ШЛЯХИ ЕНЕРГЕТИКИ

Чи загрожує людству енергетичний голод? На який час вистачить йому запасів вугілля і нафти? Щонайбільше «років на двісті. А може, навіть і менше «адже потреби в енергії безперервно зростають: збільшується населення Землі, розвивається промислове виробництво.

Треба відвернути загрозу голодування. Треба знайти вихід.

Пошуки нових джерел енергії починаються, як правило, з Сонця «цього велетенського природного термоядерного реактора, що безперервно випромінює світло й тепло. Щороку Земля дістає від нього стільки променевої енергії, що в перерахуванні на кіловат-годину виходить астрономічна цифра «шістсот двадцять більйонів.

Що насправді означає ця цифра, можна зрозуміти, коли порівняти її з іншою: з річним споживанням сонячної енергії всім людством. Воно майже в двадцять тисяч разів менше. Інакше кажучи, ми беремо від нашого денного світила мізерну частку того, що воно надсилає до нас.

Величезні запаси сонячного світла й тепла завжди привертали увагу інженерів. І все ж геліотехніка, по суті, не виросла з дитячого віку.

На що здатні побудовані дотепер сонячні нагрівники? Закип’ятити воду в самоварі, котрі ж більші за розмірами «замінити казан на кухні, в їдальні, пральні чи в лазні «ось, власне, й усе. Хоч і корисні такі установки, та це, як на сучасну енергетику, всього-на-всього тільки іграшки.

До них ще можна додати сонячні печі, в яких влітку сушать фрукти на заводах, та опріснювачі води.

За допомогою сонячних установок можна одержувати дуже високу температуру, що необхідна при зварюванні та плавленні металів. Навіть найтугоплавкіший з них «вольфрам «піддається сонячному плавленню. Але такі установки поки що тільки випробовуються.

Проектами вже передбачено сонячно-водяне опалення південних міст. Нагріту сонцем воду зберігатимуть у тепло-ізольованих сховищах для того, щоб витрачати її взимку. Але й це не зараджує справі.

Геліоенергетика належить майбутньому, а тому перед інженерною уявою тут відкривається широкий простір.

Інженер накреслить собі насамперед найпростіший шлях, яким можна піти. Дзеркало збирає сонячні промені, вони випаровують воду, а далі все відбувається так, як на звичайній теплоелектроцентралі.

Геліостанції (тобто сонячні станції) можна було б побудувати в південних районах і ввімкнути їх у єдине енергетичне кільце. Доцільно обрати для них такі місця, де майже не буває хмар, і примусити працювати на повне навантаження протягом усього дня.

Всі геліоустановки діють тільки за дня. Але струм можна акумулювати і витрачати в разі потреби. Є змога також запастися теплом. Ймовірно, сонячні станції матимуть і теплові акумулятори. Тепло «консервують» деякі солі, що плавляться при нагріванні, а коли знову кристалізуються, то виділяють його.

Але чому ж, незважаючи на видиму простоту сонячних установок, геліоенергетика все-таки ще не ввійшла у наш побут? Річ у тім, що установки ці малопотужні. А щоб мати достатню потужність, потрібні відбивні поверхні таких розмірів, які техніка на даному етапі неспроможна побудувати.

Можливо, коли металурги створять надміцний метал, а хіміки «надміцне скло, вдасться виготовити дзеркала-велетні. Поки що ж відбивач діаметром сто метрів «рідкісна споруда, хоча потужність його усього п’ятсот кіловат. Кілька сотень, а потрібні тисячі, ба навіть мільйони!

Інженери шукають вихід. Адже замість одного великого дзеркала можна зробити безліч малих, а котел розмістити так, щоб усі дзеркала посилали до нього зібрані промені. Тоді загальна відбивна поверхня буде чимала, а виготовляти невеликі дзеркала з однакових, стандартних частин неважко.

Окремі дзеркала-відбивачі повинні весь час обертатися услід за Сонцем, тому їх передбачають розмістити на кільцевих коліях. Дотримувати потрібну швидкість руху і нахил дзеркал допоможе автоматика. Трубчастий геліокотел встановлять на високій вежі в центрі станції, і він також зможе автоматично повертатись.

Це буде справжня теплоенергоцентраль. Пара не тільки приведе в рух турбіни. Вона піде на фабрики, на консервні заводи, в теплиці й житлові будинки. Потужність такої станції досягне кількох мільйонів кіловат-годин на рік.

Інженерний пошук спрямовано також на заміну металевих і скляних дзеркал у сонячних нагрівниках пластмасовими. У довгому циліндрі з плівки верхня половина прозора. Нижня, металізована, відбиває промені, скеровуючи їх на теплоприймач «затемнену трубку. її нагрівають і прямі промені, і ті, що відбилися. Таке плівкове дзеркало може бути надувним і переносним.

Там, де багато сонця, але мало палива, де поблизу нема залізниць, де треба опріснювати воду, зрошувати чи осушувати землю, такі станції відіграють велику роль. Пекуче сонце, що досі було згубним для посушливих, пустельних районів, допоможе відродити їх до життя.

Однак заходить сонце, і до ранку на геліостанції настає вимушена перерва. Поки що невідомо, чи вдасться за допомогою позаземних супутників-освітлювачів перетворити ніч на день, хоча і про це мріють інженери.

Споруджувати паротурбінні геліостанції за атмосферою вперше запропонував ще К. Е. Ціолковський. Згодом з’явилися проекти великих населених супутників із дзеркалами «сонячними нагрівниками.

Можна вибрати таку орбіту супутника, що його завжди буде освітлено сонцем. Та й про охолодження, яке потрібне, щоб знову перетворити пару на воду І налагодити в паротурбінній установці замкнений цикл, турбуватися не доведеться. Досить воді (або іншій, придатнішій для роботи в такій турбіні рідині) попасти в тінь, як вона охолоне. У світовому просторі можна одержати будь-яку температуру «там немає повітря і грітимуть лише прямі сонячні промені.

У пізніших проектах позаземних станцій для постачання їх енергією передбачено установки іншого типу. Вже з’явилися перші маленькі космічні геліостанції. Вони працюють на супутниках і на автоматичних міжпланетних станціях. Поки що вони занадто дорогі і малопотужні, хоч у космосі дуже зручні і цілком виправдали себе. Це «сонячні батареї, напівпровідникові фотоелементи, що перетворюють променисту енергію в електричний струм.

Труднощі, які виникають при побудові потужних напівпровідникових кремнієвих батарей, вдасться подолати, коли буде знайдено спосіб запобігати їхньому перегріву, що дуже зменшує коефіцієнт корисної дії. Кожний зайвий градус тепла забирає більш як півпроцента енергії. Можливо, світлочутливу поверхню будуть захищати фільтром, який не пропускатиме теплові інфрачервоні промені.

«Віяла» таких батарей розмістяться на великих штучних супутниках. Вони зможуть існувати також окремо від станцій, потрібно лише обладнати їх автоматичними пристроями, що регулюватимуть освітлення батареї сонцем. Певно, доведеться мати на супутникові і акумулятори, бо геліоустановка припиняє роботу, коли супутник потрапляє в тінь Землі. А станції постійно потрібний струм «для роботи механізмів і прикладів, для побутових потреб, для штучного освітлення оранжереї під час короткої супутникової ночі.

