Примечания

1

Ныне этот журнал переводится на русский язык и публикуется издательством «Мир» под названием «В мире науки».

2

Здесь и далее ссылки на литературу, помеченные звездочкой, относятся к авторскому списку «Избранная литература».

3

Перечисляя книги Клайна, я обхожу здесь вниманием пользующиеся (возможно, даже чрезмерно громкой) известностью его недавние сочинения «Как складывает Джонни» и «Как учит учитель», содержащие острую критику современной реформы преподавания математики в средней школе и написанные с присущими этому автору темпераментом и полемическим задором (см. также переведенную ранее на русский язык интересную, но, пожалуй, чрезмерно заостренную статью [138]).

4

Трудно не процитировать здесь столь почитаемого Клайном Германа Вейля: «…Процесс познания начинается, так сказать, с середины и далее развивается не только по восходящей, но и по нисходящей линии, теряясь в неизвестности. Наша задача заключается в том, чтобы постараться в обоих направлениях пробиться сквозь туман неведомого, хотя, конечно, представление о том, что колоссальный слон науки, несущий на себе груз истины, стоит на каком-то абсолютном фундаменте, до которого человек может докопаться, является не более чем легендой» (из статьи «Феликс Клейн и его место в математической современности»; Felix Klein. Stellung in der mathematischen Gegenwart. Die Naturwissenschaften, Bd 18, 1930, S. 4-11; Gesammelte Abhandlungen, Bd, 3. — Berlin: Springer-Verlag, 1968, S. 292-299).

5

Пуанкаре А. О науке. — М.: Наука, 1983, с. 294.

6

Относящийся к нашему времени выразительный пример подобного отношения к математике приводит в своей статье «Эйнштейн и физика второй половины XX века» [60] выдающийся современный физик, лауреат Нобелевской премии Ч. Янг (Ян Чжэиьнин). Он рассказывает, как, придя к своему старому учителю Чжень Шеншеню, ныне профессору Калифорнийского университета в Беркли и одному из крупнейших современных геометров, он выразил удивление тем, как быстро понадобились физикам идущие в значительной степени от Чженя так называемые связности на расслоениях, придуманные математиками вне всякой связи с физической реальностью. На это Чжень ответил ему: «Но ведь никак нельзя сказать, что это мы, математики, выдумали связности на расслоениях — ясно, что они существовали и до нас».

7

С этой точки зрения характерно, что Предложение 1 евклидовых «Начал» содержит построение равностороннего треугольника, что единственно оправдывает данное несколько ранее определение такого треугольника (ср. [25], с. 13, 15-16).

8

Так, например, еще Платон весьма высоко ценил логический метод «доказательства от противного», при котором установление истинности предложения p начинается с предпосылки «пусть p неверно», и из этой предпосылки выводится противоречие [так, пифагорейское доказательство иррациональности √2 (в наших обозначениях) начинается с утверждения: «Пусть √2 = m/n — рационально…»]. Общую форму этому методу придал, как будто, основатель так называемой элейской школы в древнегреческой философии Парменид (V в. до н.э.), глубоко почитавшийся Платоном (ему посвящен диалог Платона «Парменид»).

9

Укажем, однако, что статут «временно поселившихся лиц», или метеков, имели в Афинах периода их расцвета и многие выдающиеся ученые — назовем хотя бы имена Аристотеля из Стагира, Евдокса Родосского, Демокрита Абдерского, Гиппократа Хиосского (математик) или Гиппократа Косского (врач).

10

Во всяком случае, Архимед был тесно связан с александрийскими учеными, в частности, хорошо известна его дружба (и переписка) с Эратосфеном.

11

От греческого слова μεγιση — величайший; это название хорошо характеризует отношение арабских ученых к замечательному произведению Птолемея.

12

Возможно, что вариант «Катоптрики», которым мы располагаем сегодня, в действительности представляет собой компиляцию работ нескольких авторов, в том числе и Евклида.

13

В 529 г. византийский император Юстиниан приказал закрыть, как языческую, платоновскую Академию, существовавшую около 800 лет.

14

Подробнее о достижениях арабских и индийских математиков рассказывается в гл. V.

15

Аристотель, c его чисто умозрительным подходом к физическим задачам, склонен был считать, что тяжелое тело, брошенное под углом к земной поверхности, движется по «простейшим линиям», т.е. описывает отрезок прямой, переходящий затем в дугу окружности; ясно, что столь грубое приближение к реальности никак не могло быть достаточным для артиллерийской практики.

16

Позицию Аристарха в этом вопросе разделял и столь глубоко ценимый всеми учеными эпохи Возрождения Архимед Сиракузский.

17

Имеются в виду так называемые платоновы тела — правильные тетраэдр, гексаэдр (куб), октаэдр, икосаэдр и додекаэдр. — Ред.

18

В то время как математика и философия древних греков были метафизичны — они ограничивались рассмотрением застывших состояний и игнорировали (текущие) процессы, — картезианская философия (этот термин идет от латинизированной формы фамилии Декарта — Картезий) была диалектична, что и сделало возможным возникновение дифференциального и интегрального исчислений.

19

Рационалисты Декарт и Лейбниц были глубоко верующими людьми, но в их философских и научных системах богу отводилось весьма ограниченное место. В частности, Декарт (а вслед за ним в еще более отчетливой форме Лейбниц) считал бога «гарантом истинности логики», так как ее аксиомы (как и любые другие математические аксиомы!) не доказываются, а принимаются на веру.

20

Католический монах Марен Мерсенн (1588-1648) не был особенно крупным ученым (хоть его имя сохранилось в современной теории чисел); однако организующая роль его в науке XVII в. была огромной: в эту эпоху отсутствия научных журналов Мерсенн был своего рода центром оживленной переписки ученых и у него всегда можно было получить информацию о текущих успехах математиков разных стран.

21

В этом отношении позиции рационалистов Декарта и Лейбница, с одной стороны, и мистика Ньютона, с другой, были принципиально различными (ср. гл. III).

22

Заметим, что древнегреческие ученые классического и эллинистического периодов, следуя метафизическим установкам элейской школы и Аристотеля стремились полностью изгнать из геометрии движение: если сам перечень доказанных Фалесом (или его последователями) теорем, приводимый последующими авторами, свидетельствует об определяющей роли соображений симметрии и движений в дедуктивной геометрической системе ионийцев, то у Евклида использование движений в геометрии было старательно сведено к возможному минимуму.

