарить 300 кубических сантиметров воды, а на это уходило двое суток. Еще больше времени требовалось для получения таких же кристаллов охлаждением насыщенного раствора — до шести суток. Между тем экспериментаторам нужны были образцы гораздо больших размеров, а их пока получить не удавалось.
Игорь Васильевич заинтересовал странностями сегнетовой соли кристаллографов.
«По ходу работ нам были необходимы очень большие кристаллы объемом до 300—500 см^3, — писал И. В. Курчатов, — такого рода кристаллы изготовлялись в кристаллизационной лаборатории Ленинградского физико-технического института по методу профессора Шубникова».
Участие в работе А. В. Шубникова — патриарха советской кристаллографии — помогло получить высококачественные сегнетовые образцы.
Обратившись к трудам исследователей, уже ставивших опыты с сегнетовой солью, Курчатов и Кобеко особое внимание обратили и на работы Валашека. Валашек определил величину диэлектрической постоянной этой соли при нулевой температуре. По его данным она составляла 1300 единиц, между тем, как правило, для твердых диэлектриков диэлектрическая постоянная колеблется в пределах от 2,5 до 15.Валашек по-разному объяснял столь необычный результат. Одну из причин он видел в высоковольтной поляризации, то есть неравномерном распределении поляризации внутри диэлектрика. Но прав ли Валашек? Ведь высоковольтная поляризация наблюдается во многих веществах: кальцитах, кварце, каменной соли, уже изученных Иоффе, Лукирским, Вальтером, самим Курчатовым... Почему же именно в сегнетовой соли она дает такой взлет диэлектрической постоянной?
«Теоретические представления Валашека не являются ни убедительными, ни единственно возможными...» — записали по этому поводу Курчатов и Кобеко.
Постепенно они пришли к мысли о совершенно новой природе явления. Но прежде чем попытаться объяснить эту природу, надо было убедиться, что диэлектрическая постоянная сегнетовой соли действительно составляет во много раз большую величину, чем у обычных диэлектриков. Попробовали ее измерить и натолкнулись на парадокс — сколько кристаллов, столько и величин диэлектрической постоянной!
Наконец стало ясно: кристаллы, долго лежавшие на воздухе, давали меньшие значения диэлектрической постоянной, чем только что полученные после кристаллизации; величина поляризации зависела от влажности воздуха и т. п.
Чтобы сохранить кристалл в хорошем состоянии и избежать влияния поверхностных токов, поместили образец в стеклянную трубку, хорошо замазанную с концов. Игорь Васильевич предложил использовать для измерений количества электричества не баллистический гальванометр, как делали все исследователи до них, а электрометр, благодаря чему повысилась чувствительность схемы.
Но и после этого измерения давали каждый раз другую величину диэлектрической постоянной.
— Да-а, крепкий орешек, — заметил Игорь Васильевич, когда они закончили очередную серию опытов. Но вид у него был оживленный. Ему даже нравилось, что секрет сегнетовой соли не сразу раскрывался.
Как-то Курчатова вызвал к себе Иоффе.
Игорь Васильевич оторвал взгляд от схемы, молча постоял минуту-другую, вздохнул (видимо, ему жаль было прерывать ход мысли) и, уходя из лаборатории, напомнил Павлу Павловичу:
— Думайте думайте, как быть дальше...
Абрам Федорович встретил его довольный, прямо сияющий.
— Я очень рад, — сказал он, поднимаясь из кресла, — что, наконец, дошла очередь до вас. Двадцать человек мы уже пропустили через заграничные храмы науки. Есть вакансия на поездку в Англию, в Кембридж.Кирилл Синельников вернулся, и не один, — Абрам Федорович сделал многозначительную паузу, — с женой-англичанкой. Чтоб не обижать наших невест, мы теперь решили посылать только женатых, — с обычной своей хитроватой улыбкой продолжал он, — решено начать с вас.
— Мне сейчас ехать некогда, — не поддаваясь веселому настроению, ответил Курчатов.
— Да вы в своем уме, друг мой? — пригрозил уже посерьезневший Абрам Федорович.
— Как-нибудь позже, а сейчас никак не могу, сами знаете, только-только прикоснулись к сегнетовым кристаллам.
— Сегнетовые кристаллы от вас не уйдут, а поехать за границу, может, и непредставится случай, — по инерции продолжал уговаривать Абрам Федорович, хотя понимал, что отказ Курчатова окончательный.
...Так и не довелось Игорю Васильевичу учиться за границей. Все ему было некогда.
Среди возможных причин, вызывающих разнобой в результатах измерения диэлектрической постоянной сегнетовой соли, подозрение пало на воздушный зазор между электродами и диэлектриком. Ведь воздушный зазор неизбежно изменялся от опыта к опыту и мог по-разному влиять на результат. Экспериментаторы решили применить жидкий электрод — насыщенный раствор той же сегнетовой соли: между жидкостью и кристаллом зазора быть не могло.
И вот первая радость. С электродами из насыщенного раствора удалось получить вполне однозначные результаты. Оказалось, что абсолютное значение диэлектрической постоянной при комнатной температуре в полях с напряженностью 200 вольт на 1 сантиметр достигает 9300 единиц. Величина получилась даже значительно большая, чем у прежних исследователей (вспомним 1300 у Валашека). Но Курчатов и Кобеко по первым данным не хотели выносить окончательных суждений. Это видно из комментариев к результатам измерений в их первой работе. Авторы подчеркивают, что измерения продолжаются, полученные данные проверяются.
Продолжая исследования уже после сдачи статьи в набор, Курчатов и Кобеко окончательно убедились, что природа необычайно высокой диэлектрической постоянной сегнетовои соли не имеет ничего общего с высоковольтной поляризацией, так как установили, что ее просто не наблюдается в исследуемых кристаллах. В корректуре они сделали добавление: «У заряженного кристалла сегнетовои соли заряд распределен по всей толще диэлектрика в противоположность тому, что обнаруживалось раньше в других веществах».
Это уже была половина победы.
Опыты продолжались с большим подъемом и длились... четыре года. «В результате четырехлетней работы, — напишет впоследствии И. В. Курчатов, — удалось выработать методику измерений, свободную от тех недостатков, которые могут быть указаны у предыдущих исследователей вопроса, установить однозначность результатов, показать, что явления поляризации сегнетовои соли не искажаются процессами образования объемных зарядов у электродов»2.
...Кстати, об электродах. Уже после того как насыщенные растворы сегнетовои соли дали хорошие результаты, авторы пошли дальше. Они установили, что мешать может не только воздушный зазор между электродом и испытываемым образцом, но и то, что этот образец в ходе опыта теряет из своего состава воду. Этим и объяснялись отмеченные Валашеком старение сегнетовои соли и влияние внешней среды на электрические свойства кристаллов. Пришлось отказаться от электродов из насыщенного раствора сегнетовои соли и взять раствор графита. Вода в нем не терялась, и он не вносил заметных искажений в эксперимент.
Игорь Васильевич впоследствии говорил: «Вопрос о правильной монтировке электродов и учете возможных искажений измерений с этой стороны представляет основной вопрос при изучении сегнетоэлектриков».
Понятие «сегнетоэлектрики» Курчатов первым ввел в физику. Так он назвал класс диэлектриков, обладающих такими же свойствами, что и сегнетовая соль. Что же это за свойства и чем они вызываются? Не высоковольтной поляризацией, отвечал Курчатов, а самопроизвольной. Обычно поляризация в диэлектрике возникает под воздействием электрического поля. Отрицательно заряженные частицы атомов диэлектрика (электроны), стремясь притянуться к положительному электроду, смещаются в одну сторону, положительно заряженные частицы (ядра) — в другую, образуются диполи, которые, располагаясь параллельными рядами, и создают поле самого диэлектрика.
В сегнетовой соли заряды разделены и ориентированы без воздействия внешнего поля. (Потому такая поляризация и называется самопроизвольной.) Общий же заряд кристаллов при отсутствии поля равен нулю, потому что кристаллы сегнетоэлектриков, словно фанера из ряда слоев, состоят из областей . с противоположными направлениями поляризации. Уже в слабом электрическом поле происходит переориентировка диполей и образуется мощный электрический момент всего кристалла. Подобным же образом ведет себя железо в магнитном поле. Вне поля оно не проявляет магнитных свойств именно потому, что миниатюрные магнитики, из которых состоит монолит железа, ориентированы по-разному и взаимно гасят друг друга; при попадании же в магнитное поле железо становится мощным магнитом.
Особенно ярко и полно аналогия с железом и другими ферромагнетиками проявилась при исследовании не кристаллов, а изоморфных смесей сегнетовой соли, которые Игорь Васильевич выполнял совместно с М. А. Еремеевым и Борисом Васильевичем. В одном из опытов проверялась поляризуемость смеси при разных температурах. Начинали с нормальной комнатной температуры. После подачи напряжения на электроды поляризация в смеси происходила быстро. А вот когда резко снизили температуру, картина изменилась. Приборы показывали, что по явному диэлектрику в течение нескольких часов идет ток!..
Было позднее время. Озадаченные происшедшим, Игорь Васильевич, Борис Васильевич и их товарищи молча расходились по домам. Жили братья уже в разных местах. Игорь Васильевич получил квартиру в Лесном. Борис Васильевич остался с родителями на Кировском проспекте.
Несколько дней длились поиски, раздумья. Борис Васильевич захворал и был дома, когда мокрый от весеннего дождя в квартиру ввалился Игорь Васильевич.
— Нашли?
— Да, — проговорил он, — это действительно ток, но не проводимости, а смещения диполей...
Присутствовавшие при этом родители — худощавый седоусый Василий Алексеевич и по-прежнему прямая и строгая Мария Васильевна, не понимая сути разговора, чувствовали его радостный смысл и оба улыбались.
В тот весенний вечер Игорь Васильевич был особенно весел, шутил, рассказывал родителям, сколько пришлось пережить огорчений прежде, чем сегнетоэлектрики открыли свои тайны.
Братья решили подробнее изучить для сегнетоэлектриков такие значения температуры, которые у ферромагнетиков именуются точкой Кюри. В этой точке магнитные свойства у ферромагнетика пропадают.
...Опять собраны сложные для того времени схемы, опять бессонные ночи, сотни измерений. Опыты подтверждают подмеченную Курчатовым аналогию электрических свойств сегнетоэлектриков с магнитными свойствами ферромагнетиков.
У сегнетовых кристаллов были определены две точки Кюри, верхняя и нижняя, в которых их особые электрические свойства пропадают. Верхней точке соответствовала температура +22,5° С, нижней — -15° С. Почему пропадают их свойства? Курчатов объяснил: в верхней точке это происходит из-за роста интенсивности теплового движения. Оно разрушает упорядоченные ряды диполей.
Труднее было объяснять процессы в нижней точке Кюри. Курчатов высказал предположение, что при низкой температуре ослабевает связь между диполями, и у них теряется стройность рядов.
На очередном заседании физического семинара Игорь Васильевич, докладывая об исследованиях сегнетоэлектриков в точках Кюри, высказал это предположение.
Яков Ильич Френкель не согласился с ним и выставил контргипотезу, по которой пары диполей располагаются так, что их заряды взаимно компенсируются. Участники семинара ждали отпора от Игоря Васильевича, так как привыкли к его манере вести полемику остро и темпераментно. Но Курчатов молчал, слушая выступления.
В заключение он удивительно миролюбиво сказал:
— Объединение того типа, о котором говорил Яков Ильич, приводит, очевидно, к тем же результатам в электрическом отношении, как и наше предположение, и до тех пор, пока не проведено теоретического расчета, в сущности, трудно отдать предпочтение той или иной точке зрения. Я, однако, должен признать, что предположение Якова Ильича, как более общее и имеющее определенные аналогии в других случаях, является более приемлемым, чем мое.
Очевидно, темперамент Курчатова все более подчинялся железной логике ученого. Замечания Я. И. Френкеля он привел в сноске к одной из работ по сегнетоэлектрикам. Эта доброжелательность к критике как бы приглашала: высказывайтесь, критикуйте, милости прошу, помогите правильно объяснить результаты опытов.
