В настоящей главе кратко изложены некоторые результаты квантовомеханической теории строения атома, причем основное внимание уделено тем ее аспектам, которые представляют интерес для теории химической связи.
В квантовой механике состояние N-электронной системы описывается волновой функцией зависящей от пространственных координат (ri) и спиновых переменных (σi) всех электронов. Эта функция должна удовлетворять уравнению Шредингера
(2.1)
где — оператор Гамильтона (гамильтониан), определяющий рассматриваемую систему и для атома с зарядом ядра Z,имеющий вид
(2.2)
Не следует думать, что любое решение уравнения Шредингера (2.1) имеет физический смысл. В действительности на функцию Ψ накладываются определенные ограничения. В частности, для связанных состояний с дискретным спектром Е должно выполняться условие нормировки:
(2.3)
Для многоэлектронных систем чрезвычайно важным является требование антисимметричности волновой функции относительно перестановок тождественных частиц (электронов):
(2.4)
Одним из следствий этого требования, называемого принципом Паули, является то, что для трех и большего числа электронов основным состоянием не будет состояние с наименьшим собственным значением гамильтониана, так как последнему соответствует не имеющая физического смысла симметричная волновая функция.
Значение принципа Паули в теории химической связи исключительно велико, и мы в дальнейшем неоднократно будем к нему обращаться. Сейчас отметим только, что любую антисимметричную N-электронную функцию Ψ можно представить в виде линейной комбинации так называемых "детерминантов Слэтера", составленных из одноэлектронных волновых функций (спин-орбиталей):
(2.5)
где
(2.6)
и индекс I при детерминанте Слэтера ΦI обозначает определенную совокупность ортонормированных спин-орбиталей ψi(rσ), которая называется спин-орбитальной конфигурацией.
В общем случае в разложение многоэлектронной волновой функции входит бесконечно много детерминантов Слэтера. Часто ограничивают это разложение одним или несколькими детерминантами. Качество такой аппроксимации зависит от качества включенных в ΦI спин-орбиталей. Наилучшие спин-орбитали получаются в методе самосогласованного поля Хартри-Фока, на котором мы подробно остановимся в третьей главе.
Атомные спин-орбитали, описывающие одноэлектронные состояния в атоме, приближенно (без учета спин-орбитального взаимодействия) можно представить в виде произведения бесспиновой одноэлектронной волновой функции, называемой орбиталью, на одноэлектронную спиновую функцию, которая является собственной функцией оператора проекции собственного момента импульса электрона
(2.7)
Собственные функции η(σ), соответствующие положительному cобственному значению обозначаются как α(σ), a отрицательному
Слэтеровский детерминант, составленный из N спин-орбиталей, является N-электронной функцией, удовлетворяющей принципу Паули и соответствующей определенным проекциям N-электронных орбитального и спинового моментов, определяемых квантовыми числами ML и MS. Однако однодетерминантная волновая функция не обязательно будет собственной для операторов квадрата полного орбитального и полного спинового моментов. Собственные функции этих операторов представляются линейными комбинациями детерминантов Слэтера, соответствующих одним и тем же значениям квантовых чисел в пределах выбранной конфигурации.
Под электронной конфигурацией атома понимается определенное распределение электронов по nl-оболочкам:
(2.8)
Каждая (nрlр)-оболочка представляет набор спин-орбиталей, из которых νp заселены, т. е. включены в детерминант Слэтера. Эти νp спин-орбитали можно выбрать из (nрlр)-оболочки способами. Следовательно, конфигурации К соответствует однодетерминантных функций, причем их число определяется фактически лишь незамкнутыми оболочками, для которых νp<. Например, для конфигурации ls22s22p2 атома углерода можно построить детерминантов. Из них можно составить далее 15 линейных комбинаций, соответствующих определенным значениям квантовых чисел L и S и образующих атомные термы.