Ми знаємо, що на Землю потрапляє лише мізерна частка сонячної енергії. Вийшовши за межі Землі, ми фактично матимемо доступ до безмежного енергетичного багатства.

Можна «якщо буде потреба «створити цілу мережу автоматичних штучних супутників. їхні напівпровідникові приймачі вловлюватимуть сонячні промені і даватимуть струм. Можливо, пощастить оперезати Землю своєрідним намистом із напівпровідникових батарей.

Енергію запасатимуть в акумуляторах. Такі акумулятори стануть у пригоді космічним кораблям, що вирушать у далекі рейси. Потрібні вони і для живлення установок космічного радіозв’язку. А коли люди навчаться передавати енергію на великі відстані без дротів «заатмосферні геліостанції постачатимуть електричним струмом і Землю.

Згодом за атмосферою виникне промисловість «спочатку в невеликих масштабах, а надалі в ширших. Буде споруджено станції-супутники, селища на Місяці й на інших планетах. Очевидно, налагодять видобуток та переробку сировини, знайденої на Місяці чи на астероїдах. Треба буде бурити породу, плавити й зварювати метали. І там знадобляться сонячні електростанції та нагрівники.

Ось ілюстрація «граничних» можливостей космічної геліоенергетики: поверхня Місяця, вкрита напівпровідниковими фотоелементами, дала б десятки трильйонів кіловат електроенергії.

Приклад цікавий, але видається дещо курйозним? Зовсім ні. Щоправда, весь Місяць перетворити на електростанцію неможливо, та й ні до чого це, адже можна побудувати геліоустановки на штучних супутниках нашої планети. Але селища, що виростуть на Місяці, безумовно, повною мірою використовуватимуть сонце для своїх енергетичних потреб.

Земна куля в оточенні супутників-геліостанцій, земна куля із супутниками «штучними термоядерними сонцями, із супутниками-освітлювачами і, звичайно ж, із супутниками-ретрансляторами, маяками, спостерігачами позаземної служби Землі — такою уявляємо собі нашу планету в двадцять першому сторіччі.

Сто ват електроенергії з кожного освітленого сонцем квадратного метра може дати напівпровідниковий фотоелемент. Батарея фотоелементів з кремнію з коефіцієнтом корисної дії десять процентів (сучасна!), площею мільйон квадратних кілометрів, дала б стільки енергії, скільки дають тепер усі електростанції Землі!

Ось як уявляв собі академік А. Ф. Йоффе майбутнє геліоенергетики. Сонячні батареї розташуються на дахах будинків, на надбудовах кораблів, на кузовах автомобілів, на вагонах… Тоді заводи, фабрики, тваринницькі ферми, житла, транспорт одержать дармовий струм.

Якби зайняти батареями бодай невеличку частину пустель, то цієї електроенергії вистачило б для усієї країни. Напівпровідникові батареї можна було б розмістити на схилах гір, де багато сонця і які не можна використати для чогось іншого. Зрештою, на штучно створених в океані островах теж можна знайти місце для геліостанцій.

Звичайно, коли пустелі та гірські схили люди навчаться використовувати для сільського господарства, будівництва нових міст і сіл, там не ставитимуть батареї. Геліоустановки «перекочують» тоді на штучні супутники Землі.

Сонце дає не лише світло, а й тепло. Є не тільки сонячні батареї фотоелементів, а й сонячні напівпровідникові термоелектрогенератори. Поки що і вони не здатні створювати великі потужності. їхній коефіцієнт корисної дії малий. Вони потребують високого нагріву і, так само, як сонячні установки, дзеркал.

Все ж навіть якщо термостанції на Землі залишаться скромними трудівниками «малої енергетики» «живитимуть приймачі, нагрівники, холодильники та інші прилади, за атмосферою їх чекає набагато важливіша робота. Термогенератори далеко простіші за парогенератори. Коли з’являться високоекономічні напівпровідникові термобатареї, вони даватимуть струм для позаземних станцій. Невагомість дозволить спорудити найбільші дзеркала.

Високоекономічні фото"і термоелементи стануть дійсністю, коли в розпорядження геліотехніки надійдуть дешеві напівпровідникові матеріали високої чистоти. Поки що вони надто дорогі. Звичайні електростанції обходяться дешевше. Але ж так буде не завжди!


Ми говорили про Сонце. Та не лише Сонце, а й маленький Місяць, наш природний супутник, може внести вклад в енергетику майбутнього. І вклад чималий «сто трильйонів кіловат-годин на рік, втричі більше, ніж заощаджено енергії і в річках! Двічі на добу місячне тяжіння змушує здійматися припливну хвилю в Океані. Двічі на добу набігає, а потім відступає вода, розтрачуючи надаремно свою енергію.

Припливна гідроенергетика зробила ще менше кроків, ніж геліотехніка. Припливний млин та водопіднімальна машина «ось і все, що вона створила досі. Проте останнім часом у різних країнах почали проектувати та будувати припливні електростанції, ПЕС.

Інженерам «будівникам ПЕС довелося зазнати чимало труднощів. Як не прагнули досягти рівномірної роботи турбін, нічого не виходило. А без цього енергія припливів була б куди дорожча за звичайну, яку одержуємо на теплових та річкових електростанціях. Тому чимало розпочатих колись будівництв не довели до кінця.

Становище змінилося, відтоді як почали створювати єдині енергетичні системи. Нерівномірність роботи припливних станцій тепер не стоїть на заваді, коливання потужності можна усунути за рахунок інших станцій. А з деяких міркувань ПЕС навіть вигідніші від гідростанцій. Вони працюють протягом усього року, Океан не знає ні повені, ні обміління, як річки. В усякому разі, гідро"і припливні електростанції вдало доповнюють одна одну.

Потужність припливних електростанцій велика. Так, скажімо, Мезенська ПЕС на Білому морі даватиме дев’яносто мільярдів кіловат-годин на рік «увосьмеро більше, як Волзька ГЕС імені XXII з’їзду КПРС.

«Синє вугілля», як називають припливну енергію, незабаром почне служити людині, як служить нині «вугілля біле» «енергія річок.

Ділянок, де можна споруджувати припливні електростанції, на земній кулі чимало. Берегова лінія Океану досить порізана, в багатьох місцях припливна хвиля підіймається на

десять, ба навіть на вісімнадцять метрів… Гребля відгороджує в затоці басейн. Вода навпереміну то входить у нього, то виходить назад. І відповідно то зростає, то спадає напір. Турбіну збудовано так, що вона може виробляти струм і може працювати, як насос, підкачуючи у басейн воду, коли слабшає напір. Це регулює роботу ПЕС.

Коли починається спад, на допомогу приходять інші електростанції. Вони дають енергію для підкачування води в басейн. Інакше ПЕС була б невигідна. Лише працюючи разом, допомагаючи одна одній, припливні, річкові, теплові станції зможуть давати енергії стільки, скільки потрібно будь-якої пори року, будь-якого часу на добу.

Слід зауважити, що будувати припливну станцію доводиться дещо інакше, ніж ГЕС. В річці не буває такої різниці в рівнях води, і річковій греблі не доводиться витримувати такого сильного напору хвиль. Гребля ПЕС набагато довша, часом вона простягається на кілька десятків кілометрів. Монтують станцію на спокійній ділянці затоки, де хвилі не заважають. А потім частинами відбуксировують її на місце.