И. В. Курчатов и другие сотрудники лаборатории все подробнее выясняли механизм самопроизвольной поляризации сегнетовой соли. В каких кристаллах, толстых или тонких, сильнее проявляются электрические свойства? Оказалось, в толстых. При высоком их качестве и хороших контактах величина диэлектрической постоянной в малых полях доходит до гигантского значения — 190 тысяч единиц!
В ряде опытов удалось установить, что существует различие в величинах диэлектрической постоянной, измеряемой при разных направлениях электрического поля. Исследователи изучили пироэффект в сегнетовой соли, то есть появление зарядов на поверхности кристалла при изменении температуры. Выяснили особенности пьезоэффекта в сегнетоэлектриках — механические колебания, например звуковые, вызывают у сегнетоэлектрика электрические заряды и, наоборот, подведение переменного напряжения приводит к механическим колебаниям кристалла.
Глубоко проанализировал И. В. Курчатов и электрооптические свойства сегнетоэлектриков. Были рассмотрены показатель преломления, механические константы, коэффициент расширения, плотность при разных температурах, рассеяние рентгеновых лучей кристаллами.
И что особенно показательно — все экспериментальные данные Игорь Васильевич обосновал физическими и математическими выкладками, что и позволяет говорить о создании им новой области науки — учения о сегнетоэлектричестве.
С большим удовлетворением вникал Курчатов в техническое применение сегнетоэлектриков. Помните его слова, сказанные перед отъездом из Баку в Ленинград?
— А мы пойдем в физику, искать то, без чего вам, узким техникам, жить нельзя будет!
Наконец-то он начинает погашать выданный аванс! Сегнетоэлектрики открыли большой простор для техники. С их помощью удавалось умножать частоту тока. Начали строиться и испытываться микрофоны и громкоговорители с сегнетоэлектриками. А сейчас почти в каждой квартире можно встретить пьезоэлектрический репродуктор, берущий свое начало от сегнетоэлектрических приборов тех далеких лет.
Сегнетоэлектрик стал чувствительным элементом осциллографа. Одному из конструкторов, по словам И. В. Курчатова, удалось построить пьезоэлектрический осциллограф, который при разности потенциалов в 10 вольт давал возможность получить на шкале отклонения в 100 сантиметров.
Исследователи уже тогда приступили к поискам новых сегнетоэлектриков, у которых обозначились замечательные перспективы. Игорь Васильевич видел разгадку новых сегнетоэлектриков в изучении строения веществ, определяющих их свойства. Не случайно он так завершает свою монографию «Сегнетоэлектрики», изданную в 1933 году:
«Можно думать, что только с развитием общих представлений о структуре твердого тела удастся разыскать новые сегнетоэлектрики; но вместе с тем кажется несомненным, что эта задача будет успешно разрешена и на пути решения будут получены результаты, в свою очередь существенные в общих вопросах строения вещества».
Значит, дальнейшая разработка открытия настоятельно требовала заняться вопросами строения вещества. Характерно и другое — уверенность Игоря Васильевича в том, что новые сегнетоэлектрики будут найдены.
Развитие науки подтвердило его предсказания. Через десять лет в СССР был открыт новый сегнетоэлектрик — титанат бария. Б. М. Вул всесторонне исследовал его свойства, что способствовало быстрому внедрению в практику нового материала. Потом был открыт титанат свинца и другие сегнетоэлектрики.
О том, насколько высок был уровень исследований по сегнетоэлектричеству, выполненных во главе с И. В. Курчатовым, хорошо сказал академик А. Ф. Иоффе: «Об исследованиях Курчатова мне пришлось докладывать на международном электротехническом конгрессе в Париже и в лаборатории Резерфорда в Кембридже. Опыты были произведены исключительно четко, а системы кривых, изображавших зависимости эффекта от силы поля, от температуры, с такой убедительностью демонстрировали открытие, что к ним почти не требовалось пояснений. Мой доклад мог быть прочитан на интернациональном языке диаграмм». А. Ф. Иоффе докладывал о работах Курчатова по сегнетоэлектрикам во многих странах. Однажды он высказал такое категорическое мнение: «...самый выдающийся результат в учении о диэлектриках — это сегнетоэлектрики Курчатова и Кобеко». Не случайно монография И. В. Курчатова «Сегнетоэлектрики» была переведена сразу же на французский язык.
Став в двадцать семь лет заведующим физическим отделом института, Игорь Васильевич, естественно, не мог замыкаться в рамки одной какой-то проблемы. Он руководил многими исследованиями на разных направлениях, непосредственно участвовал в самых разнообразных работах.
Это и цикл работ, посвященных полупроводниковым выпрямителям и фотоэлементам, получившим сейчас широчайшее применение. Еще в 1929 году Курчатов исследовал механизм выпрямления в некоторых солях, изучал характеристики «вентильных фотоэлементов» — это название (кстати, Курчатов одним из первых ввел его в науку) означало, что открыт новый вид фотоэффекта — на границе соприкосновения двух тел. Но особое место среди всех этих работ занимает исследование карборундовых разрядников. Игорь Васильевич в своей автобиографии ставил его в один ряд с работой по сегнетоэлектрикам.
«Это была последняя дань, которую отдал Игорь Васильевич проблеме диэлектриков, перешедшей уже, впрочем, в проблему электронных полупроводников», — писал Абрам Федорович Иоффе.
Чем же близка была Курчатову эта проблема? Видимо, прежде всего тем, что диктовалась она острыми нуждами практики. С развитием электрификации страны все больше строилось высоковольтных линий, все актуальнее становилась проблема их защиты от атмосферных разрядов, в первую очередь от ударов молнии.
...Так состоялась первая встреча Игоря Васильевича с молнией, правда, пока не атомной.
При ударе молнии в линию электропередачи резко возрастает напряжение. Чтобы линия не вышла из строя, избыток напряжения нужно быстро отвести в землю. Для этого на линиях и ставят разрядники. Когда линия находится под обычным напряжением, сопротивление разрядника должно быть очень велико, чтобы ток не уходил по нему в землю. При резком возрастании напряжения (удар молнии) сопротивление разрядника должно так же резко падать, иначе избыток напряжения не успеет уйти в землю и линия выйдет из строя.
Столь своеобразно работающие сопротивления в то время уже были известны и применялись в разрядниках за границей. Но они были сложны в производстве и потому очень дороги.
И. В. Курчатов и его ученик Л. И. Русинов решили создать новое саморегулирующееся сопротивление. Было ясно, что такое сопротивление можно создать не из сплошного материала, а из зернистого, в котором между зернами остается воздушный зазор. Этот зазор будет барьером на пути тока, пока напряжение не велико. При ударе молнии напряжение возрастет, наступит пробой, и лавина тока, словно через открывшийся шлюз, стечет в землю. Из какого же материала лучше всего изготовить такое зернистое сопротивление?
Зерна из этого материала должны при малых напряжениях служить почти изолятором, а при возникновении перенапряжений мгновенно становиться хорошим проводником.
Абрам Федорович написал: «Загадочными представлялись электрические свойства применявшихся в высоковольтной технике карборундовых предохранителей».
И. В. Курчатов и его сотрудники занимались применявшимися предохранителями и искали новые, разрабатывали, внедряли.
Цитирую их высказывания: «...в порядке проб испытаны прессованные порошки карборунда и сцементированный кварцем карборунд, изготовленный заводом „Ильич“. На этом карборунде мы и провели в дальнейшем наши исследования».
Итак, и Игорь Васильевич и его сотрудники остановились на сцементированном кварцем карборунде. Карборунд — карбид кремния. Чистый карборунд — бесцветные прозрачные кристаллы, с примесями он имеет черную или зеленую окраску. Для карборунда характерны высокая теплопроводность и твердость, близкая к алмазу.
Изготовив образцы с мелкокристаллической массой и большим числом зазоров, исследователи стали измерять уменьшение сопротивления с ростом напряжения, время запаздывания при срабатывании. Выходило, что карборундовая масса может отводить удары молний не хуже зарубежных разрядников.
С завода, где ждали карборундовую массу для производства, интересовались ходом работы, поторапливали. Как-то Игорь Васильевич предложил своим коллегам:
— Не перебраться ли нам на время в заводскую лабораторию?
Проверка показала, что лучшим по качеству является зеленый карборунд, а выпускался пока черный. Завод стал готовиться к выпуску зеленого карборунда. Игорь Васильевич ходил в цехи, подробно вникал в вопросы технологии, испытывал новые образцы.
...Шли испытания образцов, выяснялось, насколько принятая технология обеспечивает стабильность электрических характеристик карборундовой массы. Производственникам кое-что пришлось изменить. Потом изучали влияние на качество сопротивления размеров зерна, давления формовки и количества связки, для которой использовались огнеупорная глина, полевой шпат и кварц,
Но Курчатова особенно интересовал еще один вопрос — старение сопротивлений, тем более что об эту проблему «ломали зубы» многие исследователи за рубежом, хотя опубликованных материалов практически не было.
Пришлось идти нехоженой дорогой.
Искусственная молния бессчетное число раз обрушивалась на опытные образцы разрядников. После каждого исследователи определяли, отчего стареет карборунд. Выяснили: старение «...сводится к термическому распаду под влиянием искрового разряда в порах». Сделали вывод: выгоднее брать мелкозернистую массу, а поры карборунда заполнять диэлектриком. В итоге возросла «жизнестойкость» массы.
Когда разрядники пошли в производство, Игорь Васильевич решил сравнить их с применявшимися за рубежом тайритом и оцелитом. По некоторым характеристикам карборунд несколько уступал тайриту, но превосходил оцелит. Главное же — технология его изготовления была намного проще и доступнее для производства.
Игорь Васильевич посчитал необходимым определите длительность службы одного образца в естественных условиях. Получилось, что старение разрядника, включенного в линию, произойдет не ранее чем через пятнадцать лет. Делая скидки на условность расчета, продолжительность была взята в пять лет. И вывод следовал такой:
«Все сказанное позволяет нам утверждать, что уже сейчас карборундовая масса С = 100 может быть применима в качестве сопротивлений в высоковольтных разрядниках».
О большом напряжении в работе Игоря Васильевича в те годы говорят и многочисленные выступления его на семинарах в институте. Вот далеко не полный перечень докладов И. В. Курчатова в 1931 — 1932 годах. Ноябрь 1931 года. «О возможных объяснениях процессов в разрядниках». В том же месяце — еще доклад о теории сегнетоэлектриков. В декабре 1931 года он делает сообщение о своих работах. Семинар 1932 года открылся январским докладом Игоря Васильевича «О зажигании дуги». В мае он выступил с некоторыми соображениями по вопросу о формовке (о процессе выделения на положительном электроде полупроводникового выпрямителя плохо проводящего слоя).
С 13 по 18 сентября 1932 года в Ленинграде проходила конференция по теории твердых (неметаллических) тел, на которой присутствовали крупнейшие мировые специалисты. Наряду с другими докладчиком был и Игорь Васильевич. Он рассказал собравшимся физикам об электрических свойствах сегнетовой соли. А спустя месяц, 7 октября, Игорь Васильевич высказывал уже свои теоретические соображения о пробое в газе при высоких давлениях на очередном семинаре в институте.
И так месяц за месяцем, семинар за семинаром. Новые идеи, новые поиски. Все шире взгляд, все тверже научный почерк, все больше уверенности и целеустремленности,
И не удивительно, что, когда в 1934 году в СССР были введены ученые степени докторов и кандидатов наук, по ходатайству академиков А. Ф. Иоффе и С. И. Вавилова Высшая аттестационная комиссия присвоила И. В. Курчатову ученую степень доктора физико-математических наук. Решением общего собрания Академии наук он был утвержден в ученом звании действительного члена института по специальности «Физика».
Интерес Курчатова к новой области науки — физике атомного ядра — возник не внезапно. Этот интерес постепенно, неуклонно нарастал в нем уже с того времени, когда его мысли были заняты сегнетоэлектриками, диэлектриками, разрядниками.
