ГЛАВА ДЕСЯТАЯ,


в которой речь идет о пустоте — обыкновенной пустоте, на поверку, впрочем, оказывающейся совсем не обыкновенной и даже не пустотой, а также о попытках ученых создать вещество из одного пустого пространства и, наконец, о мирах с различной пустотой-вакуумом

Теперь, после того как мы познакомились с кунсткамерой элементарных частиц, обратимся к арене, на которой движутся и взаимодействуют эти частицы,— к пустоте. Казалось бы, о чем тут говорить. Ведь пустота — это когда ничего нет. Но мы уже говорили, что это не так. Пустота — сегодня один из основных объектов физики. Именно она определяет основные свойства нашего мира.

Идея абсолютно пустого пространства — вакуума — возникла несколько тысячелетий назад, как только человек попытался осознать, из чего состоит и откуда произошел окружающий его мир. Следы этой идеи можно найти в самых древних сказаниях и мифах. Кажется, это самое простое, не требующее никаких пояснений понятие — синоним полного «ничто». Что может быть проще? Однако квантовая физика убеждает нас в том, что вакуум — сложнейший объект, можно даже сказать, целый мир. Может быть, это самое сложное из всего, с чем до сих пор приходилось иметь дело науке: некая особая материальная среда, один из видов материи. В каком же смысле можно тогда говорить о пустоте, да и существует ли она в природе? Строго говоря, пустоты нет, а говорить о ней можно в любом смысле, кроме космологического и физического. Например, в житейском. Пустая комната, пустой человек...

Когда мы представляем себе вакуум в виде полной пустоты, вопрос о том, могут ли существовать различные вакуумы, просто не возникает — пустота может быть одна. Все прочее — просто не пустота. Другое дело, если вакуум материален, веществен. Тогда не исключено, что существуют миры с различным вакуумом, и, может быть, наш мир — только один из них. Ведь если все в природе изменяется, пребывает в различных формах, то почему вакуум должен быть исключением?

В действительности проблема вакуума еще сложнее. Некоторые ученые считают, что все материальное содержание мира представляет собой проявление различных свойств пустого, но сложным образом искривленного, скрученного пространства — вакуума.

Итак, с одной стороны, вакуум—это сложная материальная вещественная структура, а с другой, наоборот, оказывается, что само вещество — «искривленная пустота». Так что же такое в конце концов вакуум?

Понятие пустоты — не только объект физической науки, но и один из основных элементов наших представлений о мире в целом. Любая попытка понять его устройство, построить хотя бы приближенную его модель так или иначе связана с этим понятием. На протяжении многих веков оно неоднократно изменялось, отражая сдвиги в мифологическом, религиозном и научном мировоззрениях.

Различные физические и философские школы по-разному относились к понятию пустоты. Знаменитый древнегреческий мыслитель Фалес Милетский, который первым попытался разложить мир на исходные, первичные стихии — элементы, был убежден, что абсолютной пустоты в мире быть не может: любая, даже самая малая его часть заполнена водой, воздухом или еще какой-либо стихией. Демокрит же, напротив, считал пустоту истинной первоосновой мира, на фоне которой как раз и проявляется вся сложность наблюдаемых нами вещей и явлений. Только пустота, учил он, позволяет телам двигаться в пространстве. Если бы все вокруг было чем-то заполнено, то как и куда бы они перемещались? Сжатие тоже требует пустоты.

Пустоты нет, возражал ему Платон. Тела движутся, замещая собой заполняющую все пространство среду. Это подобно вращению колеса: одна его часть замещает другую, и нигде нет разрывов...

Конечно, это были лишь догадки, умозрительные заключения. Возможность практического изучения пустоты появилась много веков спустя. Но шли годы, развивалась техника, и опыт постепенно убеждал людей в том, что, используя все более и более усовершенствованные приспособления, можно насколько угодно близко подойти к «полной пустоте». Представление о вакууме как о пространстве, из которого «вычерпано» все его материальное содержание, стало казаться самоочевидным, и проблема пустоты на некоторое время перестала волновать умы ученых. Ни у кого не возникало сомнений, что этот вопрос решен окончательно и бесповоротно.

