В.Н.Сарафанников
Окончание. Начало см. в журнале «Сделай сам». № 1. 2006.
К настоящему времени имеются наработки, позволяющие обезопасить пользователя и создать комфортные по электропитанию условия работы оборудования ЛВС.
Очевидно, что в основу организации электропитания современной электронно-вычислительной техники должна быть положена только трехпроводная электросеть («евросеть»), В случае наличия в помещении только двухконтактных электророзеток (например, в домашних условиях) целесообразно организовать для питания вычислительной техники отдельную линию «Земляной» контакт устанавливаемых дополнительно евророзеток можно подключить отдельным проводом, идущим к корпусу электрораспределительного щита, установленного на лестничной площадке. То есть до квартирного электросчетчика. Допускается использование в качестве заземлителя водопроводных труб. (Но не газовых!!!) Естественно, что и весь монтаж однофазного электропитания ЛВС должен вестись только трехпроводным кабелем. Необходимость использования экранированных трехпроводных кабелей определяется в отдельных конкретных случаях. Сечение кабеля выбирается исходя из мощности оборудования по таблицам, рекомендуемым таким руководящим документом, как «Правила устройства электроустановок» («ПУЭ— 2000»). Наиболее используемая таблица приведена ниже (табл. 1).
Желательно, чтобы в используемом кабеле цвет изоляции каждого из проводов был разный. Это позволит избежать дополнительных операций по «прозвонке» кабеля для определения проводов: «фаза», «нуль», «земля». «ПУЭ-2000» регламентируют следующую цветную кодировку назначения проводов. Голубой цвет используется для нулевого рабочего проводника; зелено-желтый — для защитного («земляного») или нулевого защитного проводника; черного, коричневого, красного, фиолетового, серого, розового, белого, оранжевого, бирюзового цвета — для обозначения фазного проводника.
Зелено-желтый цвет проводника по всей длине с голубыми точками на концах линии служит для обозначения совмещенного нулевого рабочего и нулевого защитного проводника. Голубые точки наносят на проводник после окончания и проверки монтажа.
Строгое соблюдение этих правил позволяет значительно упростить ход монтажных работ и исключить (или минимизировать) возможные ошибки.
При выборе евроэлектророзеток желательно руководствоваться следующими соображениями. При выборе вида проводки, внутренней или наружной, целесообразно учесть, что большинство современных ЛВС базируется на использовании так называемых «структурированных кабельных систем» (СКС). В этом случае все кабельные линии (информационные и электросиловые) прокладывают в специальных коробах, монтируемых в помещениях, предназначенных для развертывания оборудования ЛВС. В некоторых каталогах используется понятие «долговременная кабельная система» (ДКС). Следует иметь в виду, что некоторые комплектующие, используемые в СКС (или ДКС) разных фирм-производителей, могут отличаться как по способу монтажа, так и по типоразмерам. Поэтому следует заказывать все необходимые для монтажа ЛВС комплектующие производства одной и той же фирмы.
Выбор евроэлектророзеток в настоящее время весьма широк. Что их объединяет, так это максимально допустимые токовые нагрузки, 10 А или 16 А, и сетевое напряжение — 250 В.
При развертывании ЛВС в школах (лицеях) целесообразно при монтаже использовать евроэлектророзетки с защитными шторками. Защитная шторка в такой розетке открывается только при подключении к ней электровилки. Подключения в подобную розетку однополюсного штекера (или втыкания в нее гвоздя) такая защита не допускает. Попутно стоит напомнить, что в соответствии с «ПУЭ-2000» монтаж электророзеток в детских учреждениях осуществляется на высоте 1,8 метра.
Очень удобны евроэлектророзетки с механической блокировкой, позволяющие дифференцировать цепь питания и защитить ее от подключения непредусмотренных потребителей. Ключ для снятия блокировки поставляется (заказывается) отдельной позицией. Например: Кат. № 741 14/15/85/94/95. Ключ устанавливается непосредственно на евровилке, например типа 2К+З (два контакта плюс «земля») подключаемого прибора, и отпирает розетку с защитой в момент подключения. Таким образом, в подобную розетку может подключаться только необходимый прибор, то есть сетевая вилка которого оборудована ключом. При этом случайное подключение в электросеть, предназначенную для питания оборудования ЛВС и оборудованную такими электророзетками, разного рода кипятильников, электрочайников и электрокалориферов невозможно. Очевидно, что такая конструкция обеспечивает и высокую электробезопасность. Для установки ключа на вилку необходимо снять защитную пленку с «самоклейки», имеющейся на плоской части ключа.
В настоящее время в основном используются евроэлектророзетки и электровилки, выполненные по так называемому «французскому стандарту» или по «немецкому стандарту». Во французском стандарте «земляной» контакт на электророзетке выходит на однополюсный штекер, имеющий соответствующее углубление.
В немецком штекере «земляной» провод выходит на пару пружинистых металлических усиков, имеющих контактные пластинки. Это менее надежный способ соединения, так как при многочисленных включениях (выключениях) пружинный контакт ослабевает и соединение с «землей» ухудшается.
К сожалению, очень часто встречаются электровилки, подобное углубление на которых отсутствует. Обеспечить подключение подобной вилки к «французской» розетке можно легко, просверлив пластик корпуса на требуемую глубину.
Чаще всего (но, повторяю, не всегда!!!) кабели оборудуются универсальными вилками, которым доступны электророзетки любого стандарта.
Электророзетки могут объединяться в одном конструктиве (от одной до трех и более). Для установки и фиксации электророзеток в коробах используют комплекты соответствующих суппортов. Заказывают по каталогам отдельно. Монтаж электророзеток без использования коробов осуществляется обычными приемами.
