Перед вами обычная квадратная шахматная сетка из 64 клеток. На ваших глазах делается несколько разрезов и из получившихся частей составляется прямоугольник, в котором, однако, всего 63 клетки!
Вы задумали число — одно из тех, что написаны на карточках, разбросанных по столу. Ваш партнер поочередно трогает карточки указкой, а вы в это время произносите про себя по буквам задуманное число, и когда вы доходите до последней буквы, указка останавливается как раз на вашем числе!
Фокусы? Да, если хотите; а лучше сказать — эксперименты, основанные на математике, на свойствах фигур и чисел и лишь облеченные в несколько экстравагантную форму. И понять суть того или иного эксперимента — это значит понять пусть небольшую, но точную математическую закономерность.
Вот этой скрытой математичностью и интересна книга Мартина Гарднера. Скрытой — потому что по большей части сам автор не формулирует на языке математики закономерностей, лежащих в основе его экспериментов, ограничиваясь описанием действий показывающего, явных и тайных; но читателю, знакомому с элементами школьной алгебры и геометрии, несомненно, доставит удовольствие самому восстановить по объяснениям автора соответствующую алгебраическую или геометрическую идею. Впрочем, в отдельных, более интересных случаях (отмеченных числами с круглой скобкой) мы позволили себе сопроводить изложение автора небольшими примечаниями, выявляющими математическую суть его построений, эти примечания помещены в конце книги.
Математические фокусы — очень своеобразная форма демонстрации математических закономерностей.
Если при учебном изложении стремятся к возможно большему раскрытию идеи, то здесь для достижения эффективности и занимательности, наоборот, как можно хитрее маскируют суть дела. Именно поэтому вместо отвлеченных чисел так часто используются различные предметы или наборы предметов, связанные с числами: домино, спички, часы, календарь, монеты и даже карты (разумеется, такое использование карт не имеет ничего общего с бессмысленным времяпровождением азартных игроков; как указывает автор, здесь карты рассматриваются тросто как одинаковые предметы, которые удобно считать; имеющиеся на них изображения не играют при этом никакой роли-»).
Мы надеемся, что книга Гарднера будет интересна многим читателям: юным участникам иисольных математических кружков, взрослым «неорганизованным» любителям математики, а может быть, тот или иной из описанных здесь экспериментов пробудит улыбку и у серьезного ученого в краткий момент отдыха от большой работы.
Г. Е. Шилов