Самым главным вкладом Лизы Мейтнер в науку уже на закате карьеры стало открытие расщепления атома. Впервые ей удалось представить себе механизм этого процесса во время зимней прогулки со своим племянником, тоже ученым, Отто Робертом Фришем. Однако это открытие было не случайностью, а результатом многолетней работы Мейтнер с Отто Ганом и Фрицем Штрассманом.
В конце 1938 года Лиза Мейтнер получила письмо от своего коллеги, немецкого химика Отто Гана (1879-1968). Мейтнер было уже 60 лет, она жила в Стокгольме и работала в Нобелевском институте физики, научном учреждении, директором которого был физик Карл Манне Георг Сигбан. После бегства Мейтнер из нацистской Германии институт дал ей работу, но друзей он ей предоставить не мог, и исследовательница в Швеции страдала от одиночества и отсутствия хорошей лаборатории. До этого она работала в одном из главных научных учреждений Германии, где у Мейтнер сложилась блестящая карьера, а теперь, на чужбине, она была вынуждена прервать экспериментаторскую деятельность. Письмо Гана, с которым Лиза сотрудничала в течение долгих десятилетий, удивляло: коллега сообщал о результатах эксперимента, на который его вдохновила именно Мейтнер.
В ходе исследований атомного ядра вместе с немецким химиком Фрицем Штрассманом (1902-1980) Ган проводил бомбардировку урана нейтронами по методике итальянского физика Энрико Ферми (1901-1954). При этом ядро забирало один нейтрон, и начинался радиоактивный процесс, приводивший к бета-распаду. Однако среди продуктов реакции неожиданно был обнаружен барий. Для Гана присутствие бария было загадкой, и он решил поделиться этим со своей недавней коллегой.
Барий — гораздо более легкий элемент по сравнению с ураном. Для экспериментов использовались образцы чистого урана, откуда же появлялся барий? Его просто не должно было быть — все химические и физические знания эпохи никак не объясняли возможность появления бария, принципиально отличавшегося от урана.
Фройляйн Мейтнер — профессор Мейтнер — вынуждена была покинуть нашу лабораторию в июле 1938 года из-за режима Гитлера, ей пришлось уехать в Швецию. Штрассман и я начали работать в одиночку, и осенью 1938 года мы обнаружили странные результаты.
Отто Ган
Для выделения и идентификации элементов Ган использовал очень точный химический процесс — фракционную кристаллизацию, так что возможность ошибки была невелика. В письме Гана мы читаем:
«Возможно, ты натолкнешься на какое-нибудь фантастическое объяснение. Известно, что [уран] не может взорваться просто так и превратиться в барий».
В ядре бария 56 протонов, то есть примерно половина протонов урана, которых 92. Самым простым объяснением казалось, что после того как нейтрон поглощается ядром урана, он вызывает реакцию, после которой первоначальное ядро делится пополам. Однако знания о радиоактивности не позволяли установить точный механизм этого процесса.
В конце 1930-х годов существовало убеждение, что ядро — это плотная стабильная структура в центре атома, и казалось невозможным, что оно может распасться надвое из-за поглощения частицы, не имеющей электрического заряда, такой как нейтрон. Раньше некоторым физикам удавалось в результате бомбардировки ядра вырвать несколько протонов, но они не могли и представить, каким образом может разделиться тяжелое ядро урана. Научное сообщество во главе с Энрико Ферми пришло к выводу, что при поглощении нейтрона в ядре урана начинается серия реакций, в результате которых образовываются атомы с большим атомным числом, чем сам уран.
Письмо, отправленное Ганом Мейтнер, датировано 19 декабря 1938 года.
Оно было написано прямо из лаборатории — словно ученому не терпелось обратиться к коллеге, не откладывая это до возвращения домой. В письме мы читаем:
«Дорогая Лиза!
Сейчас уже 11 вечера. В 11:45 придет Штрассман, и возможно, тогда я, наконец, смогу пойти отдохнуть.
Кстати, насчет «изотопов радия» есть кое-что настолько важное, что сейчас мы можем рассказать об этом только тебе. Полужизни трех изотопов были определены достаточно точно, они могут отделяться от всех элементов, кроме бария, все реакции возможны с радием. Но одна из них нелогична, по крайней мере очень необычна — фракционирование не работает. Наши изотопы радия ведут себя, как будто являются барием. [...] Пожалуйста, подумай, есть ли этому какое-то объяснение. Может быть, существует изотоп бария с атомным весом гораздо выше 137? Если тебе придет в голову что-нибудь, что можно опубликовать, это будет в некотором роде наша общая работа — всех троих».
Отто Ган в 1938 году.
Барий и радий относятся к одной группе, стоят в одной колонке периодической таблицы. Это означает, что они обладают схожими химическими характеристиками, а главное их различие заключается в массе. Радий находится близко от урана, поэтому его присутствие при поглощении ядром нейтрона можно было предсказать, но появление бария было абсолютно необъяснимым.