Согласно ПУЭ-2000 размещение электророзеток в рабочих помещениях определяется удобством пользования или требованиями технического дизайна. Это кроме вышеуказанного случая, а также для предприятий общепита и торговли. В последнем случае высота установки электророзеток от пола составляет 1,3 метра.
При подключении проводов кабеля фазный провод должен подводиться к левой (со стороны пользователя) «дырке» электророзетки. На рис. 8 показано правильное положение контактов нуля, фазы и заземления на розетке. При подключении к нему стандартного (стандарта МЭК 320 C13) шнура питания на гнезде, обращенном к блоку питания, раскладка цепей будет соответствовать рис. 8.
Рис. 8. Положение «нуля», «фазы» и «земли»:
а — на питающей розетке; б — на выходном гнезде шнура питания
Присоединение электророзеток к проводам электрокабелей осуществляется обычными способами, т. е. в соответствии с ГОСТом. Но предпочтительнее технология, использующая наконечники-гильзы, обжимаемые специальными клещами на зачищенных от изоляции концах проводов кабеля. При высокой производительности она обеспечивает надежный электрический контакт. Наконечники-гильзы с изолированным фланцем, луженые, имеют диаметр от 0,25 кв. мм до 16 кв. мм с фланцами разнообразных цветов. Цвет фланца позволяет визуально легко определить, для провода какого диаметра предназначен данный наконечник. Например: фланец черного цвета — для провода диаметром 1,5 мм2; синего — 2,5 мм2 и т. д. Для обжима наконечников-гильз используют специальные обжимные клещи, например типа 2ART. Обычно используют клещи разных типоразмеров, например: 2ART 40 для работы с наконечниками-гильзами диаметром 0,5–6 мм2; 2ART 41 — от 6 до 16 мм2; 2ART 42 — от 25 до 50 мм2.
На смену громоздким металлическим электрощитам пришли изящные и легкие пластмассовые модульные щитки для настенной установки или встраиваемые. Металлическими деталями в них являются только дин-рейка из оцинкованной стали для установки автоматов-выключателей и латунные клеммники для разводки проводов нейтрали и «земли». Ну, разумеется, и крепежные винты. Фазные провода, естественно, разводят через автоматы-выключатели с требуемым допустимым током нагрузки. На трехфазном автомате фазы А, В, С располагают слева направо соответственно. При наличии в составе ЛВС трехфазных потребителей очень часто необходимо строго соблюдать указанное чередование фаз (например, для работы входных цепей мощных трехфазных источников бесперебойного питания). При отсутствии штатного прибора проконтролировать правильность чередования фаз можно при помощи устройства, схема которого приведена на рис. 9.
Рис. 9. Устройство для определения правильности чередования фаз
После оборудования трехпроводной сети следует заняться выбором устройств, улучшающих параметры питающей электросети. Фирмы-изготовители выпускают для этой цели разнообразные технические устройства от простейших сетевых фильтров (чуть сложнее электроудлинителя) до автономных систем гарантированного бесперебойного электропитания.
Типичная схема бытового сетевого фильтра приведена на рис. 10.
Рис. 10. Фильтр-ограничитель с варистором
Основная задача сетевого фильтра — пропустить через себя переменный ток частотой 50 Гц (это рабочая частота сети питания), попутно отфильтровывая всякие выбросы напряжения и помехи. Как указываюсь выше, в случае отсутствия заземляющего провода (контакта) помехи типа «фаза» — «земля» и «нуль» — «земля» физически задерживаться не могут.
Для оценки подавляющей способности фильтра служит его амплитудно-частотная характеристика, показывающая, насколько подавляются различные частоты. Помехи длительностью 1-10 микросекунд — это типичные коммутационные импульсные помехи, лежащие в частотной области около 1 мегагерца (106 Гц) и выше. Таким образом, если фильтр отсеивает частоты свыше 100 килогерц, то он не пропустит и короткие импульсные помехи.
Сетевой фильтр питания способен «проглотить» почти все вредные выбросы питающего напряжения. Но медленные провалы напряжения ни один фильтр питания скомпенсировать не способен. Так как наиболее опасными для аппаратуры являются все же импульсные помехи, то использование фильтров вполне оправдано.
Бытовые фильтры могут отличаться как в сторону упрощения, так и в сторону усложнения схемы (например, с включением в нее индикации различных режимов работы, раздельным отключением нагрузки, наличием автоматического предохранителя и т. д.).
Внимание! Сетевые фильтры эффективно работают только в трехпроводной (европейской) сети питания («фаза»-«нуль»-«земля»). Обязательным устройством, стоящим сразу на входе фильтра, является варистор. Варистор — это резистор, сопротивление которого зависит от приложенного к нему напряжения. Его основная задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он «замыкает» на себя эту помеху, не позволяя ей пройти дальше. При хорошем подборе параметров варистор может спасать и от длительных значительных повышений напряжения сети, например из-за перекоса фаз. В этом случае варистор будет ограничивать напряжение, выделяя значительную мощность, что приведет к его пробою на короткое замыкание и отключению питания предохранителями токовой защиты (если они есть и рассчитаны на соответствующий ток).
Для сведения самодельщиков: одного варистора для полной защиты от перенапряжений недостаточно. В схему приобретенного однофазного фильтра целесообразно ввести еще два варистора — один между «нулем» и «землей», второй между «фазой» и «землей». Фирмы-изготовители из экономии их обычно не устанавливают. Очевидно, что высоковольтный ограничитель работает и в случае сети без заземления.
Но особенность фильтров еще и в том, что варисторы, обычно устанавливаемые в промышленных фильтрах, начинают «работать» с напряжения 275–300 В (среднее значение), 350–385 В (максимальное напряжение срабатывания). Эти данные имеются в паспортной характеристике варисторов. Для фильтрации помех, напряжение которых находится в пределах 230–300 В, обычно дополнительно используют LC-фильтры, то есть электрические цепи, состоящие из индуктивностей (L) и емкостей (С). Это так называемые реактивные элементы, сопротивление их постоянному току (или току низкой частоты) одно, а току высокой частоты — совершенно другое (отличающееся на порядки). А так как частота импульсной помехи во много раз больше частоты сети питания (50 Гц), то сопротивление LC-фильтра резко возрастает с увеличением частоты тока, и таким образом происходит задержка помехи.