23

Слово «геометрия» служило в античный период синонимом слова «математика» еще и в силу специфических условий развития науки в Древней Греции: ведь, не имея рациональной системы счисления и правил записи чисел (не говоря уж об алгебраической символике!), греки даже алгебраические теоремы и понятия часто вынуждены были излагать на геометрическом языке. Величайший авторитет греческой науки привел к тому, что в течение тысячелетий, когда первоначальные причины отождествления геометрии со всей математикой уже отпали, люди по-прежнему зачастую именовали математику геометрией (ср. также ниже прим. {26}).

24

Декарт также преобразовал и модернизировал алгебраическую символику, придав математическому языку ту форму, которой придерживались элементарные учебники чуть ли не до самых последних десятилетий; это демократизировало всю математическую науку и облегчило приобщение к ней большего количества людей.

25

Характерно, что в последние годы своей жизни Паскаль (как позже и Ньютон) полностью оставил науку, целиком обратившись к теологии и моральной философии. Нам кажется, что равный вклад, внесенный в науку XVII в. рационалистами (Галилей, Декарт, Гюйгенс, Лейбниц), верящими во всемогущество человеческого разума, и мистиками (Кеплер, Паскаль, Ньютон), более полагающимися на озарение, чем на строгую логику, напоминает об ограниченности формально-логического подхода к природе и о существовании двух взаимно-дополнительных путей постижения истины: дискурсивного и интуитивного (по этому поводу см. например, [32]).

26

Сегодня нас может удивить, что Галилей считал «буквами» того языка, на котором записаны все законы природы, «треугольники, окружности и другие геометрические фигуры». Но ведь единственной математикой, доступной Галилею, была геометрия древних греков, а до открытия дифференциального и интегрального исчисления (в значительной степени стимулированного трудами Галилея) и возникновения концепции дифференциального уравнения оставалось еще больше с полвека.

27

В XIII в. решающее значение эксперимента для точного знания постулировал английский монах-францисканец Роджер Бэкон (ок. 1214-1299), взгляды которого, однако, полностью противоречили мировоззрению его времени, что определило трагический характер жизни Р. Бэкона.

28

Кант И. Сочинения в 6-ти томах, т. 6. — М.: Мысль, 1966, с. 59.

29

Резкая полемика между Ньютоном и Гуком по поводу приоритета в открытии закона (1) всемирного тяготения оставляет столь тягостное впечатление еще потому, что целиком относящийся по своей научной идеологии к «доньютоновскому» периоду великий ученый Гук так, видимо, и не понял, что его претензии на это выдающееся открытие были неосновательными. Гук выписал формулу (1), исходя из чисто умозрительных соображений: «ясно», что гравитационная сила, создаваемая массой M, должна быть пропорциональна M; с другой стороны, поскольку на расстоянии r от массы эта сила равномерно распространяется по сфере площади 4πr2, то сила в каждой точке этой сферы должна быть обратно пропорциональна r2. То, что эти чисто эвристические соображения могут лишь подсказать ответ, но никак не доказать его, Гуку понять было не дано.

30

Надо иметь в виду, что под «натуральной философией природы» во времена Ньютона понимали физику, так что латинское название великого труда Ньютона можно перевести как «Математические основы физики».

31

Напомним, что М. Фарадей (1791-1867) и даже Д.К. Максвелл (1831-1879) в аналогичной ситуации, а именно в своем истолковании электромагнитных явлений, исходили из механистических объяснений сил притяжения и отталкивания заряженных тел, опирающихся на фиктивные «силовые трубки» в (несуществующем) эфире, что исключало необходимость апелляция к дальнодействию. [Впрочем, эти ошибочные объяснения физической природы явлений не помешали названым великим ученым пройти к правильным выводам, в частности к знаменитым уравнениям Максвелла, дающим исчерпывающее количественное описание рассматриваемых феноменов.]

32

Классик английской литературы С. Джонсон (1709-1784) более всего прославился как составитель первого научного «Словаря английского языка» (1755), ввиду чего его часто называют «великим лексикографом».

33

В «Оптике» [22] Ньютон все же обратился к физическим объяснениям; однако, как мы знаем теперь, они не были адекватны реальным процессам и, кроме того, не охватывали весь комплекс оптических явлений.

34

Оживленная дискуссия между Д. Бернулли, Эйлером и Д'Аламбером по поводу исследования колебаний струны (в которой каждый из этих трех выдающихся ученых был несогласен с двумя другими) связана с тем, что в XVIII в. не было еще полной ясности относительно определения понятия функции: дискуссия весьма способствовала внесению ясности в этот важный вопрос.

35

Ясно, что создатели гидродинамики Эйлер и Д'Аламбер ничего не знали о так называемых турбулентных течениях с нерегулярным, случайным характером движения отдельных частиц жидкости (для создания теории таких течений тогда еще не существовало подходящего математического аппарата); игнорирование этого обстоятельства приводило их даже к некоторым парадоксам, в то время неразрешимым.

36

В расчетах, относящихся к большим областям земном поверхности (каковой можно считать и княжество Ганновер), приходится учитывать отличие поверхности Земля от плоскости; и обдумывая это обстоятельство, Гаусс пришел к глубокой концепции внутренней геометрии поверхности, задаваемой ее метрикой, т.е. измеряемым по поверхности расстояниям. Соответствующая теория была изложена Гауссом в обширном труде «Общие исследования о кривых поверхностях» [Disquesitiones générales circa superficies curvas, 1828; русский перевод см. ([24], с. 123-161)], давно считающемся математической классикой.

37

Следует сказать, что наряду с определенным сходством между Гауссом и Коши существовало и резкое различие, определившее психологическое «отталкивание» этих выдающихся ученых. Бесконечно требовательный к себе, Гаусс публиковал сравнительно мало работ. Напротив, Коши публиковал свои работы, порой не отделывая их достаточно тщательно, так что в его книгах и статьях нередко встречались ошибки (обычно легко исправимые, но иногда и более серьезные), крайне раздражавшие Гаусса.

38

Андроник Родосский, выпустивший в I в. до н.э. собрание сочинений Аристотеля, назвал «Органоном» свод работ последнего по логике и строению наук, написанных независимо одна от другой и, видимо, в разное время; названием «Новый органон» Бэкон подчеркивал и близость свою к Аристотелю (по теме), и резкое различие (по установкам).

39

Мистик Ньютон был уверен (без всяких оснований, разумеется, — ср. сказанное выше о так называемой «проблеме трех тел») в неустойчивости Солнечной системы, тогда как в XVIII в. атеист и крайний рационалист Лаплас столь же безосновательно утверждал, что он может доказать ее устойчивость.