Та не лише «синім вугіллям» вичерпуються багатства Світового океану. Сотні тисяч кіловат енергії на кілометр берега несе з собою штормова хвиля. Скільки ж енергії губиться, коли вирує Океан! Щоправда, шторми бувають не завжди, і, як скористатися штормовою хвилею, техніка ще не знає. Зате є намір змусити працювати звичайні хвилі, які здіймає вітер і кидає на узбережжя.

Може, поставити на хвилях поплавці і з’єднати їх важелями з насосами? Хвиля накачуватиме воду в басейн, а звідти вода прямуватиме до турбін… Чи подати воду нагору без усяких поплавців, примусивши хвилю рухатися до конічних лійок? Тоді вода, попавши у вузький прохід, з великою швидкістю рине до труби, що веде в басейн. Або, нарешті, поставити на поплавцях поршні з пружинами, щоб хвилі, рухаючи поршні вперед і назад, приводили в дію електрогенератор. Перші спроби вже зроблено. Та поки що потужні хвильові поплавкові ГЕС «лише інженерна мрія.

Можна було б спорудити в Океані ще й таку електростанцію, яка використовує різницю температур поверхневих та глибинних шарів води. Це так звана термоелектростанція.

Сонце прогріває воду лише з поверхні. Опустившись приблизно на кілометр, ми потрапили б у шар, де всього кілька градусів тепла. Особливо велика різниця температур у тропіках: тридцять градусів на поверхні і всього п’ять на глибині.

Якщо в котлі створити вакуум, вже при тридцяти градусах вода закипить, і турбіни одержать потрібну їм пару. Спрацьована пара надійде в конденсатор, охолоджуваний глибинною водою, і знову перетвориться на рідину.

Для океанських термостанцій, очевидно, обиратимуть такі місця біля узбережжя, де зразу починається велика глибина, їхня економічність буде незначна, бо перепад температур все-таки замалий. Отже, треба будувати не саму лише електростанцію, а цілий енергохімічний та почасти харчовий комбінат.

Щоб турбіна могла працювати на парі морської води, з неї треба вилучити солі. Конденсатор, у якому охолоджується пара, правитиме за джерело прісної холодної води. А це має неабияке значення для півдня. Крім того, насоси, накачуючи воду в котел, будуть водночас виловлювати рибу.

Таку станцію вже запроектовано. Слід сподіватися, що коли дослід буде вдалий, біля берегів південних морів виросте не один такий комбінат.

У тропіках, як ми вже казали, вода на поверхні тепліша, ніж на глибинах. А в Арктиці навпаки «нагорі лід, під ним вода з температурою вищою нуля. Знову перепад температур, і його теж пропонували використати для роботи термостанцій, тільки іншої будови.

Вода тут непридатна для одержання пари. Але її можна замінити рідким бутаном, який легко закипає, коли його нагріти цією підльодною водою. Бутанова пара піде в турбіни, а звідти «в конденсатор, що охолоджується льодом, адже зверху температура значно нижча нуля.

Арктична термостанція має той самий недолік, що й тропічна «невелику потужність. А розміри турбіни будуть чималі. Та й побічних вигод не одержимо.

…Ми розповіли про ці проекти, щоб показати, які різноманітні шляхи вишукували інженери для енергетики майбутнього, як намагалися вони використати кожну можливість для одержання струму. Та наука йде вперед, і з’являються інші, економічніші джерела енергії, народжуються нові проекти.


В пошуках енергії техніка майбутнього звернеться до тепла, прихованого глибоко в надрах планети. Запаси його визначаються величезною цифрою «двісті п’ятдесят трильйонів кіловат-годин на рік. Це в два з половиною рази більше, ніж могли б дати припливи, та майже у вісім разів більше, ніж дали б ріки.

Скориставшись теплом Землі, людство одержало б коли не вічне, то принаймні довговічне джерело енергії. Адже це тепло не залежить ні від Сонця, ні від Місяця, як усі інші енергетичні ресурси.

Гейзери викидають готову пару з глибини кількасот метрів. Можна утворити штучний гейзер «пробурити в певному місці свердловину, і струмінь пари битиме з неослабною силою. Італійські геотермічні електростанції дають на рік понад два мільярди кіловат-годин енергії. Новозеландська станція виробляє понад півмільярда. Дала струм Паужетська експериментальна геотермальна електростанція на Камчатці.

Треба, однак, сказати, що цей на перший погляд простий спосіб одержання електроенергії має певні технічні труднощі. Вода, що надходить Із надр, насичена різними домішками, які шкідливо впливають на лопаті турбін. Є в ній і гази, що теж заважають роботі турбінної установки. їх доводиться відсмоктувати насосом, а пару «очищати, перетворюючи на рідину та випаровуючи знову (за допомогою того ж підземного тепла).

Отже, надра, постачаючи нас теплом, дадуть водночас І дуже цінну сировину для хімічної промисловості.

Геотермічна енергія дешевша від гідравлічної та звичайної теплової. Не потрібні греблі, шлюзи, дамби, котли і топки, фільтри для очищення повітря від попелу та диму. А гарячою водою, що відпрацювала в турбіні, можна обігрівати теплиці, будинки. Вона знадобиться також і для різних побутових потреб, на виробництві.

Людина зможе використати не лише термальні води, а й тепло самої Землі. На кожен кілометр глибини температура нашої планети підвищується приблизно на тридцять градусів. А в районах вулканів «діючих чи недавно згаслих «нагрівання зростає ще швидше.



Сучасна техніка може пробурити свердловину восьмикілометрової глибини, а в найближчому майбутньому буде здійснено буріння на п’ятнадцять-двадцять кілометрів.

Можливо, коли з’являться економічні термоелементи, пощастить одержати електричний струм із надр таким чином. Один спай термоелемента опустять у свердловину, другий, що залишиться на поверхні, додатково охолодять, щоб збільшити температурний перепад. Тепловий потік надходить з глибини увесь час, і така напівпровідникова геотермічна станція даватиме струм безперебійно.


Ще одна стихійна сила досі майже непідвладна людині «вітер. А використання могутньої енергії вітру дало б нам п’ятсот трильйонів кіловат-годин на рік, тобто вдвічі більше, ніж підземні гарячі води.

Звичайно, не можна розраховувати на підкорення вітру в масштабах цілої планети. Та це й не потрібно. Але там, де бракує енергії, вітрові електростанції (ВЕС) були б дуже доречні.

У нас в Радянському Союзі запаси енергії вітру становлять вісімнадцять трильйонів кіловат-годин. Інженери планують збудувати великі вітрові колеса. На одній ВЕС їх може бути понад десяток. Проектують також спеціальні вітросилові греблі «велетенські щогли, на яких буде встановлено кількасот вітрових установок.

Старі традиційні вітряки відійшли в минуле, а вік потужних вітрових електродвигунів настає. Та нелегко буде скорити цю примхливу стихію.


Людина змагається з природою багато в чому. Вона тепер і плазму вміє створювати штучно.

Нагрітий газ, молекули якого рухаються з великими швидкостями і стикаються одна з одною, втрачаючи електрони, «це і є низькотемпературна плазма. Одначе в ній чимало незаряджених частинок. Коли ж додати до газу випари лужних металів (цезію, скажімо), які легко віддають свої електрони, то неважко одержати плазму, що добре пропускає струм.