В обиходе пользователей ПЭВМ уже прижилось понятие «Pilot» для определения сетевых фильтров независимо от фирмы-изготовителя в отличие от очень внешне похожих на них сетевых удлинителей-размножителей напряжения.
Итак, основные возможности и параметры бытовых сетевых фильтров:
1. Ограничение высоковольтных помех.
2. Фильтрация (подавление) импульсных помех (максимальный ток помехи 20 000 А; максимальное напряжение помехи до 6000 В: максимальная рассеиваемая энергия помех порядка 700 Дж. Ослабление высокочастотных помех от 20 до 40 дБ, в зависимости от диапазона).
3. Максимальная мощность нагрузки 2200 Вт (регулировка порога срабатывания по мощности от 75 Вт).
Дополнительные сервисные возможности:
1. Число розеток от 3 до 12 и более.
2. Выключение обоих проводов, то есть и нулевого, а не только фазного.
3. Индикация неправильного подключения питания.
4. Длина сетевого шнура до 5 м.
Очевидно, что относительная небольшая мощность бытовых сетевых фильтров допускает их использование для организации электропитания небольших ЛВС — не более 4–5 компьютеров, и то при условии использования маломощного сервера.
Для фильтрации сети, питающей ЛВС с большим количеством рабочих станций и имеющих в своем составе мощные сервера, а также подсистемы хранения информации, используются промышленные фильтры типа ФП (от ФП-4 до ФП-16), а также более современные — типа ФСП и ФСПК. Основные характеристики фильтров типа ФСП и ФСПК приведены в табл. № 2.
Данные фильтры обеспечивают затухание помех не менее 60 дБ в диапазоне частот от 0,15 до 1000 МГц.
Из таблицы видно, что для фильтрации однофазной сети достаточно одного фильтра. Для трехфазной сети используют два фильтра. Заземление фильтров обязательно.
Кроме того, промышленностью освоен выпуск фильтро-симметрирующих устройств (ФСУ). ФСУ обеспечивает повышение качества электропитания потребителей в четырехпроводных трехфазных сетях напряжением до 380 В, частотой 50 Гц, выравнивание несимметрии фазных (линейных) напряжений, снижение нелинейных искажений, подавление фазных и линейных импульсных напряжений, демпфирование колебаний сетевого напряжения в милли- и микросекундном диапазонах, сохранение вторичного трехфазного напряжения при обрыве в одной из фаз первичной цепи, надежное функционирование ответственных электроприемников в низковольтных сетях с нелинейными, несимметричными и нестационарными нагрузками, электромагнитную совместимость силового и электронного оборудования в низковольтной сети, подавление опасных сигналов в цепях электропитания средств вычислительной техники. Большого распространения пока не получили.
Но любой фильтр не способен защитить аппаратуру при плавных изменениях входного напряжения. В этом случае можно использовать стабилизатор напряжения (электронный или ферро-резонансный), который стабилизирует выходное напряжение. Плохие динамические характеристики старых (например, применявшихся для питания телевизоров) феррорезонансных стабилизаторов при резком изменении напряжения и величины нагрузки ограничивают возможности их применения для питания компьютеров. Существуют и современные варианты таких стабилизаторов на активных компонентах, разработанные специально для питания компьютеров. Но по своей цене они сопоставимы с ценами на источники бесперебойного питания и не получили широкого распространения.
От плавного изменения входного напряжения и, что особо важно, от внезапного пропадания напряжения сети предохраняют только источники бесперебойного питания, которые нашли широкое применение в ЛВС. По техническим требованиям источники бесперебойного питания должны обеспечивать функционирование всего оборудования ЛВС в течение от 7 до 12 минут, что позволяет корректно завершить вычислительный процесс и дает возможность правильно выключить аппаратуру. В обиходе источники бесперебойного питания называют сокращенно — «ИБП» или «ЮПИЭС» (иногда — «УПС» от английского UPS — Uninterruptible Power System).
В состав источников бесперебойного питания любой системы обязательно входят аккумуляторные батареи, выпрямитель входного напряжения и инвертор, обеспечивающий напряжением переменного тока подключаемую к нему нагрузку.
В особо оговариваемых случаях UPS могут комплектоваться трехфазными выходными трансформаторами для обеспечения гальванической развязки входных и выходных цепей.
Источники бесперебойного питания различают по классам (режимам работы). Существуют блоки Off-Line (Stand-By), Line-Interactive и On-Line. В Offline UPS (рис. 11) нагрузка при нормальной работе получает питание от сети, выпрямитель обеспечивает подзарядку аккумулятора.
Рис. 11. Блок-схема ИБП:
а — класса Off-Line; б — класса On-Line
При пропадании входного напряжения включается инвертор и нагрузка переключается на него за несколько миллисекунд. По восстановлении входного напряжения происходит обратное переключение, аккумулятор снова подзаряжается.
UPS Line-Interactive работает аналогично Off-Line, но имеет дополнительную возможность ступенчатой стабилизации при длительных «проседаниях» входного напряжения обычно посредством перекоммутации первичных обмоток входного трансформатора.
On-Line UPS обладают лучшими характеристиками. В них нагрузка получает питание всегда от инвертора. Инвертор получает постоянное напряжение от сетевого выпрямителя или аккумулятора. Схема обеспечивает высокую стабильность выходного напряжения при питании как от сети, так и от аккумулятора. Для данной структуры естественна гальваническая развязка входа и выхода и отсутствие переходных процессов на выходе при переключении на резервное питание.