Тот факт, что он все больше и больше занимался новой тематикой, говорит в пользу его интуиции как ученого.
— Ни у кого я не видел такого дальнего прицела в науке, как у Игоря Васильевича, — сказал ученик Курчатова Константин Антонович Петржак.
Дальний прицел... Это, пожалуй, очень точное выражение. И в том, что Игорь Васильевич в 1932 году занялся ядерной тематикой, во многом сыграл роль этот прицел.
И то, что это произошло в 1932 году, тоже не случайность. 1932 год на пути проникновения в тайны атомного ядра имеет особое значение. В этом году английский ученый Дж. Чадвик открыл новую частицу — нейтрон, не несущую электрического заряда. Тогда же в физико-техническом институте родилась протонно-нейтронная модель ядра, идею которой выдвинул Дмитрий Дмитриевич Иваненко.
По инициативе А. Ф. Иоффе И. В. Курчатов, Д. Д. Иваненко, А. И. Алиханов и Д. В. Скобельцын расширяли фронт ядерных исследований в институте.
С ноября 1932 года стали регулярно проводиться ядерные семинары — по четвертым дням пятидневки, то есть пять раз в месяц. На них обсуждались все новейшие исследования по ОДРУ, квантовой механике, космическим лучам. Кроме сотрудников физтеха, на заседания приходили научные работники Других институтов. В среднем собиралось до 30—35 человек.
В январе 1933 года на одном из заседаний ядерного семинара Игорь Васильевич выступал с докладом «О некоторых работах из области строения ядра», в котором дал обзор последних исследований.
Второе выступление Игоря Васильевича состоялось в марте 1933 года. Темой выступления Игоря Васильевича было «расщепление ядер». Запомним дату: март 1933 года. Через два года уже выйдет в свет монография И. В. Курчатова; посвященная этому новому для науки явлению.
Участники семинаров услышали от Игоря Васильевича рассказ об искусственных превращениях ядер элементов под действием ядер тяжелого водорода (дейтерия), называемых дейтонами — частицами, состоящими из протона и нейтрона.
Эти реакции, впервые полученные группой американских атомников, тут же изученные И. В. Курчатовым, имеют важное значение и в настоящее время.
— При бомбардировке быстрыми дейтонами, — объяснял Курчатов участникам семинара, — все испытанные мишени, а именно: уголь, золото, платина, фтористый литий, окись кремния и латунь — излучают протоны с одними тем же пробегом... То обстоятельство, что во всех случаях получались протоны с одним и тем же пробегом, и привело в первый раз к представлению о расщеплении дейтона на протон и нейтрон...
В апреле 1933 года Игорь Васильевич выступил с сообщениями о работах Резерфорда по бомбардировке ядра тяжелыми частицами. Резерфорд еще в 1919 году обнаружил излучение протонов при бомбардировке азота альфа-частицами. Два года спустя он с Чадвиком опубликовал подробное исследование этого явления, в котором установил зависимость максимальной энергии протона, выброшенного в направлении движения альфа-частицы, от ее энергии.
— Так впервые было показано, — пояснил Курчатов потом в лекции в Московском университете, — что мы можем изменить строение ядра при помощи внешних воздействий. Этими работами было положено начало исследованиям над ядерными превращениями.
Причину успеха Резерфорда Курчатов видел в том, что он применил потоки альфа-частиц, движущихся со скоростью 20 тысяч километров в секунду. Зачем нужны такие скорости?
«Атом в целом электрически нейтрален, — пояснял Курчатов. — Благодаря этому возможно тесное сближение атомов разных элементов и этим обусловливается большая вероятность нормальных химических реакций, идущих за счет электронных обменов внешней оболочки атомов.
Нетрудно видеть, что совсем другие условия господствуют для ядер. При сближении ядер они будут испытывать громадное электростатическое отталкивание, так как очевидно, что на малых расстояниях (меньших диаметра орбит) электронные оболочки уже не будут компенсировать больших положительных зарядов ядра. Только в том случае и возможно тесное сближение ядер, когда ядра движутся с большой относительной скоростью и, несмотря на отталкивание, все же могут подойти одно к другому на небольшие расстояния».
— Вполне понятно, — говорил он, — что проще могут быть реализованы расщепления легких ядер, имеющих меньший заряд, чем тяжелых. Далее ясно, что легче вызвать расщепление частицами, имеющими малый заряд ядра, и лучше всего употреблять для этой цели атомы водорода, заряд ядра которых равен единице.
Именно стремление бомбардировать ядра по возможности легкими частицами с малым зарядом и привлекло внимание физиков и самого Курчатова к дейтонам и протонам.
— Эти представления явились программой работ ряда больших лабораторий и институтов, занимавшихся исследованием свойств ядра, — говорил Курчатов. — Предполагалось, что, употребляя в качестве снарядов разрушения протоны, удастся вызвать ядерные реакции при относительных скоростях частиц, меньших, чем те, с которыми оперировал Резерфорд. Эти предположения оправдались. Кокрофту и Уолтону в Кембридже первым удалось вызвать разрушение ядер лития пучком протонов. Они получали протоны больших скоростей, ускоряя их в электрическом поле в трубках, напоминающих обычные рентгеновские трубки и работающих на еще более высоких напряжениях...
Сделал новый шаг и сам Резерфорд. Он установил, что ядерная реакция между ядрами водорода идет при скоростях частиц, равных 1300 километрам в секунду.
— Казалось бы, — комментировал Игорь Васильевич этот результат, — реакция водорода с водородом ставит нижний предел для скоростей частиц, которые еще могут вызывать ядерные превращения, в этом случае отталкивающие силы между ядрами минимальные. Но поразительные открытия последних лет показалиоднако, что это оказывается неверным. Были обнаружены новые частицы — нейтроны, масса которых равна массе протона, а заряд равен нулю. Очевидно, что для нейтронов, не имеющих заряда, не будут существовать те ограничительные условия для сближения с ядрами, которые так сильно затрудняют взаимодействие ядер во всех других случаях, и apriori ясно, что нейтроны будут очень эффективны в ядерных превращениях.
В 1933 году еще не было условия для изучения взаимодействия нейтронов с веществом, так как не существовало доступных источников нейтронов. Поэтому свое внимание Игорь Васильевич обратил пока на протоны.
И источники протонов тогда были у нас еще малодоступны. «Хотя нам удавалось ставить интересные эксперименты по ядерной физике, — вспоминает академик А. И. Алиханов, — это было очень и очень нелегко. Дело в том, что в физико-техническом институте не было самого главного для исследования ядра — не было источника частиц для бомбардировки и расщепления ими ядер. В то время источниками частиц с большой энергией были естественные радиоактивные элементы — продукты распада радия. Радий был в количестве одного грамма в Ленинградском радиевом институте (теперь институт имени В. Г. Хлопина), и мы, пользуясь любезностью хозяев этого грамма радия, получали раз в 7—10 дней в запаянной стеклянной ампуле выделенную радием эманацию радия».
С целью создания новых источников заряженных частиц началось строительство высоковольтной установки в Украинском физико-техническом институте и ускорителя протонов в Ленинградском физико-техническом институте.
«В те годы в Ленинградском физико-техническом институте, — вспоминает академик И. К. Кикоин, — почти не было „ядерной“ культуры, если не считать небольшой лаборатории Д. В. Скобельцына, занимавшегося физикой космических лучей».
И Игорь Васильевич взялся за создание этой «ядерной» культуры. В физтехе был сооружен ускоритель протонов. Начала работать и высоковольтная установка в Харькове. На построенной своими руками аппаратуре для получения быстрых протонов И. В. Курчатов совместно с К. Д. Синельниковым, Г. Я. Щепкиным, А. И. Вибе выполнил свои первые работы по расщеплению ядер бора и лития.
Но для развития исследований недостаточно было построить ускорители протонов. Прогресс был немыслим без устройств, которые бы позволяли наблюдать за тем, что происходит с ядрами. Техника наблюдений за ядерными превращениями тогда только зарождалась, и опять у ее истоков в нашей стране стоял Игорь Васильевич Курчатов.
Вот как он сам описывает методы наблюдения за ядерными процессами:
«В виду крайней редкости событий, случающихся с ядрами, все эти методы построены на обнаружении одного атома, одного ядра или одного электрона. Решение такой задачи возможно только потому, что частицы в ядерных процессах имеют большие скорости и этим резко отличаются от мириад атомов и электронов, образующих применяемую в исследовании аппаратуру.
Очень большое значение в методике ядерных исследований имеют камера Вильсона и счетчик Гейгера».
Игорь Васильевич много работал над усовершенствованием этих приборов. Сохранилась ученическая тетрадь с надписью на обложке: «По методике к камере Вильсона. И. Курчатов».
Под руководством Игоря Васильевича была сконструирована автоматическая камера и проведены исследования по определению наилучшего режима ее работы; был сконструирован и счетчик Гейгера.
Все эти исследования проводились в очень сложных условиях. Мало того, что аппаратура для ядерных исследований тогда не выпускалась промышленностью, приходилось порой доказывать необходимость продолжения этих работ вообще. Член-корреспондент Академии наук СССР К. И. Щелкин вспоминает:
«Заниматься ядерной физикой в то время было нелегко. Некоторые консервативно настроенные лица считали ее наукой, „оторванной от жизни“, „не приносящей пользы производству“. А. Ф. Иоффе, как рассказывают, на время приезда различных обследователей иногда отсылал И. В. Курчатова из института и помалкивал об „оторванных от практики“ работах. Мне самому приходилось слышать на собраниях нападки на ученых, „не желающих помогать производству“ и занимающихся „никому не нужной“ ядерной физикой. К счастью, такие суждения не разделялись Коммунистической партией, Советским правительством, и в нашей стране еще в 30-х годах выросла сильная школа физиков».
Смотром сил, работающих на новом направлении физики, стала первая Всесоюзная конференция по атомному ядру, созванная физико-техническим институтом в Ленинграде осенью 1933 года. И. В. Курчатов, возглавивший оргкомитет конференции, с присущей ему способностью отдаваться целиком всякому делу, взялся за ее подготовку.
Он знакомился с представляемыми на конференцию докладами, определял состав участников, разрабатывал программу. Сохранились архивные документы, свидетельствующие об этом. В одном из них рукой Курчатова намечены основные направления работы конференции:
«1) нейтроны и позитроны,
2) космические лучи,
3) уровни ядра,
4) расщепление ядра».
В связи с этим совершенно очевидна ошибочность появившихся в печати утверждений, что И. В. Курчатов долгое время чувствовал себя новичком в новой области знаний и его участие в конференции по ядру якобы было неожиданным для многих физиков.
Печать широко освещала работу конференции. В день ее открытия профессор К. П. Яковлев в статье «За пределами атома», опубликованной в «Известиях», писал: «Необычайная важность проблемы изучения атома придает особый интерес и значение Всесоюзной конференции по атомному ядру, которая сегодня начинает в Ленинграде свою работу».
На конференции, сообщали «Известия» 26 сентября 1933 года, «...присутствуют крупнейшие советские ученые: академики Иоффе, Вавилов, Мандельштам, Чернышев, профессора Курчатов, Гамов, Иваненко, Скобельцын, Френкель, Дорфман, Неменов, украинские физики Синельников, Лейпунский, Вальтер, Финкельштейн...» Газеты также сообщали, что в президиуме конференции находились многие зарубежные ученые: Ф. Жолио, А. Перрен (Франция), Грей (Англия), Россети (Италия). В дальнейшем, уже в ходе работы конференции, к ним присоединились Дирак (Англия), Бек (Чехословакия) и Вайскопф (Дания).
В кратком вступительном слове академик А. Ф. Иоффе отметил, что за два года, предшествовавших конференции, произошла великая революция во взглядах на атомное ядро. Наметить дальнейшие пути в этой революции — так сформулировал он цель конференции.