40

Это принадлежащее (или приписываемое) Лапласу высказывание выразительно демонстрирует успехи, которые к тому времени сделал «галилеев подход» к естественнонаучным проблемам (математическая формула, а не физическое описание). Ньютону бог был необходим для того, чтобы объяснить гравитационное «дальнодействие» (можно полагать, что паскалевское «определение» бога: «сфера, центр которой находится всюду, а периферия нигде», полностью снимающее вопрос об «агенте», передающем гравитационное воздействие, было достаточно близко Ньютону); именно этот «теологический» характер теории Ньютона делал ее неприемлемой для рационалистов Лейбница и Гюйгенса. Лаплас же полностью принял завет Галилея; никогда не спрашивать «как?», если мы можем ответить на вопрос «на сколько?»; поэтому для него бог в ньютоновской системе мира оказался уже вовсе ненужным.

41

Здесь имеется в веду, что в более полной (и совершенной) трактовке принципа наименьшего действия и иных вариационных принципов механики и физики речь идет не о наименьшем, а об «экстремальном» (т.е., наименьшем или наибольшем) значении рассматриваемой величины.

42

Не особенно эрудированному в области геометрии, но глубоко мыслящему Канту были впрочем, свойственны и глубоко нетривиальные прозрения. Так, в 1846 г. он писал, что трехмерность нашего пространства вытекает из характера закона всемирного тяготения Ньютона; это совершенно верно, но было строго доказано лишь много позже. Далее Кант утверждал, что из другого закона притяжения сил вытекала бы иная структура пространства, иное число измерений, причем если иные пространства возможны, то весьма вероятно, что бог их где-то действительно разместил.

43

Понятия пространства, времени и геометрии Кант считал априорными, заранее вложенными в наш разум и не подлежащими критике или замене какими-либо иными представлениями; высокий авторитет Канта закрепил эти ложные установки. Весьма вероятно, что именно нежелание вступать в конфликт с позицией столь высокочтимого в Германии философа побудили Гаусса не только воздержаться от публикация своих открытий в области неевклидовой геометрии, но и категорически запретить знающим об этом друзьям рассказывать кому-либо об его истинных воззрениях.

44

Истории проблематики, связанной с пятым постулатом Евклида, посвящена, в частности, книга Роберто Бонолы «Неевклидова геометрия», впервые вышедшая в 1906 г. на итальянском языке. Английский перевод: Bonola R. Non-euclidean geometry. — N.Y. Dover Publ., 1955 ([26]; см. также [27]).

45

Приводимое ниже описание воспроизводит схему рассуждений Саккери с небольшими изменениями. [В частности, за исходный пункт своих рассуждений Саккери — как позже и Ламберт — принял не аксиому Плейфера, а предположение, равносильное утверждению о равенстве суммы углов треугольника 180°; в опровержение этого предположения утверждалось, что сумма углов треугольника меньше (соответственно больше) 180°. — Ред.]

46

Аналогичную мысль в свое время высказывал, правда мимоходом, и Ньютон, но на нее не обратили внимания.

47

Окончательного признания возможности неевклидовой геометрии у Ламберта все же не было; по-видимому, впервые решились на этот шаг упоминаемые ниже Ф.К. Швейкарт и его племянник Ф.А. Тауринус. Однако Ламберт высказал провидческую мысль о том, что неевклидова геометрия должна была бы выполняться на сфере мнимого радиуса, если бы такая сфера существовала; впоследствии эта, в то время казавшаяся бессодержательной, идея была реализована даже несколькими различными путями.

48

Книга Tentamen вышла в свет в 1832 г., однако уже в 1831 г. Я. Бойаи имел на руках оттиски своего Приложения (Appendix) к книге, один из которых он сразу же отправил Гауссу. Впрочем, Гаусс не получил этой работы и ознакомился с ней, лишь прочитав экземпляр книги своего друга Фаркаша Бойаи.

49

Саккери твердо считал, что доказал 5-й постулат Евклида; поэтому его никак нельзя считать создателем неевклидовой геометрии. Клюгеля и Ламберта в том контексте, в каком упоминает их автор, уместнее заменить Швейкартом и Тауринусом (ср. прим. {47}); однако малочисленность их публикаций на эту тему, которую они вскоре оставили (Ф.К. Швейкарт вообще был по специальности юристом, а не математиком), делает сомнительным их приоритет в создании неевклидовой геометрии. Более основательна стандартная точка зрения, приписывающая это выдающееся открытие Лобачевскому [первый публичный доклад на эту тему (1826); первая публикация (1829-1830)], Бойаи (явно независимая от Лобачевского публикация 1831-1832 гг.) и Гауссу.

50

И даже никакими экспериментами тоже; утверждение о существовании одной или многих прямых, проходящих через точку P и не пересекающих AB, апеллирует к представлению о всем (бесконечном!) пространстве и потому непроверяемо; опыты же с измерением суммы углов треугольника в принципе могут помочь установить отличие этой суммы от 180°, но никогда — равенство 180°; ведь всегда можно опасаться, что полученное нами значение столь близко к 180° лишь потому, что выбранный треугольник слишком мал.

51

Лобачевский и Гаусс независимо осознали, что геометрия реального (физического) пространства может быть как евклидовой, так и неевклидовой. (Бойаи, заинтересованного в первую очередь в, так сказать, «логическом статусе» новой геометрии, эта постановка вопроса занимала меньше.)

52

Ее чаще называют сферической — трехмерную сферическую (или удвоенную эллиптическую) геометрию можно трактовать как геометрию (трехмерной) сферической поверхности шара четырехмерного евклидова пространства.

53

Впоследствии Феликс Клейн рассмотрел еще одну простую неевклидову геометрию, родственную удвоенной эллиптической геометрии, но отличающуюся от нее тем, что здесь уже любые две прямые пересекаются в одной точке. Клейн назвал такую геометрию просто эллиптической. [Риман, который рассматривал строение геометрий лишь в «малом», в окрестности одной точки пространства, не ставил вопроса о глобальной структуре введенных им пространств; именно это и позволяет — как весьма часто делают — считать его создателем и эллиптической геометрии. — Ред.]

54

Хорошо известно, как страдал Лобачевский от непризнания его работ в официальных кругах, в частности в Российской академии наук; не получил никакого признания и Appendix Я. Бойаи. Характерно также, что еще в 1869-1870 гг. видный французский математик, академик Жозеф Бертран (1822-1900) печатал в «Докладах» Парижской академии наук свои «опровержения» неевклидовой геометрии, к которым он относился с полной серьезностью.