Однако на фундаментальные вопросы, касающиеся свойств и структуры мира, раз и навсегда данного, окончательного ответа не существует. Любой ответ оказывается приближенным и рано или поздно требует дальнейшего уточнения. Более того, представления, казавшиеся ранее взаимоисключающими, на новом, более глубоком уровне знаний часто оказываются тесно связанными, даже выражаются одно через другое. Так случилось и с понятием пустоты. Вопрос о смысле этого понятия превратился в одну из основных физических проблем после того, как были открыты волновые свойства света, и буквально приковал к себе внимание ученых.

Каким образом световая волна бежит в вакууме, если там нет ничего, что могло бы передавать это движение от точки к точке? Не указывает ли сам факт распространения световой волны на то, что вакуум — это все же не пустота, а какая-то особая светоносная субстанция, скажем эфир? Субстанция до того тонкая, что проникает сквозь стенки всех сосудов и ее в отличие от воздуха в принципе нельзя ниоткуда откачать.

Три с половиной столетия назад Рене Декарт, французский математик, физик и философ, писал: «Мы считаем сосуд пустым, когда в нем нет воды, но на самом деле там остается воздух. Если теперь из кажущегося пустым сосуда убрать и воздух, в нем опять что-то должно остаться, но этого «что-то» мы просто не чувствуем». Вот это «что-то» и есть эфир.

Но почему тогда эта заполняющая все пространство субстанция не мешает движению небесных тел, которое веками остается неизменным, хотя для того, чтобы передавать световые волны, эфирная среда должна обладать весьма значительной плотностью? Почему ни в одном эксперименте не удается заметить «эфирный ветер»?

Несколько столетий все это оставалось загадкой. Ответ был найден квантовой механикой совсем недавно — в 20-х годах нашего века. Оказалось, что движение каждой отдельной световой частицы, фотона, настолько сложно и прихотливо, что с определенной вероятностью ее можно обнаружить в самых различных точках пространства. Строгие закономерности проявляются лишь при рассмотрении большого числа фотонов. И вот статистически, в среднем, световые частицы распределяются в пространстве таким образом, что их поведение выглядит как распространение волны. Поодиночке каждый фотон — частица, корпускула, а в совокупности они — волна. И никакой эфирной среды для этого не требуется, квантовые законы, описывающие поведение света, прекрасно действуют и в вакууме.

Для того чтобы сделать картину нагляднее, иногда говорят, что фотоны двигаются в пустом пространстве по нечетко определенным, размазанным траекториям, а «размазка» имеет форму волны. Это очень упрощенное описание того, что происходит на самом деле, но некоторое представление о характере явления отсюда получить можно.

Заметим, впрочем, что такими свойствами обладают не только фотоны, но и все другие микрочастицы. Каждая из них одновременно имеет корпускулярные и волновые характеристики. Таковы законы квантовой механики.

Казалось бы, квантовая механика окончательно «очистила» пространство от эфира. Но все не так просто. По мнению некоторых ученых, квантовую картину волнового движения в абсолютно пустом пространстве еще нельзя считать достаточно ясной. Дело не в том, что сама квантовая механика все еще выглядит странной и парадоксальной. Физики давно уже обжились в мире квантовых образов, а эксперимент убеждает нас в правильности новых законов. Никаких отклонений у них не обнаружено. Неудовлетворенность у некоторых ученых вызывает лишь то обстоятельство, что, научившись хорошо пользоваться квантовой механикой, мы все-таки точно не знаем, что же заставляет тождественные по своим свойствам частицы в совершенно одинаковых условиях вакуума двигаться по-разному.

Может быть, говорят эти ученые, квантовая механика — это всего лишь временная постройка, некое приближенное изображение истинной, скрытой пока от нас картины явлений, где частицы двигаются по строго определенным траекториям, но только эти траектории что-то размазывает, и это «что-то» мы пока еще не нащупали, не можем его выделить? Если это так, то таинственное «что-то» как раз и было бы подлинным материальным содержанием вакуума, так сказать, «заквантовым эфиром».

