В некоторых старых учебниках физики рассказывался приблизительно такой случай: сидел как-то англичанин Джемс Уатт, механик по специальности, возле плиты, на которой подогревал себе чай. Сидел, поглощенный работой, — разбирал какой-то механизм. Вдруг на чайнике задребезжала крышка. Сначала Уатт не обратил на это внимания, а потом, когда крышка так сильно запрыгала, что, казалось, вот-вот слетит вовсе, механик оглянулся. Тут-то ему в голову и пришла будто бы примерно такая мысль: «Ого-го! Откуда столько силы у пара, что тяжелой крышкой он играет, как ореховой скорлупкой? Уж не заставить ли эту силу делать более полезное дело?» И будто бы после этого случая Уатт стал работать, изобретать и изобрел, наконец, паровую машину.
Как всё ясно и просто, как необычайно повезло Уатту, не правда ли? На самом же деле такого случая, вероятно, никогда и не было — или, если и произошло что-либо подобное, то для создания паровой машины такой случай не имел никакого значения. Уатт сделал для паровой техники много, но всё это было результатом большого труда.
Уатт далеко не первый открыл ту могучую силу, которой обладает пар, и не первый предложил паровую машину, то есть двигатель, в котором энергия пара превращается в механическую энергию.
В рукописях знаменитого итальянского ученого Леонардо Да Винчи описывается очень любопытная паровая пушка, которую Леонардо да Винчи считает изобретением известного вам греческого математика и механика Архимеда.
Эскиз паровой пушки «архитронито», сделанный рукой Леонардо да Винчи.
Как такая пушка должна была стрелять? А вот как: длинный ствол на одну треть помещался в жаровню, и там эта часть нагревалась до раскаленного состояния. Над раскаленной частью ствола ставился бак с водой. По трубке вода могла попасть внутрь раскаленного ствола; для этого надо было повернуть запорный кран. Здесь вода быстро испарялась, и образовавшимся давлением пара выбрасывалось пушечное ядро. Не правда ли, любопытная пушка? О том, какой эффект производил ее выстрел в те далекие времена, когда еще о порохе ничего не знали, можно судить по данному ей названию. Ее именовали «архитронито», что в точном переводе означает: «самый сильный гром».
Если прав в своих предположениях Леонардо да Винчи, то, следовательно, уже в III веке до нашей эры, во времена Архимеда, люди знали о могучей силе пара.
Но совсем достоверно известно, что немногим позже (I век до н. э. или I век н. э.) пар использовали для приведения в движение многих устройств, предназначенных для забавы. Описание таких устройств оставил выдающийся греческий инженер и ученый Герои Александрийский. Одна из его игрушек — Геронов шар — послужила прообразом современного двигателя — паровой реактивной турбины. Этот шар по принципу действия напоминает «сегнерово колесо».
Геронов шар.
Разница в том, что внутрь шара здесь подается не вода, а пар, который затем также выходит наружу через две отогнутые трубки и заставляет шар вращаться по той же причине отталкивания. Такое действие пара называется реактивным.
Но ни паровая пушка, ни Геронов шар еще не были двигателями. Геронов шар, казалось, мог бы приводить в движение какую-либо машину, но развивал очень малую мощность и оставался игрушкой.
Лишь много столетий спустя (в XV веке), после средневековья, в эпоху нового расцвета культуры и наук великий итальянский ученый и инженер Леонардо да Винчи вновь напомнил человечеству о паре как источнике механической энергии.
Эскизы, сделанные рукой Леонардо да Винчи, изображающие принцип действия паровой поршневой машины.
Леонардо да Винчи набросал пером два эскиза: цилиндр с поршнем и цилиндр с кожаным мешком, «куда наливается немного воды».
Под такие цилиндры следовало подводить огонь и заставлять воду испаряться. И так как пару некуда выходить, — он должен был двигать поршень или расширять кожаный мешок.
Как надеялся Леонардо да Винчи дальше получить повторения такого же процесса, — из эскизов неясно, но уже сама идея цилиндра и поршня, двигающегося под давлением пара, намного опередила свое время. Эта идея потом легла в основу создания паровой машины. Немногим позже, в 1629 году другой итальянский ученый — архитектор Джиованни Бранка — опубликовал свое изобретение: «толчею для изготовления порошка необычайным двигателем». Это было очень забавное изобретение, причем наиболее забавным выглядел сам двигатель.
Необычайный двигатель Бранка.
Посмотрите на рисунок и попробуйте там этот двигатель отыскать. Внешне ничего похожего на современные двигатели вы не найдете. В самом деле, разве можно предположить, что изображенная в левом верхнем углу голова есть не что иное, как паровой котел, а поставленное на вертикальную ось колесо с лопатками — паровая турбина?
Оказывается, что это именно так. Изо рта головы — парового котла — вырывается сильная струя пара, ударяющая по лопаткам колеса и заставляющая их вращаться. А далее, от колеса, уже идет передача движения с помощью зубчатых колес на барабан, который попеременно зацепляет шпильками то левую, то правую ступку, производя непрерывно процесс дробления какого-либо сыпучего вещества.
Вот тут уже явное использование пара как двигательной силы.
Заметим, что на этом принципе воздействия струи на лопатки колеса (принцип активного действия) работают современные паровые двигатели, так называемые активные турбины.
Итак, о силе, которую в известных условиях можно получить от пара, знали давно. Даже пытались использовать эту силу. Но прежде чем был создан настоящий паровой двигатель, удобный тем, что хорошо поддавался управлению и не зависел от рек или от капризных свойств ветра, — прошло много времени. Надо было прежде всего изучить свойства самого пара.
Действительно, пока люди имели дело только с энергией воды и ветра, всё казалось простым и понятным: вода течет и увлекает за собой лопатки колеса, ветер надувает паруса или толкает крылья мельницы. Вода — в реке, ветер — в поле…
Но вот человек решил использовать энергию пара. Почему, когда воду нагревают, она закипает и превращается в пар?
Почему этот пар, если его не собрать, быстро рассеется и никакой работы от него не получить? А вот, если его собрать в Геронов шар и оттуда позволить ему вырываться через узкие трубки, — он окажется настолько сильным, что, отталкивая трубки, заставит весь шар вращаться. Или, если пар запереть в небольшом пространстве, как в случае с пушкой Архимеда, и к тому же подогреть, — он станет еще сильнее: дальше, чем любая пружина, пошлет из пушки ядро.
Какими же тайными свойствами обладает этот волшебник-пар? Как можно наилучшим образом овладеть этими свойствами? Изучение свойств пара длилось долгое время, и только к концу прошлого века сложились вполне точные научные представления. Правда, создание парового двигателя шло своим чередом, не ожидая того времени, когда пар будет изучен всесторонне. Как только опытом удавалось найти какое-либо новое свойство, — сразу же оно применялось в новых изобретениях.
Однако совершенный двигатель, работающий паром, стал строиться позднее, уже на основании точных знаний.
Прежде чем продолжить рассказ об интереснейшей истории создания паровой машины, следует напомнить вам основные сведения о паре, которые когда-то никому не были известны и о которых теперь знает каждый школьник седьмого класса.
То, что жидкости, в том числе и вода, испаряются, всякий из вас замечал. Действительно, кто не наблюдал, например, таинственного исчезновения воды из стакана, оставленного летом на окне? Сначала, когда вы были маленькими, вам казалось, что кто-то выпивает эту воду. Но потом, когда вы стали учиться в школе, то поняли, что вода просто улетучивается, то есть испаряется. Почему?
Уже давно люди задумывались над тем, что представляют собой различные вещества, которые окружают нас.
Люди заметили, что каждое вещество можно получить в больших и в малых порциях. Такое вещество, как вода, может наполнять огромные водоемы, но может и в виде маленькой росинки искриться на лепестке цветка. До каких же пределов можно мельчить вещество, не меняя его свойств? Ведь есть же самая мельчайшая частица? Да, такая частица, как выяснили ученые, есть, и назвали они ее молекулой. Молекулы вещества друг к другу притягиваются, друг за друга держатся, но для этого они должны находиться очень близко друг к другу. Однако при очень близком соприкосновении у них возникают и силы отталкивания.
В твердом теле молекулы расположены очень близко друг к другу и, находясь под влиянием сил притяжения и сил отталкивания, совершают небольшие колебательные движения, которые нам, конечно, не заметны.
Но вот давайте твердое тело, например кусок свинца, нагревать — и вы увидите, что в определенный момент он превратится в жидкость, — расплавится. Что же произошло?
Оказывается, когда мы нагревали свинец, мы тем самым заставляли молекулы колебаться всё чаще и чаще и увеличивать размах этих колебаний (вот почему тела при нагревании расширяются). Наконец, при какой-то вполне определенной для каждого вещества температуре молекулы начинают отделяться друг от друга, вновь соединяться в новые группы, опять отделяться, чтобы затем опять соединиться по-новому. Молекулы начинают хаотическое движение внутри массы вещества, и вещество превращается в жидкость. Вода и представляет собой вещество, которое в обычных условиях является жидкостью.