55

Типичная для 2-й половины XX в. «арифметизация математики», попытка построить все математические дисциплины на, казалось бы, незыблемом фундаменте арифметики, обычно связывается с главой берлинской математической школы Карлом Вейерштрассом (1815-1897) и другими берлинскими математиками [Леопольдом Кронекером (1823-1891), Георгом Фробениусом (1849-1917), Эрнстом Куммером (1810-1893) и др.].

56

И даже ранее: векторный характер перемещений, скоростей, сил был по существу знаком еще античным ученым; само это представление, как и «правило параллелограмма» сложения векторов, сложилось еще в школе Аристотеля; широко использовал это представление и Архимед.

57

В наши дни термин «гиперкомплексные числа» все более вытесняется (странным) термином алгебра: под этим словом понимают как целую ветвь математики, так и, в более узком смысле, совокупность гиперкомплексных чисел определенного рода.

58

Проективная геометрия занимается изучением свойств, общих для всех фигур, получающихся при проектировании одной фигуры на различные плоскости. Так, если держать круг перед ярким фонарем, то он будет отбрасывать тень на экран или на стену. Форма тени будет изменяться в зависимости от наклона круга. Тем не менее окружность и контуры теней (эллипсы, гиперболы, параболы) обладают общими геометрическими свойствами.

59

Математический вариант теории электромагнитного поля был создан Дж.К. Максвеллом, который, по выражению Р. Милликена, «облек плебейски обнаженные представления Фарадея в аристократические одежды математики». [Создатель описательной теории электромагнетизма, самоучка М. Фарадей, весьма далекий от математики, был, кстати сказать, одним из немногих физиков, кто сразу же высоко оценил первые публикации Максвелла.]

60

Платон делил Вселенную на «мир видимый», куда относится все реально существующее и «мир умопостижимый», но не видимый и не осязаемый, к которому он относил, в частности, математику и искусство [см., например, «Государство» Платона ([7], с. 317 и далее)].

61

Как мы уже отмечали, Евклид, следуя математическим установкам Аристотеля, пытался обойтись в геометрии без всякого использования движений (что ему, кстати сказать, полностью так и не удалось).

62

Любое нечетное число представимо в виде 2n + 1, где n — некоторое целое число. Квадрат нечетного числа (2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1 — нечетное число.

63

Своеобразным отражением этого является, в частности, тот факт, что в «Началах» так называемый алгоритм Евклида в одинаковых выражениях описывается два раза: один раз — для чисел и второй раз — для отрезков.

64

Возможно, эту формулу знал еще Архимед. — Ред.

65

За единицу площади здесь принимается квадрат со стороной, равной единице длины. — Ред.

66

Формулы для решения в целых числах «пифагорова уравнения» x2 + y2 = z2 обычно приписываются Платону, но реально они, безусловно, были известны ранее, скажем в школе пифагорейцев. Выдающийся знаток вавилонской математики, ученик Д. Гильберта Отто Нейгебауэр (р. 1899) предположил даже, что эти формулы (разумеется, без строго логического их обоснования) были известны еще в древнем Вавилоне, ибо иначе становится совершенно загадочной обнаруженная Нейгебауэром древневавилонская клинописная глиняная табличка, содержащая список ряда первых решений этого уравнения.

67

Диофантовым анализом (см. по этому поводу: Башмакова и Славутин [34]) обычно называют теорию решений неопределенных уравнений (т.е. уравнений, содержащих более одного переменного) в целых числах, тогда как Диофанта интересовала родственная проблема отыскания рациональных решений подобных уравнений.

68

Почти одновременно с шотландцем Джоном Непером и независимо от него к идее логарифмов пришел швейцарский часовщик Иобст Бюрги (1552-1632).

69

Теория Евдокса — Евклида содержала почти безупречное определение иррациональных чисел (которым придавалось обличие отношений отрезков) и условий их равенства — но, разумеется, проблемы логического обоснования действий над иррациональными числами здесь не были доведены до того уровня, который приобрели они в математике 2-й половины XIX в.

70

Любопытно, что открытая Декартом и по сей день сохранившая его имя кривая, описываемая уравнением x3 + y3 − 3xy = 0, ныне рисуется вовсе не так, как это делал Декарт, считавший, что x и y должны быть только положительными; при этом мы по-прежнему называем эту кривую «декартов лист», хотя, если не ограничиваться одними лишь положительными значениями абсциссы и ординаты, рассматриваемая кривая утрачивает форму листа, какую она имела на чертежах Декарта.

71

В этой связи уместно вспомнить строки из У.Г. Одена:

Минус на минус — всегда только плюс.

Отчего так бывает, сказать не берусь.

72

Так называемая формула Кардано для корня (точнее, для трех корней) кубического уравнения x3 + px + q = 0 (найдена она была несколько раньше, но опубликована впервые в «Великом искусстве» Кардано, который, впрочем, и не претендовал здесь на приоритет) имеет вид:

при этом если все три корня уравнения являются вещественными (неприводимый случай решения рассматриваемого уравнения), то (q/2)2 + (p/3)3 < 0 — и правильный ответ можно получить из этой формулы лишь при умении извлекать кубические корни из комплексных чисел (как это сделать, впервые объяснил Р. Бомбелли).

73

Характерно, что при всей глубине и тонкости мысли, отражением которых явились статьи «Предел» и «Дифференциал» в знаменитой «Энциклопедии» (по существу впервые обосновавшие математический анализ почти на уровне построений Огюстена Коши) или статья «Размерность» (впервые провозгласившая, что мы живем в четырехмерном мире: три измерения — пространственные, четвертое — временное), к вопросу о введении в математику отрицательных чисел Д'Аламбер подходил с большой робостью, а комплексные числа вообще полностью игнорировал.

74

Эйлер использует здесь так называемую тригонометрическую, или полярную, форму комплексного числа; здесь ρ = √(x2 + y2), φ — угол, образуемый с положительным направлением оси x отрезком, проведенным из начала координат в точку x + iy (при y = 0, угол φ также равен 0). При этом x + iy = ρ(cos φ + ί sin φ) = ρe.

75

Впрочем, многие современные математики, скажем Жан Дьедонне (род. в 1906 г.), возражают и против традиционного употребления термина аналитическая геометрия, придавая ему смысл, логически вытекающий из современного понимания термина алгебраическая геометрия (алгебраическая и аналитическая геометрия по Дьедонне — это учение об алгебраических, соответственно аналитических многообразиях в многомерном пространстве); поэтому созданную Декартом и Ферма область математики следовало бы, пожалуй, называть координатной геометрией.

76

Недворянин Жиль Персон называл себя «де Роберваль» по названию деревни, из которой он был родом, и вошел в историю науки именно под последним именем.