Участие крупнейших ученых разных стран обеспечило успех конференции, которая показала всему миру, что советские ученые ни в чем не уступают своим зарубежным коллегам в области изучения атомного ядра. Их доклады на конференции были не менее интересны и значительны, чем доклады зарубежных коллег, их выступления в дискуссиях показали высокий уровень подготовки советских ученых, которые на равных с западными учеными могли обсуждать кардинальные проблемы своей науки.
Всесоюзная конференция по атомному ядру закончилась торжественным заседанием в Выборгском доме культуры. Выступили А. П. Карпинский, А. Ф. Иоффе, Поль Дирак. Профессор Вальтер рассказал собравшимся о новейших советских и иностранных установках по расщеплению атомного ядра.
Конференция закончила работу 1 октября. Оценивая ее значение, «Правда» писала: «Эта конференция во многом определила программу работ физико-технического комбината академика Иоффе».
Сам Иоффе так сказал в заключительном слове: «В качестве основной проблемы на вторую пятилетку мы намечаем также проблему ядра атома. Методы, которыми пользуется физика для разрушения ядра атома, смогут уже в ближайшем будущем найти себе применение в медицине и во многих других областях».
Успех конференции был и успехом оргкомитета во главе с Игорем Васильевичем Курчатовым, успехом всего физико-технического института.
Окончание работы ядерной конференции совпало с торжеством по случаю пятнадцатилетия института.
Пятнадцатилетие со дня создания ЛФТИ было отмечено приказом по Народному комиссариату тяжелой промышленности № 862 от 1 октября 1933 года, который гласил:
«За 15 лет своего существования Ленинградский физико-технический комбинат благодаря энергии руководителей, научных работников... сумевших направить свои знания и опыт на службу социалистическому строительству, имеет ряд крупнейших заслуг перед тяжелой промышленностью».
В пункте третьем речь шла о поощрении:
«Объявить благодарность за ценные научные достижения академику Семенову Н. Н., научным работникам: тт. Талмуду Д. Л., Курчатову И. В. ...»
Настоящую бурю вызвало в лаборатории И. В. Курчатова известие об открытии Энрико Ферми наведенной активности под действием нейтронов. При бомбардировке альфа-частицами некоторые вещества испускают не протоны, электроны или другие заряженные частицы, а нейтроны. Это давало ученым источники нейтронов, поисками которых упорно занимались во многих лабораториях мира.
Источник нейтроновоказался легкодоступным. Достаточно было заключить в стеклянную трубку альфа-активный газ (радон) и порошок бериллия, чтобы получить поток нейтронов. Под действием альфа-частиц бериллий испускал нейтральные частицы. На их пути надо было лишь поставить мишень. (Мишень применяли в форме, цилиндра, внутрь которого и помещен источник нейтронов.) В качестве мишени использовали поочередно разные вещества.
Еще недавно возможные только теоретически исследования взаимодействия нейтрона с веществом вдруг стали практически осуществимыми. Открывшиеся перспективы воодушевляли Курчатова. Он не знал покоя, экспериментировал без конца.
Академик И. К. Кикоин вспоминает:
«Когда И. В. Курчатов работал уже в области ядерной тематики, сотрудники института часто были свидетелями такой „забавной“ сцены. По длинному коридору института со скоростью участника стометрового забега мчался человек с каким-то крохотным предметом в руке. Это был И. В. Курчатов, торопившийся доставить только что облученную нейтронами мишень в лабораторию для исследования очередного короткоживущего ядра».
Любопытно, что подобную же картину описывает и Лаура Ферми в книге «Атомы у нас дома». Энрико Ферми так же, как Курчатов, носился по длинному коридору с только что облученными мишенями. Дело в том, что счетчик Гейгера надо было располагать как можно дальше от того места, где проводилось облучение, — иначе сильный фон гамма-лучей путал бы исследователям карты; в то же время облученную мишень надо было как можно скорее поднести к счетчику, так как ее активность резко падала за считанные минуты...
Ампулы с радон-бериллиевыми источниками изготовляли для Курчатова в радиевом институте. Но количество их было недостаточным, поток нейтронов небольшим, а хотелось использовать возможности нового метода, как говорится, до дна. Игорь Васильевич нередко оставался на ночь в институте. По воспоминаниям работавших с ним, он, как, впрочем, и все тогда, не заботился об элементарной защите от излучений — на его пальцах постоянно была розовая молодая кожа — результат радиоактивных ожогов.
Перед нами стопа статей о его работах, относящихся к весне и лету 1934 года. Среди тех, кто помогал ему тогда, брат Борис Васильевич, Л. Мысовский — заведующий отделом физики радиевого института, основной поставщик ампулок.
За этой стопкой статей — часы раздумий и обсуждений.
Первые же опыты Ферми показали, что почти все элементы после облучения нейтронами испускают электроны. Это свидетельствовало о происходящих под действием нейтронов ядерных превращениях.
Каков характер этих превращений? Прежде всего удалось установить, что активность элемента, подвергнутого действию нейтронов, падает по определенному закону: у каждого свой период полураспада. Так, после облучения кремния его активность падала вдвое через каждые 2,3 минуты, независимо от того, через сколько времени после окончания облучения начинаются измерения. Поскольку больше никаких полупериодов не обнаружилось, можно было сказать: в результате воздействия нейтронов здесь образуется лишь одно радиоактивное ядро с периодом полураспада в 2,3 минуты. Но уже алюминий дал более сложную картину.
Было известно, что после облучения нейтронами алюминий становится радиоактивным, причем период полураспада составляет около 12 минут. И вот Игорь Васильевич с товарищами обнаруживают совершенно другое излучение — с периодом полураспада 15 часов!.. Тщательно перепроверяют результаты и наталкиваются на третье излучение! — период полураспада 2,3 минуты...
Значит при облучении обычного алюминия образуются ядра трех сортов!
Прежде всего было ясно, что новые радиоактивные ядра не могут сильно отличаться по своему заряду и массе от ядер исходного элемента и должны занимать соседние места в таблице Менделеева. Такими элементами могли быть натрий и магний. Исследователи проводят необходимый радиохимический анализ — так и есть! Обнаруживаются радиоактивный изотоп магния (период полураспада 10 минут) и натрия (период полураспада 15 часов). А каково третье вещество?
«Стараемся отделить химическим путем его от алюминия. Не удается, — рассказывал Игорь Васильевич в одной из своих лекций. — И не мудрено, ибо это вещество есть не что иное, как радиоактивный изотоп того же алюминия с периодом полураспада 2,3 минуты».
...Еще раньше в лаборатории Игоря Васильевича было установлено, что при облучении одноизотопного элемента фосфора также идут две независимые реакции с образованием радиоактивных изотопов алюминия и кремния. Так была раскрыта еще °дна тайна ядерных превращений — разветвление ядерных реакций под действием нейтронов. Но, конечно, далеко не последняя.
Когда Игорь Васильевич и Лев Ильич Русинов начали опыты с облучением нейтронами брома, состоящего из смеси двух изотопов, ничто, казалось, не предвещало неожиданностей. Реле счетчика щелкало, отсчитывая частицы, излучаемые облученным бромом, уже выявились два новых радиоактивных ядра — и это было вполне закономерно: из двух устойчивых изотопов с массовыми числами 79 и 81 получались ядра с массовыми числами 80 и 82. Им и соответствовали два периода полураспада.
Наблюдения продолжались... Постепенно менялось выражение лиц у экспериментаторов. В щелчках реле они явственно чувствовали, как дает о себе знать еще одно радиоактивное ядро, которого не должнобы быть. Неожиданное появление третьего периода полураспада было либо результатом ошибки, либо... открытием. И Курчатов, и Русинов, и Мысовский еще и еще раз проверяли, нет ли ошибки. Но сомнения постепенно отпадали: обнаружен еще один элемент с периодом полураспа да 36 часов.
Решено было прежде всего по примеру того, как поступали с облученным алюминием, выделить неизвестный элемент при помощи химического анализа.
Однако никакими ухищрениями нового элемента обнаружить не удавалось. Но отрицательный результат в науке тоже зультат. В данном случае он говорил о том, что под действием нейтронов образовался не новый элемент, а третий радио активный изотоп брома.
...О странном, возбуждающем интерес эксперименте узнал весь институт. Заинтересовался им и Абрам Федорович Иоффе, хотя мысль его была занята проблемами полупроводников. Откуда появился у брома третий «незаконный» близнец?
Поначалу решили, что он возникает в результате реакции нового типа, которая проходит без захвата нейтрона а сопровождается выбрасыванием еще одного ядерного нейтрона.
Но экспериментаторы опровергли такое предположение. По расчетам теоретиков, реакция, сопровождающаяся испусканием нейтрона, должна бы требовать затраты энергии, а это возможно только при бомбардировке ядер быстрыми нейтронами. Она же, как доказали Игорь Васильевич и Лев Ильич Русинов, шла не только на быстрых частицах, но и на медленных...
Получалось, что новый изотоп по своему массовому числу... не отличается от уже исследованного. В нем столько же протонов и нейтронов, но совершенно другие свойства.
Так был сделан новый, принципиальной важности шаг в глубины атомного ядра. Оказалось, что свойства ядра зависят не только от количества частиц, но и от структуры. Ядра с одинаковым числом протонов и нейтронов, но разной структурой Курчатов назвал изомерами, а явление — ядерной изомерией.
Но какой же из изотопов брома «рождает» изомеры? Позднее установили, что бром с массовым числом 80 дает при взаимодействии с нейтронами два изотопа с периодами полураспада 18 минут и 4,2 часа.
Сейчас явление ядерной изомерии стало хрестоматийным, вошло во все учебники по ядерной физике. Оно подробно изучено, в том числе и самим Игорем Васильевичем, до конца жизни интересовавшимся судьбой своего открытия. Уже известно около сотни ядер-изомеров.
В краткой энциклопедии «Атомная энергия» так оценена эта работа И. В. Курчатова и его товарищей: «Примером выдающихся новых результатов, непосредственно связанных с развернувшимся в мировом масштабе изучением искусственной радиоактивности, может служить открытие ядерной изомерии искусственно активизированных веществ. И. В. Курчатов, Б. В. Курчатов, Л. И. Русинов, Л. В. Мысовский впервые наблюдали это явление в 1935 году в случае радиоактивного брома (Br^80). Значение ядерной изомерии в связи с вопросами структуры ядер начинает выясняться в самое последнее время».
Показательно и то, что в этом случае экспериментаторы, работавшие под руководством Игоря Васильевича, сами искали теоретическое обоснование открытому явлению. В связи с этим на одном из семинаров, где И. В. Курчатов и Л. И. Русинов докладывали о своих взглядах на процессы в ядрах-изомерах, Иоффе горячо поздравил их с успехом и высказал упрек в адрес теоретиков ядра.
— Жаль, что наши теоретики, — отметил он, — ничем не помогали экспериментаторам и им пришлось трудиться на два фронта: и выполнять сложнейшие опыты и тут же истолковывать факты. Тем знаменательнее их успех!
1935 год — поистине феноменальный по плодовитости даже для такого необычайно трудолюбивого ученого, каким был Игорь Васильевич. В этом году было опубликовано 17 его оригинальных работ. В качестве участников исследований выступали Г. Д. Латышев, Л. М. Неменов, М. А. Еремеев, И. П. Селинов, Д. 3. Вудницкий, Л. В. Мысовский, Л. А. Арцимович и другие.
О некоторых из этих ученых мы уже говорили и расскажем впоследствии, о двух же из них есть смысл рассказать здесь.
Л. М. Неменов, сын известного рентгенолога, основателя рентгеновского института, еще студентом по настоянию отца пришел в физтех. Иоффе определил юношу в лабораторию Курчатова:
— Вот, Игорь Васильевич, знакомьтесь — Буба Неменов. Будет вам помогать.
Давая поручения, Курчатов скоро заметил, с какой добросовестностью Буба берется за любое дело: красит детали, прокладывает трубы. Лаборатория пришлась Бубе по душе. Он окончил институт, был переведен в другой отдел на самостоятельную работу. Но в дни «радиоактивной лихорадки» Неменов пришел к Курчатову, принял участие в нескольких работах и «заболел» ядерной физикой окончательно. Л. М. Неменов так и остался работать с Игорем Васильевичем.