А что, если жидкость — в данном случае воду — тоже нагреть? Ускорится ли движение молекул? Да, ускорится. При этом молекулы начнут так быстро двигаться, что некоторые с размаху вылетят прочь, покидая поверхность и устремляясь в атмосферу. Вот это и есть испарение. Оказывается, если даже не нагревать воду, то испарение всё равно происходит — правда, медленно. Так улетучилась за день вода из стакана, стоявшего на окне. Но если воду нагревать, то, чем выше будет ее температура, тем быстрее пойдет испарение.
Нагревая воду в открытом сосуде и измеряя ее температуру, дойдя до 100 °C, мы заметим, что вода при этом закипела, температура дальше не поднимается, а вверх устремились клубы пара. Началось парообразование: не только от поверхности, но и по всей массе жидкости происходит отрыв молекул, образуются пузыри, которые поднимаются вверх, прорываются через поверхность, и молекулы улетучиваются. Всё тепло, которое мы теперь при нагревании сообщаем воде, пойдет на отрыв молекул, — вот почему температура, как установилась в 100°, так и будет держаться до тех пор, пока не выкипит, то есть не испарится, вся вода. Из жидкого тела вода превратится в газообразное — в пар.
А теперь, вспомнив, что такое пар, вспомним и его основные свойства. Для этого представим себе, что вода, которую мы нагреваем, находится уже не в открытом, а в закрытом со всех сторон сосуде, куда вставлены два измерительных прибора: термометр — для измерения температуры и манометр — для измерения давления пара.
Сосуд металлический, закрытый; сбоку поставлена стеклянная трубка, прочно вделанная сверху и снизу в патрубки, которые сообщаются с внутренним пространством сосуда. Такой сосуд назовем «котлом», а стеклянную трубку — водоуказателем. И действительно, так как водомерная трубка сверху и снизу может сообщаться с пространством котла, нам будет видно, на каком уровне находится вода.
В котле насыщенный пар (слева). В котле перегретый пар (справа).
Допустим, что сначала вода заполняла половину котла, — вторую половину заполнял, следовательно, пар.
Посмотрим, что покажут при этом приборы.
Манометр, оказывается, стоит на нуле, — это значит, что давление внутри котла равно наружному, атмосферному, давлению. Термометр показывает примерно ту же температуру, которую имеет и окружающий воздух.
Открыв верхний кран, начнем нагревать котел. Пока кран открыт, вода будет нагреваться так же, как в обычном открытом сосуде, а пар при этом постепенно вытеснит из котла весь воздух. Теперь закроем кран и, продолжая нагревать, будем следить за приборами. По мере нагрева мы заметим, что уровень воды понижается, а пространство, занимаемое паром, — возрастает. При этом температура будет всё время расти, а вместе с ней и стрелка манометра будет показывать всё большее и большее давление пара.
Мы уже давно прошли температуру кипения 100 °C, но температура воды всё растет и растет… В чем же дело? В открытом сосуде воду никак нельзя было нагреть выше 100 °C, а здесь она нагревается и выше. Почему?
Оказывается, что вода имеет температуру кипения 100 °C только в том случае, когда над ее поверхностью давление равно атмосферному. В открытом сосуде пар улетучивается и давление всё время остается постоянным и равным давлению окружающего воздуха, то есть атмосферному.
Совсем другое дело в закрытом сосуде. Здесь пару деваться некуда, он скапливается над поверхностью воды и оказывает на нее всё большее и большее давление. Если бы это давление было повышенным, но дальше не росло, то при некоторой температуре, более высокой, чем 100 °C, всё равно началось бы кипение. Но стоит воде нагреться на один градус, как и давление в закрытом сосуде тут же возрастает на какую-то долю атмосферы… Так мы и будем отмечать по манометру для каждой новой температуры новое давление, пока вся вода не превратится в пар. Такой пар, который находится в котле в то время, как имеется еще вода, называется насыщенный пар. Это значит, что в этом объеме парового пространства котла, при этой температуре воды, большего количества пара получить нельзя. Пространство насыщено паром. Если из воды при этом продолжает вылетать какое-то количество молекул, то точно такое же количество их возвращается обратно из парового пространства в воду. При новой температуре воды меняется количество могущих вылететь без возвращения частиц и давление насыщенного пара также меняется.
Когда же вся вода испарится, можно продолжать нагревать один пар, но тогда это будет уже не насыщенный пар, а перегретый, и его давление, повышаясь и дальше, уже будет зависеть не только от температуры, но и от объема котла, в то время как давление насыщенного пара в любом объеме зависит только от температуры.
Теперь, вместо нагревания, попробуем начать охлаждение котла. Мы заметим, что перегретый пар превратится в насыщенный, а тот по мере охлаждения будет понижать свое давление. Этот обратный процесс превращения пара в воду называется конденсацией. Посмотрите на узоры, которые расписал мороз на вашем окне. Вы задумывались над тем, отчего эти узоры получаются? А ведь тут тоже происходит явление конденсации паров, находящихся в воздухе. Эти пары, соприкасаясь с холодным стеклом, конденсируются, превращаются в мелкие капли воды, которые тут же замерзают.
Вот теперь мы, пожалуй, закончим нашу беглую экскурсию в область науки о паре. Заметим, что наука эта достаточно сложная, но углубляться в нее мы сейчас не можем, — это уже дело инженеров-теплотехников.
Но почему Леонардо да Винчи, почему Джиованни Бранка, почему десятки других инженеров, ученых, изобретателей стремились создать тепловой двигатель? Почему нельзя было ограничиться водяным и ветряным двигателями?
Да потому, что уже давно ощущалось большое неудобство: двигательную силу можно было получить только возле реки, а где-нибудь в стороне — нельзя.
Правда, иногда выручал ветер, но ведь мощность ветряных двигателей не высока, да к тому же и сам ветер непостоянен — сегодня есть, завтра нет.
От природных условий зависела мощность и водяного двигателя: спадет вода в реке — и мощность падает.
Совсем иначе дело обстоит с тепловым двигателем. Всюду, где есть топливо — дрова, уголь, нефть, солома, — всюду, где возможно развести огонь, удастся заставить работать тепловой двигатель. Когда надо, — можно двигатель пустить, когда не надо, — остановить. Мощность у такого двигателя всегда постоянная, — знай подбрасывай топливо. Словом, казалось полезным наряду с водяными и ветряными двигателями попытаться создать такой удобный двигатель, как паровой.
Но если попытки Леонардо да Винчи и Джиованни Бранка использовать силу пара были вызваны лишь техническим интересом, который они питали к разрешению этой задачи, и идеи их остались не воплощенными в реальные машины, то наступила пора, когда тепловой двигатель потребовалось создать во что бы то ни стало.
Долгое время, как вам известно, изготовление необходимых предметов человеческого обихода производилось отдельными мастерами-ремесленниками. Сидит себе такой ремесленник — прядильщик — и вращает потихоньку ногой прядильное колесо. Но с развитием торговли потребовалось много различных товаров и работа ремесленников, да еще почти вручную, не могла обеспечить всё возрастающий спрос. Постепенно стало появляться крупное капиталистическое машинное производство — фабрики и заводы. Новые машины, изобретенные, чтобы заменить рабочие руки, потребовали и мощных двигателей. Водяные колеса не могли развивать больших мощностей, да и вообще этот двигатель был неудобен для привода фабричных машин, — уж слишком громоздкими оказывались такие сооружения. Помните, какой подземный коридор с несколькими подземными залами вынужден был соорудить Козьма Фролов, чтобы разместить водяные колеса для привода механизмов Змеиногорского рудника?
А кроме того, в большом производстве уже стала нетерпима сезонность работы водяных колес, — зимой почти вся фабрика должна была или вовсе останавливаться, или работать далеко не на полную мощность. Кроме того, из-за водяных двигателей и вся фабрика оказывалась как бы привязанной к реке, хотя во многих случаях сюда было далеко и дорого подвозить сырье, отсюда далеко и дорого было перевозить готовые изделия, здесь чувствовался недостаток в рабочей силе.
Словом, внимание промышленников стали всё больше и больше приковывать к себе работы по созданию теплового двигателя, действующего паром. Удобство такого двигателя было очевидным. Потребность в нем всё больше и больше нарастала. Инженеры, техники, механики всего мира вплотную заинтересовались паром…
Уже в семнадцатом веке, и даже несколько ранее, многие передовые люди, ученые и инженеры, предвидели, какие широкие возможности откроются перед тепловым двигателем, и настойчиво искали пути использования силы пара.
Наиболее важной технической задачей того времени была задача создания двигателя, который приводил бы в движение насосы, откачивающие воду из шахт.