77

Идущее от Ферма понятие дифференциала функции, равно как и утверждение о том, что в точках максимума или минимума функции ее дифференциал (а, значит, и производная) обращается в нуль (это утверждение сегодня часто называют теоремой Ферма), были даны им лишь для конкретных примеров функций.

78

Обзор этих работ см. в кн.: Cajori F. A History of the Conceptions of Limits and Fluxions in Great Britain from Newton to Woodhouse. — Chicago: The Open Court Publishing Co., 1915. См. кроме того: Boyer С. The Concepts of the Calculus. — N.Y.: Columbia University Press, 1939, а также (переиздание): Dover Publications, 1949. [Из более поздних работ можно указать, например, брошюру [40] и более обстоятельные книги [41], [42], [43] и особенно [44] — Прим. ред.]

79

В этой книге излагался курс, который Лагранж читал студентам знаменитой парижской Политехнической школы; продолжение и дальнейшее развитие идей Лагранжа содержат учебники еще одного профессора Политехнической школы — О. Коши, о которых пойдет речь в следующей главе.

80

Деятельность молодых кембриджских математиков (Пикок — Бэббедж — Гершель) имела еще один аспект, не связанный с проблемами обоснования математики, но чрезвычайно важный в тот период для английской науки. Дело в том, что крайне неприятные приоритетные споры об открытии математического анализа, развернувшиеся в XVII в. между Ньютоном и Лейбницем, формально окончилась как будто бы полной победой Ньютона, не потерпевшего в результате их ни малейшего материального или морального ущерба, тогда как Лейбниц из-за этих споров умер буквально в нищете. Однако исторически победителем здесь оказался именно Лейбниц, а научным наследникам Ньютона эти беспредметные дискуссии о первенстве принесли вполне ощутимый вред. Вся континентальная Европа восприняла дифференциальное и интегральное исчисление в том обличье, которое ему придал Лейбниц — с более удобной лейбницевской символикой и терминологией (производная и интеграл, а не флюксия и флюэнта; исчисление дифференциалов, а не моментов). Существенную роль здесь сыграла отмеченная в книге темпераментная защита Лейбницем своих позиций, а также выдающаяся научная школа Лейбница, возглавляемая братьями Якобом и Иоганном Бернулли. Напротив, в Англии из-за приоритетных соображений на систему обозначений и терминов Лейбница был буквально наложен запрет, что лишало возможности молодых английских ученых следить за достижениями своих континентальных коллег и привело к резкому отставанию английской науки. Даже возрождение английской математики в середине XIX столетия (!), предвестником которого явились названные молодые кембриджцы, было первоначально встречено на континенте с большим недоверием. И деятельность Пикока и его друзей, в частности перевод ими на английский язык «лейбницианского» по форме учебника Лакруа, ставила своей целью приблизить английскую математику к континентальной.

81

В следующей главе мы узнаем, как решил проблему комплексных чисел сам Гамильтон.

82

Современное определение функции как любого правила или закона, сопоставляющего каждому значению x из области X (определения функции) единственное число y — значение функции в «точке» x, было еще в 1817 г. предложено чешским математиком Бернардом Больцано (1781-1848), однако замечено оно было только после повторения его в 40-х годах XIX в. авторитетным немецким математикой Петером Густавом Дирихле (1805-1859). Раньше Дирихле определение «по Больцано» использовал в своих работах по математическому анализу Н.И. Лобачевский, что, однако, тоже никем не было замечено.

83

Из числа создателей неевклидовой геометрии ее аксиоматически-логический статут больше всего беспокоил Яноша Бойаи, который подходил к развитой им науке с чисто аристотелевских позиций («дедуктивная», или «выводная», наука) и одно время даже полагал, что доказал противоречивость новой геометрии. Лобачевский и Гаусс воспринимали новую геометрическую систему более «физично» — как возможную систему описания свойств окружающего нас реального пространства. В частности, Лобачевский, дальше всех продвинувшийся в области «гиперболической» геометрии, был весьма близок к строгому доказательству ее непротиворечивости, поскольку он владел тем, что мы сегодня называем «бельтрамиевыми координатами» точек гиперболической плоскости, которые послужили основой для создания «модели Бельтрами» (или «модели Бельтрами — Клейна»), доказывающей непротиворечивость геометрии Лобачевского. Однако Лобачевский не сделал здесь последнего шага, ибо, будучи твердо уверенным в «истинности», или непротиворечивости, своей геометрии, не чувствовал необходимости этого.

84

Французская школа давно имела традиции «антиевклидовского» изложения курса геометрии, где широко использовались наглядность, соображения симметрии и движения, которых старался избегать Евклид, и ставились во главу угла наиболее важные для практики вопросы измерения геометрических величин. Первый подобный учебник составил страстный борец против схоластики и метафизики Аристотеля (а заодно и против идущих от Аристотеля методологических установок Евклида) Питер Рамус (или Пьер де ла Раме, 1515-1572), поплатившийся жизнью за эту свою деятельность: он был убит в Варфоломеевскую ночь, причем убийство Рамуса было организовано враждебными ему профессорами Парижского университета (Сорбонны). Позиции Рамуса целиком разделял Д'Аламбер, который глубоко развил их в статье «Геометрия», напечатанной в «Энциклопедии». Той же линии придерживался в своем учебнике «Элементы геометрии» и один из крупнейших аналитиков XVII в. А.К. Клеро.

85

Пуанкаре А. О науке. — М.: Наука, 1983, с. 164.

86

Концепцию предела как исходного пункта математического анализа иногда связывают также и с Ньютоном, различавшим «первое число» (с которого переменная начинает изменение) и «последнее число» (предел (!) — значение, к которому она приходит) и придававшим особое значение «последним числам». Однако увлеченный физической интерпретацией анализа (производная как скорость), Ньютон не потрудился даже дать понятию «последнего числа» сколько-нибудь отчетливое определение, что лишало основанные на этом понятии конструкции доказательной силы.

87

В данном Д'Аламбером определении предела ныне вызывает сомнение лишь замечание о том, что стремящаяся к a величина не может a превзойти; Д'Аламбер требовал, чтобы из x→a следовало постоянство знака разности x − a, в то время как Коши это последнее условие отбросил.

88

Вряд ли было бы уместно входить здесь в технические детали приводимых Коши определений и доказательств. Для нас важно лишь подчеркнуть, что именно Коши приступил к планомерному обоснованию математического анализа.