Было предпринято много попыток построить нестатистическую, «точную» теорию микропроцессов. Еще каких-нибудь 20—30 лет назад в физических журналах нередко можно было встретить статьи, в которых предлагались очередные варианты «заквантовой теории» с точными траекториями частиц. Но все попытки оказались безуспешными. И конечно, не потому, что их авторы были недостаточно искусны. Этой проблемой занимались многие выдающиеся физики. Сам Эйнштейн до конца жизни был убежден в том, что такая теория должна существовать, и пока она не создана, задача физики остается невыполненной. Однако опыт показывает, что чем глубже в микромир мы уходим, тем отчетливее становится статистический характер происходящих там явлений.

Причина этого в том, что микрочастица всегда взаимодействует с окружающей средой. Часто в момент своего рождения она опутана невообразимо сложным переплетением связей с другими микрочастицами, входящими в состав макроскопических тел. Связи эти, а с ними и воздействия на нее усложняются еще более, когда она проходит сквозь различные экраны, линзы и другие устройства, фиксирующие ее состояние. Даже если частицы движутся в вакууме, у каждой из них свои неповторимые начальные условия. Есть еще и другие специфически квантовые связи частицы с ее окружением, о которых здесь трудно рассказать. Вот все эти связи и размазывают, делают вероятностными траектории микрочастиц. Точно учесть все их просто невозможно. Как заметил однажды Вернер Гейзенберг, один из создателей квантовой теории, для этого пришлось бы принять во внимание состояние всей Вселенной. Поэтому можно быть уверенным в том, что любая «заквантовая теория» будет статистической. Такого взгляда в настоящее время держится подавляющее большинство физиков.

Итак, квантовая механика вернула вакууму статус абсолютной безэфирной пустоты, тем более что это подтверждалось и экспериментальными данными: в своих лабораториях физики научились создавать в сотни триллионов раз более разреженное пространство, чем окружающая нас атмосфера, а изучение процессов, происходящих в космосе, говорило за то, что межзвездное пространство практически совсем пустое — на каждый кубический сантиметр там приходится менее одного атома. Это такое же разрежение, как если бы в объеме земного шара имелась одна-единственная бактерия!

Стрелка научного знания сделала полный оборот — от пустоты к мировому эфиру и снова к полной пустоте.

Однако в самой квантовой механике было спрятано нечто такое, что вскоре буквально вывернуло наизнанку все представления о пустом и непустом. И стрелка побежала по новому витку спирали.

Оказалось, что пустое пространство «дышит»!

Каждому понятно, что если пространство пустое, то в нем не должно быть не только материальных тел, но и никаких полей — ни электромагнитных, ни каких-либо других. Ну а поскольку источником полей служат материальные тела, то, удаляясь на достаточно большое расстояние, можно было бы надеяться сделать эти поля какими угодно малыми. Чем дальше от фонаря, тем темнее. Казалось бы, все логично и все ясно.

И вот квантовая механика неожиданно показывает, что это совсем не так. Из ее формул следует, что в любом очень малом объеме пространства на очень короткое время может произойти флюктуация и «из ничего» выплеснется и снова быстро исчезнет электромагнитное или какое-нибудь другое поле. Это как раз тот процесс рождения виртуальных частиц — квантов спонтанно образующихся полей, о котором неоднократно и упоминалось выше. Виртуальные процессы действуют на движущиеся в вакууме частицы: экранируют их заряды, изменяют массы этих частиц, смещают уровни в атомах и так далее. Взаимодействие частиц с вакуумными флюктуациями — одна из причин размазывания их траекторий Под действием флюктуационных толчков микрочастица все время изменяет свое положение, как бы кружится вокруг положения равновесия. Это сложный нелинейный эффект, крепко связанный узел явлений: неопределенность траекторий делает возможными вакуумные флюктуации, а те, в свою очередь, порождают размазку траекторий.