Для работы в условиях сильных колебаний питающего напряжения (например, в сельской местности) хорошую защиту обеспечат только UPS классов On-Line или Line-Interactive.
Источники бесперебойного питания имеют множество параметров, из которых особенно существенны следующие.
Выходная мощность, измеряемая в вольт-амперах. Она должна быть не меньше, чем сумма мощностей, потребляемых устройствами, которые питаются от данного UPS. При этом следует принимать во внимание не только среднюю потребляемую мощность, которая обычно указывается в паспорте или на задней стенке устройства, а еще и пиковую при включении. Пиковая мощность может превышать среднюю в несколько раз. Особенно это заметно на лазерных принтерах (во время запуска они могут потреблять пятикратную мощность), и именно по этой причине их запрещают питать от маломощных UPS. В отдельных моделях маломощных ИБП для подключения принтеров используется дополнительная отдельная розетка, напрямую соединенная со входом ИБП (так называемая «белая розетка»).
Если в один UPS включены несколько устройств с допустимой суммарной потребляемой мощностью, то при их одновременном включении (например, общим выключателем сетевого фильтра) возможна перегрузка и просадка выходного напряжения UPS. При этом некоторые импульсные блоки питания могут и не запуститься. Проблема в данном случае может быть решена установлением очередности включения программными или административными средствами.
Число фаз входного и выходного напряжения. Источники небольшой мощности (до единиц кВА), как правило, однофазные. Более мощные источники могут иметь трехфазный вход, выход. Трехфазный выход большинства UPS предназначенных для питания компьютеров и прочих однофазных потребителей, можно рассматривать скорее как недостаток, а не как достоинство. так как приходится решать проблемы симметрирования нагрузки и защиты нулевого провода. В последнее время появились мощные UPS, которые при питании от трехфазной сети обеспечивают выход.
Форма выходного напряжения. В идеале она должна быть синусоидальной. Коэффициент гармоник выходного напряжения у лучших моделей не превышает 1–3 %.
В простейших моделях ИБП генерируется меандр, сглаживаемый фильтром нижних частот.
Порог переключения — уровень напряжения, при котором происходит переключение на резервное питание.
Этот параметр влияет на срок эксплуатации батарей, однако его снижение в UPS Off-Line, облегчая режим батарей, ухудшает стабильность выходного напряжения.
Время переключения на резервное питание (обычно 1-10 мс) влияет на стабильность работы подключенной аппаратуры. Если блок питания аппаратуры перегружен (или плохо спроектирован), то просадка напряжения во время переключения может привести к сбою или зависанию.
Время работы от резервного источника, зависящее от емкости, степени заряда батареи и величины нагрузки, должно обеспечивать закрытие приложений на защищаемых компьютерах для предотвращения потери данных. При необходимости для увеличения времени работы в комплект UPS могут входить дополнительные стойки с аккумуляторными батареями.
Ряд моделей маломощных ИБП чувствительны к «полярности» подключения питания. У них есть явные обозначения входных клемм, на которые должны приходить нуль, фаза и защитное заземление. Если нуль и фаза будут перепутаны (ИБП обнаружит значительное напряжение между клеммами нуля и земли), блок может отказаться запускаться (иногда сообщая об этом световым или звуковым индикатором). Переворот питающей вилки снимает проблему.
При необходимости выбора ИБП средней и большой мощности следует учесть, что наиболее перспективными в настоящее время считаются ИБП с дельта-преобразованием (семейства Silcon).
В устройствах с использованием дельта-преобразования время работы при 100 %-ной перегрузке ограничено только зарядом батарей. Конечно, подобный режим работы считается неестественным или аварийным, и нагрузка отключается задолго до полного разряда батарей. Кроме того, большую часть времени работы ИБП с дельта преобразованием на выход системы подается лишь немного откорректированный входной ток, а потому можно использовать значительно более компактные инверторы, чем в аналогичных по мощности ИБП с двойным преобразованием, где к тому же требуется постоянное охлаждение.
Модели ИБП семейства Silcon обладают широким диапазоном выходной мощности — от 10 до 480 кВт. Можно установить до девяти параллельно работающих ИБП Silcon с дополнительным оборудованием (или до четырех ИБП без него).
Особый интерес в отдельных случаях представляют ИБП SymmetraR RM. Данные ИБП при трехфазном входе обеспечивают однофазный выход, что весьма удобно с учетом наличия в составе ЛВС однофазных потребителей. Мощность — до 16 кВА (4 модуля по 4 кВА). Монтируются в стойку 15 U. Имеют возможность наращивания по схеме N + 1, при этом имеющийся в составе ИБП интеллектуальный модуль адаптивно меняет выходную мощность в зависимости от величины подключенной нагрузки. Расширенная диагностика и наличие подробного меню на русском языке облегчает общение с этим изделием.
Время автономной работы ИБП обычно определяется не только емкостью батарей, но и величиной нагрузки, причем от последней оно зависит нелинейно. Как правило, имеются специальные таблицы, с помощью которых с той или иной степенью точности можно определить, сколь долго продлится работа конкретного ИБП при нагрузке известной мощности. Обычно запас по мощности делают не менее 25–30 %. В таком случае время работы от аккумуляторов должно составлять несколько минут. В составе UPS используют свинцово-кислотные герметичные батареи, обычно имеющие срок службы до 5 лет (при соблюдении рекомендуемых режимов эксплуатации). В реальной жизни срок их службы может быть существенно меньше. Чтобы не ускорять выход батареи из строя, лучше избегать ее эксплуатации при повышенной температуре и влажности окружающей среды, а также не допускать глубоких разрядов батареи. Кроме того, аккумуляторные батареи требуют периодической тренировки — циклов заряда и разряда. Если UPS питает устройство от сети, напряжение в которой никогда не пропадает, это может привести к потере работоспособности батарей. Наиболее совершенные модели ИБП имеют встроенные средства автоматического запуска тестовых и профилактических процедур, при которых нагрузка на некоторое время переключается на питание от батарей.