Владимир Иосифович Бернашевский работал механиком на одном из заводов. Проходя после смены мимо здания физтеха, где сверкали молнии, раздавался зловещий треск, он останавливался как зачарованный. Однажды он зашел туда попроситься на работу. Его взяли. В первые же. дни на него обратил внимание Игорь Васильевич. Уж очень увлекался опытами парень! И вот уже он не механик Володька, а уважаемый соавтор уважаемого ученого.
Знакомясь с именами тех, кто работал с Игорем Васильевичем, мы не можем не заметить, что число их год от году росло. Академик А. П. Александров справедливо писал по этому поводу: «Создание „задела“ на будущее, расширение фронта работ, привлечение новых сил — вот стиль Игоря Васильевича. В новую область физики И. В. Курчатов входил, как в битву, собирая силы на главном направлении, создавая резервы для будущего».
Вскоре после открытия наведенной радиоактивности Энрико Ферми начал исследования взаимодействий нейтронов с веществом не только на той большой скорости, с которой вылетали нейтроны из радон-бериллиевого источника, а и на других, меньших скоростях. Было известно, что нейтроны вылетают из бериллия со скоростью 30 тысяч километров в секунду. Если их «затормозить», то как они будут взаимодействовать с ядрами?
В 1934 году к подобным же исследованиям приступил и Курчатов. Он писал:
«Согласно нашим представлениям большие скорости вовсе не обязательны для того, чтобы нейтрон мог проникнуть в ядра элементов, расщеплять должны были и более медленные нейтроны».
Чтобы проверить это утверждение практически, следовало найти замедлители нейтронов.
И первое, что пришло в голову исследователям, применить воду.
Игорь Васильевич так рисовал механизм замедления нейтронов в воде: «Нейтроны, проходя через воду, испытывают время от времени столкновения с протонами, и ввиду того что масса обеих частиц примерно одинакова, при каждом столкновении энергия нейтрона... уменьшается. Вместо быстрых нейтронов мы получим, таким образом, медленные, со скоростью в 1000 километров в секунду».
Опыты подтвердили предположения, но кое-что и уточнили:
«Детальное исследование свойств замедленных (водой или парафином) нейтронов показало, что их скорости еще меньше, чем мы... рассчитывали... Нейтроны, проходя через воду или парафин, испытывают большее число столкновений, чем это было указано выше, и должны достигать по расчету в конце концов (в толщинах парафина всего лишь в 10 см) тепловых скоростей... порядка двух километров в секунду».
Ну хорошо, медленные нейтроны получены. Как они взаимодействуют с ядрами? Результат исследования искусственной радиоактивности, возбуждаемой замедленными нейтронами, полученный Э. Ферми, оказался совершенно неожиданным: медленные нейтроны вызывали искусственную радиоактивность в еще большей степени, чем быстрые. В этом немедленно убедился и Игорь Васильевич.
«Полученные с медленными нейтронами результаты настолько поразительны, — писал в те годы И. В. Курчатов, — что первое время казалось, будто мы имеем дело вовсе не с нейтронами, а с какими-то новыми частицами».
Потребовалось пересмотреть прежние взгляды. Игорь Васильевич отмечал: «Мы видим, что основные условия возможности ядерных реакций, которые мы ранее указывали (наличие большой скорости у взаимодействующих частиц), не всегда обязательны. Оказывается, что наоборот — при малых скоростях нейтронов ядерные расщепления проходят с максимальной интенсивностью».
Но со всеми ли ядрами происходит такое? Выяснению характера взаимодействия медленных нейтронов с ядрами разных элементов и были посвящены эксперименты 1935 года.
Работы велись и в физтехе и в радиевом институте. Много сил отнимало налаживание приборов. Нередко они все же подводили в самый горячий момент. Борис Васильевич Курчатов вспоминает, как Игорь Васильевич выручил однажды из «беды» академика Хлопина и его супругу, экспериментировавших в одной из лабораторий радиевого института. У них уже все было готово к опыту, как вдруг... щелкнули переключатели, а приборы молчат.
— Проклятый счетчик! — с досадой произнес женский голос.
Курчатову, находившемуся в соседней комнате, стало ясно — счетчик Гейгера «закапризничал». Игорь Васильевич с лаборантом отключили свой исправный счетчик и внесли в комнату, где работали Хлопины.
— Вот спасибо, — благодарили супруги, — сами ведь знаете, как тяжело откладывать уже готовый эксперимент!
Игорь Васильевич понимающе кивнул — тем более что свой эксперимент он вынужден был действительно отложить...
...От эксперимента к эксперименту, как по своеобразным ступеням, Курчатов шел к более полному познанию взаимодействия ядер с нейтронами. Будет ли расщепляться литий медленными нейтронами? Игорь Васильевич вместе с ленинградскими и харьковскими учеными ставит опыты. Замедлителем служит вода. Ампулу, излучающую нейтроны, опускают в бак, а сверху, на крышке бака, помещают мишень — пластинку лития, запаянную в алюминиевую коробочку. Сравнивать эффективность воздействия быстрых и медленных нейтронов можно, выпуская воду из бака и впуская ее. Когда воды между ампулкой и мишенью нет — действуют быстрые нейтроны, когда они разделены водой — медленные. «Мы убедились, — записали авторы в отчете, — что активность мишени обусловлена главным образом действием замедленных нейтронов».
Но мало установить этот факт. Надо определить, что за реакция происходит. Камеры отметили: вылетают две частицы. Одна из них — ядро трития, сверхтяжелого изотопа водорода с массовым числом 3. Итог определился так: поглощение ядром лития нейтрона приводит к образованию ядра трития и альфа-частицы.
Но это, так сказать, качественная сторона явления. А нельзя ли дать количественную оценку взаимодействия ядра лития с нейтроном? Нельзя ли, например, определить площадь круга, пролетая через который нейтрон будет захвачен ядром, расположенным в центре этого круга?
Произведя расчеты, Курчатов и его сотрудники установили, что «сечение захвата» (так именуется площадь этого воображаемого круга) у лития тем больше, чем медленнее пролетает нейтрон.
Но в дальнейшем обнаружились и аномалии. При определенной скорости нейтронов поглощение их вдруг резко возрастало, а при дальнейшем уменьшении скорости — опять падало. Испробовав в качестве мишени множество веществ, Курчатов пришел к выводу: некоторые из них способны резко увеличить поглощение нейтронов со строго определенными скоростями. Такое «резонансное поглощение», как его стали называть, оказалось особенно велико у лития, бора, кадмия, редкоземельных элементов и некоторых других веществ.
Обсуждение этих экспериментов вызывало в лаборатории оживленные споры.
«Я припоминаю драматическую ситуацию, — рассказывает академик А. И. Алиханов, — которая возникла в связи с обнаружением резонансного поглощения нейтронов. Явление заключалось в резком возрастании поглощения нейтронов в веществе в определенной, узкоограниченной области скоростей нейтронов. В этой работе участвовал и Л. А. Арцимович.
Он взял на себя роль «адвоката дьявола». Он упорно настаивал, что их опыты еще не доказывают с полной уверенностью существование резонансного поглощения нейтронов. Мы стали невольными свидетелями этих споров между Л. А. Арцимовичем и И. В. Курчатовым, так как хорошо слышали их голоса через стену.
Обычно спор кончался на том, что «противники» приходили к соглашению: провести еще один, решающий опыт. И так было несколько раз, пока, наконец, не появилась статья Э. Ферми и его сотрудников, в которой сообщалось о существо вании резонансного поглощения нейтронов».
Ядерные исследования велись одновременно в ряде стран. Каждый новый шаг одних ученых воодушевлял других. Идею итальянца Э. Ферми развивал француз Ф. Жолио-Кюри, а его предположение уточняли немцы О. Ган и Ф. Штрасман. Иногда одно и то же открытие рождалось в разных лабораториях.
Статья Ферми и его сотрудников вызвала, конечно, досаду у советских экспериментаторов, «выпустивших» из рук крупнейшее открытие. Но она же говорила и о другом: о том, что советские ядерщики стоят на верном пути, правильно оценивают происходящие на их глазах события и ни в чем не отстают от самых передовых лабораторий мира, штурмующих в одном строю с ними атомное ядро.
Работы И. В. Курчатова, выполненные совместно с Л. А. Арцимовичем и другими нашими учеными, не только подтверждали открытие Ферми, но и помогли доказать ошибочность некоторых выводов. Считалось, что вещества, жадно поглощающие нейтроны, должны сильно рассеивать их. И. В. Курчатов на примере серебра показал, что эффективное сечение рассеяния медленных нейтронов по крайней мере в двадцать раз меньше сечения захвата. Был обнаружен и другой важнейший факт. Коэффициент поглощения нейтронов при измерениях получается наибольшим, когда в качестве индикатора и поглотителя берется одно и то же вещество. Этот любопытный опыт также подтвердил так называемую селективность поглощения нейтронов.
В том же 1935 году И. В. Курчатов и Л. И. Арцимович открыли захват нейтрона протоном и определили первое значение сечения захвата. Эта работа сыграла важную роль для построения теории строения ядра дейтерия.
Подробно изучал Игорь Васильевич рассеяние нейтронов различными веществами, измерял сечения рассеяния. И в этих работах участвовали представители трех институтов — радиевого и двух физико-технических (Ленинградского и Украинского).
В отчетах об исследовании Игорем Васильевичем сечений захвата и рассеяния нейтронов фигурируют такие вещества, как кадмий, вода, свинец. Какое же давнее знакомство у. него с этими веществами, которые буквально незаменимы для нынешней атомной техники!
Очень симптоматично в связи с этим звучат разделы одной из работ И. В. Курчатова:
«1. Ослабление пучка нейтронов при прохождении через слои воды.
2. То же при прохождении через слои свинца».
При обсуждении результатов Игорь Васильевич анализирует «упругие» и «неупругие» соударения. Это на современном языке физиков ядра означает упругое и неупругое рассеяние нейтронов. Упругое рассеяние, как это выяснилось уже в то время, состоит в том, что «столкнувшееся» с нейтроном ядро остается в прежнем состоянии, а «отлетевший» нейтрон сохраняет свою кинетическую энергию. В случае неупругого рассеяния ядро переходит в возбужденное состояние, и из него вылетает нейтрон, причем не обязательно тот, который попал в него.
То, что уже тогда, в 1935 году, И. В. Курчатов занимался вопросами рассеяния нейтронов ядрами, — исключительно важно. Ведь, например, упругое рассеяние лежит в основе замедления быстрых нейтронов, а само замедление — один из важнейших процессов, протекающих в ядерных реакторах.
Так камень за камнем складывалось под руководством Игоря Васильевича основание отечественной нейтронной физики.
Размах деятельности Курчатова мог поразить не знавшего его человека. Он организовал лабораторию нейтронной физики в физико-техническом институте, вел, как уже отмечалось, исследования не только в области ядра, но и в других направлениях физики.
Он же был одним из основателей Украинского физико-технического института в Харькове, часто приезжал туда и «привозил» с собой «груз» новых замыслов. На многих его работах тех лет наряду с ЛФТИ значится УФТИ (Украинский физико-технический институт). Да и сам Игорь Васильевич в конце жизни вспоминал об этом:
«В начале 30-х годов мне довелось быть у истоков зарождавшейся атомной физики на Украине. В то время я часто приезжал в молодой физико-технический институт, созданный в Харькове по решению правительства в октябре 1928 года, и работал в нем со своими старыми друзьями: К. Д. Синельниковым, А. К. Вальтером и А. И. Лейпунским, вместе с которыми начинал свою научную деятельность в Ленинграде...
В Харькове с К. Д. Синельниковым мы работали над созданием новых высоковольтных установок, ускоряющих заряженные частицы для исследования атомного ядра. С А. К. Вальтером мы разрабатывали импульсные и электростатические ускорители для исследования атомных ядер. На основе этих исследований в последние годы советской промышленностью были выпущены электростатические ускорители, которыми оснащены многие ядерные лаборатории СССР. С А. И. Лейпунским были проведены исследования атомных ядер при помощи нейтронов, незадолго до этого открытых англичанином Чадвиком».