89

Функция y = f(x) называется непрерывной, скажем на интервале а < x < b, если для каждой точки x этого интервала и каждого (сколь угодно малого!) числа ε > 0 существует такое δ, что |y(x) − у(x0)| < ε коль скоро |x − x0| < δ, и равномерно непрерывной на этом интервале, если соответствующее значение δ можно считать не зависящим от x0 (а только от ε); тонкое (и важное) различие между непрерывностью и равномерной непрерывностью было осознано лишь Кантором и Вейерштрассом.

90

Неверность этого утверждения Коши следует из рассмотрения простейшей функции Z = Z(x, у), где Z = 0, при xy = 0 и Z = 1 при xy ≠ 0.

91

Другими словами, Гамильтон полагал (a, b) + (c, d) = (a + c, b + d); (a, b)∙(c, d) = (ac − bd, ad + bc). Подобное же построение теории комплексных чисел ранее (около 1840 г.) было дано одним из создателей неевклидовой геометрии Я. Бойаи в работе, представленной на конкурс, объявленный Лейпцигским научным обществом. Но, к сожалению, эта работа не была должным образом оценена жюри конкурса и потому осталась неопубликованной.

92

Систему аксиом, описывающую натуральные числа, несколько раньше (1888) Дж. Пеано указал Р. Дедекинд.

93

Первым автором, полностью решившим задачу обоснования евклидовой геометрии, был, по-видимому, итальянец М. Пиери, ученик Дж. Пеано. Несколько позже в том же 1899 г. появились в значительной степени основанные на более ранних исследованиях Паша «Основания геометрии» Д. Гильберта, где производилось тщательное выделение отдельных групп аксиом, описывающих то или иное из неопределяемых отношений между основными элементами (точками, прямыми и плоскостями): принадлежность (точки, прямой или плоскости); понятие «между» и т.д. В настоящее время имеется много разных систем обоснования евклидовой геометрии (см., например, [49]).

94

Принадлежащие Лейбницу фрагменты «логического исчисления» были разработаны достаточно глубоко; однако они не удовлетворяли Лейбница, поскольку были весьма далеки от поставленной им (и, видимо, неразрешимой) задачи «свести любое рассуждение к вычислению», создать такое положение, при котором, по утопическим мечтам Лейбница, один из спорящих всегда смог бы сказать другому: «Вы утверждаете одно, я — другое; ну что же, проверим, кто из нас прав: вычислим, милостивый государь».

95

Дж. Буль родился в очень бедной семье мелкого торговца, в силу чего он сумел окончить лишь несколько начальных классов школы для бедных, которые, разумеется, ничего не дали ему в области математики. Все свои знания Буль приобрел путем самообразования. Стремясь разобраться в математике глубже, Буль обратился к трудам классиков науки; тогда и родились у него первые самостоятельные идеи, которые он изложил в статьях, направленных в «Кембриджский математический журнал». К счастью, редактору журнала, представителю «кембриджской группы» математиков Д. Грегори, поиски Буля оказались достаточно близкими. Именно с помощью «кембриджцев» Булю удалось в конце жизни стать профессором математики во вновь открытом католическом колледже (университете) в Корке. Характерно, что первая развернутая система формальной (символической) логики принадлежит самоучке Булю — не закончив даже средней школы, он тем самым не был связан путами традиционных взглядов и установок, смог взглянуть на математику свежим взглядом и оценить ее логический статут с той ясностью и полнотой, которая позволила Б. Расселу позже сказать: «Чистую математику открыл Буль в сочинении, которое называлось «Законы мысли».

96

У самого Буля сумма x + y обозначала класс объектов, принадлежащих либо x, либо y, но не x и y одновременно; сегодня в этом случае говорят не о сумме, а о «симметричной разности» x и y и пишут xΔy.

97

Выше уже указывалось, что логические сочинения Аристотеля (аристотелева силлогистика) формализовали в основном логическое отношение (не операцию, а именно отношение) следования; у Аристотеля можно найти также отчетливые фрагменты учения о кванторах. Полагают, что элементы логического исчисления — разумеется, не без влияния Аристотеля — были созданы в несколько более поздних стоической и мегарской школах, от которых до нас, однако, не дошли сколько-нибудь существенные письменные памятники мысли.

98

По мнению некоторых логиков, чтобы охватить все типы рассуждений, используемых в математике, потребовалось бы ввести так называемое исчисление предикатов второй ступени, в котором кванторы применяются к предикатам. Так, чтобы выразить отношение равенства x = y, мы должны были бы утверждать дополнительно применимость к y всех предикатов, применимых к x, и для этого ввести квантор предикатов либо словесно («для всех предикатов»), либо с помощью символов x = y ↔ (F)(F(x) ↔ F(y)).

99

Впрочем, еще Галилей, исходя из сходных соображений, утверждал, что квадратов начальных чисел имеется столько же, сколько и самих натуральных чисел.

100

Фундаментом идущей от Кантора «иерархии бесконечностей» является (ныне широкоизвестная и в ряде стран включаемая даже в школьные учебники математики) теорема Кантора — Бернштейна, согласно которой если два множества A и B таковы, что существует взаимно-однозначное соответствие между A и частью (подмножеством) B и между B и частью A, то можно установить также и взаимно-однозначное соответствие между A и B; таким образом, любые два множества либо «одинаковы» (эквивалентны, равномощны), либо одно из них «больше» другого. Кантор хорошо понимал важность этой теоремы, но доказательство ее долго ему не давалось. О своих затруднениях он сообщил Р. Дедекинду, который познакомил с поставленной Кантором задачей своих студентов, после чего (в первой половине 90-х годов XIX в.) соответствующая теорема была очень быстро доказана совсем еще юным учеником Дедекинда, студентом Гёттингенского университета Феликсом Бернштейном.

101

Являясь в соответствии с семейной традицией ревностным христианином (лютеранином), Кантор охотно использовал в своих высказываниях религиозные аргументы; но значение соображений такого рода для его научного творчества не было существенным (в литературе оно нередко преувеличивается). Однако с течением времени, когда творческая сила Кантора-математика пошла на убыль, его обращения к теологии стали более частыми.