Напряжение на клеммах аккумуляторных батарей может составлять от 12 В (большинство ИБП) до 120 В (например, ЙБП SymmetraR) (рис. 12). Вес одной аккумуляторной батареи в последнем случае достигает 26 кг.
Рис. 12. Устройство для обслуживания аккумуляторов и проверки цепей постоянного тока
Итак, при наличии трехфазной четырехпроводной электросети при развертывании ЛВС с большим количеством рабочих станций и мощными серверами, а также хранилищами информации необходимо предусмотреть проработку следующих вопросов:
1) замена установленных в цепях питания автоматов защиты в фазных проводах на автоматы, защищающие кроме трех фазных также и нулевой провод;
2) централизованная установка соответствующих защитных фильтров или использование ЗФСУ;
3) выбор, монтаж и пусконаладочные работы системы гарантированного бесперебойного электропитания;
4) проработка вопросов распределения нагрузки потребителей по фазам с учетом динамики их подключения.
Для обеспечения электробезопасности потребителей систему электропитания оборудуют устройствами защитного отключения (УЗО) со встроенной защитой от сверхтоков, с параметрами согласно ГОСТ Р50807-95. Выбор схемы подключения УЗО и их монтаж выполняют в соответствии со стандартом МЭК 364-5-53.
В локальных сетях проблемы разводки электропитания и заземления стоят особенно остро, поскольку здесь, как правило, имеется большое количество устройств (компьютеров и коммуникационного оборудования), соединенных между собой интерфейсными кабелями и значительно разнесенных в пространстве (локальная сеть может охватывать и многоэтажное здание, и группу зданий).
Поскольку в обиходе преобладает подмена понятий, «заземлением» часто называют провод, тянущийся от корпуса прибора куда-то под пол, а не процесс соединения корпуса прибора с шиной (контуром) заземления проводником соответствующего сечения, то целесообразно вспомнить основные определения и требования, относящиеся к этой области обеспечения безопасности пользователя и надежного функционирования аппаратуры, которые дает «ПУЭ-2000».
Заземлением какой-либо части электроустановки или другой установки называется преднамеренное соединение этой части с заземляющим устройством. Различают защитное и рабочее заземление.
Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности.
Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы установки.
Заземляющим устройством называется совокупность заземлителя и заземляющих проводников.
Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
Заземляющим проводником называется проводник, соединяющий заземляемые части.
Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью, называется нулевым защитным проводником.
Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенных с глухозаземленной нейтралью.
Совмещенным нулевым защитным и нулевым рабочим проводником (PEN) называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника. Использование нулевого рабочего проводника, идущего от нейтрали генератора или трансформатора на щит распределительного устройства в качестве заземляющего проводника, не допускается.
Сопротивление заземляющего устройства должно быть не более 2,4,8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220, 127 В источника однофазного тока при любых других условиях.
Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь по меди сечение: для неизолированных не менее 4 кв. мм, для изолированных — 1,5 кв. мм.
Таким образом, из последнего вытекает требование недопустимости использования в трехпроводных линиях кабелей, провода которых имеют сечение менее 1,5 кв. мм.
Попутное замечание следующего характера. Так как источники бесперебойного питания, используемые для организации электропитания оборудования ЛВС в основном импортного производства, то уместно привести требования Международной электротехнической комиссии (МЭК). Защитный проводник заземления для ИБП (рабочее заземление) служит для обеспечения тока утечки с устройств нагрузки (компьютерного оборудования). Следовательно, сечение проводника должно быть, по крайней мере, таким же, как сечение рабочего провода в соответствии с требованиями IEC 950.
IEC 950 рекомендует следующие номинальные значения сечения провода:
— 2,5 кв. мм для номинального тока от 17 А до 25 А;
— 6 кв. мм для номинального тока от 33 А до 40 А;
— 10 кв. мм для номинального тока от 41 А до 63 А;
— 16 кв. мм для номинального тока от 64 А до 80 А;
— 25 кв. мм для номинального тока от 81 А до 100 А.
При заземленных корпусах устройств, сильно разнесенных территориально, между их корпусами будет разность потенциалов, обусловленная падением напряжения на заземляющих проводах. Как указывалось выше, эта разность будет особенно ощутимой, если разводка питания и заземления выполнена двухпроводным кабелем. В ряде случаев практикуется прокладка отдельного кабеля или шины для цепи заземления. Однако разводка заземления отдельным кабелем не всегда удобна и часто неэффективна с точки зрения защиты от помех, поскольку при этом могут образовываться замкнутые контуры с широким охватываемым пространством — своеобразные антенны. Так что и с точки зрения борьбы с помехами разводку питания к устройствам целесообразно выполнять трехпроводным кабелем, один из проводов которого используется для защитного заземления. При этом древовидная схема заземления получается естественным образом, защитный провод в корневой части этого дерева заземляют или зануляют (с гарантией того, что этот нуль не станет фазой).
Все металлические конструкции, используемые для размещения коммуникационного оборудования и электропроводных кабелей, должны быть заземлены. Сюда относятся телекоммуникационные шкафы и стойки, кабельные лотки и металлические короба. Шкафы должны иметь электрические связи между всеми элементами (рама, дверцы, стенки) и заземляться по-возможности ближе к «корню» заземляющего «дерева».
Каждый сегмент локальной сети должен заземляться в одной и только одной точке. Экранированная витая пара заземляется с одного конца, чаще всего со стороны патч-панели, то есть ближе к монтажному шкафу с серверным и коммутационным оборудованием.