Обнаружение бария было удивительным и неожиданным: этот факт не соответствовал теоретической модели, на которую опирались физики и химики той эпохи. Объяснить его можно было или ошибкой в постановке и осуществлении эксперимента, или тем, что некоторые предпосылки общепринятых знаний были ошибочны.
Мейтнер следила за научным прогрессом в данной теме, несмотря на сложные жизненные обстоятельства, в результате которых она оказалась в Швеции. Исследовательнице пришлось покинуть дом, буквально сбежать из Германии с двумя чемоданами в руках и меньше чем десятью марками в кармане. Вскоре после побега Лиза узнала, что ее зять арестован и отправлен в концлагерь. Впоследствии его освободили, но Мейтнер очень переживала за близких, оставшихся в Германии. Ее научное будущее также оставалось неясным: все шло к тому, что после стольких лет работы в Институте кайзера Вильгельма в Берлине, рука об руку с самыми знаменитыми учеными эпохи, она будет вынуждена завершить карьеру.
На Рождество Мейтнер ждала в гости своего племянника Отто Роберта Фриша, который под влиянием тети также занимался физикой и работал в то время в Копенгагене, в Институте физики под руководством Нильса Бора. Фриш вспоминал:
«Лиза Мейтнер находилась в Швеции одна, поэтому я вызвался навестить ее. [...] Когда я приехал, она была погружена в размышления из-за письма Гана».
Мейтнер и Фриш встретились в Кунгэльве, рядом со Стокгольмом, где жила подруга Лизы, Эва фон Бар-Бергиус. Она также была физиком-экспериментатором, и дружба исследовательниц началась несколько десятилетий назад в Берлине. В эти трудные времена фон Бар-Бергиус оказывала значительную поддержку Мейтнер.
Фриш приехал в отель в Кунгэльве поздно вечером. Утром за завтраком он встретился с теткой, и разговор сразу же начал вращаться вокруг загадочного присутствия бария. Мейтнер сказала племяннику:
«Барий... Не могу в это поверить. Здесь должна быть какая-то ошибка. От одного удара ядро не может разлететься на сотню частиц. Это фантастика. Кажется невозможным, что это может сделать один нейтрон».
По ее словам, она полностью доверяла Гану, поскольку не раз убеждалась в его больших способностях как химика, так что возможность ошибки была исключена.
Фриш и Мейтнер решили выйти прогуляться. Шел снег, поэтому Фриш надел лыжи, а Лиза шла рядом с ним. Необходимо было найти барию место в реакции. Согласно имевшемуся пониманию ядра, отрицалась сама возможность того, что воздействие одного нейтрона может вырвать такое большое количество протонов. Кроме того, даже если ядро можно разделить, для этого необходимо огромное количество энергии, которое невозможно было получить в лаборатории Гана. И вообще нейтрон как частица, не обладающая зарядом, казалась достаточно безобидной, неспособной дестабилизировать атомное ядро.
Для Мейтнер логичной была мысль о том, что атом урана разделился, — это доказывало и присутствие бария. Но это означало, что модель атомного ядра требовала доработки. Оба ученых знали теорию советского физика Георгия Гамова (1904-1968), которую поддерживал и датчанин Нильс Бор (1885-1962): атомное ядро можно представить как каплю воды (см. рисунок). Согласно этой концепции атомное ядро не является плотной жесткой структурой, а может принимать разные формы, словно жидкость, которая сохраняет стабильность только благодаря силам поверхностного натяжения.
Если отталкиваться от такой модели ядра, разделение урана уже не казалось невозможным. Представим ядро как каплю воды. После воздействия одной частицы капля деформируется, образуется продолговатая фигура, которая в конце концов разделяется на две части.
Уран с его массивным атомом в каком-то смысле имел все основания для такого разделения. Фриш писал:
«Ядро урана было похоже на каплю, находящуюся в движении, нестабильную, готовую разделиться, как только появится необходимый возбуждающий стимул».
Модель атомного ядра в виде капли воды и этапы, предшествующие делению ядра.
Тетка и племянник долго шли по горной дороге между деревьев, а потом решили присесть на упавший ствол — отдохнуть, а заодно рассчитать, какой энергетический обмен должен происходить при реакции, и таким образом проверить возможность разделения ядра. Мейтнер достала из кармана клочок бумаги, они схематически изобразили процессы, которые могли происходить в ядре, и принялись за расчеты.
С одной стороны, нужно было учитывать поверхностное натяжение ядра, то есть его устойчивость к деформации. При разделении ядра урана должны были образовываться два ядра, оба с положительным зарядом, что вызвало бы сильное взаимное отталкивание. По расчетам Мейтнер сила отталкивания должна была быть порядка 220 МэВ.