102

Автор первого в мировой литературе учебника теории множеств Феликс Хаусдорф (1868-1942) долгие годы был одним из признанных лидеров берлинской математической школы. Его учебник по теории множеств имел два варианта, настолько резко различающиеся между собой, что их вполне можно считать самостоятельными книгами: «Основы теории множеств» (Grundzüge der Mengenlehre. Leipzig, Teubner, 1914) и «Теория множеств» (Mengenlehre. Leipzig, Teubner, 1927). Совершенно самостоятельным произведением мировой математической литературы является русский вариант той же книги [54], в которой редакторы П.С. Александров и А.Н. Колмогоров предприняли (весьма удачную) попытку совместить все достоинства и первого и второго вариантов книги Хаусдорфа, одновременно доработав отдельные части книги, с тем чтобы привести их в соответствие с новейшими достижениями науки. При этом устаревшие разделы «Основ теории множеств» были заменены новым текстом, заимствованным из написанных П.С. Александровым разделов книги [55], которые пришлось несколько переработать, с тем чтобы сохранить стиль Хаусдорфа.

103

Обычно считают, что русский алфавит содержит 33 буквы (при этом буквы е и ё отождествляются, считаются за одну); поэтому общее число «100-буквенных последовательностей», где каждая буква имеет одно из указанных 33 «значений», равно 10033. (Разумеется, большинство из составленных таким образом «фраз», разбиение которых на отдельные «слова», если только оно возможно, производится «по смыслу», не будут выражать ничего или не будут описывать никакого числа.)

104

Сомнения по этому поводу подогревались рядом полностью противоречащих нашей интуиции (или очень сильных и «слишком просто» доказываемых) результатов, получаемых с использованием аксиомы выбора Цермело. Наиболее известна здесь, пожалуй, эффектная работа Ф. Хаусдорфа, результат которой, несколько огрубляя, можно описать так: пусть Ш — обыкновенный шар трехмерного евклидова пространства; Хаусдорф разбивает этот шар на четыре множества I, II, III и IV так, что сложив по-другому множества I и II, мы получим из них шар Ш1, равный Ш; из множеств III и IV также можно сложить равный Ш шар Ш2. (Ср. гл. XII).

105

Можно взять множество с кардинальным числом N1 и рассмотреть множество всех его подмножеств, кардинальное число которого обозначается через 2N1. Как доказал Кантор, 2N1 > N1. Можно предположить, что 2N1 = N2 и что 2Nn = Nn+1. Такое предположение называется обобщенной гипотезой континуума.

106

Вариант гипотезы континуума, приведенный в скобках, не требует обращения к аксиоме выбора.

107

Сегодня это различие отражается в существовании двух разных символов: (например, x A) и (B A), используемых уже и в школьных учебниках математики.

108

Пуанкаре А. О науке. — М.: Наука, 1983, c. 400.

109

Мы уже указывали на своеобразный характер религиозности Лейбница, для которого бог играл роль гаранта истинности логики, но, «создав однажды» Вселенную, далее никак не вмешивался в ее функционирование. (Разумеется, Лейбниц и не подозревал, что возможных логических систем существует много; осознание этого обстоятельства заставило бы его полностью пересмотреть всю свою религиозно-философскую систему.)

110

Рассчитанное на самого широкого читателя изложение взглядов А. Уайтхеда (а частично и Б. Рассела) на математику можно найти в (к сожалению, сейчас уже труднодоступной) книге [57].

111

Создатель современной алгебраической структуры математической логики Дж. Буль в качестве основных операций над высказываниями использовал конъюнкцию и исключающую дизъюнкцию (которую сегодня чаще называют «симметрической разностью» высказываний p и q).

112

Здесь терминология (и символика) авторов «Оснований математики» несколько расходится с принятой в нашей литературе. Следует различать (бинарное) отношение следования между высказываниями, которое может иметь или не иметь место (в абстрактной форме — подмножество декартова квадрата Ρ×Ρ, где Ρ — множество высказываний; отношение «из p следует q» записывают как p q, но иногда и наоборот — как p q), и импликацию — (бинарную) операцию алгебры высказываний, сопоставляющую двум высказываниям p и q третье высказывание p q, которое, как и любое, высказывание, может быть истинным или ложным; при этом истинность импликации p q равносильна тому, что (в обозначениях Рассела — Уайтхеда) p q.

113

Под «истинным элементарным высказыванием» здесь понимается то, что у нас часто называют «тождественно истинным высказыванием», т.е. такое высказывание, которое ни в каком случае не может быть ложным.

114

По этому поводу см. статьи выдающихся физиков, лауреатов Нобелевской премии Е.П. Вигнера [96]*, Ч. Янга [60] и В. Гейзенберга [61]; цитируемые в гл. XV высказывания А. Эйнштейна и названные там его статьи, а также [4].

115

Разумеется, из (ложной!) «аксиомы» 2×2 = 100 следует (истинная!) теорема «2×2 — четное число» (как, впрочем, и теорема «2×2 — нечетное число», если только следование предложений понимать в соответствии с определением материальной импликации).

116

По поводу современных взглядов на роль интуиции и дедукции в понимании мира см., например [32], а также [62].

117

Предложенное (почти одновременно и, по видимому, независимо) Р. Дедекиндом и Дж. Пеано аксиоматическое описание целых (или целых положительных — натуральных) чисел хронологически почти совпало со смертью Кронекера (основополагающая работа Пеано вышла в свет в год смерти Кронекера); поэтому он уже не мог высказать свое мнение по поводу этой новой теории.

118

Предшествующее Кантору доказательство существования трансцендентных чисел принадлежит французскому математику Жозефу Лиувиллю (1809-1882), построившему конкретные примеры таких чисел (1851); Кантор же доказал, что в определенном смысле «почти все» вещественные числа являются трансцендентными (причем его доказательство было существенно «неконструктивным», т.е. не позволяло указать ни одного такого числа).

119

По поводу полемики между Пуанкаре и Кутюра см. [63].

120

Интуиционистскую платформу Вейля достаточно выразительно характеризует сборник его более ранних статей [64].

121

Нам нет необходимости вдаваться в технические детали этих теорем. Мы упоминаем их лишь для того, чтобы привести конкретные примеры. [Отметим также, что отказ интуиционистов от закона исключенного третьего не означал еще полного отказа от какого бы то ни было логического аппарата — речь шла лишь о пересмотре фундаментальных законов логики, из числа которых отбрасывался закон исключенного третьего (ср. ниже). — Прим. ред.]

122

Несколько иначе подходил к понятию «существования» математического объекта Пуанкаре. Для него, как для формалистов (гл. XI), понятие было приемлемым, если оно не приводило к противоречиям.

