Это парень из МТИ… посмотрите на результаты его тестов по математике и физике. Это фантастика! Никто из тех, кто попадал к нам в Принстон, даже близко не подходил к чему-то подобному… Он должен быть неограненным алмазом. Но мы никогда не принимали никого со столь низкими оценками по английскому и истории. Хотя взгляните на практический опыт, который есть у него в химии и опытах с трением!
Джон Уилер вынул часы из кармана и положил на стол.
Он хотел, чтобы встреча с новым ассистентом, Ричардом Фейнманом, прошла четко по расписанию. Для молодого доцента, обремененного многочисленными курсами и собственными исследованиями, время – ценный ресурс. Чтение лекций требует времени. Глубокая концентрация, без которой не поработаешь над фундаментальными проблемами, тоже не достигается за минуту. Бумажная работа требует времени, и консультации тоже…
Часы для всего мира в этот период тикали весьма тревожно.
Нацисты продолжали агрессию, и все больше людей понимало, что их нужно остановить силой. Если они продолжат в том же духе в Европе, то только вопрос времени, когда под ударом окажутся Соединенные Штаты, а всем известно, что ученые Германии разрабатывают новое ужасное оружие.
Чтобы противостоять ему, требуются научные прорывы здесь, в Америке.
Уилер, например, в январе 1939-го узнал от своего наставника Нильса Бора и его ассистента Леона Розенфельда, что исследователи Третьего рейха открыли: тяжелые ядра в атоме урана могут при определенных обстоятельствах делиться, высвобождая огромное количество энергии, и процесс этот назвали «ядерным распадом».
«Цепная реакция», породившая ошеломляющие новости, была очень быстрой.
Австрийский физик Лиза Мейтнер, работавшая с немецкими химиками Отто Ханом и Фрицем Штрассманом над проблемой распада, рассказала об открытии племяннику Отто Фришу. Находившийся в то время в институте теоретической физики в Копенгагене Фриш передал информацию Бору, своему директору. Тот немедленно осознал всю ее важность, переговорил с Розенфельдом и принял решение объявить об открытии на приближающейся конференции по теоретической физике в университете Джорджа Вашингтона в США.
Выступление Бора было запланировано на 26 января, но 16 числа на встрече в клубе физического факультета Принстона, сразу после того как Бор и Розенфельд прибыли в Америку, второй обо всем рассказал. Так Уилер и остальные получили информацию о ядерном распаде. Когда датский ученый сделал свое заявление собственно на конференции, его мрачные слова вызвали резонанс в более широких научных кругах.
Многие физики, узнавшие об этом открытии – особенно те, кто бежал от фашистских режимов в Европе, – ужаснулись при мысли о том, что нацисты могут получить бомбу, взрывная сила которой основана на делении ядер урана. Среди тех, кто особенно испугался перспективы обретения Гитлером ядерного оружия, оказались Энрико Ферми, перебравшийся в Штаты из Италии под властью Муссолини, Юджин Вигнер, Лео Силард и Эдвард Теллер, все эмигранты из Венгрии.
Два месяца спустя после заявления Бора Ферми встретился с офицерами ВМФ в Вашингтоне. Летом Силард, которого поддержали Вигнер и Теллер, предупредил Альберта Эйнштейна, и тот отправил знаменитое письмо президенту Франклину Рузвельту.
Если учесть угрозу со стороны нацистов и возможность того, что Штаты окажутся вовлечены в войну, кто знал – может быть, правительство США упросит физиков, занимающихся квантовыми проблемами, оставить абстрактные гипотезы и взяться за военно-прикладные исследования?
Неофициальный портрет Джона Арчибальда Уилера в институте теоретической физики Нильса Бора в Копенгагене, середина 1930-х годов
(AIP Emilio Segre Visual Archives, Wheeler Collection).
Работая вместе с Бором, Уилер стал настоящим экспертом в области ядерного распада, и его наверняка приставили бы к делу в том случае, если Америка втянется в конфликт. Их совместные исследования начались пятью годами ранее, осенью 1934-го, когда Уилер посетил институт Бора.