И вся эта энергия содержалась в ядре урана — не так уж мало для одного атома. Мейтнер снова посмотрела на атомную массу урана и сумму атомных масс двух получившихся фрагментов. Они отличались на величину, эквивалентную 1/5 массы протона. Применив формулу Эйнштейна Е = тс2, Мейтнер рассчитала, что пятая часть массы протона равна энергии порядка 200 МэВ. Этот результат соответствовал предположениям, и ее догадка неожиданно получила подкрепление. Мейтнер и Фриш вернулись с прогулки, убежденные в том, что атомное ядро не обладает плотной жесткой структурой: напротив, оно может принимать разные формы, словно капля воды.
Отто Ган с Лизой Мейтнер в лаборатории в Берлине, 1913 год.
Мейтнер в 1946 году.
Отто Ган в 1944 году на вручении Нобелевской премии по химии за открытие расщепления тяжелых ядер. Премия была вручена ему в 1945 году.
На основании этого они разработали модель, которая описывала бы результаты расщепления ядра, и эта модель находит подтверждение в современной нам физике.
Фриш вернулся в Копенгаген, а Мейтнер — в Стокгольм. Им оставалось совсем немного доработать свою теорию, но это можно было сделать и по телефону. Если быть более точными, ученых волновало, как определить, по словам Мейтнер, «огромное количество энергии, высвобождаемой в процессе расщепления». Они придумали способ характеристики продуктов ядерной реакции: «или измерить ионизацию фрагментов, выталкиваемых большим количеством энергии, — этот метод предложил и реализовал Фриш, или собрать продукты расщепления в зависимости от их радиоактивной отдачи — это предложила я, а Жолио впоследствии реализовал на практике».
Фриш был очень взволнован открытием и поспешил поделиться им с Бором, однако тот как раз отплывал в США, так что смог уделить молодому ученому всего несколько минут. Бор, услышав о ходе рассуждений Мейтнер и Фриша, сразу понял, что в руках ученых все это время были все детали головоломки, но сложить их в целую картину помогло только озарение Мейтнер. Бор воскликнул: «Какими же мы были идиотами! Это прекрасно! Это так, как и должно быть. Вы с Лизой Мейтнер уже написали статью об этом?» Фриш ответил: «Пока нет, но мы скоро ее напишем». Позже один биолог объяснил Фришу, что процесс деления клеток называют расщеплением, — так же Фриш решил назвать и ядерный процесс, который они с теткой смогли объяснить.
Статья появилась в журнале Nature в начале 1939 года под заголовком «Распад урана под воздействием нейтронов: новый вид ядерной реакции». Авторы — Лиза Мейтнер и Отто Фриш. Незадолго до этого вышла статья Отто Гана и Фрица Штрассмана, в которой они рассказывали о том, что после бомбардировки урана нейтронами обнаружили присутствие бария.
В биографическом тексте «Разгадки и промахи ядерной энергии» Мейтнер описывает свою прогулку с племянником по свежевыпавшему снегу и момент, когда они смогли представить себе ядро в виде капли воды. Мейтнер пишет об этом так:
«В ходе нашей дискуссии мы пришли к следующему: если ядро урана, обладающее высоким зарядом, поверхностное натяжение которого ослаблено из-за взаимного отталкивания протонов, достигает благодаря поглощаемому нейтрону коллективного движения соответствующей интенсивности, то оно может растягиваться; все большее растягивание приводит к делению на два более легких ядра, примерно равных между собой, которые стремятся разделиться еще больше из-за взаимного отталкивания. Согласно нашим расчетам, энергия, высвобождаемая в ходе процесса, равна 200 МэВ. Так как процесс напоминал деление клеток, мы по предложению Фриша назвали его расщеплением. Мы подчеркиваем, что данное исследование не публиковалось ранее, и заметку о нем называем A New Type of Nuclear Reaction [«Новый вид ядерной реакции»]».
Мейтнер говорила, что они с племянником направили статью в Nature 16 января 1939 года. До того как номер вышел из печати, Бор прибыл в США. В пути его сопровождал бельгийский физик Леон Розенфельд (1904-1974), с которым Бор в деталях обсудил процесс расщепления. Бор обещал не разглашать полученные от Фриша сведения до публикации их с Мейтнер статьи, но Розенфельд или не знал об этой договоренности, или сделал вид, что не знал, и на своих первых лекциях в Штатах сообщил аудитории об открытии. Это стало сенсацией, многие из слушателей, среди которых были физики Калифорнийского университета, решили повторить опыт, доказывающий возможность расщепления. Скоро новость облетела все научное сообщество.
Открытие расщепления ядра не было случайным. Вдохновение, посетившее Мейтнер в то снежное утро, стало заслуженным вознаграждением за долгие годы кропотливой работы, во время которых исследовательнице пришлось столкнуться с множеством неизвестных — как в научной деятельности, так и в трудовых и личных отношениях. Жизнь Мейтнер является примером противоречий и несправедливостей, характерных для той эпохи, но она также пример преодоления всех превратностей судьбы — преодоления, совершенного любознательным ученым, больше всего на свете стремящимся разгадать тайны окружающего мира.