Телекоммуникационные кабели должны прокладываться с учетом возможных наводок от близко расположенного электрооборудования и питающих кабелей. Для надежной работы сети с малым количеством ошибок, вызванных помехами, необходимо соблюдать дистанции между телекоммуникационными кабелями и питающими кабелями, а также «шумным» электрооборудованием. Особо интересен вопрос о возможности совместной прокладки питающих и телекоммуникационных кабелей в горизонтальной системе СКС, т. е. по этажам здания, поскольку с целью удешевления проводки и улучшения дизайна эти кабели обычно прокладывают в общих коробах (или кабельных каналах), по крайней мере внутри комнат рабочей области. Основные стандарты на СКС не дают прямых указаний на минимальные расстояния между питающими и телекоммуникационными кабелями.
Ряд фирм-производителей оборудования и инсталляторов СКС имеют собственные нормы, отвечающие их гарантийным обязательствам. Однако применять эти нормы к компонентам других производителей следует с осторожностью, поскольку свойства компонентов (кабелей) могут заметно различаться, что может выявиться при тестировании и аттестации ЛВС при ее сдаче заказчику. Кроме того, очень часто необходимо учитывать специальные требования, определенные руководящими документами, регламентирующими особые требования к прокладке информационных и электросиловых линий, а также организации системы заземления.
При всей своей строгости и директивности эти требования зачастую не учитывают положений стандартов на ЛВС и реальных условий. Например, выполнение существующего требования по разносу информационных и электросиловых линий на 0,3 метра друг от друга при их параллельном пробеге с «нежелательными» трассами не более чем в 100 метров легко выполняется, если вспомнить, что длина кабеля витой пары согласно стандарта ISO/ESA 11801 не должна превышать 90 метров.
Для информации ниже приводятся рекомендации, которые используются в «классической» СКС SYSTIMAX фирмы Lucent Technology. В СКС SYSTIMAX питающие и коммуникационные кабели при длине не более 90 м могут прокладываться рядом (вплотную друг к другу) при следующих условиях:
• Питающий кабель с напряжением до 240 В при токе до 20 А для однофазного потребителя имеет три провода (фаза, нейтраль и защитное заземление) в общей оболочке. Если используются отдельные провода, они (все три) должны быть зажгутованы.
• Питающий кабель используется только для типового офисного оборудования (компьютеры и их периферия, но, например, не сварочные аппараты).
• Главный ввод питания имеет фильтр и защиту от перенапряжений (с варисторами).
Дополнительные рекомендации:
1. В коробках абонентских розеток расстояние между питающими и коммуникационными кабелями должно быть не менее 6 мм.
2. Если для питания применяются отдельные незажгутованные провода, то расстояние должно быть не менее 50 мм.
3. Расстояние от флюоресцентных ламп и их питающих кабелей должно быть не менее 127 мм.
4. При использовании секционированных коробов питающие и коммуникационные кабели должны укладываться в разных секциях (питающие лежат внизу).
Если питающие кабели имеют броню, окружающую их со всех сторон, к тому же заземленную, то требования по межкабельному расстоянию могут быть уменьшены вдвое.
Попутно следует заметить, что по требованиям фирмы Legrand питающий (электросиловой) кабель должен прокладываться по нижней части несущего (монтажного) короба.
При необходимости реализации особо жестких требований, определенных техническим заданием на монтаж ЛВС, кабели можно укладывать рядом, если коммуникационные или питающие кабели прокладываются в металлических кабелепроводах (трубах). Эти кабелепроводы должны закрывать кабель со всех сторон и быть непрерывными, их части должны иметь надежный взаимный электрический контакт и заземлены. Толщина стенок для стальных кабелепроводов должна быть не менее 1 мм, для алюминиевых — не менее 2 мм. Использование в качестве кабелепроводов гибких металлорукавов не допускается, так как металлическая лента, из которой они свиты, не обеспечивает надежного экранирования. При использовании отрезков металлорукавов для организации ввода кабелей в помещения они должны быть надежно заземлены.
Вот, пожалуй, и все основные положения касательно организации системы электропитания и заземления оборудования ЛВС, почерпнутые мною из разного рода печатных источников, а также от общения со специалистами в процессе проведения монтажных работ. Издания, полно, конкретно и комплексно рассматривающие вышеизложенные вопросы, автору не встречались. Надеюсь, что эти материалы заинтересуют «самодельщиков».
Литература
1. Правила устройства электроустановок // Министерство энергетики Российской Федерации, 6-е изд., доп. и испр. — М.: Госэнергонадзор, 2000.
2. Состояние и тенденции развития ЛВС // Материалы конференции. CD.
3. Гук М. Аппаратные средства локальных сетей.
4. Богачев К. «Чистая» энергия // Журнал «Потребитель»: «Компьютеры и программы», № 32, 2004.
5. ДКС. Каталог кабельных систем, 2004.
6. Legrand, Кабельные системы LCS5/LCS6.
7. АБН. Компьютерные сети — Кабельные системы // Каталог, 2004.
О.Ю. Прокопцева
Получение очередного номера любимого журнала приносит в семью оживление, радость. Здесь всегда много интересного и полезного, а к некоторым материалам возвращаешься не раз годы спустя. К сожалению, со временем журналов накапливается столько, что их некуда девать. Волей-неволей приходишь к нелегкому решению — оставить дома только небольшую часть публикаций, содержащих наиболее ценную, «руководящую» информацию. Поначалу отвечающие этому листы просто вырывались и складывались в папки с «ботиночными» тесемками. Получалось громоздко, неэстетично и неудобно в пользовании. Возникла мысль брошюровать коллекцию, но как? Теперь, после серии проб и ошибок, это кажется элементарно простым, но до такого нужно дойти. Подобная задача наверняка встает перед многими читателями, поэтому рискну поделиться нашим семейным опытом. В качестве обложки будущего «тома» вырезок берется обложка, например, от номера за данный год. Ее нужно аккуратно отделить от блока в виде единого целого. Нужные страницы ни в коем случае не следует отрывать — только подрезка у корешка концом лезвия перочинного ножа обеспечит последующую аккуратную сборку. Прежде чем подрезать лист, обратите внимание, с какой стороны от него находится более толстый слой страниц. Именно он послужит удобной направляющей своего рода линейкой для лезвия ножа (рис. 1).