При цьому не потрібна надвисока температура «для повітря, скажімо, досить і трьох тисяч градусів. Вона виникає при згорянні звичайного пального «нафти чи вугілля. То чи не скористатися цим, щоб примусити пальне зразу давати струм?

Із камери згоряння, куди, крім пального, подається ще й лужний метал, плазма з величезною швидкістю надходить у канал, розташований у магнітному полі. В плазмі, як і в будь-якому провідникові, струм виникає тоді, коли вона перетинає силові магнітні лінії. Твердий провідник тут замінено газоподібним.

Така загалом схема магнітогідродинамічного генератора «МГДГ. Назву він дістав від магнітогідродинаміки «науки про рух іонізованого газу в магнітному полі.

Та просту в основі ідею МГДГ на практиці доведеться дещо ускладнити.

Не можна допустити, щоб газовий потік охолоджувався, бо тоді він перестане бути провідником струму. А де подіти надлишок тепла?

Насамперед варт нагріти повітря, яке йде в камеру згоряння, щоб менше витрачати пального. Можна також прилучити до нового генератора ще й звичайну паротурбінну установку. Стара техніка в поєднанні з новою дає змогу повніше використати енергію плазми. І, зрештою, ми здебільшого користуємося змінним струмом, а МГДГ дає постійний. Отож доведеться поставити ще й перетворювач.

Такий вигляд має МГДГ згідно одного проекту. Можливий ще й інший варіант: замість парової турбіни використати газову. Щоправда, тут довелося б, напевне, застосувати проміжне підігрівання «температура газів була б не досить висока для роботи в турбіні. Довелося б відвести частину гарячих газів із камери згоряння.

МГДГ дасть додаткову електроенергію, якщо за допомогою термоелементів, що нагріваються гарячими стінками каналу, скористатися, здавалося б, втраченим, викидним теплом.

В Радянському Союзі створено діючу модель МГДГ на звичайному паливі, яка працювала тривалий час. Академік В. О. Кирилін назвав цю першу вдалу спробу «ранком нової ери в енергетиці». Він вважає, що вже через кілька років з’являться великі МГДГ.

А чи не можна спростити новий генератор? На це запитання дасть відповідь інженер-атомник. Він керує таким потужним джерелом тепла, як ядерний реактор.

Тепло з його активної зони може «виносити» газ.

Здавалося, найкраще тут став би в пригоді гелій. Він має високу теплопровідність і тому встигне нагрітися в реакторі «адже газ рухається в ньому з величезною швидкістю. До того ж інертний гелій не роз’їдає матеріали, не пошкодить установку.

Однак саме через це його не можна взяти для атомного МГДГ: щоб іонізувати гелій, потрібна була б фантастична температура в десять тисяч градусів, від якої кожен метал просто перетворився б на пару.

Знову доведеться скористатися випарами цезію. Варто розвести ними гелій, і весь газ стане провідником за нижчих температур, причому досить тільки одного процента цезію. Навіщо ж тоді гелій? Виявляється, цезій у чистому вигляді хімічно надто активний.

Щоб стінки генератора, всередині якого знаходиться розпечений газ, не руйнувалися, їх треба охолоджувати. А от температуру газу, який проходить через реактор, бажано підвищити «поки що вона не досить висока. Для цього необхідно збільшити теплостійкість працюючих в активній зоні матеріалів. А цезію, котрий може їм зашкодити, треба додати вже по виході з реактора, перед тим як газ має пройти магнітне поле. Потім його можна буде вловити хімічним поглиначем і використати знову. Він відіграє роль своєрідного іонізуючого каталізатора для гелію.

Є, проте, у МГДГ недолік: щоб одержати струм, потрібне магнітне поле, а щоб виникло магнітне поле, необхідний струм. Гаряча плазма повинна виділити частину енергії на власне споживання, і, через втрати, ця частина досить велика «до одної десятої. її можна значно зменшити, якщо охолодити електромагніт до наднизьких температур. Тоді в його обмотках, що стали б надпровідними, втрат енергії не буде зовсім. Для глибокого охолодження доведеться користуватися рідким гелієм. Незважаючи на це, матимемо відчутну вигоду. Магнітне поле з напругою навіть у десятки чи, може, й у сотні тисяч ерстед можна буде легко підтримувати протягом тривалого часу без енергетичних затрат. Надпровідні магніти дали б змогу підвищити напругу магнітного поля в МГДГ, і коефіцієнт їхньої корисної дії збільшився б не менше як удвічі.

Так сусідство надвисокої температури з наднизькою допомогло б удосконаленню МГДГ.

МГДГ «це прямий шлях перетворення тепла в електричний струм. Він набагато вигідніший, аніж той, яким користуються тепер, коли енергія розщепленого атома йде на приготування пари для турбогенератора. Передбачають, що станції з МГДГ будуть економніші за звичайні атомні електростанції не менш як у півтора рази. А їхні потужності досягнуть мільйона і більше кіловат.

Одержати струм безпосередньо з пального, не спалюючи його, «давня мрія енергетиків. Вона вже почала втілюватися в життя, хоча ще дуже несміливо. Створено перші паливні елементи з нечувано високим коефіцієнтом корисної дії «сімдесят п’ять процентів. Але можна одержати і вісімдесят, і дев’яносто!

Не потрібні ні топка, ні камера згоряння. Хімічна енергія, не перетворюючись у тепло, одразу дає електричну. Сировини ж для цього досить «усякого палива в землі є стільки, що його вистачило б для виробітку близько п’ятдесяти більйонів кіловат-годин!

Прообраз паливного елемента відомий давно, і електрохімічні джерела струму набули широкого застосування в тих випадках, коли їх нічим було замінити. Вони навіть літали в космос «разом із сонячними батареями.

Нині настав час повернутися до колишньої ідеї, тільки втілити її в життя по-іншому.

Гальванічний елемент в його попередньому вигляді не може конкурувати з іншими генераторами струму. Ми не маємо змоги поновити відпрацьовані речовини, не пропустивши через нього струм, не зробивши підзарядку. Щоб одержати струм, треба його затратити. Без підзарядження батарея не може довго працювати.

Потрібні дорогі й дефіцитні кольорові метали. Електроліт і електроди доводиться часто міняти. Тому звичайні батареї недовговічні й неекономічні. На підводному човні чи на супутникові з цим доводиться миритись. Навіть у «малій» енергетиці електрохімія посідає скромне місце, про велику ж годі й говорити. Водночас вона відкриває шлях до прямого перетворення хімічної енергії в електричну, навіть пряміший, аніж МГДГ.

У новому паливному елементі все набагато простіше. Тут також опускають електроди в електроліт. Тільки всі речовини «учасники реакції «рідкі чи газоподібні. їх безперервно подають, вилучаючи відходи. Об’єм елемента не має значення, бо запас вихідних речовин практично необмежений, а тому й необмежений термін його послугування.

Електроди тут також інші. Вони не руйнуються, їх тільки використовують для підведення пального та окислювача. Роблять їх пористими, покривають каталізаторами і продувають через них газ або переганяють під тиском рідину.

Тепер назвемо «діючі особи». Гази «це кисень і водень, чи окис вуглецю, або якийсь природний вуглеводень. Можна скористатися продуктами перегонки вугілля, газами, що супроводять нафту, чи тими, які з неї одержують. Згодиться також і рідке вуглеводневе пальне.

Молекули кисню-окислювача іонізуються від’ємно і прямують до другого електрода, яким надходить відновник «водень. Між електродами виникає струм.