Таким образом, пространство лишь кажется пустым и безжизненным. Такой вид оно имеет, когда его рассматривают «в среднем», имея в виду достаточно длительные временные интервалы и области значительно больших размеров, чем элементарные частицы. А при большом увеличении оно похоже на густой туман спонтанно рождающихся и тут же лопающихся частиц-капелек. Все это дрожит, мелькает, переливается световой радугой. И чем больше увеличение, тем насыщеннее становится вакуум. Представление о пространстве как об абсолютной, ничего не содержащей в себе пустоте оказывается совершенно неверным. При воздействии внешних полей такая «пустота» ведет себя как материальная среда. Например, в электрическом поле она поляризуется подобно диэлектрику в конденсаторе: положительно заряженные флюктуационные частицы смещаются в одну сторону, отрицательно заряженные — в другую. Такой эффект проявляется во многих экспериментах. Более того, выясняется, что вакуум кое-какими своими свойствами напоминает сверхпроводник — совсем уж, казалось бы, невероятная идея, если вспомнить, что сверхпроводимостью чаще всего обладают металлы. Сверхпроводящая пустота! Трудно придумать более противоречивое явление, но таковы факты. Как показывают расчеты, хорошо согласующиеся с опытом, в «газе» микрочастиц, которым «дышит» вакуум, устанавливаются коллективные, упорядоченные связи — подобно тому, как это происходит в электронном «газе» внутри охлажденного металла.

Если в вакуум ввести достаточное количество энергии, так сказать, сильно «нагреть» его, то он начнет испускать частицы. Но разве нагревать вакуум — не то же самое, что варить уху в океане? Нет, если это сделать быстро (например, создавая в пространстве столкновением быстрых ионов тяжелых атомов очень сильное электромагнитное поле), то небольшой «кусочек» вакуума можно довести до «кипения». Да, во многих отношениях действительно вакуум представляет собой своеобразную материальную среду.

Стрелка наших знаний сделала еще полоборота...

Мы уже не раз говорили о том, что на самом глубоком из известных нам уровней материя состоит из кварков и связывающего их глюонного поля. Это поле действует на цветные заряды кварков. Физикам известно уравнение этого поля, описывающее его распространение в пространстве. И вот среди решений глюонного уравнения неожиданно были найдены такие, которые описывают движение необычных микрообъектов — так называемых инстантонов (от английского слова instant — мгновение), спонтанно возникающих в вакууме частицеподобных сгустков глюонного поля с мнимым временем. При решении уравнений, как мы тоже уже говорили, часто появляются мнимые величины, вот и здесь получилось мнимое время. Начиная с Дирака, у которого получалась отрицательная энергия и масса, а за ними, как выяснилось, кроется целый мир античастиц, физики к мнимым величинам относятся с интересом. Не кроется ли и за этими сгустками с мнимым временем что-нибудь важное?

Чтобы понять физический смысл инстантонов, представим себе, что мы ищем решение уравнений ньютоновой механики в необычных условиях — внутри жесткого барьера, разделяющего надвое пространство с движущимися в нем частицами. В квантовой механике из-за размазывания траекторий возможен так называемый туннельный переход микрочастицы сквозь жесткую стенку. Например, если сначала все частицы были с одной стороны стенки, то проходит определенное время, и часть их оказывается уже по другую ее сторону, а некоторые из них — даже внутри стенки.

Никакого чуда тут нет. Даже нечто знакомое: похоже на поглощение света. Ведь даже в самых непрозрачных материалах световая волна, прежде чем она будет поглощена, успевает пройти некоторое расстояние. Квантовая частица движется по волновым законам, и, если барьер или стенка тонкие, она может пройти сквозь них — просочиться между атомами и молекулами, из которых они состоят. Это очень распространенное явление; именно таким путем, например, альфа-частицы испускаются из глубины атомных ядер.