А вот и упоминание о частых поездках Игоря Васильевича в Харьков, непосредственно взятое из его переписки тех лет. 22 мая 1934 года он писал жене Марине Дмитриевне по пути из Харькова: «По всей вероятности, завтра уеду в Ленинград, с Кирой (К. Д. Синельниковым. — П. А.) я уже сговорился. Решили так. Если у них дела с трубкой продвинутся настолько, что можно будет до отпуска что-нибудь сделать, я в начале июня опять приеду в Харьков. Если же собрать трубку не удастся, я уже до отпуска останусь в Ленинграде».
А вот еще одна точка приложения сил И. В. Курчатова. Он участник организации филиалов физико-технического института в Сибири и на Урале. Это было еще весной 1931 года. Он писал тогда в Ленинград из Свердловска:
«Сегодня (20 мая) приступили к работе, увязали организационную сторону дела в Президиуме УСНХ. Вечером двинемся в редакцию „Уральский рабочий“ для разработки плана печатных выступлений, причем предлагают нам продиктовать статьи стенографистке. Город вообще организован по-деловому. Намечалась поездка в Златоуст на конференцию, но мы отказались, так как в Сибири будет много работы».
С тех пор ленинградцы активно помогали новым институтам стать на ноги.
И наконец, в Ленинграде появился еще один адрес, где можно было искать И. В. Курчатова. Это педагогический институт имени М. Н. Покровского, куда в 1932 году И. В. Курчатов был приглашен вести научные семинары с преподавателями и возглавить создание ядерного практикума для студентов.
Создавать новейшую лабораторию в институте, где на это не отводилось средств, было чрезвычайно трудно. Но занимался новым делом Игорь Васильевич буквально с упоением.
Помощников было много — весь институт. В организацию лаборатории включились молодые преподаватели А. В. Морозов, А. М. Прокофьев, ныне доценты, кандидаты наук. Много делали полезного и студенты А. А. Шебашев, П. И. Короткевич, Н. А. Денисов... Большинство из них стало видными физиками.
Шебашев, например, окончив институт, проявил большую склонность к науке, выполнил исследования по ядерной физике. С началом войны он добровольно вступил в ополчение и погиб в одном из боев на подступах к Ленинграду.
П. И. Короткевич во время работы в блокированном Ленинграде подорвал здоровье и умер, не дожив до главного штурма атомного ядра, об участии в котором всегда мечтал.
Игорь Васильевич регулярно собирал своих помощников. Для встречи с ними приглашал в педагогический виднейших ученых Ленинграда.
С большим успехом читал Курчатов курс ядерной физики. По отзывам тех, кто его слушал, он вел курс своеобразно, сложные вещи умел преподносить образно, просто. Студенты даже говорили друг другу: «До того ясно, что кажется, нечего и записывать. А в книгу заглянешь — намного труднее изложено, и жалеешь, что не записывал лекции».
Игорь Васильевич сообщал студентам о самых последних данных науки. В дополнение к посещению лекций каждый студент-физик выполнял практические работы по ядру, рентгеновым лучам. В итоге будущий педагог получал солидную научную подготовку.
Многие студенты занимались в лаборатории вечерами. Игорь Васильевич приезжал к ним, помогал разобраться в сложных схемах, выслушивал их мнения, подсказывал. Делал это весело, тактично, так что студент не волновался, а чувствовал расположение к совместной работе с ним. Резкой грани между учителем и учеником не было.
Лаборатория экспериментальной физики педагогического института не только была создана, но и вскоре заявила о себе. Одни только темы опубликованных ее сотрудниками работ говорят о многом: «К вопросу о селективном поглощении нейтронов» А. В. Морозова, «Определение коэффициента поглощения медленных нейтронов в воде» А. В. Морозова и А. А. Шебашева... И в конце каждой из статей: «В заключение позволяем себе принести благодарность И. В. Курчатову за руководство работой...»
Игорь Васильевич по-отечески заботился о лаборатории ядерной физики в педагогическом. Даже, находясь на отдыхе, далеко от Ленинграда, интересовался, как там идут дела.
Сохранилось письмо Игоря Васильевича А. В. Морозову, работавшему в институте над проблемой селективного поглощения нейтронов. Он определял коэффициент поглощения серебром нейтронов, пропущенных через теплый и охлажденный парафин. В ходе опытов выяснилось влияние температуры парафина на активность серебра, обусловленную мягкой компонентой нейтронного излучения. Эта работа опубликована в 1936 году.
Вот что писал Игорь Васильевич А. В. Морозову в ходе работы:
«28.III. Сегодня утром еще думал о ваших результатах...
Мне кажется странным, что имеет место такой большой эффект при охлаждении парафина... Этот результат надо проверить особенно тщательно.
Теперь еще вот что. Когда будете производить измерения, то записывайте и измеряйте эффект без рассеивающей среды, то есть давайте точку при слое парафина, равном нулю. В этом же случае, то есть для слоя парафина, равного нулю, снимайте точку с кадмиевым фильтром. Эти измерения нужны только для слоя парафина, равного нулю, при наличии рассеивателя мерить с кадмием не нужно.
Наконец, во всех измерениях, кроме записывания расстояний (об этом уже было указано), записывайте и число, когда производятся измерения с ампулкой. Это нам будет нужно для того, чтобы пересчитать все данные к одному моменту времени так, как будто они делались в один день. Вот пока и все.
Буду ждать от Вас ответа — достаточно ли ясно я все рассказал?
Как идут дела с камерой?..»
Игорь Васильевич разрабатывал планы работ аспирантов, рассматривал и правил их диссертации.
И сейчас, когда беседуешь с его бывшими учениками, их лица светлеют, о любимом профессоре они рассказывают с восторгом. Один из них — Виктор Георгиевич Лушковский, ныне декан математического факультета педагогического института имени Герцена, куда влился институт имени Покровского, с улыбкой рассказал такой эпизод.
Как-то Лушковскому редколлегия стенгазеты поручила сделать портрет Игоря Васильевича. «Я застал его, — вспоминает Лушковский, — в лаборантской после лекции. Я усадил Курчатова на стул, повернул его лицо к свету. Навел объектив на резкость. Быстро щелкнул, боясь надолго отвлекать его от работы. В лаборатории сразу же проявил — недодержка!
Снимок нужен был обязательно. Ну с какими глазами я еще раз буду беспокоить такого занятого человека?
Все же я решил в конце занятий покрутиться возле ядерной лаборатории; авось удастся встретиться и еще раз уговорить его сфотографироваться. Вижу, действительно быстрым шагом он выходит из лаборатории. Посмотрел на меня, сразу все понял, спрашивает:
— Что, испортил?
— Да, — подтвердил я.
— Ну ладно, пойдемте.
Я снял его еще раз и стал уже закрывать аппарат, как он спрашивает:
— А у вас есть еще пластинки?
— Есть, — ответил я, не понимая, к чему он клонит.
— Сделайте еще снимок... — и, многозначительно подмигнув, пояснил: — Для надежности.
Вскоре появилась стенгазета. В ней институтские дела были прокомментированы стихами Пушкина. Под портретом Игоря Васильевича мы подписали слова из «Бориса Годунова»: «Шестой уж год я царствую спокойно».
В 1936 году заслуги Курчатова перед институтом были отмечены в специальном приказе. В нем говорилось:
«Курчатова И. В., профессора кафедры физики, за эффективное высококвалифицированное руководство научно-исследовательскими работами по физике, большую добросовестность и умение поставить дело, за участие в повышении научной квалификации преподавателей... премировать 300 рублями».
В 1937 году Игорь Васильевич был утвержден в должности заведующего кафедрой экспериментальной физики.
А вот выписка из протокола объединенного заседания деканатов института имени Покровского от 11 июля 1938 года:
«Слушали:
Предложение дирекции института о выставлении кандидатуры доктора физико-математических наук Курчатова И. В. к избранию в действительные члены Академии наук СССР.
Постановили:
Учитывая, что Курчатов И. В. является крупным советским ученым, научно-исследовательская работа которого не только получила широкое применение в технике, но и свидетельствует о новых исканиях его в наиболее трудных областях современной физики, о новых путях, прокладываемых им в исследовательской работе молодой советской научной мысли — выставить от Ленинградского государственного педагогического института имени М. Н. Покровского кандидатуру доктора Курчатова И. В. в действительные члены Академии наук СССР.
Председатель Юров
Ученый секретарь Руткевич».
Игорь Васильевич не был избран тогда в академики. Однако сам факт выдвижения говорит об общественном признании его научных заслуг.
Как же хватало у Курчатова сил на его учебные, научные, общественные дела?
Секрет колоссальной работоспособности, может быть, в некоторой степени объясняется умением Игоря Васильевича отдыхать. В отпуске — ни минуты покоя. Спорт, походы, движение до полной физической усталости.
Игорь Васильевич сообщал из Крыма жене:
«...встаю в 7, с 8 до 9 играю с Анной Васильевной (жена А. Ф. Иоффе. — П. А.) в теннис. Это, оказывается, замечательно, дает прекрасную бодрость. Затем завтрак от 9 до 10; с 10 до 2 обычно гуляем по лесу. С 2 до 3 обед... С 4-30 до 5-30 играю опять в теннис...»
В другом письме:
«Был уже в двух больших поездках:
1) в Семеиз, в Институт физики моря;
2) в Крымский заповедник».
Занятия спортом, дальние походы быстро давали свои плоды. Прошло менее десяти дней, а он уже сообщает в Ленинград:
«Мое здоровье настолько поправилось, что завтра начинаю получать душ „шарко“, в результате которого из меня образуется вполне „элегантный молодой человек“, как заверил меня доктор».
Осенью 1937 года в Москве состоялась вторая Всесоюзная конференция по изучению атомного ядра. За четыре года, прошедших после первой конференции, фронт ядерных исследований продвинулся далеко вперед. Академик А. Ф. Иоффе в день открытия конференции писал в «Известиях»: «Медленное накопление фактов сменилось бурной атакой на атомное ядро...»
«Следует отметить, — подчеркивал А. Ф. Иоффе в своей статье, — интереснейшие опыты по расщеплению ядра, произведенные И. В. Курчатовым и его сотрудниками. Эти опыты привели к новым выводам и расширили наши знания о ядре».
На конференции собралось около 150 наших научных работников. Прибыли также иностранные физики — Пайерлс и Вильяме из Англии, Паули из Швейцарии, Оже из Франции. Участников конференции приветствовал вице-президент АН СССР, академик И. М. Губкин. Он сказал, между прочим, очень смелые для того времени слова:
«Изучение атомного ядра представляет не только теоретический, но и глубоко практический интерес. Я имею в виду проблему использования так называемой внутриядерной энергии. Современная физика еще не разрешила этой проблемы. Президиум Академии наук выражает уверенность, что настоящая конференция, которая рассмотрит крупнейшие теоретические вопросы, приблизит человечество и к решению проблемы практического использования внутриядерной энергии».
Председателем Оргкомитета второй конференции был Абрам Федорович Иоффе. Он рассказал участникам о громадных успехах, достигнутых нашей наукой, в том числе и в изучении ядра. Количество научных работников, занятых проблемой атомного ядра в СССР, по сравнению с 1933 годом увеличилось в пять раз.
Потом трибуна была предоставлена Кириллу Дмитриевичу Синельникову. Курчатов слушал своего друга и вспоминал светлый зал Украинского физико-технического института, где смонтирована уникальная «электронная пушка» — одна из крупнейших и самых совершенных установок такого рода в мире. Игорь Васильевич с удовлетворением видел, как зал внимает рассказу Кирилла Дмитриевича об этой пушке. Ее постройка была начата весной 1935 года. В 1937 году работы по монтажу мощнейшего генератора и сложных физических приборов были завершены. Генератор построен молодыми советскими инженерами под руководством Синельникова и Вальтера. Он заключен в огромный металлический шар диаметром 10,2 метра. Его поддерживают три изоляционных столба высотой 10 метров и толщиной 2 метра. Все сооружения установлены в специальном зале высотой с трехэтажный дом. В полом металлическом шаре генератора сосредоточены рубильники, кнопки, сложная система изоляции и управления. Внутри шара научные работники производят наблюдения, измерения, вычисления.