Без таких насосов в шахтах работать было нельзя, — подземные воды просачивались и мешали добывать уголь и руду. Насосы приводились в движение лошадьми, но при таком «двигателе» эти насосы обладали малой производительностью и мощностью, — не успевали откачивать воду, не могли поднимать воду с больших глубин. Надо было строить насосы больших мощностей, но для них нужны были и более мощные двигатели. Шахты и рудники не всегда располагались вблизи рек, — вот почему там раньше, чем в других производствах, делались попытки создания теплового двигателя. Это были очень интересные попытки. С них-то мы и начнем продолжение истории создания паровой машины.
Французский врач Дени Папен, встретившись с крупнейшим ученым того времени — голландцем Христианом Гюйгенсом, после долгих и увлекательных бесед с ним был до такой степени заинтересован задачами, стоящими перед инженерами, что решил изменить медицине и посвятить себя технике. И, как человек, решивший заниматься новым делом, он выбрал для себя самую интересную и самую важную по тому времени область техники — исследование свойств пара и затем создание тепловой машины.
В 1680 году Дени Папен нашел способ получения пара сравнительно высоких давлений, изобретя паровой котел, который и получил название, сохранявшееся долгое время, — «Папéнов котел».
Однако, создав паровой котел, Папен не сразу придумал способ его применения. Больше того, он на время вовсе отошел от пара — его поглотила идея создания машины, в которой использовалась бы сила давления атмосферного, наружного, воздуха.
Сложными зигзагами идет подчас развитие технических идей. Гюйгенс и Папен решили создать тепловой двигатель, но работающий не паром, а пороховыми газами.
Папен изготовил цилиндр, поместил в него поршень, а от поршня через блоки перекинул трос, которым, по мысли Папена, можно было бы поднимать груз, или качать воду, или выполнять любую другую работу. На дно цилиндра насыпали немного пороха, который поджигали фитилем. Происходило сгорание пороха, выделение горячих газов повышенного давления; газы толкали поршень, поднимая его вверх. Затем эти газы охлаждались, — для этого вокруг цилиндра пускали холодную воду. Охлажденные газы как бы съеживались, уменьшалось их давление, и поршень под собственным весом и под силой атмосферного давления оседал вниз. При этом он тянул трос и совершал работу.
Так действовала первая «атмосферная» машина Папена и Гюйгенса. Но этой машине не суждено было жить, — от нее прежде всего отказались сами изобретатели. Папен убедился, что сильно охладить газ он не может, что поршень поэтому опускается лишь немного и что полезная работа от такой машины получается незначительной.
И тогда Папен вновь вернулся к пару.
Прежде чем продолжить рассказ о новых поисках Папена, заметим, что Гюйгенс и Папен своей «пороховой» машиной открыли совершенно новую страницу техники — создание двигателя внутреннего сгорания. Правда, вписав на этой страничке первую строчку, они забыли о ней, но факт остается фактом. Однако к этому вопросу мы еще вернемся несколько позднее, — сейчас же вновь, вслед за Папеном, обратимся к пару.
Если газ от охлаждения не очень-то значительно уменьшается в объеме и под влиянием давления наружного воздуха поршень атмосферной машины опускается лишь слегка, то почему бы не воспользоваться для этой же цели паром, который охлаждением можно просто сконденсировать? Ведь при этом весь объем, занимавшийся паром, освободится, так как воде, в которую пар превращается при конденсации, потребуется очень мало места в цилиндре.
Свою первую паровую машину Папен и построил на этом принципе. Вместо пороха в цилиндр теперь наливали немного воды. Затем поршень опускали до соприкосновения с ее поверхностью; при этом воздух между поршнем и водой отводился из цилиндра, чтобы он не мешал поршню дойти до воды. Затем закрывали все отводы и цилиндр подогревали снаружи. Вода постепенно превращалась в пар, который своим давлением поднимал поршень вверх. Здесь поршень удерживался специальной «упоркой», а в это время от цилиндра убирали огонь и начинали цилиндр охлаждать. Подождав, когда пар сконденсируется, убирали упорку, и поршень под давлением атмосферного воздуха устремлялся вниз, совершая полезную работу.
Казалось бы, Папен добился своего, — он заставил работать и пар, и наружное воздушное давление. Но попробуйте представить себе, сколько возни было с такой машиной! Подводить — отводить огонь, подводить поршень, ставить — отпускать «упорку», охлаждать, ждать конденсации, — как много хлопот, а в результате — всего один рабочий ход в минуту и мощность меньше одной лошадиной силы. А к тому же и очень много топлива уходило для такой машины…
Не суждено было найти применение и этой машине Папена.
Но вот, пока Папен увлекался идеей использования атмосферного давления и производил в самом цилиндре машины парообразование и конденсацию, другие инженеры решили использовать забытое Папеном его же собственное изобретение — паровой котел.
Английский горный инженер Томас Сэвери предложил откачивать шахтные воды паровым насосом любопытной конструкции. Паровой котел всё время подогревался огнем, — отводить и подводить огонь оказалось ненужным. У котла была устроена топка, в которой огонь мог гореть всё время. Полученный в паровом котле пар подавался в насосный резервуар, из которого своим давлением он вытеснял воду в нагнетательную трубу и дальше в сток. После того, как вода из резервуара оказывалась вытесненной, закрывался кран паропровода и на короткое время открывался кран водоподводящей трубки, через который в резервуар попадала холодная вода, отчего пар быстро конденсировался. В резервуаре образовывалось разрежение, то есть почти пустота, и вода, выдавливаемая атмосферным давлением из шахты по трубке, устремлялась в резервуар.
Затем цикл повторялся.
Чтобы пар не мог гнать воду обратно в шахту, а поднимал бы ее наверх, был поставлен невозвратный клапан, который сам открывался только в одну сторону — при движении воды из шахты в резервуар. Такой же невозвратный клапан мешал слиться воде из нагнетательной трубки.
Паровой насос Сэвери — Дезагюлье (схема).
В том виде, как он был только что описан, насос Сэвери представлял собой уже несколько усовершенствованную французским физиком Дезагюлье конструкцию. Эта машина могла быть использована и на шахтах.
Паровой насос Сэвери — Дезагюлье для нас интересен еще и тем, что это была первая машина, использующая силу пара, появившаяся в России. Такой насос в 1717 году, по указанию Петра I, был установлен в Петербурге.
Петр I предполагал использовать насос Сэвери — Дезагюлье для крупных водоотливных работ при строительстве каналов в Петербурге. Насос оказался маломощным, и тогда Пётр I приказал его поставить в Летнем саду для накачивания воды в бак, откуда она подавалась к фонтанам. Еще два таких насоса были поставлены потом купцом Трусовым в своих банях на Фонтанке.
Малая производительность насоса Сэвери, разочаровавшая Петра I, была причиной поисков новых решений той же задачи.
Вслед за Сэвери и Папен предложил похожую конструкцию насоса, вернувшись сам к идее отделения парового котла. Но насос Папена был еще менее удачен, чем насос Сэвери. Главный недостаток таких машин, если не считать малой мощности и низкого коэффициента полезного действия, заключался в однократности действия, — нельзя было получить непрерывно работающий двигатель. И Папен и Сэвери для того, чтобы сделать универсальными свои машины, предложили комбинировать их с водяным колесом. Это значит, что паровой насос должен был откачивать воду из нижнего бака в верхний, а оттуда вода должна была сливаться на водяное колесо и вновь попадать в нижний бак. Водяное колесо, непрерывно вращаясь, приводило бы в непрерывное движение любые механизмы.
Несмотря на громоздкость и неэкономичность такой установки, она всё же применялась, — так остро ощущалась нужда в универсальном двигателе, не зависящем от места установки.
Тем временем еще один английский изобретатель — кузнечных дел мастер Томас Ньюкомен, — познакомившись с первой машиной Папена и зная устройство насоса Сэвери, решил построить свою машину. При этом Ньюкомен взял за основу первую конструкцию Папена и, используя тот же — атмосферный — принцип, отделил, однако, паровой котел от цилиндра так, как сделал Сэвери.
Как же стала работать машина Ньюкомена, установленная им впервые на каменноугольной шахте в 1711 году?
В паровом котле всё время вырабатывался пар. В определенный момент открывался кран и пар под некоторым давлением впускался в цилиндр. Пар, попав в цилиндр, начинал толкать поршень вверх, отчего ослабевала цепь балансира (качающегося рычага), и под действием груза левое плечо балансира опускалось. Связанная с грузом и балансирной цепью штанга водяного насоса уходила вниз. Пар заполнял всю полость цилиндра. Затем вручную открывался кран водоподводящей трубки и из бачка в цилиндр устремлялась порция холодной воды. Как и в насосе Сэвери — Дезагюлье, холодная вода конденсировала пар и в цилиндре создавалось разрежение. Тогда, под действием давления наружного воздуха, поршень опускался и тянул за собой цепь балансира. Балансир поворачивался вправо, поднимая штангу водяного насоса.
Такой машиной можно было уже откачивать воду из шахт и производить некоторые другие работы, не требующие непрерывного рабочего движения.
Появилось много «атмосферных» машин. Они были громоздки, неудобны, но выполняли большую работу. Машины понемногу улучшались.