Так ведут себя волны. В ньютоновой механике твердых тел подобное просачивание невозможно, и уравнения дают физически бессмысленный ответ: частицу внутри стенки можно обнаружить лишь при мнимом времени. Но если заранее знать о квантовой механике и о возможности туннельных переходов, то каждое решение ньютоновых уравнений с мнимым временем можно рассматривать как сигнал такого перехода. Поэтому и инстантоны можно тоже считать предупреждением о каких-то особых туннельных переходах, для описания которых можно разработать более точную квантовую теорию глюонного поля.

Но какие переходы могут быть в вакууме? Между чем и чем? Ведь там ничего нет!

Очевидно, только между различными состояниями самого вакуума. Если основываться на интуитивном представлении о вакууме как об абсолютной пустоте, эта мысль, естественно, покажется нелепой. Но вакуум — не пустота, а специфическая материальная среда, образованная «дымкой» виртуальных частиц, вступающих в сложные взаимодействия. В зависимости от характера этих взаимодействий вакуум может находиться в различных состояниях. А это означает, что наш мир не единственно возможный. В принципе могут существовать и другие миры — с другим вакуумом. Иначе говоря, вакуум, а значит, и связанный с ним физический мир расщеплены на отдельные состояния. В каждом мире свой вакуум — состояние с наименее возможной там энергией, пространство, из которого «вычерпана» вся материя за исключением вакуумных флюктуаций, удалить которые невозможно. Различным мирам соответствует различная плотность и структура вакуумных флюктуаций, различная «густота» и «консистенция» вакуума.

Вакуумная «дымка» пропитывает все тела, заполняет собой все пространство. Это исходный фундамент мира, всепроникающий эфир в его современном понимании. А поскольку скорость света зависит от свойств среды, в которой он распространяется, то в каждом мире ее величина должна быть своей. Различными могут быть и другие «мировые постоянные». Другими словами, следует думать, что именно вакуум определяет «калибровку» нашего мира.

Существование окружающей нас природы с определенными свойствами связано с одним из возможных типов вакуума. Как это произошло, почему нам выпала судьба жить именно в данном мире, мы пока не знаем. Можно лишь предполагать, что вакуум расщепился после Большого взрыва, в первые мгновения жизни нашей Вселенной, когда ее температура несколько снизилась, и так же, как это бывает с остывающим твердым телом, мир приобрел конкретное «фазовое» состояние с определенным вакуумом. В физике твердого тела это называется точкой Кюри. При более высокой температуре тепловое движение молекул мешает установлению устойчивой структуры. Ниже точки Кюри среда застывает, образуя различные кристаллические и аморфные состояния. Некоторые ученые склонны предполагать, что основные свойства вакуума были предопределены еще ранее — в момент рождения нашего мира из какой-то предшествовавшей ему фазы («профазы»), например путем квантового туннельного перехода из другой Вселенной.

Если размеры остывающей Вселенной, когда произошло расщепление вакуума, были уже весьма значительными, то не исключено, что в различных ее областях мог образоваться различный вакуум. Ведь скорости физических взаимодействий конечны, и «кристаллизация» Вселенной в разных ее областях могла происходить по-разному. А из этого следует, что в нашей Вселенной может быть несколько, возможно, даже много различающихся по своим физическим свойствам миров. В этих мирах могут быть различны массы электронов и других элементарных частиц, различные заряды; соответственно иными свойствами будут обладать атомы и каким-то другим будет макроскопическое вещество. Трудно представить себе, какие необычные явления могут происходить на стыке таких миров! Обо всем этом можно строить лишь догадки — теория множественных миров еще только создаётся.

Некоторые теоретики доказывают, что в пограничных областях должно происходить сгущение материи. Возможно, но в исследованной нами области Вселенной пока не видно больших районов с измененным вакуумом: скопления вещества на их границах должны были бы привести к наблюдаемым астрофизическим эффектам. Что из этого следует? А то, что миры с другим вакуумом, по мнению упомянутых теоретиков, следует отнести куда-то «за нашу Вселенную», например, внутрь «полузамкнутых миров», которые открываются в нашу Вселенную воронками черных дыр...