Одной из главных частей установки является электронная пушка, состоящая из сложной комбинации металлических цилиндров. По ним направляется пучок электронов, излучаемых вольфрамовой нитью. Электроны концентрируются и ускоряются в полях при напряжении генератора 5,5—6 миллионов вольт. Пучок ударяет в специальный экранчик, покрытый исследуемым веществом. Новая установка позволяла наблюдать процессы в ядре.
Наша печать широко откликнулась на выступление Кирилла Дмитриевича. Описания электронной пушки стали популярными, а упоминание о шаровых генераторах послужило, по-видимому, прообразом для «оборудования» института Солнца в фильме «Весна».
Не меньший интерес вызвали и другие выступления ученых. Так, профессор И. М. Франк рассказал о неизвестном для физики явлении, обнаруженном молодым ученым П. А. Черенковым и С. И. Вавиловым — свечении чистых жидкостей под действием быстрых электронов.
Игорь Васильевич Курчатов в своем выступлении как бы подводил итог всему, что было сделано в области нейтронной физики. Глубокий смысл таился уже в первых сказанных им фразах: «Явления, связанные со взаимодействием нейтронов с ядрами, имеют очень большое значение для современных представлений о строении ядра. В частности, закономерности, установленные при захвате медленных нейтронов, дают нам наиболее детальные сведения об энергетических уровнях тяжелых ядер».
На примере кадмия Курчатов еще раз подчеркнул, что «для рассеяния медленных нейтронов в кадмии сечение составляет лишь 1% сечения для захвата». Этим как бы выносился приговор кадмию: быть «стоппером» в ядерной реакции на медленных нейтронах. Так оно и случилось в наши дни.
На конференции Игорь Васильевич окончательно сформулировал вывод о селективном поглощении нейтронов. В качестве основания такого представления он привел результаты экспериментов, выполненных им совместно с Арцимовичем и Мысовским а также с Щепкиным в лаборатории физтеха.
После анализа всех известных тогда видов взаимодействия нейтронов с ядрами Игорь Васильевич сделал весьма оптимистические выводы. Вот как звучали заключительные слова его доклада: «...в ближайшее время, когда экспериментаторы будут располагать более мощным потоком нейтронов, будут получать и более точные данные, которые позволят многое узнать о строении ядра».
В целом же конференция показала, какими силами располагает советская ядерная наука и что ей по плечу самые серьезные свершения.
Чем мощнее, чем разнообразнее орудия для «стрельбы» по ядрам, тем большие результаты сулит их применение. Уже в 30-е годы начались поиски самых эффективных средств бомбардировки ядер. Первые такие орудия в СССР создавал Игорь Васильевич.
В статье «Ядерные исследования на Украине» Курчатов указал, что им совместно с К. Д. Синельниковым был разработан линейный ускоритель. Ученые применили длинную цилиндрическую вакуумную трубку, внутри которой поместили источник частиц — катод. Частицы через ряд трубчатых электродов направлялись к мишени. Напряжение на электродах менялось так, чтобы оно «толкало» частицы в такт их движению. И те разгонялись до высоких скоростей, сжимались в тонкий пучок.
Занимался Игорь Васильевич и циклотроном. В нем частицы разгонялись в круглой вакуумной камере. Там же находилось и ускоряющее устройство, сделанное в форме плоской круглой коробки, разрезанной по диаметру на две половины (дуанты). Когда частицы проходили в щели между дуантами, высокочастотное поле их «подталкивало». И так цикл за циклом частицы набирали скорость. Отсюда и название — циклотрон.
Первый циклотрон в радиевом институте был заложен еще в 1932 году, но его долго не удавалось довести до рабочего состояния. Игорь Васильевич взял его под свое попечение в конце 1936 года. Один из ученых вспоминает, что когда «...Курчатов включился в работу над циклотроном радиевого института, темп жизни этой лаборатории сразу изменился — он стал более напряженным».
Игорь Васильевич приходил домой в непривычном для Марины Дмитриевны виде — испачканный в масле, с натруженными руками: он ведь теперь имел дело с машиной, да еще с какой капризной!
И хотя пучок был получен уже в 1937 году, работа Игоря Васильевича над циклотроном радиевого института продолжалась и в 1938-м и позже. Когда в начале 1939 года Марина Дмитриевна на время уехала в Харьков, Игорь Васильевич, сообщая ей о своих делах, о работе над совершенствованием циклотрона и опытах на нем, писал 3 марта 1939 года:
«Я жив, здоров, порядочно работаю, главным образом в радиевом институте... С циклотроном понемногу дела налаживаются, что меня очень радует».
Через пять дней он отправил еще одну весточку: «Пока здоров в основном и много сейчас работаю в радиевом, попросту говоря в 10 начинаю, в 11 кончаю. Дела идут с циклотроном, прямо можно сказать, на большой палец. За время с 1 по 8 марта нам удалось удлинить время работы с 5 минут до
5 часов. Хотел в день XVIII партсъезда включить циклотрон на краткосрочную работу, но сегодня случилась авария. В результате все дело остановилось по крайней мере на шестидневку.
Впечатление от нашей работы начала марта в радиевом было настолько большим, что сегодня четыре мастера из механической остались работать на ночь и без перерыва на завтрашний день, чтобы выполнить все заказы, связанные с аварией».
И тут же неожиданная приписка:
«Сегодня пришел домой рано, решил погулять. У нас идет снег, но сегодня уже я видел вербы в педвузе. Так что скоро весна и твое возвращение домой!»
И другая: «Я что-то немного устал, постарел. Прежние темпы выдерживать уже трудно».
Что скрывалось за фразой об усталости, помог установить Д. Г. Алхазов, ныне заведующий циклотронной лабораторией ЛФТИ, а тогда верный помощник Игоря Васильевича по радиевому институту.
Однажды Игорь Васильевич вдруг почувствовал слабость, присел у столика для записи отсчетов. Товарищи заметили необыкновенную бледность его лица, бессильно опустившиеся руки.
— Друзья, — тревожно оповестил Алхазов, — да с ним обморок!
Все взволнованно забегали, кто-то отправился в аптеку. Но через минуту Игорь Васильевич пришел в себя.
— Вот к чему приводит недооценка защиты, — поднимаясь со стула и потирая ладонью лоб, проговорил он, И тут же распорядился носить в комнату дрова, пояснив с улыбкой: — Поленница послужит нам защитой. Я знаю, вы ждете, когда вам на блюдечке приподнесут баки с водой. А чем хуже сырые дрова?
Так с тех пор и управляли циклотроном из-за поленницы. Впрочем, не только наши ученые, но и американские в то время применяли «поленную» защиту. Тогда же решено было ввести в лаборатории радиевого института контроль за излучением работающего циклотрона с помощью ионизационных камер.
Но обморок Игоря Васильевича был вызван не только неаккуратным обращением с излучениями, но и переутомлением. Он же сам сообщал жене: «работаю с 10 до 11». А иногда сутками не отходил от циклотрона. Дело дошло до того, что общее собрание сотрудников лаборатории постановило: в обязательном порядке удалять Курчатова из лаборатории наотдых. Видимо, в день, когда Игорь Васильевич написал в Харьков, что пришел домой рано и решил погулять, постановление было выполнено твердо.
Получив пучок, сотрудники циклотронной лаборатории смогли начать целеустремленные физические исследования. Основные опыты проводились с дуантами длиной 34 сантиметра и шириной 2 сантиметра. Щель между ними, в которой и происходило ускорение частиц, составляла 2 сантиметра. В эту щель и вводили мишень.
— Эврика! — раздался однажды возглас при пуске циклотрона.
— Что за эврика? — спросил вошедший в лабораторию Игорь Васильевич.
Оказалось, что Алхазов и Рукавишников осуществили пуск без источника ионов. Циклотрон работал как обычно, только давление газа было повышенное.
С помощью Игоря Васильевича, хорошо знавшего физику разрядов в газах, удалось установить, что между дуантами возникает тлеющий разряд, создающий ионизацию без специального источника.
Полгода работы было посвящено выяснению особенностей счастливо обнаруженного режима. Прежде всего ученые установили, что пучок дейтонов, падающий на мишень, обладает энергией 1,8 миллиона электрон-вольт и силой тока 1,5 микроампер. Дальше решено было определить вторичный поток нейтронов, которые дейтоны способны «выбить» из лития, если взять его в качестве мишени. Оказалось, что из лития вылетает столько нейтронов, сколько могли бы дать 40 граммов радия с бериллием. Вспомним, что еще в 1932 году в распоряжении наших ученых для изготовления «ампул» был лишь один грамм радия.
Игорь Васильевич сделал важный вывод: «Когда установка ориентирована на получение мощного нейтронного излучения, работа на тлеющем разряде, таким образом, оказывается выгодной и технически целесообразной».
Но и такое заключение не охладило его пыл. Игорь Васильевич предложил «подзаряжать» дуанты — подводить к ним постоянное напряжение в 10—20 тысяч вольт. Он предположил, что это сделает разряд более устойчивым и, значит, увеличит выход нейтронов. Предположения подтвердились. «При работе с мишенью из лития, помещенной внутри камеры, — писал потом И. В. Курчатов, — выход нейтронов, по нашим оценкам, эквивалентен не меньше чем 35 килограммам радия и бериллия». Цифра для того времени внушительная, если учесть, что американские ученые, работая с такой же камерой и применяя наиболее тогда совершенный источник ионов, получали нейтронное излучение, эквивалентное всего 1 килограмму радия и бериллия. Игорь Васильевич заключил, что в применении к данной реакции тлеющий разряд дает лучшие результаты. И делал окончательный вывод: «Можно утверждать, что в ряде специальных случаев следует предпочесть более простой режим работы камеры на тлеющем разряде обычному режиму с посторонним источником ионов».
Даже беглое знакомство с деятельностью И. В. Курчатова в радиевом институте подтверждает высказанную академиком И. К. Кикоиным мысль о том, что «в течение очень короткого времени работы этой лаборатории, выполнявшиеся фактически под руководством И. В. Курчатова, вышли на уровень работ мировых лабораторий, имевших давнишний опыт».
Начало 1939 года характеризуется новым увлечением Игоря Васильевича, правда, не научным. Он давно уже мечтал о собственном автомобиле, начал копить деньги и поступил в школу водителей.
Марина Дмитриевна понимала, как трудно будет ему выкроить время для новых занятий, но охлаждать его не хотела. И вот, находясь в Харькове, она получила от Игоря Васильевича известие, изрядно развеселившее и ее и семью брата, у которого она тогда гостила:
«Сегодня первый раз ездил на автомобиле, — сообщил начинающий автомобилист-любитель, — пока получается неважно. Ездил во дворе, смял бочку из-под бензина. Несколько раз был близко от деревьев. Хорошо, что ездили на первой скорости».
Времени для сна у него стало оставаться еще меньше. Он с трудом по утрам отрывал голову от подушки, иной раз не помогал даже звон будильника.
«Один день, — сообщал он в Харьков, — тут я чуть-чуть не опоздал. Прозвонил будильник, а я встал через час после этого. Спустя семь минут после пробуждения я был на остановке и приехал вовремя».
Рассказав обо всех этих случаях — с автомобилем, с будильником, — он не без юмора заключил: «Это основные новости, наиболее яркие, если не считать науки».
Во многих документах института тех лет отмечается решающая роль Игоря Васильевича в организации практикума по новейшей физике:
«В Ленинградском государственном институте имени М. Н. Покровского тов. Курчатов работает с 9 марта 1935 года в должности руководителя научно-исследовательской работой кафедры физики, а с 1937 года — в должности заведующего кафедрой экспериментальной физики. Тов. Курчатов является одним из молодых, талантливых специалистов в области теоретической физики. Руководя кафедрой, он уделяет много внимания научно-исследовательской работе сотрудников, подготовке диссертаций, повышению научной квалификации преподавателей. Одновременно с этим Курчатов И. В. ведет работу со студентами-отличниками, помогает им в исследованиях. Курчатов является также консультантом по разработке и производству тонких физических приборов для педагогических вузов и учительских институтов».