Он только что защитил диссертацию в университете Джонса Хопкинса под руководством американского физика австрийского происхождения Карла Херцфельда и завершил постдиссертационное исследование в Нью-Йоркском университете под началом Грегори Брайта, поэтому был полон рвения раскрыть все тайны атомного ядра. Уилер видел в ученичестве у Бора, признанного корифея квантовой физики, привлекавшего ученых со всего мира, идеальный способ обрести необходимый опыт.
В Копенгагене он оставался до июня 1935-го и занимался взаимодействиями между ядрами и космическим излучением (энергетическими частицами из космоса).
Тот стиль, в котором вел исследования Бор, оказал значительное влияние на Уилера. Датский ученый говорил тихо и неразборчиво, но умел ставить вопросы так, чтобы взглянуть на предмет изучения с совершенно новой стороны. Как вспоминал Уилер, «Бор применял этот зондирующий подход ко всему, желая добраться до сути дела и испытать феномен вплоть до его самых последних пределов»13.
Вернувшись из Европы, Джон с удовольствием проработал три года в университете Северной Каролины (Чапел-Хилл), после чего получил место доцента в Принстоне осенью 1938 года. Даже до заявления Бора о немецкой ядерной программе времена тогда были тревожные, и на Хэллоуин того года Орсон Уэллс разыграл свою знаменитую мистификацию с марсианским вторжением у селения Грувс-Милл; передача шла по радио, и это вызвало настоящую панику.
Такая реакция публики отразила широко распространенный страх перед новым ужасным оружием. Когда несколькими месяцами позже Бор предупредил физиков на Вашингтонской конференции об открытии ядерного распада в Германии и о появившейся у нацистов возможности создать атомную бомбу, видения опустошающих террористических атак проникли в ночные кошмары очень многих людей.
Бор оставался в Принстоне с января по май 1939-го, и работал он в кабинете на одном этаже с Уилером в здании, которое тогда именовалось Файн-холл, а ныне называется Джонс-холл. Пытаясь разобраться с механизмом ядерного распада, ученые эксплуатировали боровскую жидкокапельную модель атома, гибкую схему, где ядро предстает чем-то вроде распухшего яичного желтка, который при сильном растяжении способен делиться. Трудясь вместе всю весну, они скрупулезно определили, в каких условиях может происходить распад, когда образец урана бомбардируют или быстрыми (высокоэнергетичными), или медленными (низкоэнергетичными) нейтронами.
Для различных изотопов (ядерных типов) урана Уилер нарисовал картинки энергетических барьеров, которые необходимо преодолеть нейтронам, чтобы проникнуть в ядро атома и разбить его. Он изобразил эти барьеры в виде холмов, на которые лыжник должен взобраться, чтобы достичь вершины и получить шанс на быстрый спуск.
Для наиболее распространенного изотопа, уран-238, холм оказался крутым, и тут требовались быстрые нейтроны – вроде лыжников, выступающих на Олимпиадах – чтобы добиться цели. Для куда более редкого изотопа, уран-235, барьер был намного ниже, его в состоянии пересечь даже медленные нейтроны, как обычные любители лыжных прогулок.
Таким образом Уилер и Бор сделали вывод, что уран-235 куда легче подвергнуть распаду, чем уран-238. Более того, они открыли, что искусственно созданный изотоп, именуемый плутоний-239, если его произвести в достаточном количестве, еще проще расщепить медленными нейтронами.
При этом в процессе распада появляются новые нейтроны, и при замедлении они могут спровоцировать распад других, соседних ядер, вызвав ядерную реакцию с контролируемым выделением энергии… или взрыв большой разрушительной силы.
Бор и Уилер опубликовали результаты в статье «Механизм ядерного распада», которая вышла из печати 1 сентября 1939 года, точно в тот день, когда началась Вторая мировая война в Европе и Адольф Гитлер вторгся в Польшу. Их находки оказались позже бесценными для Манхэттенского проекта, военной программы по разработке ядерной бомбы в США.
К осени Уилер оставил позади совместную работу с Бором и был полон желания внести свой персональный вклад в теоретическую физику. Он также надеялся стать внушающим уважение наставником, каким датский физик был для него. В картине идеального профессорства, которая сформировалась у него в голове, сочетались приватная сторона: глубокие размышления и тщательные расчеты, и публичная сторона: преподавание и работа со студентами.
Поддержание равновесия между ними требовало аккуратного обращения со временем, отсюда и часы на столе.