Інженери гадають, що з часом паливний елемент допоможе здійснити мрію про електромобіль. Коли навчаться одержувати дешеве електрохімічне пальне і підвищать потужність паливних батарей, легкові автомобілі, автобуси, вантажівки позбудуться бензинового мотора і не будуть забруднювати повітря. Автотранспорт стане безгучним.

Повніше використати паливо, не викидати разом з вихлопними газами тепло «ось що обіцяє в майбутньому електрохімія. А згодом, поволі, починаючи з дрібного, «установок на сотні й тисячі кіловат, «нові джерела струму завоюють міцні позиції й у великій енергетиці. Струм, який вони даватимуть, обійдеться значно дешевше.

Виникає ще й така думка: комбінувати паливний елемент з ядерним реактором. Можливо, частинки, утворені при атомному розщепленні, стануть постачальниками пального для паливного елемента, розкладаючи воду на кисень і водень? Адже ці частинки здатні руйнувати молекули, перегруповувати атоми. Проблема живлення нової енергоустановки була б вирішена. Звичайно, не всюди, є потреба в такій комбінації, а тільки там, де важко дістати інше пальне.

Варто подумати про те, як акумулювати енергію. Електрохімічні акумулятори дорого коштують і недосконалі, та електрохімія створює паливні елементи, вона перетворює хімічну енергію в електричну, а останню можна знову обернути на хімічну. Чи не правитиме нам паливний елемент і за акумулятор?

Акумулювання енергії має особливе значення для сонячних станцій, що працюють тільки вдень. Вчені висунули ідею про спільне використання воднево-кисневого паливного елемента та електролізера, який розкладає воду на кисень і водень. Сонячні батареї подадуть в електроліз струм, а елемент поверне його, коли в цьому буде потреба.


Газова турбіна вже давно панує в авіації, а от з неба на землю вона ще й досі не опустилась. Сотні тисяч турбін у повітрі, кількасот установок «земних» «така невтішна статистика.

А тим часом замінити пару газом, позбутися величезного парового котла «давня мрія інженерів. Газова турбіна обладнана дуже просто. Проте їй потрібні вогнетривкі матеріали, щоб витримували температуру, яка перевищує вісімсот градусів. Поки що доводиться робити штучне охолодження гарячих газів, розводити їх повітрям і витрачати на це значну частку потужності самої турбіни. Звідси «низький коефіцієнт корисної дії газотурбогенератора.

До того ж, ще не навчились використовувати дешевше пальне. Авіаційні турбіни працюють на гасі, а його ж не витрачатимеш для камер згоряння потужних газотурбінних електростанцій. Інша річ, якби вдалося скористатися вугіллям чи природним газом.

От коли металургія дасть наджароміцний сплав для турбін, коли тут, можливо, стануть у пригоді захисні покриття й синтетичні матеріали, коли, нарешті, зможуть спалювати вугільний пил, уникнувши засмічення та руйнації лопатей, «от тоді на теплоенергоцентралях газова турбіна замінить парову.

Поки що хочуть у недалекому майбутньому поєднати газову турбіну з паровою. Котел, але вже не такий громіздкий, гарячі гази, що утворюють пару і водночас працюють у газотурбінній частині всієї установки, «такі характерні риси нової паротурбінної установки.

Вона не потребує наджароміцних сплавів, коефіцієнт корисної дії збільшиться. Та все ж вона буде досить складна і громіздка. Через це придумано ще й такий спосіб поєднання газової турбіни з паровою.

Камера згоряння та паровий котел утворюють єдиний пристрій. Всередині, як звичайно, згоряє пальне, стінки ж правлять за паровий котел — у них прокладено трубки з водою. Пара змішується з гарячими газами і надходить у турбіну. Після виходу з турбіни цією сумішшю в теплообміннику підігрівають ще й воду.

Енергія, яку дасть ця парогазова станція, коштуватиме дешевше, і, очевидно, незабаром такі станції серйозно конкуруватимуть з паротурбінними.

Та для енергетики великих потужностей навіть парогазовий цикл не буде останнім словом. За його допомогою можна поліпшити як паровий, так і газовий турбогенератори. Однак це навряд чи зможе нас задовольнити. Адже нам потрібні надпотужні установки «двох, трьох або й п’яти мільйонів кіловат.

Нещодавно вчені запропонували ще один шлях. Слід відмовитись од повітря, яке працює в газовій турбіні. Ним на дев’яносто процентів розведено продукти згорання. Треба взяти інше робоче тіло, що однаково легко перетворювалося б як на рідину, так і на газ. Можливо, найпридатнішою тут буде вуглекислота: саме вона дає змогу об’єднати в одній установці паровий та газовий цикли. Вуглекислотний турбогенератор обіцяє дати коефіцієнт корисної дії понад п’ятдесят процентів, а потужність «до двох-трьох мільйонів кіловат. Установка буде не така громіздка, як пароводяна, газова чи парогазова.


Скрізь, де виділяється тепло, його можна використати для одержання струму. Дуже часто при різних енергетичних перетвореннях, під час роботи машин виділяється зайве тепло, яке назавжди виносить із собою енергію. Вихлопні гази двигунів, відпрацьована пара, використана, але ще гаряча вода «ось кілька типових прикладів.

Різноманітні теплообмінники та підігрівачі «давній випробуваний шлях, І від нього не відмовляються навіть тоді, коли створюють нові установки. Цю енергію, що колись ішла за вітром, примушують випаровувати воду, підігрівати пару чи газ тощо.

Допомагає напівпровідникова техніка. Батарея, що нагрівається від гасової лампи і живить приймач, «це, звичайно, тільки «надмала» енергетика, лише перша спроба.

У майбутньому гасових ламп ми, напевно, вже не побачимо. Зате мініатюрні термоелектростанції «ТЕС з’являться на багатьох машинах і кораблях.

Викидного тепла дизелів, газотурбінних та реактивних двигунів, надлишків тепла ядерних реакторів цілком вистачило б для роботи невеликих електрогенераторів. Якщо вдасться підвищити коефіцієнт корисної дії термобатарей, то, можливо, й центральне опалення будинків почне давати струм.

Простота «чи не найголовніша перевага потужних ТЕС. Однак розв’язання цієї проблеми значною мірою залежить від металурги, що створює нові жароміцні сплави та напівпровідникові матеріали.

Коли проблему буде вирішено, ТЕС зможуть успішно змагатися з паровими енергоцентралями. Вони допоможуть використати як тепло земних надр, так і те неспрацьоване тепло, що супроводить будь-яке виробництво.

Є ще один спосіб. Він відомий давно, проте широкого застосування досі не набув.

Варто підігріти метал, і він почне випускати електрони. Вони зіткнуться з молекулами повітря. Але якщо повітря викачати, то електронний потік досягне іншого електрода, з’явиться струм. Так працює радіолампа. її, проте, не можна вважати за прообраз нового джерела енергії, бо катод у ній підігрівається струмом, отже, вона не створює, а витрачає електрику. Те ж саме відбувається і в інших приладах.

Припустимо, одначе, що підігріватимуть метал вихлопні гази чи рідина, яка виходить із ядерного реактора. Тоді такий термоелектронний генератор перетворить тепло на струм. Можна знову ж таки взяти на допомогу сонячне чи підземне тепло. Можна з’єднати разом два генератори: на аноді термоелектронного закріпити спай термоелектричного.