Сохранился рукописный экземпляр «Руководства по специальному физическому практикуму» под редакцией И. В. Курчатова. Он полностью подготовлен к печати, выйти в свет помешала ему война. Государственное учебно-педагогическое издательство всячески торопило Игоря Васильевича со сдачей рукописи. У А. В. Морозова хранится письмо Курчатову из издательства: «Редакция убедительно просит Вас возвратить рукопись не позднее срока...» Рукопись, безусловно, представляла большую ценность, так как была единственным в своем роде систематизированным собранием основных лабораторных работ по экспериментальной физике.
Интересно и другое. Рукопись была на рецензии у человека задиристого и недостаточно осведомленного. Сохранились его отзыв и сокрушительные комментарии к нему Игоря Васильевича на полях: «Вздор!», «Первый раз слышу», «Это ни к чему», «Не верно», «Не согласен». Но даже в явно недоброжелательной и малокомпетентной критике Игорь Васильевич отмечает все сколько-нибудь ценное. Поэтому можно встретить такие сочетания: «Не согласен. Может быть, стоило бы ввести метод Буша?»; «Рецензент путает. Но в работе надо сделать несколько изменений»; «Тут какое-то недоразумение со стороны рецензента. Может быть, и надо дать несколько пояснений».
— Раз человек споткнулся, посмотрите еще раз, может, и удастся улучшить изложение, — требовал он от авторов, учил их становиться выше недобросовестной критики.
В документах педагогического института содержатся конкретные данные о результатах научно-исследовательской работы кафедры, которой руководил Игорь Васильевич:
«Профессору Курчатову удалось из членов руководимой им кафедры создать актив, интенсивно занимающийся наукой. За последний год сданы в печать четыре работы, а подготовлены к печати шесть».
Несколько позже в другой характеристике говорилось:
«Под его руководством научные сотрудники института и студенты-физики смогли закончить ряд работ, напечатанных в журнале „Экспериментальная и теоретическая физика“. Разработка научных проблем в области ядерной физики продолжается интенсивно и до настоящего времени лишь благодаря энергичному руководству Игоря Васильевича Курчатова.
Его внимательное и любовное отношение к педагогическому вузу имеет своим результатом подготовку им молодых, растущих педагогических кадров».
Активная натура Курчатова не позволяла ему ограничиваться лишь преподавательской и научной работой.
В характеристике, данной ему педагогическим институтом, отмечалось:
«В общественной жизни института профессор Курчатов принимал деятельное участие. Он читал доклады для учителей Ленинграда, оканчивающих вузы студентов и т. п. От общественных поручений профессор Курчатов никогда не отказывался, выполнял их всегда добросовестно, точно и охотно».
В 1939 году коллектив педагогического института выдвинул И. В. Курчатова кандидатом в депутаты Ленинградского городского Совета. Сохранилась личная карточка депутата Ленсовета Игоря Васильевича Курчатова, избранного по 158-му избирательному округу.
С гордостью получил он мандат депутата Совета города Ленина. С честью нес обязанности народного избранника.
«Я имел счастливую возможность, — вспоминает научный сотрудник ЛФТИ М. М. Бредов, — познакомиться с этой стороной деятельности Игоря Васильевича... Я состоял в его депутатском активе и часто выполнял его поручения по расследованию различных вопросов, поднимавшихся избирателями. Я помню до сих пор то впечатление, которое произвела на меня эта деятельность Игоря Васильевича. Терпение, внимание, доброжелательность к людям и чувство ответственности уже в те годы выделяли его как большого общественного деятеля. Высокое общественное и научное положение Игоря Васильевича в последние годы его жизни не ослабили, а усилили эти прекрасные свойства его характера».
Хотя циклотрон радиевого института был отлажен и физические исследования на нем шли полным ходом, он уже не удовлетворял ученых. Для того чтобы глубже проникнуть в тайны ядра, нужно было бомбардировать его более мощными снарядами, нужны были частицы больших энергий, чем могла дать установка радиевого института. Решено было, наконец, форсировать осуществление проекта большого циклотрона ЛФТИ, разработанного еще в 1935 — 1936 годах; за этот проект Игорь Васильевич был тогда удостоен Почетной грамоты.
Для руководства работами на этом втором направлении развития циклотронной техники в Ленинграде Игорь Васильевич сформировал своеобразный штаб. В него вошли А. И. Алиханов, Л. М. Неменов, Я. Л. Хургин, П. Я. Глазунов и другие.
«Обязанности мы разделили следующим образом, — вспоминал потом А. И. Алиханов, — внутренние дела (проект, строительство) взял на себя И. В. Курчатов, а внешние дела (хлопоты, деньги, фонды на материалы) — автор этих строк».
«Надо заметить, — добавляет далее А. И. Алиханов, — что по тем временам постройка циклотрона была грандиозным делом». В ней участвовали многие коллективы вузов и предприятий Ленинграда,
Расчет электромагнита будущего циклотрона выполняла кафедра электрических машин индустриального института. Полюсы этого электромагнита должны были иметьуже солидный диаметр — 1,2 метра. Так что циклотрон обещал быть самым мощным в Европе.
Крупнейшие ученые Ленинграда помогали делать расчеты, разработать конструкцию электромагнитов и всего циклотрона, топографию магнитного поля.
И вот к концу 1939 года в квартире Курчатова, в доме специалистов на Лесном проспекте раздался телефонный звонок. Как вспоминал С. М. Гохберг, он спешил сообщить Игорю Васильевичу радостную весть:
— Закончен технический проект электромагнита!
— Очень, очень благодарен, — ответил Игорь Васильевич, — теперь бы поскорее разместить заказы на изготовление.
— Да, это будет нелегко, — отозвался собеседник на другом конце провода.
— Ничего!.. Найдем энтузиастов, — уверенно закончил разговор Игорь Васильевич.
И действительно.
«Несколько неожиданно для нас, — вспоминает А. И. Алиханов, — ленинградские заводы легко пошли нам навстречу, взявшись за изготовление (вне плана) электромагнита циклотрона. На заводе „Электросила“ в то время главным инженером был профессор Д. В. Ефремов — крупнейший советский электротехник; он нас горячо поддержал.
Не могу не вспомнить того, что Д. В. Ефремов, став после войны министром электротехнической промышленности СССР, оказал советской физике совершенно неоценимую услугу, наметив большую программу строительства в СССР крупных ускорителей, которую буквально своими руками почти до конца провел в жизнь (он скончался год спустя после смерти И. В. Курчатова)».
Совместная работа над циклотроном сблизила И. В. Курчатова с А. И. Алихановым и Д. В. Ефремовым, которые стали его близкими друзьями. Игорь Васильевич шутливо называл Алиханова сокращенно от его имени и отчества (Абрам Исаакович) Абушей, а Ефремова по инициалам (Д. В.) — Дэвочкой.
И вот наступила торжественная минута.
...Прозрачным, светлым днем бабьего лета 22 сентября 1939 года на просторном дворе физтеха под бурные аплодисменты Абрам Федорович Иоффе заложил первый кирпич в фундамент будущего здания. Второй кирпич заложил Игорь Васильевич Курчатов, которого тогда уже назвали «отцом нового циклотрона».
Началась строительная горячка. Она потребовала от Игоря Васильевича таких сил и столько времени, что ему вскоре пришлось уйти из радиевого института и все свое внимание сосредоточить на новом объекте. Он добивался наивысших темпов возведения здания. Предложил использовать для него железо, стекло, отказался от дерева и других водородсодержащих материалов, считая, что они будут сильно рассеивать нейтроны. Бетон был применен только в нижней части здания.
Чтобы обезопасить работников других лабораторий института от излучений, циклотрон возводился в месте, удаленном, от них на расстояние более 50 метров. Для сотрудников циклотронной лаборатории предусматривалась водяная защита толщиной в 1 метр.
Много хлопот доставляли Игорю Васильевичу дефицитные материалы. Требовалась вся его оперативность, чтобы достать их вовремя и в нужном количестве. М. М. Бредов вспоминает, например, как он покончил с одним узким местом строительства: не было материалов для крыши здания. Игорь Васильевич объехал заводы и на одном из них уговорил дать для циклотрона гофрированное железо.
А Марине Дмитриевне запомнился такой эпизод. Как-то поздним вечером они на последнем трамвае возвращались с весенней прогулки. Игорь Васильевич, внимательно вглядывавшийся в темный прямоугольник окна, вдруг поднялся и предложил:
— Давай-ка сойдем на минутку.
— Да ты что? Это же последний трамвай! — пыталась остановить его жена.
— Неважно. Доберемся до дому. Если хочешь, я тебя на руках донесу. Мне очень надо сойти.
Растерявшаяся Марина Дмитриевна пошла за ним. Что могло приключиться? Трамвай остановился. Игорь Васильевич взял жену под руку и повел ее в обратную сторону.
— Постой-ка здесь, — сказал он и направился к темневшей груде чего-то подобного бочкам. — Ну, конечно, — доносился оттуда его голос до Марины Дмитриевны, — бочки из-под свежего цемента. И где они, черти, только достают? Подожди-ка, я узнаю, что это за контора. — И он направился еще дальше, к воротам.
А наутро, как потом узнала Марина Дмитриевна, он побывал там, где обнаружил цемент, и его действительно выручили. Уже были готовы высокочастотный генератор, генератор питания ионного источника. На одном из заводов соорудили кольцевую вакуумную камеру с запасом пирексовых изоляторов. Из электромашинного оборудования не хватало только мотор-генератора для питания циклотронного магнита.
Игорь Васильевич долгое время искал и, наконец, добыл где-то агрегат. Правда, находился он в плачевном состоянии. Требовался капитальный ремонт. Все было сделано в срочном порядке. Перемотанный и свежепокрашенный стоял он, готовый к действию на все свои сто с лишним киловатт!
Одновременно Игорь Васильевич готовил кадры для работы на будущем циклотроне: для приобретения опыта новички пока работали на циклотроне радиевого института.
«К сожалению, нам не повезло... — вспоминает А. И. Алиханов. — Начавшиеся на Карельском перешейке военные действия погрузили Ленинград в мрак и прервали работы по строительству циклотрона. Вскоре они были возобновлены, но грянула Великая Отечественная война, и все прервалось».
Пуск циклотрона намечался на 1 января 1942 года. 22 июня 1941 года, в день начала войны, «Правда» сообщила из Ленинграда в информации под заголовком «Советский циклотрон»: «В Лесном, на территории физико-технического института Академии наук СССР недавно построено двухэтажное здание, похожее на планетарий. Продолговатый корпус увенчан куполом...
Сейчас в новом здании устанавливаются электрические агрегаты, монтируется оборудование. В машинном зале уже стоит генератор мощностью 120 киловатт. Через люк в потолке на бетонный фундамент спускаются детали второго генератора. В соседнем помещении смонтирован огромный распределительный щит.
Внушительное впечатление производит круглый зал, построенный целиком из железа и стекла. Он покоится на восьми массивных стальных колоннах. В ближайшее время здесь будет установлен 75-тонный электромагнит высотой около 4 метров. Диаметр его полюсов — 1200 миллиметров.
Под куполом зала две мощные подкрановые балки. Скоро на них лягут рельсы и придут в движение крановые тележки грузоподъемностью в 25 тонн».
...Война перечеркнула все планы и раскидала в первые же дни всех участников постройки циклотрона в разные края советской земли. Но то, что они делали, их опыт создания циклотрона остался при них.
Для самого Игоря Васильевича строительство ленинградского циклотрона было первым делом, в котором в больших масштабах сочетались научные, технические и производственные задачи. Это был пробный камень организаторских способностей И. В. Курчатова, его умения руководить самыми разнообразными коллективами специалистов.