Тогда Уилеру было всего двадцать восемь, и он не мог знать, что у него есть почти семь десятилетий на то, чтобы ответить на вопросы вроде «Откуда возникает бытие?» (как он часто спрашивал в свои поздние годы). Пожилой Уилер наверняка посоветовал бы себе молодому расслабиться и получать удовольствие от преподавания. Но в тот момент, когда секундная стрелка бежала по кругу, отъедая от будущего минуту за минутой, Джон очень серьезно воспринимал задачу не отступить от расписания.
Кабинет Уилера, под номером 214, находился на втором этаже Файн-холла.
Здание получило имя от Генри Бернарда Файна, основателя математического факультета Принстона, трагически погибшего в 1928 году, когда его во время велосипедной прогулки сбила машина. Строительство корпуса оплатил друг Файна, Томас Д. Джонс, и по его плану создали настоящий храм математической науки.
Чуть позже сюда пустили физиков-теоретиков.
В каждом кабинете стены были обшиты дубовыми панелями, имелась грифельная доска, встроенные шкафы, а окна выходили на кампус, больше напоминавший парк. Сильный аромат осени встречался тут с запахом меловой пыли, когда профессора пытались описать мир природы снаружи с помощью многочисленных формул. Что и говорить, роскошное место, чтобы заниматься фундаментальными исследованиями.
Сам Джонс, математик Освальд Веблен и остальные постарались создать максимально дружественную атмосферу. Преподаватели собирались в уютной чайной и обсуждали самые разные идеи – она занимала пространство над кабинетами второго этажа. Над камином в чайной красовалась высеченная в камне фраза на немецком, взятая из лекции Эйнштейна: «Raffiniert ist der Herrgott, aber boshaft ist er nicht» («Господь Бог изощрен, но не злонамерен»). Изречение отражало веру Эйнштейна в то, что хотя поиск точных уравнений в теоретической физике извилист и может изобиловать поворотами и тупиками, но природа все же не так жестока, чтобы скрыть окончательное решение.
Градуэйт-колледж, Принстон. Фото Пола Халперна
Угловые лестницы и пересекающиеся коридоры тоже не пустовали. Профессора и студенты часто появлялись на третьем этаже, где просторная библиотека содержала тысячи томов, посвященных физике и математике. Иногда они отправлялись на первый, чтобы посетить тот или иной семинар в центральном лекционном зале. Или, как Бор и Уилер во время совместной работы, они прогуливались по коридорам второго этажа, глубоко погруженные в беседу.
Как и задумывалось, строение в целом пульсировало, пропуская через себя потоки исследователей: вверх, вниз, горизонтально.
Чтобы сотрудничество между физиками и математиками шло без затруднений, галерея вела в лабораторию Палмера, главное здание физического факультета, где проводились и исследования, и учебные занятия. Учитывая факт, что для оборудования нужно много места, лаборатория Палмера была гораздо больше, чем Файн-холл.
Вход в здание обрамляли статуи титанов американской физики: Бенджамина Франклина и Джозефа Генри.
Появившись в кабинете Уилера, Фейнман заметил, насколько молодо тот выглядит. Доцент определенно не являлся статуей, жизнь в нем просто кипела, профессора такими если и бывают, то не в те времена, когда с них рисуют портреты.
Фейнман почувствовал себя несколько свободнее.
Но тут Уилер вытащил из кармана часы и красноречиво положил на стол, собираясь следить, чтобы их разговор продлился ровно столько, сколько ему положено. Они обсудили круг обязанностей Ричарда и назначили время следующей встречи.
Ко второму разу Фейнман явился подготовленным, поскольку решил сыграть в ту же самую игру. Он купил дешевые часы, принес с собой, и едва Уилер полез в карман, Ричард повторил его жест, и второй прибор для измерения времени лег на стол на мгновение позже, чем первый.
Словно ответный ход в шахматах.
Выходка Фейнмана разбила всякую серьезность, Уилер начал смеяться. Ричард присоединился к наставнику, и они никак не могли остановиться, так что деловая встреча превратилась в праздник легкомыслия.
В конце концов Уилер решил, что пора вернуться к повестке дня.
«Смотри, пора нам заняться серьезными вещами»14, сказал он.