Пароатмосферная машина Ньюкомена (схема).
В истории совершенствования машины Ньюкомена известна любопытная деталь. Знакомясь с устройством машины, вы могли отметить очень неприятное обстоятельство: чтобы машина непрерывно работала, надо непрерывно открывать и закрывать то водовпускной, то паровпускной краны. Такая обязанность обычно вменялась мальчикам-рабочим. Это были такие же мальчики, которые у Некрасова, помните, говорят:
«Только нам гулять не довелося
По полям, по нивам золотым.
Целый день на фабриках колеса
Мы вертим — вертим — вертим!»
В погоне за дешевой рабочей силой капиталисты нанимали малолетних рабочих, поручая им обычно несложную, но утомительную и одуряющую работу. Такой работой было открывание — закрывание краников. Сотни мальчиков выстаивали долгий рабочий день, мирясь со своей участью и думая только об избавительном гудке, прекращающем их мучения.
И вот среди них нашелся один сообразительный, умный паренек — Гумфри Потер, которому казалось нелепым простаивать весь день, поворачивая краны. Пытливо присматриваясь к работе машины, изучая ее устройство, он вдруг обнаружил, что вместо него ту же несложную работу можно поручить механизму. Механизм этот будет приводиться в действие самой машиной. Таким образом, машина сама себя сможет обслуживать. Гумфри много думал над устройством такого механизма. Не умея чертить, он его просто смастерил сам и однажды приспособил к машине. Машина пошла. Вскоре более опытные мастера этот механизм усовершенствовали, но он так и остался в технике носящим имя мальчика-изобретателя — «механизм Потера».
Первая машина Ньюкомена, появившаяся в России, была установлена в Кронштадте для обслуживания военного порта. Пущена в ход она была в 1777 году и работала удовлетворительно. Она развивала большую по тому времени мощность — 77 лошадиных сил и делала 10—И двойных ходов в минуту. Но размеры машины были очень велики, — она требовала для себя здание высотой в 18 метров (примерно четырехэтажный дом).
«Атмосферная» машина, хоть и применялась более полувека для различных, главным образом водоотливных, работ, но не могла всё же стать тем «универсальным» двигателем, в котором нуждалась промышленность. И это потому, что она не могла так же, как, скажем, водяное колесо, непрерывно вращать любую рабочую машину.
Поиски универсального теплового двигателя продолжались. И честь изобретения такого двигателя — паровой машины непрерывного действия — принадлежит выдающемуся русскому изобретателю XVIII века — Ивану Ивановичу Ползунову.
Будущий изобретатель паровой машины непрерывного действия Иван Иванович Ползунов родился в 1728 году в семье солдата 2-й Екатеринбургской роты. Трудно было отцу на 10 рублей годового солдатского жалования содержать семью, но, заметив особую тягу сына к учебе, отец определил его в так называемую «словесную» школу.
Придавая большое значение уральской горнозаводской промышленности, для управления ею Петр I в 1720 году учредил на Урале Горную канцелярию. Первым начальником этой канцелярии был один из питомцев Петра I — Василий Никитич Татищев. Будучи человеком умным, он хорошо понимал, что развивать промышленность без технически подготовленных кадров нельзя. И Татищев издал распоряжение об открытии на Урале специальной «арифметической» школы. В этой школе изучали математику, химию, горное дело, лесное дело, учет, строительство плотин, механику и другие технические предметы. В «арифметическую» школу принимали наиболее способных юношей, хорошо оканчивавших обычные — «словесные» — школы. В «словесных» школах учились ребята от 7 до 18 лет, в «арифметической» школе возраст учеников уже был от 14 до 21 года.
Ваня Ползунов в 10 лет успешно сдал все экзамены за «словесную» школу и, как наиболее способный, несмотря на свой возраст, был переведен в «арифметическую» школу.
Трудно было учиться Ване в «арифметической» школе. Занятия здесь шли круглый год, по 7–8 часов в день. Кроме классных уроков, в школе проводилось практическое обучение в мастерских. Не уроки были для Вани трудны, — он любил учебу. Трудной была жизнь в семье. Ему хотелось скорее зарабатывать деньги, помогать отцу и матери. Правда, в «арифметической» школе платили жалование — целых 33 ¼ копейки в месяц. Но на эти деньги Ваня не мог и себя-то прокормить, а не то, чтобы помогать семье…
И тем не менее, несмотря на нужду, Ваня продолжал упорно и прилежно учиться.
О способном ученике «арифметической» школы прослышал механик Горной канцелярии Никита Бахарев. Широки и ответственны были обязанности механика Горной канцелярии, — в его ведении находились все сибирские и уральские рудники и казенные заводы. Механик руководил постройкой на рудниках водоподъемных и рудоподъемных машин, пильных мельниц, специальных цехов и других сооружений. Никита Бахарев, чтобы успешнее справляться со своими многообразными обязанностями, подбирал себе наиболее способных для обучения механике и машинному делу учеников, которые были и первыми его помощниками. Так в 1742 году пал выбор и на Ивана Ползунова, который из учеников «арифметической» школы был переведен к Бахареву — в «механические ученики». С 14 лет началась производственная деятельность будущего изобретателя.
Шесть лет Иван Ползунов под руководством опытного инженера-механика Бахарева изучал заводские сооружения и принимал участие в их строительстве. Когда Ползунову исполнилось 20 лет, за проявленные способности в практической деятельности он был выдвинут на более ответственную техническую должность. Ему было назначено жалование — 24 рубля в год. На новую должность Ползунов должен был переехать из Екатеринбурга в Барнаул, на Алтае.
Барнаульский завод, куда прибыл Ползунов, занимался выплавкой серебра. Кроме того, на Алтае был еще один такой же завод — Колыванский. Оба завода снабжались серебряной рудой, добывавшейся на двадцати алтайских рудниках, главнейшим из которых был Змеиногорский рудник. Заводы и рудники принадлежали казне — императорскому двору.
Способного и энергичного работника администрация старалась использовать там, где нужно было быстро принять какие-либо меры — построить новую машину, перестроить рудный амбар, организовать перевоз руды через реку.
Так, на Змеиногорском руднике Ползунов руководил постройкой пильной мельницы — весьма сложного для того времени сооружения.
Занимаясь самыми разнообразными делами, Ползунов продолжал самостоятельно изучать науки — теорию горного дела, теорию механизмов и машин. Но, изучая теорию, Ползунов оставался недоволен тем, что практически он не может пройти шаг за шагом, последовательно, через все стадии горного и сереброплавильного производства.
Знакомясь с жизнью этого замечательного человека, невольно поражаешься его целеустремленности, его желанию исполнить свою мечту — внести свой вклад в развитие русской техники.
Несмотря на тяжелые материальные условия жизни — к тому времени у Ползунова уже была своя семья и вместе с ним жила его мать, — он находил время и силы изучать книги и требовать от администрации, чтобы его допустили к освоению всей производственной науки. В своем прошении он писал: «К тому же и молодость моих лет без науки втуне пропадает» — и далее, в другом месте, говоря о своем желании пройти через все стадии производства, он заключает: «Через что бы я мог тому искусству (свободнее, да и бесстрастно напредки приступить) самым делом (или практикой) насмотреться, а не так, как ныне, только из одного теоретического рассуждения навыкаю».
В наши дни, когда советская власть открыла народу широкие дороги в науку, становится трудно представить себе тот поистине героический подвиг, который должен был совершить солдатский сын Иван Ползунов, чтобы стать по знаниям на уровень инженеров своего времени. И этот подвиг был совершен.
В январе 1758 года Ползунову поручили сопровождать обоз серебра в Петербург. Уже зрелым мастером, подготовившим себя теоретически и практически, тридцатилетний Ползунов прибыл в столицу. Здесь находилась Академия наук, где творил великий Ломоносов, здесь было много интересных и новых технических сооружений.
По возвращении из Петербурга Ползунов вскоре получил чин «шихтмейстера» — что означало уже переход из разряда нижних чинов в разряд «благородного» сословия, а в 1761 году шихтмейстер Ползунов был назначен заместителем начальника Колыванского завода.
Так пробил себе дорогу «в люди» своим трудолюбием и способностями талантливый сын русского народа Иван Ползунов.
Не счастливая мысль, поданная кипящим чайником, не легкая техническая находка, а длительный и упорный труд, систематическое совершенствование своих знаний привели первого русского теплотехника Ползунова к изобретению нового, универсального двигателя — непрерывно действующей паровой машины.
Прежде чем познакомиться с паровой машиной Ползунова, подведем итоги тому, что было сделано раньше другими изобретателями.
Работами Папена, Сэвери, Дезагюлье, Ньюкомена и еще многих инженеров, как нам уже известно, удалось создать тепловую «атмосферную» машину, причем стало совершенно очевидным, что:
1) не вытеснительные насосы Сэвери — Дезагюлье, а машины с цилиндром и поршнем оказываются практически наиболее удобными и мощными;
2) паровой котел должен быть отделен от рабочего цилиндра машины.