Досі ми мали справу з велетенськими цифрами енергетичних запасів. Але те, про що йтиметься зараз, «набагато більше. Це-енергія атомного ядра, що вже увійшла в енергетику і в майбутньому відкриє перед нею перспективи справді фантастичні.

Запаси урану й торію на земній кулі становлять приблизно (в переведенні на електричну потужність) п’ятсот більйонів кіловат-годин. Цифра не така вже й велика порівняно з тими, які нам траплялися раніше: це приблизно вдвоє більше, ніж може дати підземне тепло, стільки ж, як вітер, трохи менше за сонце. Щоправда, це значно перевищує енергію річок, океанських припливів та звичайного пального «вугілля, нафти й газу разом узятих.

Урану й торію в земній корі порівняно мало. Уран, приміром, дав би всього якихось п’ять процентів тієї енергії, яку містять запаси вугілля. А тут, коли оцінювалися енергетичні ресурси Землі, було наведено значно більшу цифру. Як пояснити цю суперечність? Та тим, що ядерний реактор не лише споживає пальне, а й виробляє його.

При радіоактивному розпаді уран перетворюється на плутоній, а торій «на ізотоп урану, теж ядерне пальне. Можна збудувати реактор-розмножувач, котрий дасть енергію і знову створить здатні розщеплюватися матеріали. Отже, якби навіть усі енергетичні ресурси було вичерпано, самі тільки уран і торій забезпечили б людство електрикою на кілька століть.

Запаси термоядерного пального обчислюються дещо іншими цифрами. Важкий водень «дейтерій «є в океанській воді. Його там близько чотирьох трильйонів тонн. А кожна тонна дає десь біля сотні мільярдів кіловат-годин енергії! Виходить цифра, що має двадцять п’ять нулів.

Навіть якби на одну людину припадало мільйон кіловат-годин на рік (нині «пересічно десять тисяч), навіть якби населення Землі зросло до ста мільярдів чоловік (нині «понад три), то запасів «сировини» для ядерного синтезу вистачило б при таких витратах на двадцять п’ять мільйонів років.

Безмежну енергетичну могутність «ось що обіцяє на майбутнє Океан.

Не можна не згадати також про енергію тритію «іншого ізотопу водню, котрий теж є «сировиною» для термоядерних реакцій. Природа не приготувала великих запасів тритію, але його можна створити штучно в атомних реакторах, а згодом і в самих термоядерних установках.

Отже, спершу про енергію ядерного розпаду.

Реактор, який виділяє тепло для того, щоб віддати його рідині й перетворити її в пару для турбогенератора, «така досить складна й недосконала схема сучасної атомної теплоелектроцентралі. Енергія розщеплення атомів дає тепло, тепло виконує певну механічну роботу, і лише завдяки їй генератор виробляє струм. Реактор тут відіграє роль топки парового котла, тільки й того, що в ньому відбувається не згоряння звичайного палива, а поділ уранових та торієвих ядер.

Грам ядерного пального заміняє дві тонни вугілля! Ніяке інше паливо не прирівняти до ядерного. І хоч які труднощі доводилося долати, щоб приборкати ланцюгову реакцію розщеплення уранових ядер і захистити людей від згубної радіації, нині це виправдало себе.

Сучасні потужні атомні станції розраховано на сотні тисяч кіловат.

Атомні двигуни з’явилися на кораблях і підводних човнах. Криголам «Ленин» набирає пального лише раз на всю навігацію.

Там, де важко добувати і куди неможливо завезти звичайне паливо, ядерна енергетика дуже доцільна. Вона потрібна і селищам у важкодоступних місцях, і автоматичним метеостанціям, а в майбутньому «штучним супутникам та космічним ракетам, підземоходам, глибоководному флоту, постам спостереження на океанському дні.

Проте паротурбінна чи газотурбінна атомна станція «це не останнє слово атомної енергетики. Надто довгий ланцюг перетворень, надто громіздка й складна установка. А ось коефіцієнт корисної дії дещо замалий. Тому інженери шукають інші шляхи перетворення ядерної енергії в електричну.

Насамперед вони планують скористатися магнітогідродинамічним генератором. Реактор дає нагрітий газ, до якого слід тільки додати іонізуючий цезій. Усе останнє буде так, як завжди: електромагніт для створення магнітного поля та електроди з провідниками, які відводять струм.

Можна зменшити розміри генератора, якщо змусити газ рухатися по спіралі «у вихровому МГДГ, потужній, малогабаритній атомній енергетичній установці.

Інженери хочуть піти ще далі. Вони прагнуть знімати струм безпосередньо в активній зоні реактора, як і раніше, користуючись теплом, що в ньому виділяється. Для цього тепловиділяючий елемент треба зробити циліндричним, і він виконуватиме роль катода «при нагріванні його поверхня випускатиме електрони. Електронний потік рушить до другого, зовнішнього циліндра «анода, і виникне струм.

Щоправда, анод теж нагріватиметься, а це нам стоятиме на заваді. Потрібно позбутися ще й інших неприємностей, наприклад, уламків поділу, що потрапляють у міжелектродний простір. Не так легко налагодити й рух електронів від катода до анода. Та вже перші досліди показали, що реактор-перетворювач, реактор-генератор струму, обладнаний простіше за МГДГ, цілком реальний.

Радянські вчені вже створили реактор «Ромашка». За допомогою термоелементів одержане в активній зоні тепло зразу ж перетворюється в ньому на електроенергію. Кілька тисяч кремнійгерманієвих стовпчиків, розташованих на пверхні реактора, і дають струм, що виникає завдяки різниці температур.

Новий тип атомної електростанції займе в енергетиці майбутнього своє чільне місце.

В інженерів зароджується ще й така ідея.

Вони хочуть мати корисне із шкідливого. Шкідливе «це уламки поділу. їхнє випромінювання дуже небезпечне. Недарма доводиться ховати реактор за грубими стінами біологічного захисту. І не випадково стільки уваги приділяють проблемі ховання радіоактивних відходів. їх кладуть у контейнери і опускають під воду або закопують глибоко в землю. Хтозна, чи надійно це. Було навіть запропоновано відправляти відходи у міжпланетний простір на ракетах.

В усьому світі таких уламків нагромаджується все більше й більше. Найкраще було б, звичайно, використати їх для тих-таки енергетичних потреб.

Уламки радіоактивні і випускають при внутрішніх перетвореннях електрони. Такі радіоактивні речовини «живуть» досить довго: половина атомів має термін розщеплення від кількох місяців до кількох років. Можна вибрати з них найпридатніші для одержання електронного потоку.

На поверхню одного з електродів наносять радіоактивну речовину. Частинки, які вона випускає, прямують до другого електрода. Така атомна батарейка може мати напругу до двохсот тисяч вольтів «хоча, треба відзначити, при дуже незначній силі струму «в мільярдні частки ампера. Розміри її невеликі «батарейка може згодитись навіть для наручних годинників і там, де габарити відіграють особливо велику роль, «у приладах для супутників та ракет. При користуванні радіоактивними речовинами можна вибрати такі з них, які дозволять обходитися без захисних екранів.

Але, коли потрібно мати великий струм, цю просту батарею доведеться дещо ускладнити. Наповнивши її газом, можна збільшити кількість електронів «частинки вибиватимуть їх із атомів газу. За наповнювача можна взяти газоподібну радіоактивну речовину, що теж виділяється в реакторі. Струм підсилиться в десятки разів. Можна досягти підсилення і в сто-двісті тисяч разів, якщо застосувати напівпровідникові матеріали.