«Да, сэр!» – ответил Фейнман с ухмылкой, и они снова заржали в два голоса. С тех пор раз за разом, встреча за встречей дискуссии превращались в обмен шутками и сопровождались взрывами смеха, задыхающимися мольбами вернуться на грешную землю, и лишь потом обращались к физике и математике, к учебным делам.
Ричард был привычен к такому стилю общения, его мать, Люсиль, часто шутила, а отец, Мелвилл, оставался серьезным. Рядом с Уилером Фейнман мог проявлять обе стороны своей личности, и так было положено начало долгой, продуктивной – пусть иногда и легкомысленной – дружбе.
Уилер гордился тем, как хорошо выстроен и проводится его курс по классической механике. Он давал студентам пробуждающие интерес домашние задания, обозначал темы для самостоятельного изучения. А вот проверял достижения учеников Фейнман. Он дотошно просматривал домашние работы, выискивая логические изъяны или ошибки в вычислениях, писал детальные замечания на полях и возвращал пачки покрытых пометками листов наставнику.
У студентов при таком подходе оставалось мало шансов пройти курс, отнесясь к нему несерьезно или не поняв предмета.
Уилер был очень доволен тем, как работает его ассистент, и поэтому он доверил Фейнману прочитать по меньшей мере одну лекцию, тем самым оттачивая преподавательские навыки Ричарда. Тот ощутил себя польщенным и провел за подготовкой целую ночь.
Позже он написал матери, что почувствовал гордость, когда закончилась лекция, прошедшая «достойно и гладко»15, и что ожидает в будущем еще не раз выполнить подобную задачу. Под крылом Уилера, а позже и самостоятельно Фейнман вырос в отличного наставника, способного объяснить что угодно.
Одной из фирменных черт Уилера как лектора – а он, само собой, повлиял на ученика – было разумное использование диаграмм. Берясь за какую-либо идею, он почти всегда начинал с того, что делал набросок, размещая на доске всех игроков, а затем и взаимодействия между ними, словно продумывал стратегию к футбольному матчу. Как он говорил позже: «Совершенно не представляю, как это – думать без картинок»16.
Оба физика рассматривали преподавание некоторой темы как лучший способ разобраться в ней самому. Казалось бы, парадоксально, ведь как можно объяснять что-то, если ты не являешься экспертом в этой области? И в самом деле, если говорить о таких сравнительно статичных предметах, как латынь или древнегреческий язык, то их нужно освоить в достаточной степени, прежде чем учить других. Но здание физики постоянно перестраивается, оно базируется на принципах, которые можно интерпретировать множеством способов. Даже базовые концепции, о которых обычно рассказывают в начале обучения, такие как сила или инерция, имеют свои нюансы.
Инерция – это свойство тела оставаться в покое или продолжать двигаться в том же направлении, если нет посторонних воздействий. Именно из-за нее шар для боулинга, катящийся по ровной поверхности, движется по прямой линии, пока не врежется в кегли.
Что странно, вовсе не сила, а скорее недостаток силы вынуждает шар поражать цель. Интуитивно мы думаем, что это делает как раз сила, но реальность говорит нам об обратном.
Попытки объяснить студентам подобные противоречия – интеллектуальный вызов, который заставляет разум взглянуть на разные аспекты физического мира с необычной стороны. Поэтому, толкуя простые вроде бы вещи, ты можешь открыть новые взаимодействия и пролить свет на фундаментальные законы природы.
Например, планирование курса механики побудило Уилера и Фейнмана обсудить принцип Маха – идею того, что причиной существования инерции неким образом служат отдаленные звезды. В отличие от Ньютона, в чьей системе физики инерция изучалась в терминах абстракций, именуемых «абсолютное пространство» (фиксированные измерительные линейки) и «абсолютное время» (умозрительные часы, постоянно тикающие где-то в стороне), физик Эрнст Мах предположил, что инерция может иметь физическую причину.
Он высказал гипотезу, что комбинированное тяготение удаленных космических тел побуждает объект либо оставаться в покое, либо двигаться в одном направлении с постоянной скоростью.
Как отлично знал Уилер, общая теория относительности Эйнштейна – набор изящных уравнений, описывающих гравитацию – это попытка воплотить принцип Маха и отбросить ненаучный взгляд Ньютона с его абсолютными координатами, в которых измеряется инерция. Ньютон представлял расстояния в пространстве и временные отрезки как постоянные от точки к точке или от момента к моменту, чем-то вроде координатных осей, используемых в математике.