Однако на построенных и работающих машинах можно было убедиться в несовершенстве «атмосферных» двигателей и прежде всего потому, что такие двигатели не могли приводить в действие машины, которые требовали непрерывного движения рабочего органа. «Атмосферная» машина могла сообщать качание штанге насоса, но вращать вал мельничного жернова она не могла. Между рабочими ходами поршня вниз (под действием атмосферного давления и собственного веса) происходили холостые хода вверх (под действием пара). Поэтому и получался перерыв: даст толчок машина штанге насоса или сделает нажим на кузнечный мех — и прервет свое действие на время холостого хода.
Жернова же или другие машины (станки, например) не могут работать толчками, — им нужно, чтобы всё время сила двигателя заставляла вращаться рабочий вал.
Вот этот основной недостаток и мешал атмосферной паровой машине стать универсальным двигателем, в котором нуждалась промышленность.
В апреле 1763 года Иван Ползунов подал начальнику Колывано-Воскресенских заводов свою докладную записку с проектом «огнедействующей» машины — так он называл свое изобретение.
Работая над созданием нового двигателя, Ползунов меньше всего думал о личном обогащении. Он прежде всего стремился облегчить труд рабочих, принести славу не столько себе, сколько своему Отечеству. В докладной записке он писал: «…Славы (если силы допустят) Отечеству достигнуть, и чтобы то во всенародную пользу… ввести. И тем самым облегчая труд по нас грядущим, славу и благодарность дойтить».
Проект Ползунова был разработан тщательно, с выполнением всех необходимых расчетов. В те времена не все машины строились по расчету. Многие изобретатели — например, тот же Ньюкомен — первые машины изготовляли, пользуясь только своим опытом, подчас даже без чертежа. Ползунов был по техническим знаниям значительно выше таких изобретателей, — он заранее всё продумал и рассчитал, изложив всё это на бумаге.
Посмотрим же, как решил задачу создания универсального теплового двигателя Ползунов. А то, что он именно такую задачу и ставил перед собой, видно из той же докладной записки.
Он писал, что следует «…сложением огненной машины водяное руководство пресечь и его, для сих случаев, вовсе уничтожить, а вместо плотин за движимое основание завода ее учредить так, чтобы она была в состоянии… по воле нашей, что будет потребно, исправлять», то есть новый тепловой двигатель должен сделать промышленность независимой от рек; все нужды завода в двигательной силе можно будет удовлетворить «огненной машиной».
Таким образом, Ползунов с самого начала правильно понял задачу техники своего времени и, разрабатывая проект двигателя, стремился обеспечить универсальность его применения.
Что же предложил Ползунов?
Посмотрим, как бы выглядела машина Ползунова, изготовленная по первому его проекту.
Так выглядела бы паровая машина Ползунова, изготовленная по первому проекту.
Ползунов, как мы видим, конечно, отделил котел от цилиндра. Но пар из котла поступает не в один цилиндр, как в машине Ньюкомена, а по очереди в два цилиндра: то в правый, то в левый. Пока в одном цилиндре паром поршень поднимается, в другом цилиндре пар конденсируется и поршень опускается.
«Ну и что же? — скажете вы. — В машине Ньюкомена так же работает поршень; может быть, здесь просто сдвоенная машина Ньюкомена?»
Но тогда посмотрим, как от поршней передается усилие на рабочий вал машины, который изображен сверху. На этом валу сидит колесо с широким ободом (шкив). Шкив обернут цепью, оба конца которой соединены с обоими поршнями. Когда левый поршень пойдет вниз, — за ним потянется левый конец цепи и шкив повернется влево. Правый же конец цепи при этом поднимется, так как поршень держать его не будет, потому что в это время в правый цилиндр подается пар и, следовательно, поршень сам идет вверх.
Потом всё то же самое повторится в обратном направлении — шкив повернется вправо. И так попеременно — то вправо, то влево — будет качаться шкив. Вместе со шкивом будет вправо и влево качаться вал, а от вала это движение можно передать цепью на другой шкив и на другой вал. От этого другого вала можно по очереди качать то правый, то левый воздуходувный мех.
Вот и выходит, что машина обеспечивает непрерывную работу вала… Правда, пока еще нет непрерывного вращения, которое нужно, скажем, мельнице, но есть непрерывное качание, которое нужно воздуходувным мехам, насосам и другим подобным механизмам.
И снова у вас, наверно, возникает желание сравнить машину Ползунова с двумя машинами Ньюкомена. «А ведь можно же качать каждый мех в отдельности двумя одноцилиндровыми атмосферными машинами?» — думаете, очевидно, вы.
Можно, но Ползунов не виноват в том, что в его время на Барнаульском заводе основные механизмы (90 %) требовали качательных движений; вот почему свою машину непрерывного действия он тоже приспособил для качания. Дело не в том, как движется рабочий вал, а в том, что он имеет только рабочие движения, которые непрерывно следуют одно за другим. А вращательное движение, если бы в этом была необходимость, Ползунов мог бы получить путем несложных приспособлений, которыми уже пользовались при обратном превращении, когда хотели вращение водяного колеса перевести в качание. О таких механизмах Ползунов, конечно, знал.
Здесь показан принцип действия цилиндров паровой машины непрерывного действия, предложенной Ползуновым.
На первый взгляд, работа цилиндров Ползунова похожа на работу цилиндра атмосферной машины, но, если вдуматься, — здесь разница огромная.
В атмосферной машине рабочий ход происходит за счет давления окружающего воздуха. А как происходит рабочий ход в машине Ползунова?
Допустим, что поршни представляют собой две чаши весов. Если мы создадим разрежение под обоими поршнями сразу, — пойдет ли хоть один поршень вниз под давлением воздуха? Нет, не пойдет. Нам надо один из поршней поднимать паром, — тогда другой будет опускаться. Значит, здесь рабочий ход невозможен, если не будет в противоположном цилиндре работать пар. Вот и выходит, что, при условии соединения тяг от поршней на общий вал, цилиндры уже перестают быть независимыми, усилия цилиндров складываются на этом общем вале и машина, состоящая из таких попеременно работающих и связанных цилиндров, является паровой машиной непрерывного действия.
И, стало быть, честь изобретения паровой универсальной машины принадлежит барнаульскому горному мастеру Ивану Ползунову.
Подав свою докладную записку с первым проектом машины, Ползунов долго ждал решения начальства. Лишь через девять месяцев Ползунову позволили приступить к постройке машины. И Ползунов приступил. Правда, машина, которую начал строить Ползунов, отличалась от той, что была им предложена в первом проекте. Точно не установлено, под влиянием каких обстоятельств, но Ползунову пришлось переделать проект, упростить конструкцию машины и, что самое главное, отказаться от общего вала со шкивом. Машина, которую начал строить Ползунов, имела балансиры и являлась, в сущности, двухцилиндровой атмосферной машиной. Однако постройка даже этой упрощенной машины шла не легко.
Трудно было в то время строить в России первую паровую машину, — машиностроительных заводов не было и всё приходилось делать кое-как, почти вручную. Ползунов дни и ночи отдавал своей работе, не жалея сил и здоровья. И столь напряженный труд оказался непосильным для него, — весной 1766 года он тяжело заболел и вскоре умер, не дожив всего одной недели до пробного пуска своей машины.
Огненная машина Ползунова пошла!
Машину испытали, она проработала в течение 43 суток, дала большую экономию заводу и вышла из строя из-за течи в котле, который был сделан только для пробы — не из чугуна, как полагалось, а из меди.
Вместо того, чтобы дальше усовершенствовать машину, вернуться вновь к первому проекту Ползунова, позаботиться о нужных материалах и заказать из них более надежные устройства, машину остановили и забросили. Правящая государственная верхушка, преклонявшаяся перед всем чужеземным, не хотела проявить заботу о дальнейшей судьбе величайшего русского изобретения.
Потом о Ползунове и совсем забыли, а машину его растащили по деталям…
Такова блестящая страница, которую вписал в историю техники выдающийся русский изобретатель Иван Ползунов, и такова печальная судьба самого изобретателя и его изобретения, — столь характерная для царской России.
Впервые построить универсальную паровую машину через 20 лет после проекта Ползунова выпало на долю английского механика Джемса Уатта.
Джемс Уатт много сделал для дальнейшего развития парового двигателя, и имя его оказалось прославленным на весь мир. Судьба английского механика, жившего в стране быстро развивающейся капиталистической промышленности, оказалась счастливее судьбы Ползунова, трудившегося в одиночку в стране крепостничества и царского гнета.
Джемс Уатт (1736–1819 гг.) был сыном корабельного мастера. В школе учился неровно, — часто болел, пропускал занятия. Восемнадцати лет он поступил работать механиком в мастерские при Глазговском университете, где его дядя был профессором. Не проходя университетского курса, но будучи от природы любознательным и способным, общаясь со студентами и профессорами, читая много книг, молодой механик быстро развивался. Со временем Уатт стал весьма образованным человеком: он владел несколькими иностранными языками, накопил много знаний в области естественных наук, философии.