Термом называется совокупность многоэлектронных функций определенной конфигурации, характеризующаяся общими для; всех функций терма значениями квантовых чисел полных орбитального и спинового моментов (L и S). Отдельные волновые функции терма различаются по квантовым числам проекций указанных моментов (ML и MS). Если не принимать во внимание взаимодействие орбитального и спинового моментов, то все волновые функции терма отвечают одному и тому же (2L + 1)(2S + 1) — кратно вырожденному энергетическому уровню атома. Спин-орбитальное взаимодействие приводит к расщеплению этого вырожденного уровня на уровни тонкой структуры, характеризуемые квантовым числом полного спин-орбитального момента J. Поправка на спин-орбитальное взаимодействие определяется приближенным выражением
(2.9)
из которого следует правило Ланде для константы спин-орбитального взаимодействия
(2.10)
Легко убедиться, что
(2.11)
т. е. энергия терма равна средневзвешенному значению энергетических уровней тонкой структуры:
(2.12)
Согласно правилам Хунда, энергия EKLS,J будет наименьшей, если: 1) квантовое число S максимально; 2) при равных S максимально квантовое число L; 3) при равных S и L квантовое число J максимально при AKLS<0 и минимально при AKLS> 0.
В качестве примера использования правил Хунда рассмотрим структуру энергетических уровней атома углерода для конфигурации ls22s22p2 (рис. 4). Из пятнадцати однодетерминантных шестиэлектронных функций этой конфигурации можно составить девять функций терма 3Р (L = 1 и S = 1), пять функций терма 1D (L = 2 и S = 0) и единственную функцию терма 1S (L = 0 и S = 0). Наименьшей энергии отвечает терм 3Р, обладающий максимальной мультиплетностью по спину. За ним следует терм 1D, поскольку он характеризуется большим значением квантового числа L, чем терм 1S, при равной спиновой мультиплетности.
Рис. 4. Структура энергетических уровней атома углерода
Спин-орбитальное взаимодействие приводит к расщеплению лишь терма 3Р, так как для остальных термов полный спиновый момент равен нулю (а мультиплетность — единице). Для терма 3Р константа А > 0 и, следовательно, уровни тонкой структуры этого терма возрастают в последовательности 3Р0, 3P1, 3Р2, где нижний индекс указывает значения квантового числа J.
Строго говоря, орбитальные энергии εnl различны для разных термов одной конфигурации. Согласно расчету Клементи, атомным орбиталям 1s22s22p2-конфигурации углерода в зависимости от терма соответствуют анергии εnl (в атомных единицах):
Таким образом, расстояние между энергетическими уровнями 2s- и 2p-АО при переходе от терма 3Р к терму 1S увеличивается почти на 0,16 ат. ед., что соответствует 4,3 эВ или 98 ккал/моль.
В большей степени орбитальные энергии зависят от атомной конфигурации. Эту зависимость можно показать на примере рассмотренной выше 1s22s22p2-конфигурации и возбужденных 1s22s22p3- и 1s22р4-конфигураций атома углерода [70]. Из множества термов, соответствующих этим конфигурациям, выберем термы 3Р и 1D:
Под полной электронной энергией атомной конфигурации следует понимать средневзвешенное значение энергии ее термов:
(2.13)
Было бы ошибкой отождествлять энергию конфигурации с суммой орбитальных энергий
(2.14)
Эта величина, как и орбитальные энергии, определяется не только конфигурацией, но и термом атомного состояния. Кроме того, Eoрб составляет лишь часть, причем меньшую часть, полной электронной энергии термов.
По мере увеличения заряда атомного ядра погрешности, связанные с пренебрежением одноэлектронным спин-орбитальньм взаимодействием, увеличиваются, и приходится учитывать расщепление каждой (nl)-оболочки на две подоболочки, различаю щиеся новым спин-орбитальным квантовым числом j:
При этом атомные спин-орбитали уже не могут быть представлены как произведение орбитали и спиновой функции (α или β), и конфигурация атома характеризуется распределением электронов по (nlj)-оболочкам:
Рис. 5. Структура энергетических уровней атома свинца
Многоэлектронные волновые функции, соответствующие уровням тонкой структуры, строятся в этом приближении, называемом приближением j-j-связи, непосредственно из детерминантов "расщепленной" конфигурации.
Схему j-j-связи иллюстрирует пример атома свинца, основная конфигурация которого (...6s26p2) аналогична основной конфигурации атома углерода (...2s22p2), но существенно отличается от последней структурой энергетических уровней (рис. 5)
Следует подчеркнуть, что выбор квантовых чисел, определяющих состояние атома, зависит от того, в каком приближении мы его рассматриваем. Так, без учета спин-орбитального взаимодействия состояние атома характеризуется квантовыми числами L и S. Однако при учете этого взаимодействия уже нельзя говорить о сохранении орбитального и спинового моментов по отдельности, и соответствующие им квантовые числа L и S не будут более "хорошими" квантовыми числами. Вместо них следует использовать квантовое число J, характеризующее полный спин-орбитальный момент импульса, который в этом приближении будет сохраняться. В то же время если спин-орбитальное расщепление энергетических уровней достаточно мало, можно установить соответствие между уровнями тонкой структуры и определяемыми в более грубом приближении энергетическими уровнями термов. Точно так же для тяжелых атомов квантовое число l, характеризующее одноэлектронный орбитальный момент импульса, перестает служить "хорошим" квантовым числом, лишь только мы учитываем спин-орбитальное взаимодействие на одноэлектронном уровне.