Ничто из физического мира не в силах повлиять на эти инертные линейки.
И резким контрастом с этими абсолютными, из божественной стали измерительными приборами выглядит общая теория относительности с ее искривленным, скрученным пространством-временем. Если попытаться нарисовать его, то получится нечто вроде тяжелого гнезда на тонкой ветке.
Эйнштейн не только отменил понятия абсолютного пространства и времени, еще он, используя геометрию, чтобы объяснить загадки гравитации, уничтожил и другую головоломку из ньютонианской физики, а именно «действие на расстоянии»: силы, такие как гравитация, действуют мгновенно на любой дистанции. Для любой пары массивных объектов Ньютон представлял воображаемую «нить», связывающую их вместе, чтобы гравитационное взаимодействие могло иметь место.
Ничто реально существующее в космосе не могло служить таким посредником.
В подходе Ньютона мгновенно распространяющаяся сила тяготения движет планеты по их орбитам вокруг Солнца, и если последнее внезапно исчезнет, «струны» пропадут, и планеты немедленно двинутся далее по прямым линиям, следуя каждая собственной инерции. Это изменение их траекторий произойдет еще до того, как последний луч света коснется планет, ведь свету требуется время для перемещения.
Эйнштейн думал, что подобное мгновенное действие на большом расстоянии выглядит чем-то ненаучным вроде телепатии. И он строил общую теорию относительности, исходя из принципа, что смятая ткань пространства-времени служит передатчиком.
Присутствие массивного солнца, искривляющего пространство-время в центре системы, создает гравитационный колодец – нечто вроде водоворота около ноги, который возникает в ванне, если вступить в нее.
Это возмущение распространяется от источника, оказывая влияние на движение других объектов, и в ванне это значит, что резиновые уточки, кораблики и другие плавающие игрушки закачаются на волнах. В звездной же системе гравитационное влияние солнца распространяется через пространство-время во все стороны со скоростью света, формируя дуги, вынуждающие планеты перемещаться по круговым орбитам.
Планеты пытаются двигаться по прямым линиям, но изгибы пространства-времени им мешают.
Завершив общую теорию относительности в 1915 году, Эйнштейн попытался использовать ее для того, чтобы создать модель статической вселенной. Австрийский ученый верил в железобетонный детерминизм и вечные космические законы, он надеялся, что хотя большие массы могут вызывать локальные пертурбации, космос в целом остается одним и тем же с течением времени.
Другими словами, пусть даже звезды могут двигаться по небу, их совместное поведение, если брать в целом, делает вселенную столь же неизменной, как гранитная плита. Постоянство не может быть предопределено, как в конструкции Ньютона, но является натуральным физическим последствием теории.
Но к большому разочарованию Эйнштейна уравнения, которые он использовал, говорили совершенно об ином. Они рисовали вселенную, что либо расширяется, либо сужается по мере того, как идет время. В физике решение того или иного уравнения – это математическое описание, которое является корректным, подходит к задаче словно ключ к замку.
Эйнштейн попытался найти такой ключ для статичной вселенной, но мог добиться цели, только исказив первоначальную систему уравнений – вроде как позвал слесаря и попросил поправить замок так, чтобы тот подошел к старому, хорошо знакомому ключу. Дополнение, которое сделал австрийский физик, получило название «космологической постоянной», поправочный коэффициент, специально включенный в расчеты, чтобы противостоять непредвиденным дестабилизирующим эффектам гравитации.
Само собой, Эйнштейн получил решение для статической вселенной, но ценой усложнения теории. Более того, открытие астронома Эдвина Хаббла, сделанное в 1929 году (он шел по следам другого астронома, Весто Слифера), что все галактики удаляются друг от друга и от нас, показало, что космос почти наверняка расширяется со временем. Это заставило автора теории относительности убрать дополнительные факторы и признать, что вселенная не статична.
Таким образом, он так и не смог реабилитировать идеи Маха по поводу инерции.
Уилер с Фейнманом, знавшие все вышеизложенное, обсуждали, имеет ли смысл принцип Маха и если да, то какова его физическая основа. Уилеру нравилось в компании Ричарда (или еще кого-либо) браться за мудреные философские вопросы и рассматривать их мысленно с самых разных сторон. Фейнман не одобрял абстрактные размышления, но получал удовольствие от всего, связанного с наукой.