Є й інші засоби, щоб залучити радіоактивні речовини до роботи.

Випромінювання супроводжується нагріванням, достатнім для роботи термоелемента чи термоелектронного перетворювача. Ядерне випромінювання змушує світитись люмінофори[1]. Атомно-люмінофорна лампа дає світло, а фотоелемент перетворює його на струм. Можна, нарешті, як ми вже говорили, підтримувати випромінюванням нормальну роботу паливного елемента. Так і тепло, і продукти розпаду віддаватимуть свою енергію, щоб виробляти струм.

На атомні батареї будь-якого типу, хай навіть їхня потужність зростає, не можна покладати завдання великої енергетики. Але вони успішно заступлять звичайні хімічні батареї там, де потрібні надійні, довговічні, невеликі джерела струму.

Термоядерна енергетика ще тільки розвивається. Коли стане до ладу перша термоядерна електроцентраль, сказати важко. На шляху керованого термоядерного синтезу є величезні перешкоди. Атомні ядра треба наблизити одне до одного наперекір силам електричного відштовхування. Тут допоможе тільки нагрівання до десятків і сотень мільйонів градусів. Така температура в надрах сонця та зірок «природних термоядерних реакторів.

Досягти високої температури допоможе плазма. Вже вдалося одержати плазму з температурою в кілька десятків мільйонів градусів, зросла її густина, а час існування досяг сотої частки секунди. Є також плазма з температурою в сто мільйонів градусів.

І все ж сучасна плазма ще дуже розріджена, густину її треба збільшити в десятки тисяч разів. Лише тоді можна буде говорити не про лабораторну установку, а про термоядерний реактор.

Надвисоке нагрівання та надійна термоізоляція-це відмикачі плазмової енергетики. Маючи їх, ми зможемо скористатися енергією, що захована в легких елементах-у водні насамперед.

Щоб одержати високотемпературну плазму і зберегти її, вживають усіх заходів, надбаних сучасною фізикою та хімією. Тут і нагрівання іскровим розрядом, який дає мільйони ампер за мільйонні частки секунди, і використання потоків швидких частинок, і гальмування ударних хвиль, коли виникають дуже високі температури. Тут і потужні магнітні поля, й магнітні пастки, що надійно замикають плазму і не дають дійти до стінок камери, щоб плазма не охолонула… Користуються вакуумними насосами. Вони створюють схоже на міжзоряну порожнечу розрідження.

І все ж фізика ще так мало знає плазму, що на кожному кроці трапляються несподіванки. Приклад: під час дослідів виникли потужні струмені нейтронів «електрично не заряджених частинок, теж, до речі, небезпечних для людей.

Очевидно, в плазмі відбуваються невідомі науці процеси, і вона інколи виходить з-під нашої влади. Поки що ми тільки витрачаємо енергію, замість того щоб її одержувати. Але це не марне гайнування «воно винагородить стократ. Мети «використати водень, що входить до складу води Світового океану, найбільшого відомого людству енергетичного сховища, «буде досягнуто.

Та чи не помілкішає Океан, якщо з нього вичерпувати воду і добувати важкий водень для ядерних реакцій? До того ж Океан повинен давати воду й для опріснення.

Нині людство витрачає сім мільярдів тонн води на добу. А щоб забезпечити сировиною термоядерні теплоцентралі, які давали б необхідну для населення Землі кількість енергії на рік, потрібно двадцять мільйонів тонн води.

Приблизні обчислення показують: рівень Океану знизився б од цього на вісімнадцять сантиметрів за мільйон років. Підрахунки, щоправда, дуже приблизні. З одного боку, населення земної кулі неухильно зростає і води потребує все більше й більше. З другого боку, не тільки ж термоядерні реактори будуть джерелами енергії.

Якщо доведеться підняти рівень Океану, можна розтопити лід Арктики та айсберги. В усякому разі зниження рівня Світового океану не загрожує катастрофою. Це й дає підставу говорити, що Океан «невичерпне джерело енергетичної сировини.


Для техніки майбутнього знадобиться не лише постійний чи змінний струм. їй будуть потрібні також потужні короткочасні розряди, інакше кажучи, імпульсні генератори, що дають мільйони вольтів напруги.



Електричний генератор, в якому заряди виникають від тертя, «не новина. Чи обертається в ньому стрічка або циліндр, чи діє струмінь пилу, який переносить заряд, важливо одне: в такому генераторі нагромаджується електрика, а потім миттю витрачається весь її запас.

Власне, це штучна блискавка, і під час розряду виникають велетенські напруги. А потужності поки що створено невеликі. Матеріал ізоляторів, на яких збирається заряд, не витримує потужних електричних полів.

Потужність генераторів значно зросла б, якби вдалося створити діелектрики підвищеної електричної міцності. Можливо, тут енергетиці зарадить хімія.

Виникає звабна думка. Сотні тисяч блискавиць щоденно спалахують над усією земною кулею. Атмосфера «це велетенський електростатичний генератор. І він, на жаль, завдає лише великих збитків. А чи не зможе енергетика підкорити колись і цю силу, приручити блискавку, використати атмосферну електрику? Про це мріяли фантасти. Вчені й інженери вважають поки що цю проблему справді фантастичною. І все ж майбутнє покаже.

Визначається ще один шлях перетворення теплоти на електрику. Радянські вчені І. С. Жолудєв та В. О. Юрін виявили, що органічна речовина тригліцинсульфат здатна при нагріванні давати струм. Виготовлену з цієї речовини пластинку покрили надзвичайно тонким шаром срібного пилу і приєднали до неї електроди. Коли пластинку підносили до теплового джерела, приміром, до звичайного електричного рефлектора, відбувався розряд. Увімкнена до електродів лампа-спалах загоралась. Пластинка швидко охолоджується і знову може працювати.

Якщо з таких елементиків скласти батарею, вона матиме напругу навіть у мільйони вольтів.

І вже вимальовуються перші перспективи застосування потужних ламп-спалахів у космосі й на Землі.

Батарея на супутнику, яка то освітлюється сонцем, то потрапляє в тінь, живить світловий маяк. Він полегшує навігацію літаків та морських суден…

Очевидно, й на Землі можна буде влаштувати спа-лахи-маяки, якщо забезпечити автоматичну зміну температур.

Можливо, нові джерела струму знайдуть ще й інше застосування, наприклад, в електроніці чи в обчислювальній техніці.

Ось іще кілька цікавих ідей, поки що теж фантастичних.

Електрика зустрічається в природі не тільки в атмосфері. Блукаючі струми виявлено в ґрунті, глибоко в надрах землі, в Океані. Зараз важко передбачити шляхи, які б дали можливість скористатися ними. Нам лише відомо, що струми ці є. Поступово ми примусимо працювати на нас мандрівну електрику Землі.

Пропонують використати навіть земне магнітне поле, що простяглося на тисячі кілометрів у міжпланетний простір. Під час руху провідника в магнітному полі виникає струм. Зробити з планети велетенську динамо-машину «такий грандіозний задум.