Рис. 1
Конец лезвия заточите на наждачном бруске так, чтобы при движении с нажимом по журнальному листу бумага не собиралась бы рваными складками. Сделав необходимую выборку, сложите ее резаными краями вместе, следя затем, чтобы продолжения одного текста не оказались в разных местах. Разворот подготовленной обложки кладем лицевой стороной на стол; на правое «крыло» (3-я страница обложки) помещаем со сдвигом вправо от середины разворота стопку «кандидатов на склеивание». Левее середины, кисточкой наносим полоску клея с таким расчетом, чтобы корешковый край листа получил клеевую дорожку шириной 5–6 мм (рис. 2).
Рис. 2
Перед наклейкой свободный край необходимо совместить с контуром обложки. Такую операцию повторим для каждого следующего листа. Необходимо следить за тем, чтобы излишки клея не выдавливались на правое «крыло» обложки: будучи закрытой, оно не должно приклеиваться к странице-вырезке, пока не закончена сборка «тома» за данный год, что можно делать постепенно по мере получения очередных номеров. Когда годовая «коллекция» собрана, заднюю обложку приклеивают к блоку. В результате получается опрятная сборка, сохраняющая «фирменное» лицо издания.
Ну а основной объем каждого номера, не вошедший в вашу коллекцию, остается сброшюрованным с «родной» обложкой (кроме одного номера) — эти материалы охотно берут друзья и знакомые, порою собирая из них свою коллекцию. Так расширяется круг читателей и пользователей журнала; ну а у вас создается резерв места для новых поступлений. Кстати, то, что прочно осело у друзей, полезно внести в оглавление вашего «тома», что в случае необходимости позволит быстро найти доступ к прежде отставленным материалам. Комплектуя вырезки, непременно встретим места, где в разворот соседних листов попадают ненужные фрагменты отставленных материалов. Чтобы они не отвлекали внимание при пользовании рукотворным томом, имеет смысл склеить их между собой. А фрагменты, занимающие лишь часть страницы, лучше заклеить соответствующей полосой чистом бумаги.
Нередко составляют коллекции вырезок на определенную тему, куда отбирают извлечения из разных изданий, отличающихся форматом. Если склеивать их между собой непосредственно, пакет получается рыхлым, непрочным и неудобным в пользовании. В таком случае за основу следует взять вырезки наибольшего формата вместе с их обложкой, а маломерные материалы укрепить на чистых листах «ведущего» формата хотя бы с одного, «корешкового» края, чтобы иметь возможность читать текст с обеих сторон листа. При такой брошюровке пакет получается достаточно однородным и эстетичным. Совсем мелкие вырезки группируют также на одном крупноформатном листе белой бумаги.
Практика показала, что нередко возникает необходимость, пользуясь сведениями из вырезок, знать источник информации — название журнала, газеты, номер и год издания. Поэтому, готовя вырезку, желательно сразу же пометить эти сведения на свободном поле.
Обычно понятие «лежебока» имеет иронический смысл, не стоящий серьезного внимания. Мы же имеем в виду людей, которым после трудов праведных требуется отдых в лежачем положении, или принужденных к этому состоянием здоровья. В подобных «режимах» бывает весьма желательно спокойно послушать радиопередачи. Но поскольку продолжительность интересной программы на данном канале бывает невелика, требуется перестроить приемник, который зачастую находится в отдалении. Сделать это, не вставая с ложа, позволяют некоторые радиоаппараты, снабженные пультом беспроводного дистанционного управления. Но такой прибор имеется не у всех, а стоит он дороговато. Поэтому здесь предлагается несложное самодельное устройство пульта с проводной (кабельной) связью. Идея заключается в том, чтобы блок конденсаторов настройки приемника установить заранее в положение минимальной емкости (на высшую частоту диапазона), а параллельно секциям блока присоединить полупроводниковую емкость, величина которой может изменяться подачей с пульта небольшого регулируемого постоянного напряжения. Роль полупроводникового конденсатора настройки будет играть дешевый и доступный прибор — стабилитрон (разновидность диода). Схема варианта такого устройства показана на рис. 1.
Рис. 1. Электронный КПЕ на 460 пф
К 9-вольтовой батарейке типа «Кроны» (GB1) присоединены два делителя напряжения — на постоянных резисторах R4, R5 и в виде переменного резистора R3. Такая комбинация позволяет подавать на электронный конденсатор VD1 напряжения разной полярности, что способствует расширению пределов изменения емкости. Эти напряжения поступают на стабилитрон через высокоомные резисторы R1, R2, исключая влияние на контур приемника Ск, Lк емкости самого оператора. Электронная емкость VD1 связана с колебательным контуром (входным, гетеродинным) через конденсаторы относительно большой емкости C1, С2, что предотвращает замыкание упомянутых цепей постоянного тока через малое сопротивление контурной катушки Lк. Предлагаемое устройство неплохо работает в диапазонах средних и длинных волн (на коротких не проверялось) с приемниками, у которых максимальная емкость секции блока порядка 470–500 пикофарад. Стабилитрон, кроме указанного, может быть типа Д814В. Постоянные резисторы берут типа MЛT-0,125-0,5. Переменный резистор — типа СП-0,4 либо другой малогабаритный. Схемы управления каждым из двух контуров в принципе одинаковы, но конструкция пульта несколько упростится, если элементы R3-R5 не дублировать, а сделать общими. Если заводской блок настройки имеет максимальную емкость около 380 пикофарад, вводимый в приемник конденсатор связи С1 берут емкостью 2200 пикофарад (рис. 2).