Это еще одна причина, почему они так хорошо поладили.
Как писал физик Чарльз Мизнер, учившийся под руководством Уилера в пятидесятых: «Уилер находился под большим влиянием Нильса Бора, которого он считал вторым наставником. Бор вполне определенно был представителем европейской школы мысли, он уделял внимание философским аспектам физики точно так же, как и техническим. Большая часть ученых из Америки, таких как Фейнман, думали, что все споры по поводу абстрактной, философской интерпретации квантовой физики не имели значения для того, чем они занимались17».
Диалог похож на игру в настольный теннис, его типичный образец может включать передачу идей, обмен шутками, поддразнивание по поводу личных моментов и бесконечное количество других элементов коммуникации. Один игрок подает, другой отбивает, как и в матче по пинг-понгу, затем все происходит наоборот, и снова, и снова до тех пор, пока тема не окажется исчерпанной.
Уилер и Фейнман стали экспертами в обмене словами, подстраивая каждый раз диалог к условиям и настроениям конкретного дня, без усилий переключаясь с остроумия на серьезные темы и обратно.
Элементарные частицы вступают в парные взаимодействия через обмен разного вида. Но в отличие от взаимоотношений между людьми, тут все проще, имеется лишь несколько фундаментальных вариантов такого взаимодействия.
Современная наука насчитывает их четыре: гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия. К тому времени, когда Фейнман попал в магистратуру, о двух последних – в том, что касается способов, какими ядра атомов могут распадаться или воссоединяться – имелось довольно смутное представление; он сам позже помог разгадать многие их тайны. Но тогда физики даже не знали, одна это сила или две разные. Более того, они говорили о теории «мезонных ядерных сил», согласно которой протоны и нейтроны – частицы ядра, иначе говоря, – соединялись вместе, обмениваясь мезонами.
Сегодня мы знаем, что одни частицы, именуемые «глюонами», участвуют в процессе соединения, а другие частицы, называемые W +, W — и Z0, переносят индуцирующее распад слабое взаимодействие.
Уилер потратил большую часть времени, проведенного рядом с Бором, пытаясь понять, почему иногда ядра кажутся практически неделимыми, а иногда сравнительно легко разваливаются. Их теоретические модели подтверждались эмпирическими данными, но выглядели неполными.
Уилер обладал беспокойным умом и пылким воображением, поэтому он выдавал одну идею за другой, горел точно настоящая печь, работающая на энергии атомного распада. Задерживаться на одной теме надолго было для него почти невозможным, он вовсе не хотел ограничивать себя изучением лишь одной из четырех фундаментальных сил. Всю жизнь его интересы переходили от ядерных взаимодействий к электромагнетизму, затем к гравитации и снова по кругу.
В другое время идея создать унифицированную теорию всех взаимодействий привлекла бы внимание Уилера. Но тогда он видел, как Эйнштейн, работавший в соседнем Институте перспективных исследований, буквально бьется головой о стену, снова и снова, поскольку его попытки решить эту задачу ничего не дают.
Австриец надеялся, что сможет превратить общую теорию относительности в теорию всего – описать все силы геометрически и исключить тем самым необходимость в вероятностной квантовой теории.
Уилер и Эйнштейн жили в одном районе, часто пересекались на втором этаже Файн-холла до того, как институт переехал в собственное помещение, и знали друг друга хорошо. Напрасные попытки второго создать теорию всего начались в середине 20-х годов, и, погрузившись в них, Эйнштейн большей частью игнорировал современные исследования в таких областях как физика частиц или атомная физика.
Коллеги чаще смотрели на австрийца как на реликт, и немногие отваживались углубиться в таинственную реальность гравитационной теории, которая ассоциировалась с успехами в прошлом и провалами недавнего времени.
Величайший прорыв в теории гравитации, сделанный в те годы, остался по большому счету незамеченным. Статья «О безграничном гравитационном сжатии», написанная в Калифорнийском университете (Беркли) Робертом Оппенгеймером и его студентом Хартландом Снайдером, была опубликована 1 сентября 1939 года и показала, что достаточно массивная звезда после того, как выгорает ее «топливо», сжимается в компактный объект столь плотный и гравитационно мощный, что даже свет не может избежать его притяжения.