Однажды — это было в 1763 году — Джемс Уатт получил задание, весьма заинтересовавшее его. В университете имелась модель машины Ньюкомена. Модель в несколько раз была меньше самой машины; на ней полагалось объяснять студентам работу и устройство настоящего двигателя. Однако, когда разводили огонь и пытались пустить пар из маленького котла в цилиндр, оказывалось, что пара не хватает для того, чтобы модель работала с нужным числом ходов поршня. Исправить модель поручили Уатту. Дефект был устранен, но еще долго возился Уатт с моделью. На ней ему очень хорошо стали заметны недостатки пароатмосферных машин.
Первое, к чему пришел Уатт после двухлетних опытов, — это к необходимости производить конденсацию пара вне цилиндра.
Действительно, цилиндр то нагревался впускаемым паром, то охлаждался впускаемой водой. Значит, каждая свежая порция пара отдавала часть тепла на прогрев цилиндра, — расходовалось лишнее топливо. Уатт предложил, для того чтобы всегда цилиндр оставался горячим, отработавший пар выпускать в специальный конденсатор, который всё время охлаждался водой с низкой температурой.
Так была создана первая паровая машина Уатта, которую он сам назвал «усовершенствованной машиной Ньюкомена». Получающаяся в такой машине экономия топлива заинтересовала предпринимателей, и вскоре была образована компания «Уатт и Болтон», которая стала выпускать новые машины и с успехом их продавать.
Другие заводы такой двигатель строить не могли, так как Уатт взял патент, то есть получил исключительное право распоряжаться своим изобретением.
Таким образом, уже с первых шагов Уатт имел деньги, чтобы продолжать свои работы.
В отличие от Ползунова, который вынужден был делать котел из медных листов, так как на чугунный не хватало денег, да и негде было его отлить, Уатт имел в своем распоряжении целый завод и вполне достаточно средств.
Продолжая дальше совершенствовать машину Ньюкомена, Уатт пришел к мысли, которая и привела его к созданию паровой машины непрерывного действия. Он решил попробовать подавать пар по очереди — то снизу поршня, то сверху — и тем самым сделать оба хода поршня рабочими без всякой помощи атмосферного давления. И, поскольку заказчики требовали непрерывного вращательного движения (в Англии к тому времени уже стали широко распространяться вращательные машины-станки), Уатту пришлось сделать то, чего не сделал, но что так же легко мог сделать Ползунов, — превратить качательное движение балансира во вращательное движение рабочего вала.
Так, в 1782 году, то есть спустя 19 лет после Ползунова, была создана паровая машина двойного действия Уатта, которая осуществила непрерывное рабочее движение и которая была первым универсальным тепловым двигателем, построенным в металле.
Схема первой паровой машины непрерывного движения, построенной Уаттом.
В чем же сходство и в чем отличие между машинами Ползунова и Уатта?
С работой машины Ползунова мы уже знакомы, познакомимся с работой машины Уатта.
Цилиндр здесь один, но двойного действия. Пар по очереди попадает как бы в два цилиндра: то в верхний, то в нижний — и гонит общий поршень то вниз, то вверх. Когда поршень идет вниз, то своим штоком он тянет за собой и правый конец балансира. При движении штока вверх — вверх пойдет и балансир. Холостого хода нет — балансир и рабочий вал совершают только рабочие качания.
«Но, позвольте, — скажете вы, — ведь и в проекте Ползу-нова рабочий вал совершал такие же рабочие качания…»
Совершенно верно. Разница лишь в том, что Ползунов поставил два цилиндра рядом и имел два отдельных поршня, передающих по очереди толчки валу, а Уатт использовал две полости одного цилиндра с одним поршнем. А эффект непрерывного рабочего движения в обоих случаях одинаков.
Но, как уже было сказано, Уатту надо было создать непрерывное рабочее вращение. Этого он достиг, соединив второй, левый, конец балансира с длинной тягой, которая называется шатуном. Соединение это было сделано не намертво, а с помощью шарнира. Шатун сверху был связан шарнирно с балансиром, а снизу он так же шарнирно соединялся с кривошипом.
Кривошип — это деталь, которая в виде шипа отходит от вала. С валом кривошип связан жестко. Если взяться за кривошип и повернуть, то поворачивается и весь вал. Например, ручка, которой вращают ворот колодца, есть не что иное, как кривошип.
Следовательно, когда левое плечо балансира шло вниз, шатун толкал вниз и кривошип, а вал делал пол-оборота. Когда же балансир с шатуном шли вверх, за ними двигался и кривошип, проворачивая вал еще на пол-оборота. Так и осуществлялось непрерывное вращение вала.
Благодаря шарнирам балансир, шатун и кривошип могли связанно двигаться, не мешая друг другу. Шатун при этом совершал качания (шатания), а кривошип — вращение.
Так Уатт, использовав уже давно известный кривошипно-шатунный механизм, превратил непрерывное рабочее качательное движение в непрерывное вращение. На рабочий вал Уатт посадил тяжелое колесо — маховик, которое ему было необходимо, чтобы вал машины мог легче переходить через те положения, когда балансир и шатун меняли направление своего движения. Маховик, раскрутившись, благодаря своей большой массе, заставлял вал вращаться всё время в одном направлении.
Иначе могло случиться, что шатун, например, повернул бы кривошип сверху вниз против часовой стрелки. Значит, и снизу вверх кривошип должен идти против часовой стрелки, тогда вал сделает полный оборот. А вдруг, дойдя до самой нижней точки, кривошип на шарнире потянется за шатуном по часовой стрелке? Тогда вал не повернется, а будет качаться по полоборота то влево, то вправо. Эти точки, в которых шатун меняет свое направление, называются мертвыми точками. Таких точек по вращению кривошипа две — верхняя и нижняя.
Маховик и помогает, преодолевая мертвые точки, валу вращаться всё время в одном направлении и без рывков — равномерно.
Свою машину двойного действия Уатт снабдил, еще одним устройством — регулятором подачи пара. Этот регулятор в виде двух грузиков вращался от вала машины. Если обороты машины возрастали выше тех, которые были необходимы, — грузики расходились от увеличенной центробежной силы и тянули за собой тягу. Тяга поворачивала немного паровпускной кран, и поступление пара в цилиндры уменьшалось, усилия поршней становились меньше, и обороты снижались.
Итак, что же нового дал Уатт по сравнению с Ползуновым? Уатт ввел конденсатор, изобрел способ двойного действия и превратил непрерывное качательное рабочее движение в непрерывное вращение, создал центробежный регулятор подачи пара.
Уатт прожил 83 года. За свою большую жизнь он много еще поработал над дальнейшим улучшением паровой машины, а главное, вместе со своим компаньоном сделал всё, чтобы внедрить машину как можно шире. Паровой универсальный двигатель стал появляться во всех частях света.
Прошло много лет. Патенты Уатта кончились, — паровую машину стали строить и другие заводы. Всё больше и больше улучшений вносили инженеры всех стран в универсальный тепловой двигатель — паровую машину.
Со временем паровые машины стали выпускать горизонтальными, без балансиров, — поршень связывался прямо с кривошипно-шатунным механизмом. Вместо паровпускных и паровыпускных кранов и клапанов, стали применять более удобное устройство, распределяющее пар по цилиндрам, — золотник.
Горизонтальная паровая машина двойного действия Уатта.
Горизонтальная машина двойного действия не имеет балансира. Цилиндр здесь расположен горизонтально, и пар попадает в ту или другую его полость по каналам, открывающимся или закрывающимся плоским ползунком, который и носит название «золотника». В таком виде паровую машину описывает в учебниках физики.
Девятнадцатый век был веком дальнейшего развития паровой техники. Много паровых машин появилось и в России. Так, в 1894 году в Европейской части страны действовало 7 707 паровых машин, дававших общую мощность в 227 853 лошадиных силы. На Кавказе было установлено 574 машины на 5 928 лошадиных сил и в Сибири — 53 машины на 1 100 лошадиных сил. Поршневая паровая машина как универсальный двигатель обеспечила рост крупной промышленности. Но, по мере распространения теплового двигателя, к нему стали предъявлять всё новые и новые требования. Паровая машина совершенствовалась.
Думал ли парижский книгоиздатель Башелье, отпечатав в 1824 году и выставив в витрине своего магазина тоненькую книжку, что ей суждено положить начало новой науке?
Правда, автор этой книжки, молодой человек в мундире военного инженера, носил известную всей Франции фамилию Карно. Многие видные инженеры и ученые давали о нем самые лестные отзывы, уверяя, что он, Сади Карно, достойный сын своего знаменитого отца — Лазаря Карно.