Рассмотрим атом водорода — простейший из атомов, включающий лишь один электрон, который взаимодействует с ядром по закону Кулона. Задача определения электронных состояний атома водорода (квантовомеханическая проблема Кеплера) — одна из немногих задач квантовой механики, имеющих точное аналитическое решение. Такая возможность обусловлена тем, что в этом случае гамильтониан допускает разделение переменных в сферической системе координат (r, υ, φ), т. е. орбиталь ψ, описывающая движение электрона в поле ядра, может быть представлена в виде произведения трех функций и каждая из них зависит только от одной независимой переменной:
(2.15)
При этом орбиталь ψnlm характеризуется тремя квантовыми числами: n, l и m (табл. 1).
Таблица 1. Атомные орбитали атома водорода для n = 1, 2, 3
Квантовое число l, целое и неотрицательное, определяет орбитальный момент импульса электрона, точнее его квадрат: l(l + 1).
Квантовое число m, целое и не превышающее по абсолютной величине l, представляет проекцию орбитального момента импульса на произвольно выбранную ось квантования z.
Главное квантовое число n нумерует орбитальную энергию εn в порядке возрастания:
(2.16)
Характерным для атома водорода является то, что энергия εn не зависит от квантового числа орбитального момента импульcа и определяется главным квантовым числом n:
(2.17)
Для многоэлектронных атомов проблема усложняется. Хотя одноэлектронное приближение и сферическая модель самосогласованного поля позволяют произвести разделение переменных r, υ, φ и в этом случае, точное аналитическое выражение для радиальных функций R(r), к сожалению, не получается. Они определяются в приближении самосогласованного поля решением уравнений Хартри-Фока (см. гл. 3). Соответствующие орбитальные энергии εnl зависят как от главного, так и от орбитального квантовых чисел, причем главное квантовое число n нумерует εnl с фиксированным l в порядке возрастания целыми числами, начиная с (l + 1).
Радиальная зависимость орбиталей в многоэлектронных атомах может быть довольно сложной, но их узловая структура подобна узловой структуре орбиталей атома водорода: радиальная функция Rnl(r) характеризуется (n-l-1) узлом, т. е. обращается в нуль при (n-l-1) конечном значении r > 0.
Графическое представление радиальных функций. Для графического представления радиальных функций используется либо график самой функции Rnl(r), либо график соответствующей ей плотности вероятности локализации электрона на расстоянии r от атомного ядра:
(2.18)
причем функция ρnl(r) нормирована на единицу:
(2.19)
Следует отметить, что в соответствии с условием формировки сферических функций интегрирование по углам υ и φ не приводит к появлению множителя 4π, который иногда ошибочно включается в выражение для ρnl(r).
Примеры графического представления радиальных функций приведены на рис. 6.
Рис. 6. Графическое представление радиальных функций
Графическое представление угловой зависимости атомных орбиталей. Для графического представления сферических функций
(2.20)
используются полярные диаграммы, т. е. графики функций
(2.21)
в сферической системе координат.
Полярная диаграмма описывает распределение вероятности локализации электрона по направлениям, заданным углами υ и φ. Легко видеть, что полярные диаграммы аксиально симметричны, если атомные орбитали характеризуются определенными значениями квантового числа m, т. к. в этом случае их зависимость от угла должна иметь вид
и
(2.22)
На рис. 7 приведены сечения полярных диаграмм плоскостью yz. Полные поверхности получаются вращением их вокруг оси z.
">
Рис. 7. Полярные диаграммы
Изовероятностные поверхности. Соответствующее атомным орбиталям распределение плотности вероятности локализации электрона в определенной точке трехмерного пространства может характеризоваться семейством изовероятностных поверхностей (или поверхностей равной вероятности), определяемых уравнением
(2.23)
где С — некоторая константа.