В шестидесятых годах Уилер с радостью принял эту концепцию, пустил в оборот термин «черная дыра» и сфокусировал внимание на странных выводах из первоначальной концепции.
Но в тридцатых его интерес лежал совсем в других областях.
По совпадению, работа Бора и Уилера «Механизм ядерного распада» вышла из печати в тот же день, и в ней объяснялось, почему некоторые типы атомов распадаются легче других, и появилась она в том же самом престижном журнале, что и статья Оппенгеймера – Снайдера, в Physical Review. В тот же день, как мы уже говорили, началась Вторая мировая война в Европе, а семейство Уилера перебралось в новый превосходный дом по адресу Баттл-роад, 95 в Принстоне.
Для Уилера настало время заняться новыми теоретическими проблемами, и Фейнман оказался в этом деле отличным соратником.
Еще до того, как заняться изучением ядерного распада, Уилер активно интересовался таким феноменом как «рассеяние частиц». Рассеяние происходит, когда частицы взаимодействуют друг с другом и отклоняются, подобно тому, как мячик, по которому ударили ракеткой, отскакивает в случайном на первый взгляд направлении.
Это происходит, на классическом (повседневном) и субатомном (квантовом) уровнях реальности.
Физикам нравится делать предсказания, а в случае теннисных упражнений подготовленный теоретик, имеющий данные о том, как именно соприкоснулись мячик и ракетка, сможет рассчитать, как произойдет отскок. Это классическая задача, с которой можно справиться, используя законы механики Ньютона.
Уилер больше интересовался эффектом Комптона, квантовым процессом на субатомным уровне, который не так легко объяснить с точки зрения физики Ньютона. Впервые его обнаружил американский физик Артур Комптон, получивший Нобелевскую премию за это открытие.
Эффект Комптона связан с тем, как ведет себя свет, рассеянный электроном.
Свет падает на электрон, и электрон приобретает энергию и импульс (масса, умноженная на скорость), которые тащат его в определенном направлении как брошенное метательное копье. В процессе он сам излучает свет с большей длиной волны (расстояние между пиками), чем была у исходного, и тот распространяется под углом, отличным от движения электрона.
Для видимого света длина волны соотносится с цветом, так что вторичный свет будет иметь иной оттенок, чем оригинальный, сдвигаясь к красному концу спектра. Обычно эффект Комптона возникает при работе с невидимыми рентгеновскими лучами, и при этом получаются те же рентгеновские лучи, только с большей длиной волны.
Важность эффекта Комптона в том, что квантовая теория точно предсказывает разницу между начальной и конечной длиной волны, и угол рассеяния между электроном и испущенным светом тоже. Это достижение раскрывает сущность квантовой гипотезы, впервые предложенной Максом Планком в 1900 году и доработанной Эйнштейном в 1905-м, которая носит название «фотоэлектрический эффект».
Термин «квант» сам по себе обозначает «порция», и возник он потому, что свет выделяется небольшими порциями, или квантами, энергии. Мельчайшие единицы света – волна делится на частицы, словно засунутая в коробку пружина – именуются фотонами. Поскольку большая часть светового спектра невидима, за исключением участка от красного до фиолетового, то большинство существующих фотонов точно так же невидимы.
Фотоны служат частицами обмена в электромагнитном взаимодействии, всякий раз, когда заряженная частица, такая как электрон, притягивает или отталкивает другую заряженную частицу с помощью электричества или магнетизма, фотон прыгает между ними. Без такого обмена заряды будут просто игнорировать друг друга, и не будет ни притяжения, ни отталкивания.
Так что если ваш магнитик со щелчком прилипает к холодильнику, то благодарите фотоны (скорее невидимые, чем оптические) за их роль переносчиков электромагнитной энергии.
Как предполагали Планк и Эйнштейн, количество энергии, приходящееся на фотон, зависит от частоты (количество повторений некоего процесса в единицу времени) света, которой тот характеризуется. Частота, в свою очередь, обратно пропорциональна длине волны (чем больше длина волны, тем ниже частота и наоборот). Следовательно, длинные волны, например радиоволны, соотносятся с низкими частотами и низкими энергиями; короткие, как рентгеновские лучи, наоборот, с высокими частотами и высокими энергиями.