Ну, а кто не помнил Лазаря Карно? Член конвента, страстный республиканец, военный министр республики, а затем один из ее Директоров — он не мог смириться с вероломством генерала Бонапарта, не мог простить ему измену Республике и, несмотря на уговоры нового императора, отошел от политической жизни. Но Лазарь Карно был известен не только как общественный деятель, — его знали как крупнейшего ученого Франции. Ему принадлежали очень важные научные труды по математике и механике, частично созданные в разгар политической борьбы… Были известны увлечения Лазаря Карно и философией, и поэзией… Передавали, что младшего сына, родившегося в 1796 году, он назвал именем Сади в честь своего любимого персидского поэта XIII века — Саади. Известно, наконец, что Лазарь Карно сам подготовлял своего сына к поступлению в Парижскую политехническую школу, которую Сади окончил восемнадцати лет, поступив далее на службу военного инженера. И тем не менее, следует ли много ожидать от двадцативосьмилетнего инженера? «Размышления о движущей силе огня и о машинах, способны развивать эту силу» — так назвал автор свою брошюру.
Книгоиздатель не рассчитывал на ее успех. Она была издана небольшим тиражом. Читалась она, правда, легко, но, именно поэтому, можно ли ее считать серьезным научным трудом, — ведь в ней не содержалось ни одного сколько-нибудь сложного математического вывода?
И, видимо, не только книгоиздатель, — ученые и инженеры тоже сочли появление брошюры Сади Карно рядовым, даже заурядным явлением. Правда, в книге высказывались оригинальные, свежие мысли, но ведь это только «размышления». Молодому человеку еще следует потрудиться, накопить побольше опыта и облечь свои мысли в форму строгого математического анализа.
Так, появившись на свет, небольшая книжка Сади Карно была вскоре всеми забыта. Автор продолжал накапливать материал. Следуя совету старших ученых, он собирался издать другой, более обширный, труд. Но в 1832 году, полный энергии и творческих сил, Сади Карно скончался, заразившись тяжелой болезнью — холерой.
Все бумаги заразного больного были сожжены, кроме отрывочных записей, сохраненных его братом.
Спустя два года другой французский ученый, Клапейрон, выступил с научным трудом, где он напомнил о тех замечательных мыслях, которые впервые изложил в своей книге Сади Карно. Дополнив эти мысли строго научным математическим исследованием, Клапейрон показал, что правильно строить тепловые двигатели можно, лишь изучив законы, которым подчиняется процесс превращения тепла в механическую энергию. Но и после Клапейрона новая наука еще не получила практического применения.
Лишь спустя два десятилетия, когда появились, кроме паровой машины, и другие тепловые двигатели, вновь вспомнили о книгах Карно и Клапейрона. Многие ученые стали дальше развивать новую науку, получившую название «термодинамика» (движение тепла), но «отцом» этой науки по праву считался и считается до наших дней двадцативосьмилетний инженер-ученый Сади Карно.
О чем же размышлял Карно? В чем значение и сила его мыслей?
Еще в 1784 году, когда появилась паровая машина Уатта и новый универсальный тепловой двигатель дал толчок дальнейшему развитию промышленности, отец Сади, Лазарь Карно, писал: «Заметьте, какое количество ручной работы может быть сбережено в промышленности, когда будут лучше знать теорию тепла. Я имею основание думать, что эта теория произведет изумительный переворот в промышленности…».
Прошло четыре десятка лет, и Сади Карно, восприняв от отца глубочайший интерес к теории тепловых двигателей, своей работой положил начало этому изумительному перевороту.
К 1824 году паровая машина прочно вошла в жизнь. Она приводила в движение фабричные машины, пароходы и паровозы. Указывая на столь важное значение, которое приобрела в промышленности и на транспорте паровая машина, Сади Карно отмечал ее несовершенство как теплового двигателя. Ведь только 4–5 % всего тепла, которое выделяется при сгорании угля в топке парового котла, используется для полезной работы! Остальные 95–96 %, то есть почти всё тепло, теряется: излучается в атмосферу, уходит с топочными газами, уносится отработавшим паром…
Но почему? Неужели нельзя построить тепловой двигатель с более высоким тепловым, или — как говорят инженеры — термическим КПД, где бы использовалось значительно больше тепла для полезной механической работы?
А может быть, есть способ превращения всей выделяющейся при сгорании топлива теплоты в работу?
На эти вопросы наука, как замечает Карно, еще не могла дать ответа. И это потому, что ученые еще не определили те общие законы, которым подчиняется процесс перехода тепла в механическую энергию.
Мало совершенствовать устройство самой машины, надо поставить вопрос относительно тепловых двигателей вообще.
И Сади Карно сам впервые поставил этот вопрос о тепловых двигателях вообще.
На примере паровой машины Сади Карно заключил, что «во всех паровых машинах получение движения связано с одним обстоятельством, на которое нужно обратить особое внимание. Это восстановление теплового равновесия, то есть переход тепла от тела с более высокой температурой к телу с менее высокой температурой».
…Продрогнув на морозе, вы подходите к только что натопленной печи. Прижавшись холодными ладонями к гладким печным изразцам, вы с наслаждением ощущаете, как медленно начинает разливаться тепло по всему вашему телу. Но вот, простояв пятнадцать-двадцать минут, вы почувствовали себя согревшимся, а печка вам стала казаться уже остывшей. Вдумаемся, — почему печка нагрела вас, а не вы печку? Ведь ваше тело также может передать какое-то количество- тепла, но почему же это тепло не передалось печке, а вот тепло от печки вас согрело? Оказывается, тепло может переходить только от тела с более высокой температурой к телу с менее высокой температурой. Когда температуры обоих тел выравниваются, — наступает тепловое равновесие.
Точно такое явление мы наблюдаем и при переходе, скажем, воды с одного уровня на другой. С нижнего уровня вода не может сама подняться на верхний, а вот падать сверху вниз она может, да при этом еще и работу произведет, если ее падение будет использовано, например, гидротурбиной. И чем выше находится верхний уровень над нижним, тем больше работы произведет падающая вода.
То же самое можно сказать и о тепле. Если тепло, совершая работу, будет переходить от верхнего температурного уровня к нижнему, то, чем эта разница уровней окажется больше, тем большую работу можно получить от того же количества тепла.
Как переход воды от верхнего уровня к нижнему можно использовать для получения механической работы? На пути потока воды ставится водяное колесо или гидротурбина.
А как можно превратить тепло в механическую работу? Надо при переходе тепла от тела с высокой температурой к телу с низкой температурой поставить на его пути какое-либо устройство, где часть этого переходящего тепла использовалась бы для расширения газа, двигающего поршень.
Ведь то тепло, которое перешло от печки и согрело человека, никакой механической работы не совершило. Это был процесс простой теплопередачи.
А представьте себе другой случай. Вы купили в зимний день цветной воздушный шар. Придя домой, вы привязали этот шар возле печки и забыли о нем. Но вскоре он сам напомнил о себе, — раздался сильный хлопок, напоминающий выстрел, и вместо шара вы увидели жалко болтающиеся на бечевке лоскутки пузыря. Шар лопнул. Тепло, переходившее от печки к холодному шару, постепенно нагревало его. При этом заключенный внутри шара воздух нагревался тоже, а при нагреве все газы, как вам известно, расширяются. Но расширению воздуха препятствовала оболочка. Давление воздуха стало повышаться, оболочку начало распирать, пока она не лопнула. Таким образом, здесь тепло, переходящее от тела с высокой температурой к телу с низкой температурой, было частично использовано для механической работы — разрыва оболочки шара.
Следовательно, всякая машина, где тепло превращается в механическую работу, то есть всякий тепловой двигатель, должен иметь два температурных уровня: верхний (источник тепла) и нижний (охладитель), а кроме того, в такой машине должно находиться вещество, способное изменять свой объем от нагрева и охлаждения и тем самым превращать тепло в механическую работу, например двигая поршень в цилиндре. Таким веществом может быть любой газ или пар, и называется это вещество «рабочим телом».
Вот Сади Карно как раз первый и указал на то, что в основе работы любого теплового двигателя лежит разность в температурном уровне рабочего тела (которым не обязательно должен быть пар, — об этом тоже впервые сказал Карно) до входа в цилиндр машины и после выхода из него. Чтобы наибольшая доля затраченного на нагрев тепла превратилась в работу, необходимо:
1) с помощью источника тепла с возможно более высокой температурой нагревать при этой температуре рабочее тело;
2) при нагреве заставить рабочее тело расширяться и совершать работу (например, позволив ему двигать поршень в цилиндре);
3) отводить от рабочего тела тепло охладителем, температура которого должна быть как можно ниже;
4) расширение продолжать без нагрева до тех пор, пока температура рабочего тела не снизится до температуры охладителя.
В паровую машину можно впустить пар разной температуры. Чем выше начальная температура, тем больше работы пар производит. Внутри цилиндра паровой машины пар будет толкать поршень и сам расширяться. Но, расширяясь, он, во-первых, постепенно будет уменьшать свое давление на поршень, во-вторых, он также постепенно будет и охлаждаться.