В частности, распределение электронной плотности, соответствующее ns-орбитали, описывается одной или несколькими (в зависимости от значения главного квантового числа n и конкретного значения константы С) концентрическими сферами: для 1s — одна сфера радиуса n(С), для 2s — либо одна сфера радиуса r1(C)(C2< C≤ C1), либо две сферы радиусов r1(C) и r2(C)(С = С2), либо три сферы радиусов r1(С), r2(С) и r3(С)(0<С<С2) (рис. 8).
Рис. 8. К определению изовероятностных поверхностей для 2s-АО
В качестве других примеров на рис. 9 приведены изовероятностные поверхности для 1s-, 2s-, 2p-, 3s-, 3p- и Зd-орбиталей атома водорода.
Вещественные атомные орбитали. До сих пор мы рассматривали комплексные атомные орбитали, характеризующиеся определенными значениями проекции орбитального момента импульса. Однако в квантовой химии часто используют вещественные комбинации таких орбиталей, определяемые по формулам
(2.24)
(2.25)
Здесь индекс μ = |m| уже не имеет смысла проекции момента импульса. К сожалению, на это обстоятельство не всегда обращают внимание. Во многих учебниках состояние электрона в атоме характеризуется квантовыми числами n, l и m, а для иллюстрации приводятся графические изображения вещественных АО.
Если выразить через декартовы координаты (x, y, z), то каждая из этих функций окажется пропорциональной некоторому полиному от х, у и z, который обычно указывается при вместо индекса μ.
Легко убедиться, что между комплексными и вещественными атомными орбиталями существует следующее соответствие:
Поверхности, представляющие вещественные могут не обладать аксиальной симметрией (рис. 10).
Как правило, порядок заполнения электронных nl-оболочек по мере увеличения атомного номера элемента: 1s, 2s, 2р, 3s, 3р, 4s, 3d, 4р, 5s,..,-объясняется тем, что орбитальные энергии в многоэлектронном атоме возрастают в той же последовательности. Так, например, "опережающее" заполнение 4s-АО в атомах К и Са по сравнению с 3d-AO связывают с тем, что ε4s< ε3d. Hо тогда встает вопрос: почему ε4s< ε3d. Обычно ответ сводится к тому, что преимущество 4s-AO обусловлено наличием трех "внутренних" локальных максимумов, которые обеспечивают их большее проникновение в остов по сравнению с 3d-AO, не имеющими таких максимумов.
Рис. 9. Изовероятностные поверхности для 1s, 2s, 2p, 3s, 3p и 3d-AO, характеризуемых определенными значениями проекции момента импульса m числа на рисунке)
Однако это объяснение нельзя признать удачным. Во-первых, разница в узловой структуре орбиталей одинаковой симметрии сама по себе еще не гарантирует определенное соотношение их энергий. Во-вторых (и это самое важное!), появление локальных максимумов, обусловленных ортогональностью 4s-АО к s-орбиталям остова, следует рассматривать скорее как проявление эффекта "выталкивания" этих орбиталей из остова. Не будь условий ортогональности, 4s-орбиталь "провалилась" бы в остов, превратившись в безузловую 1s-AO, имеющую только один большой максимум на ядре. Следует также заметить, что учет условий ортогональности возможен и при использовании безузловых 4s-орбиталей, но с соответствующей заменой потенциала эффективного поля, действующего на описываемые этой орбиталью электроны, псевдопотенциалом, который отличается от исходного некоторой положительной добавкой. Иными словами, условия ортогональности должны приводить к увеличению орбитальных энергий.
Рис. 10. Изовероятностные поверхности для вещественных 1s, 2s, 2p, 3s, 3p и 3d-AO
На самом деле порядок заполнения орбиталей обусловлен не отношением их энергий, а требованием минимума полной энергии атома, которая, как отмечалось выше, отлична от суммы одноэлектронных энергий. Более того, сами энергии орбиталей зависят от выбора конфигураций, т. е. от порядка их заполнения. Приходится признать, что порядок заполнения АО, определяющий структуру периодической системы, пока еще не нашел удовлетворительного объяснения.
* * *
В заключение этой главы отметим, что понятие об атомных орбиталях является одним из основных понятий современной теории химической связи. Это проявляется, в частности, в том, что приближенные многоэлектронные волновые функции, описывающие электронную структуру молекул, обычно строятся из орбиталей атомов, образующих рассматриваемую молекулу. Способы построения таких приближенных функций могут быть различными. Именно этим различием обусловлено существование нескольких квантовохимических методов исследования природы химической связи, специфика и историческое развитие которых обсуждаются в следующей главе.