Недавно была предложена новая модель развития Вселенной. Предполагается, что вся энергия родившегося 20 миллиардов лет назад мира была заключена в его вакууме — в сложном переплетении заполнявших его квантовых флюктуаций. Состояние рождающейся Вселенной напоминало то, что бывает высоко в горах перед грозой: напряженная, густая, потрескивающая сполохами разрядов пустота, которая вот-вот превратится в заполняющий все пространство водяной потоп. Такое состояние продолжалось приблизительно 10-35 секунд. Все это время Вселенная быстро расширялась, заполняющий ее вакуум как бы растягивался без изменения своих свойств, и в результате мир перешел в крайне неустойчивое, энергетически напряженное состояние, похожее на состояние пересыщенного раствора, когда небольшой затравки, вроде случайно возникшей неоднородности, достаточно для того, чтобы вызвать лавинообразный процесс кристаллизации. И вот где-то «на уровне» 10-35 секунд начались интенсивная перестройка вакуума и выделение вещества за счет разности энергий его начального и конечного состояний. Вещество рождалось из вакуума! И как это всегда бывает в процессах, связанных с кристаллизацией, выделилось очень много тепла. Расчеты показывают, что при этом пространство почти мгновенно, за 10-32 секунд, раздулось в огромный раскаленный шар с радиусом на много порядков больше размеров видимой нами части Вселенной.

Так как перестройка вакуума и процесс «кристаллизации» вещества Вселенной в разных ее участках могли происходить по-разному, в огромном объеме раздувшегося мира могли образоваться большие области с различным вакуумом. Каждая из них расширялась далее по фридмановскому сценарию. И если правы физики, разрабатывающие такую модель, то области различного вакуума разделены гигантскими расстояниями и мы их просто не чувствуем.

Как обстоит дело в действительности, пока загадка. Однако в любом случае миры с другим вакуумом нам недоступны. Впрочем, развитие науки часто делает возможным экспериментальное исследование, казалось бы, принципиально недостижимых объектов. Ведь еще каких-нибудь 100 лет назад многие были твердо убеждены, что мы никогда не сможем узнать строение и химический состав звезд. Развитие спектрального анализа дало нам эту возможность.

Может быть, наступит время, когда ученые научатся создавать «куски» других миров с заранее программируемыми свойствами. Научились же мы изготавливать новое вещество — атомные ядра, которых нет в окружающей природе.

Пользуясь пучками ускоренных частиц, как щупами, физики достаточно хорошо изучили свойства вакуума вплоть до пространственных интервалов от 10-15 до 10-16 сантиметров и отрезков времени длительностью в 10-26 —10-27 секунд. В более «глубоких» областях вакуум может быть устроен по-другому. Мы наблюдаем лишь усредненную картину — результат наложения многих мелкомасштабных фрагментов.

О свойствах вакуума в ультрамалых областях пространства-времени можно получить представление только с помощью теории, предполагая, что там будут действовать известные нам физические законы. Это гипотеза, конечно, но иных законов мы не знаем.

Есть основания думать, что в области очень малых масштабов важную роль играет гравитационное поле. В обычных условиях оно имеет значение только для макроскопических явлений, его действие на элементарные частицы ничтожно — слишком уж малы массы (гравитационные «заряды») этих частиц. Однако на очень малых расстояниях гравитация становится сильной и существенно влияет на свойства микромира — при вакуумных флюктуациях возможны всплески чрезвычайно интенсивного гравитационного поля, которые сопровождаются спонтанным изменением геометрических свойств пространства и времени. Как следует из теории относительности, гравитация всегда связана с искривлением пространства, поэтому в ультрамалых пространственно-временных интервалах пространство, причудливо искривляясь и скручиваясь, может образовывать раковины, глубокие полости, почти самозамыкающиеся пузыри. Заполняющий пространство вакуум становится похожим на пену спонтанно раздувающихся, сливающихся и лопающихся пузырей. Фантастические, быстро сменяющие друг друга картины!