Висунуто ідею «створити гіроскопічну електростанцію: величезний ротор з надміцного матеріалу і такі ж самі підшипники. Ротор розкручується за допомогою пускового електродвигуна. Вісь такої дзиґи, як і будь-якого гіроскопа, нерухома. Коли ж її закріпити на карданному підвісі, а сам підвіс з’єднати з шестірною передачею, то Земля, обертаючись, примусить обертатися і шестірні, а вони в свою чергу приведуть у рух електрогенератор.

Якою б фантастичною не здавалася ця ідея, в її основі є глузд. На практиці, звичайно, виникають численні ускладнення. Ідея переступає навіть за межі Землі. Якщо установок буде багато, то вони заберуть досить велику частку енергії обертання. Планета поступово гальмуватиметься. А коли б навпаки «зробити генератори двигунами і обертати їх, скориставшись термоядерною енергією, то й Земля почала б обертатися швидше. Звідси, можливо, «керування кліматом, керування планетою…

В розпорядженні природи є ще один вид енергії, яка теж могла б нам слугувати. Це «енергія гравітації (тяжіння).

Відкрито зірки, що мають масу в сотні мільйонів разів більшу за сонячну. В такій надзірці речовина стискується і під дією тяжіння падає до центра. її кінетична енергія така велика, що перевершує енергію ядерних реакцій в десятки разів.

Виявляється, гравітаційна енергія відіграє в природі важливішу роль, ніж термоядерна. Та про тяжіння ми знаємо ще дуже мало. А чи не допоможе розкриття таємниці всесвітнього тяжіння опанувати й те невичерпне джерело енергії, про яке поки що мріють лише автори фантастичних романів?

Можливо, згодом дозріє задум про використання енергії космічної плазми «адже це велетенське сховище, і до нього варто лишень добрати відповідний ключ.

А електромагнітні поля Всесвіту, ці суперприскорювачі частинок, напевне, люди теж змусять працювати «хоча б у двигунах зоряних кораблів. У майбутньому ми зможемо одержувати енергію не тільки з речовини, що є на Землі чи на інших планетах, не тільки з вугілля, нафти, газу, урану, торію, дейтерію та літію, але і з самого космічного простору. Так вважає професор Г. Й. Покровський.

І, нарешті, ще про один вид енергії «енергію анігіляції.

Нею скористаються, мабуть, уже наші нащадки. А втім «хтозна!

Ще не так давно і приборкання атомної енергії вважали справою щонайменше кінця нашого сторіччя.

Останнім часом стало відомо про античастинки, заряд яких протилежний зарядові звичайних частинок тієї самої маси. Наприклад, електрон має від’ємний заряд, античастинка електрона «позитрон «позитивний. Протон має позитивний заряд, антипротон «негативний. Нейтрон, який не має електричного заряду, відрізняється від антинейтрона напрямком свого обертання. Антиречовина складається з антипротонів, антинейтронів та позитронів.

За звичайних умов античастинки недовговічні. Тхне життя обчислюється мізерними частками секунди. Зіткнувшись із подібними до себе звичайними частинками, вони «зникають». При анігіляції-з’єднанні частинки з античастинкою «виділяється енергія. Вона перевищує термоядерну в тисячу разів.


Утворення струму «лише одне із завдань енергетики. Струм треба передати туди, де в ньому є потреба, часом на величезні відстані. Вже створено єдині енергетичні системи в окремих країнах і для кількох країн.

Лініями електропередач з’єднують і теплові, в тому числі атомні, станції, і річкові гідроенерговузли. До них з часом приєднають станції вітрові й ті, що працюватимуть на підземному теплі, припливні, сонячні та всі інші, що поступово ставатимуть до ладу.

А розташовані вони в різних районах, інколи дуже віддалених один від одного. І масштаби станцій збільшаться, не будуть за диво турбогенератори навіть на мільйон кіловат. Тому знадобляться значно довші лінії передач, здатні також передавати більшу потужність.

Інженер має тут над чим помізкувати. Адже під час передачі втрачається чимало енергії. Як скоротити ці витрати? Яким струмом користуватися «постійним чи змінним чи обома зразу, пустивши їх однією лінією?

Може, пощастить залучити на допомогу надпровідність? Обчислення показують, що по надпровідних лініях можна передавати струм до сотні мільйонів кіловат. Таку потужність нині мають усі наші електростанції.

Слід сподіватися, що буде знайдено такі надпровідники, котрі не втрачатимуть здатності проводити струм без витрат навіть при звичайній температурі. Це відкрило б перспективу нечувано вигідної передачі енергії із збереженням стопроцентного коефіцієнта корисної дії. І що не менш важливо «струм піде найтоншим проводом.

Коли постане потреба, можна буде створити єдину високовольтну мережу не лише для окремих континентів, а й для цілої планети.

Можливо, пощастить, нарешті, досягти бездротової передачі енергії за допомогою полів високої частоти по невидимих каналах «хвилеводах? Тут слово за радіоінженерами, радіофізиками.

Звичайними лініями електропередачі не можна пускати струм високої частоти «надто багато витрачатиметься енергії, а дроти, по суті, перетворяться на антени, що розсіюватимуть енергію в простір.

Інша річ, якщо скористатися металевою трубкою, теж хвилеводом. Струм потече в ній тільки найтоншим поверхневим шаром, а його електромагнітне поле не вийде за межі трубки. Тому хвилеводна лінія має кращий захист від перешкод, ніж звичайна, дротяна. Трубу не обов’язково підвішувати в повітрі на опорах. її можна прокласти в землі.

Якщо хіміки забезпечать надійну водостійку ізоляцію, то таку лінію можна буде прокласти навіть під водою, як телеграфний кабель. До речі, хвилеводні лінії знадобилися б електростанціям, що працюють в океані, термічним, а також сонячним на штучних островах.

Електронні перетворювачі енергії «магнетрони й планет рони «вироблятимуть із звичайного низькочастотного струму високочастотний. Електроніка великих потужностей дасть змогу передавати по хвилеводах струм потужністю до кількох мільйонів кіловат «це по трубі двометрового діаметра. На другому кінці лінії такі самі перетворювачі знову дадуть струм будь-якої потрібної частоти.

У більш віддаленому майбутньому електроніка зуміє передавати енергію пучком електромагнітних хвиль надвисоких частот, тоді вже не потрібна буде труба-хвилевод.

Бездротові лінії передач зможуть зв’язати між собою електростанції, міста, заводи усієї земної кулі. Кораблі й літаки, поїзди й автомобілі, що стануть електричними, одержать енергію всюди, де б вони не були. Найширше застосовуватиметься бездротова передача в космосі. Нею скористаються також для постачання Землі енергією космічних геліоелектростанцій.

Лазери «квантові електромагнітні генератори-ще один засіб для передачі енергії на великі відстані, по всій земній кулі, ба навіть у космосі. Вузький, сконцентрований лазерний промінь може транспортувати енергію у вакуумі. Для малих потужностей це доведено, для великих «докази принесе майбуття.

Як вважає академік М. М. Семенов, на кінець сторіччя «буде запроектовано й збудовано перші термоядерні, сонячні та підземні електростанції. З початку XXI століття розпочнеться масове спорудження таких електростанцій. Людина матиме доступ до електроенергії в будь-якому місці і практично в будь-якій кількості».

Енергетика далекого майбутнього зробить крок за межі Землі й стане не лише всепланетною, а й космічною. За космічного віку така перспектива не буде нездійсненною, як не здаватимуться утопією чимало інших інженерних мрій.

Загрузка...