Рис. 2. Вариант Электронный КПЕ по рис. 1 на 380 пф
Некоторые относительно громоздкие переносные приемники снабжены блоком с емкостью до 240 пикофарад — здесь следует собрать «приставную емкость» согласно схеме рис. 3.
Рис. 3. Электронный КПЕ на 230 пф
Ее отличие от рис. 1 в том, что берут два встречно-последовательно включенных стабилитрона VD1 и VD2, что вдвое уменьшает начальную и конечную емкость, сохраняя приемлемый диапазон частот настройки. Нетрудно видеть, что здесь стабилитроны включены последовательно по переменному току радиочастоты и параллельно по постоянному току одновременного управления величиной емкости. Поскольку стабилитроны имеют некоторый разброс емкостей, для сохранения заводской настройки (сопряжения) контуров входа и гетеродина, может оказаться полезным подбор стабилитрона во входном контуре. При успехе такой операции прием радиостанций в пределах диапазона останется достаточно равномерным, без заметного ослабления на каком-либо из его участков. Заметим, что потребление тока от батарейки GB1 весьма мало, так что ее хватит на длительное время работы. Заключительным аккордом изготовления пульта дистанционного управления станет устройство на нем шкалы настройки. В простейшем виде заготовка шкалы имеет вид бумажного круга, наклеиваемого на корпус пульта симметрично «выглядывающей» оси переменного резистора. На нее насаживают приборную ручку с «клювиком», либо на ручке делают хорошо различимую метку (она укажет название радиостанции, начертанное на шкале, на которую настроен дистанционно ваш приемник).
А. Будаев
Отказы в работе бытовых радиоприемников случаются, хоть и нечасто. За пределами гарантийного срока ремонт нынче обходится ощутимо дорого, составляя около половины стоимости нового изделия. Поэтому есть смысл рискнуть (а риск невелик) найти причину отказа самому пользователю. Характер повреждения обычно таков, что устранить его по силам даже малоопытному радиолюбителю. В полной мере это относится к изделиям старым, с невысокой степенью интеграции радиоэлементов. А повозиться стоит, поскольку такая аппаратура зачастую имеет более высокие характеристики, нежели выпущенная сейчас. Однако найти «бяку» в схеме, не имея монтажного чертежа платы и карты режимов, располагая в лучшем случае карманным мультиметром, весьма сложно. Другое дело, если у вас есть приборчик, позволяющий контролировать работу отдельных цепей и каскадов на слух: если сигнал прослушивается (в виде обычной радиопередачи) надежно — проверяемый участок в порядке, если же сигнал отсутствует либо искажен — вот оно, место неисправности. Приборчик, упомянутый здесь, весьма прост (см. рис. 1 принципиальной схемы).
Рис. 1
По существу, это широкополосный приемник прямого усиления, использующий колебательные контуры проверяемой конструкции. Сигнал с ее участков снимают посредством щупов X1, Х2. Когда обследуют каскады звуковой частоты, переключатель SA1 ставят в положение «3Ч» (для радиоцепей имеется положение «РЧ»), В последнем случае сигнал поступает на высокоомный вход 2 микросхемы DA1, представляющей собой хороший усилитель радиочастоты, охваченный автоматической регулировкой усиления и снабженный на выходе детектором. Для уверенного прослушивания продетектированного радиосигнала прибор оборудован своим усилителем звуковой частоты. Он собран на транзисторах VT1, VT2 по схеме эмиттерного повторителя, а потому располагает значительным входным сопротивлением. Нагрузкой «звуковика» служит ушной телефон BF1 того типа, что употребляется со стереоплейерами. При установке переключателя в позицию «34» повышенное входное сопротивление каскада с VT1, VT2 не вносит искажений в нормальный режим по постоянному току первых каскадов низкой частоты проверяемого приемника. Чтобы «метод тыка» щупами X1, Х2 был осмысленным и давал положительные результаты, следует предварительно присмотреться к размещению радиодеталей на монтажной плате: ясно, что магнитная или штыревая антенны и прилегающие к ним цепи работают на радиочастотах, а связь с динамической головкой, с регулятором громкости подскажет нахождение звукочастотных цепей. Нужно найти также разветвление «общего провода», связанного с одним из полюсов источника питания, а также с экранами контурных катушек, ротором блока настройки. Обследуя участок схемы, щуп Х2 соединяют с общим проводом, а X1 — с точками цепи передачи сигнала, обычно разбитой на участки разделительными конденсаторами. Кстати, нередко неисправность кроется в местах пайки их выводов, либо внутри конструкции последних. Восстанавливающее работу шунтирование подобным конденсатором укажет на успех поиска. Проверить подобным образом удается все каскады за исключением гетеродина преобразователя, поскольку сигнал его не модулирован. «Грешить» против него будут основания, когда проверены и подтвердили работоспособность иные цепи. Ну а «горячие» операции при производстве ремонта следует проводить паяльником с мощностью до 20 Вт и с узким жалом. Если имеется только паяльник мощностью порядка 40–50 Вт с жалом диаметром 5–6 мм, сделайте к нему насадку из медного провода диаметром 2,5–3 мм. Этот провод несколькими витками наматывают плотно на жало паяльника, а отогнутый конец заостряют и облуживают. В нашем самодельном приборчике используем резисторы типа MЛT-0,125-0,5, конденсаторы С2, С3 — типа КЛС, МБМ; C1, С4, С5 — оксидные К50-12, К50-6. Два полярных конденсатора C1, С4 можно заменить одним неполярным емкостью 10 мкФ. Для питания устройства достаточно одного гальванического элемента типа «АА».