Такое строение вакуума мы могли бы увидеть лишь очень глубоко, на уровне 10-33 сантиметров — в областях на 20 порядков меньше атомных ядер и на 15 меньше, чем ожидаемый радиус электрона. Есть основания думать, что это предельно малые расстояния, за которыми начинается квантование самого пространства-времени — его распад на порции минимальной длины и длительности. Хотя, может быть, это и не так. Ведь с помощью ускорителей физики достигли пока лишь расстояний порядка 10-16 сантиметров, а расстояние в 10-33 сантиметров лежит пока далеко за пределами наших экспериментальных возможностей. Это область теоретических предположений и экстраполяций, которые можно проверить лишь косвенно, по их очень отдаленным следствиям.

Пока часть теоретиков трудится над проблемой разбиения пространства и времени на предельно малые кванты, другая часть пытается построить весь мир, все его материальное содержание из «ничего», то есть из чистого вакуума.

Экспериментальные и теоретические данные все более настойчиво подсказывают нам, что в природе должно существовать некое единое «сверхполе», частными состояниями которого являются гравитация, электромагнетизм и все другие известные нам поля и частицы. Теоретики разработали уже несколько вариантов универсального взаимодействия, объединяющего все известные силы природы. Как показал еще Эйнштейн, одна из них, гравитация, имеет чисто геометрическое объяснение: ее можно трактовать как действие кривизны четырехмерного пространства-времени на погруженные в него физические тела (в теории Эйнштейна искривлено не только пространство, но и время). Кривизна старается направить их движение по определенному руслу — по своеобразным ложбинкам. Это и воспринимается как некая сила. Но ежели одно состояние сверхполя имеет геометрическую природу, то естественно допустить, что подобный характер имеют и другие его состояния. Все они — кривизна, кручения, самозамыкания наподобие ленты Мёбиуса и так далее — проявление определенных свойств пространства и времени.

Кажется, стрелка знания опять начала склоняться в сторону полной пустоты, но не будем торопиться с выводами...

Можно ли объяснить все свойства мира на основе свойств одного только пустого пространства? Поискам ответа на этот вопрос посвятил последние 40 лет своей жизни Эйнштейн. Он рассмотрел множество подходов к геометрическому описанию электромагнитного поля. Но ни Эйнштейну, ни его последователям не удалось построить чисто геометрической картины физических явлений. Одних только пространства и времени для этого оказалось недостаточно.

И тем не менее, несмотря на их неудачу, зерно истины в попытках построить мир из пустоты все же есть. Можно думать, что если не для всего мира, то для значительной части происходящих в нем явлений все-таки можно построить чисто геометрическую картину, но только в особом смысле. Если теория единого сверхполя будет когда-нибудь создана, она, видимо, действительно должна выражаться через величины, имеющие геометрический смысл. Во всяком случае те предварительные варианты теории, которые сейчас изучаются, обладают этим свойством. Однако чисто геометрическими такие величины можно назвать лишь формально. К окружающему нас пространству с координатами длины, ширины и высоты они не имеют отношения. Однако с математической точки зрения пространством можно назвать множество любых элементов, чьи характеристики связаны такими же соотношениями, что и координаты точек привычного нам пространства. Математика позволяет единым образом описывать объекты самой разной физической природы, и геометрическими их можно назвать лишь потому, что связывающие их соотношения имеют сходную математическую структуру. Величины, входящие в строящуюся теорию единого сверхполя, имеют смысл расстояний, углов, кривизны и других геометрических характеристик именно в таких абстрактных пространствах.

Итак, мы видим, что пустота в реальном мире так же неисчерпаема, как и вещество. Абсолютная пустота — не более чем теоретическая абстракция, реальная же пустота, или физический вакуум,— одно из состояний материи, из которого, быть может, и родилась наша Вселенная. Мир поразительно разнообразен и вместе с тем поразительно в своей основе един. В этом согласны и физики и философы.

Загрузка...