Заметим, что все газы при сжатии повышают свою температуру, а при расширении снижают. Наверно, накачивая велосипедным насосом шину, вы замечали, что насос начинает нагреваться. Это происходит как раз потому, что вы многократно сжимаете воздух внутри насоса. С другой стороны, если вы дотронетесь до трубки, выходящей из баллона, в котором содержится сжатый газ, в тот момент, когда газ выпускают, — вы ощутите, как трубка холодеет. При выходе из баллона газ расширяется и температура его при этом падает.
Вернемся к цилиндру паровой машины.
Итак, расширившийся пар снизил свою температуру и свое давление. Очевидно, если удастся пар расширить, как говорят, глубже, до очень малых давлений, а следовательно, и температур, то работу этот пар произведет большую. Вот почему полезно ставить за паровой машиной конденсаторы. Снижая температуру выходящего пара до температуры, близкой к температуре охлаждающей воды, стало возможным получить очень малое давление в конденсаторе, равное 0,04 атмосферы. При этом в цилиндре паровой машины образуется тоже низкое конечное давление, при котором пар и поступает в конденсатор.
Как и указывал Карно, понижение температуры пара на выходе, осуществленное с помощью конденсатора, привело к лучшему использованию тепла. Паровые машины с конденсатором стали обладать более высоким коэффициентом полезного действия.
В современной паровой технике дальше понижать нижний температурный уровень уже затруднительно. И так в конденсаторе образуется почти пустота (0,04 атмосферы!). Поэтому сейчас обращено особое внимание на повышение начальных давлений и температур пара.
Оба эти пути, указанные Карно, помогли совершенствовать паровую машину. Но, кроме того, в размышлениях «отца термодинамики» содержались очень важные мысли и о том, как лучше подводить тепло к рабочему телу, как лучше расширять рабочее тело, как лучше отводить от него тепло на нижнем температурном уровне и как лучше вновь подготавливать рабочее тело к расширению. Карно предложил идеальный цикл тепловой машины, при котором во время перехода от верхнего температурного источника к охладителю тепло превращалось бы в максимально возможное количество механической работы и не терялось бы на теплообмен с окружающей средой.
Познакомимся же с этим идеальным циклом Карно, так как к нему стремятся приблизить циклы всех тепловых двигателей. По тому, как далеко отклоняется процесс превращения тепла в механическую работу в данном двигателе от процесса, предложенного Карно, судят о термодинамическом совершенстве такого двигателя.
Так можно было бы осуществить работу теплового двигателя по идеальному циклу, предложенному Карно.
Представим себе цилиндр с нагруженным поршнем. Грузом является песок, насыпанный в чашу. Внутри цилиндра находится «рабочее тело» — какой-либо газ.
Допустим, что стенки цилиндра и поршень сделаны из такого материала, который не пропускает тепло. Через донышко же цилиндра, которое сделано из теплопроводного материала, можно газ нагревать или охлаждать. Предположим далее, что у нас имеется два чугунных ящика с плитами. В первый ящик положены горячие угли, и плита нагрета до температуры T1. Во второй ящик положены куски льда, и плита охлаждена до температуры Т2. Подведем под цилиндр горячую плиту. Через некоторое время газ нагреется до температуры плиты T1 и займет некоторый начальный объем в цилиндре: поршень с полным грузом окажется на высоте I. Предположим, что вдоль вертикального движения чаши с песком поставлена колонка, разделенная полочками на ячейки. Сбросим в ячейку 1 немного песку. Поршень станет легче, и газы его приподнимут до полочки 2. При этом произойдет небольшое расширение и, следовательно, охлаждение газа; но, добавив немного угля в нашу жаровню, мы опять установим температуру Т1. Затем то же самое проделаем вновь — поршень поднимется до полочки 3, и так далее. Достигнув уровня, например, полочки 7, мы отведем горячую плиту, закроем донышко, чтобы не уходило из цилиндра тепло, и сбросим песок, не добавляя нового тепла. Поршень дойдет до полочки 8, но газ, теперь уже расширившись, несколько охладится, так как добавки тепла не поступает. Чтобы достигнуть полочки 9, нам придется сбросить на полочку 8 больше песка, чем сбрасывалось раньше, так как вместе с расширением и охлаждением начало значительно снижаться и давление газа. Достигнув полочки 9, мы сбросим вновь много песка. До полочки 10, где стоит упор верхнего крайнего положения, поршень дошел с небольшим грузом.
Первая часть расширения и работы газа по подъему поршня шла при неизменной температуре, равной температуре горячего источника. Такой процесс расширения называется в термодинамике «изотермическим» (при постоянной температуре). После того, как мы отняли горячий источник, расширение продолжалось, но без приема и без отдачи тепла (стенки изолированы). Такой процесс расширения называется адиабатическим.
Так мы совершили ход поршня вверх. Но всякая тепловая машина только тогда сможет стать двигателем, когда рабочее тело будет, совершив работу, возвращаться вновь в исходное состояние. Или, иными словами, тепловой двигатель должен работать по «замкнутому циклу», то есть непрерывно повторять расширение и сжатие рабочего тела.
Как же следует в нашем случае вернуть рабочее тело к исходному состоянию?
Предположим, что к концу расширения газ в цилиндре как раз охладился до температуры охладителя Т2. Поставим цилиндр на холодную плиту и немного ссыплем на чашу поршня с полочки 10 песку. Поршень станет тяжелее, и газ слегка сожмется. При этом температура газа начнет подниматься. Но охладитель не дает расти температуре, отводя какое-то количество тепла от газа. Затем с полочки 9 мы еще немного ссыплем на поршень песку — поршень спустится до полочки 8, а газ по прежнему останется при температуре Т2, отдавая излишнее тепло охладителю. Так мы совершим «изотермическое» сжатие, нагружая небольшими порциями песка поршень. Но вот, достигнув полочки 4, мы отведем холодную плиту, закроем донышко и станем насыпать большими порциями песок. Теперь газ начнет сжиматься, повышая свою температуру, так как тепло никуда отводиться не будет. Нам придется с нижних полочек вновь насыпать полную чашу песка, и только тогда мы вернем поршень в начальное положение I, подняв температуру газа до T1 и давление газа до его первоначального значения. Круг замкнется — цикл будет совершен. Начав от положения I, мы заставили поршень подняться до положения II и вновь вернуться в положение I.
Но в чем будет состоять полезная механическая работа, которую в этом случае мы получаем от тепла? Ведь, начав с полной чаши песка, мы вновь пришли к ней же!
Дело в том, что в результате такого цикла газ совершил полезную работу переноса песка снизу вверх: при изотермическом расширении надо немного песка ссыпать, а при изотермическом сжатии надо немного песка насыпать, и в результате на верхних полочках скапливается всё больше и больше песка, а на нижних песок убывает.
Этот цикл, с которым мы только что познакомились, осуществляется как раз так, как рекомендовал Карно: подводить тепло к рабочему телу надо изотермически, и рабочее тело должно при этом расширяться, совершая работу. Заканчивать свое расширение рабочее тело должно адиабатически, не передавая накопленное тепло через стенки цилиндра окружающей среде. Возвращать рабочее тело в исходное состояние надо, тоже вначале сжимая изотермически, отводя при этом тепло в охладитель, а затем заканчивая сжатие адиабатически.
Тогда, указывал Карно, тепло будет наилучшим образом использовано, а коэффициент полезного действия теплового двигателя будет зависеть только от разности температурных уровней.
В реальных тепловых двигателях, как мы дальше увидим, трудно выполнить цикл, похожий на этот, да и сам Карно не ожидал, что удастся точно так заставить работать паровую машину или другой двигатель. Но чем больше будет похож процесс в двигателе на цикл Карно, тем лучше он будет использовать тепло.
Можно ли всё тепло сгорания топлива использовать в тепловом двигателе? Нет. Даже в идеальном цикле Карно часть тепла отдается охладителю.
В большинстве тепловых двигателей совершает работу не один и тот же заряд рабочего тела. Пар, поступивший в цилиндр паровой машины, совершив работу, покидает этот цилиндр, а на его место при новом ходе поступит новый пар. Это обстоятельство также отличает реальные двигатели от идеального, но и тут остаются в силе главные направления, указанные Карно. Следуя этим направлениям, паровая техника к концу XIX века сделала огромные успехи.
Новая наука положила основу совершенствованию не только паровых машин, но и всех тепловых двигателей на многие десятилетия вперед, вплоть до наших дней.
Что же касается паровых машин, то к началу XX века уже стали строить паровые машины мощностью в 6–8 тысяч лошадиных сил, в то время как сто лет тому назад — к началу XIX века, во времена Уатта, машины строились лишь до 50 лошадиных сил. Паровая машина XX века использовала пар высокого давления и высокой температуры, была значительно экономичней первых машин и при большой мощности была сравнительно небольших размеров.
«Была? Почему была, а сейчас разве не строят паровых машин?» — спросите вы.
Чтобы ответить на этот вопрос, нам придется снова вернуться в XIX век и проследить за появлением еще одного теплового двигателя — паровой турбины.