123

В настоящей, не рассчитанной на математиков, книге автор иногда позволяет себе пренебречь точностью ради большей выразительности. В частности, приведенный в книге пример «истинные интуиционисты», пожалуй, и не приняли бы [менее яркий, но более корректный пример: задача об отыскании максимума функции переменных]. Дело в том, что множество всевозможных четверок (x, y, z, n) целых (или натуральных) чисел счетно, т.е. его можно упорядочить наподобие ряда натуральных чисел (где n > 2). Поэтому доказательство существования решения уравнения Ферма одновременно устанавливает, что решение может быть найдено в процессе, конечного (хоть и неопределенно длинного — это неважно!) перебора четверок (x, y, z, n) и проверки выполнимости равенства xn + yn = zn для каждой из них, а такой конечный перебор, разумеется, является вполне эффективной процедурой.

124

Ср. с обсуждением в гл. XII современного положения с канторовской проблемой континуума.

125

Дальнейшее развитие идей интуиционизма привело к созданию так называемого конструкционизма (или даже нескольких различных конструктивистских школ), признававшего только те математические объекты, которые допускают прямое построение; в частности, большое развитие получала ленинградская (а позднее московская) конструктивистская группа, возглавляемая А.А. Марковым-мл. (1903-1980); по этому поводу см. [65] и [66], а также примечания А.А. Маркова к русскому переводу книги [67].

126

Критику интуиционизма главой советской конструктивистской школы математиков А.А. Марковым см. на с. 5 книги [67].

127

Не останавливаясь подробно, упомянем лишь о методологических установках яркой и пользующейся известностью книги Б. Мандельброта [69], которые кратко (и не совсем точно) можно охарактеризовать как утверждение о том, что в реальном мире мы чаще всего встречаемся именно с нигде не дифференцируемыми («изломанными») функциями, а «гладкие» функции представляют собой не более чем идеализированное описание негладких.

128

В разработке интуиционистской логики приняли участие также московские математики В.И. Главенко (1897-1940; работы 1928-1929) и особенно А.Н. Колмогоров (р. 1903; работы 1925, 1932). Ср. также [71].

129

Гильберт Д. Основания математики. — В кн.: Основания геометрии. — М. — Л.: Гостехиздат, 1948, с. 383.

130

Здесь хочется вспомнить древних греков с их отказом от принятия актуальной бесконечности и стремлением избежать каких бы то ни было бесконечных процедур, что, например, нашло свое выражение в глубоком методе исчерпывания Евдокса — Архимеда, позволявшем дать сугубо конечные («финитные») доказательства результатам, которые ныне получают с помощью интегрального исчисления, связанного с предельным переходом при n→∞ (где n, скажем, число частей, на которые разбивается область интегрирования).

131

См., например, весьма популярный на Западе учебник [76] элементарной теории множеств, принадлежащий крупному математику и замечательному педагогу П. Халмошу, известному у нас по переводам ряда его книг и статей.

132

Впоследствии Гёдель (1940) и Бернайс (1937) модифицировали систему Цермело — Френкеля, введя различие между множествами и классами. В 1925 г, Гёдель и Бернайс упростили вариант аксиоматики теории множеств, предложенный фон Нейманом. Множества могут принадлежать другим множествам. Все множества — классы, но не все классы — множества. Классы не могут принадлежать большим классам. Различие между множествами и классами означает, что чудовищно большим совокупностям элементов не разрешается принадлежать другим классам. Тем самым исключаются канторовские множества, приводящие к парадоксам. Любая теорема в системе Цермело — Френкеля является теоремой в системе Гёделя — Бернайса, и наоборот.

Известно много вариантов аксиоматики теории множеств, но не существует критерия, который позволил бы отдать одному варианту предпочтение перед другим. [По поводу аксиоматики теории множеств см., например, [32]* и [78]-[80]. — Ред.]

133

Французские оригиналы обширного трактата Н. Бурбаки Eléments de mathématique выходили в выпускаемой парижским издательством «Герман» серии «Новости науки и техники» (Actualités scientifique et industrielle), состоящей из книг небольшого объема; русский перевод этого, пока еще не законченного сочинения состоит из меньшего (хотя все равно очень большого) числа объемистых томов. [Некоторые неувязки, допущенные при переводе сочинения Бурбаки на русский язык, выпускавшегося двумя разными издательствами (ИЛ — «Мир» и Гостехиздат — Физматгиз — «Наука») в течение длительного времени, привели к тому, что на русском языке отдельные книги этого трактата выходили под тремя разными названиями: «Элементы математики» (чаще всего), «Основы математики» и «Начала математики» (а выпущенные отдельным изданием исторические вставки в разные части сочинения (в оригинале — Eléments d'histoire des mathématiques) получили титул «Очерки по истории математики»). На наш взгляд, наиболее точным было бы название «Начала математики», ибо бесспорна связь наименования, данного группой Бурбаки своему сочинению, с «Началами» Евклида (по-французски L'Eléments).]

134

Шекспир В. Избранные произведения. — М. — Л.: ГИХЛ, 1950, с. 581 (перевод М.Л. Лозинского).

135

Огюст Конт (1798-1857) — видный французский философ, один из основоположников и бесспорный лидер позитивизма, утверждающего, что целью науки являются наблюдение и эксперимент, а также формулировка тех выводов, которые прямо отсюда следуют. Конту принадлежит идея о естественной иерархии наук в направлении уменьшения их абстрактности; при этом при построении любой науки должны быть известны основные факты всех предшествующих ей наук. Эта «лестница Конта» начиналась с математики (являющейся, таким образом, фундаментом любого знания) и заканчивалась социологией (термин, впервые введенный Контом).

136

Исчисление предикатов первой ступени, как доказали Гильберт и другие, непротиворечиво, и аксиомы его независимы.

137

Теорема Гёделя о неполноте применима и в случае обращения к исчислению предикатов второй ступени (гл. VIII). [По поводу теорем Гёделя см., например, [81], а также обращенные к более широкому кругу читателей статью [82] и брошюру [83]. — Ред.]

138

Доступное изложение теоремы Гёделя и некоторых других упомянутых ниже понятий и результатов имеется в небольшой по объему и требующей минимальной предварительной подготовки книге [84].

139

Разумеется, это утверждение автора не означает, что ранее Гёделя математики не знали неполных аксиоматических систем, в которых вполне осмысленное в рамках этой системы утверждение не может быть ни опровергнуто, ни доказано «подобно тому как, скажем, дополнив стандартную аксиоматику теории групп требованием (аксиомой) о конечности группы, мы все равно не сможем ответить на вопрос о том, четен или нечетен порядок (число элементов) группы. [Н. Бурбаки — см., например, [68] — считает даже, что единственным принципиальным отличием современной математики от античной является признание равноправности неполных аксиоматических систем с полными, в то время как древние греки признавали лишь полные аксиоматические «системы вроде (до конца ими не аксиоматизированных) евклидовой геометрии или системы вещественных чисел. Возможно, первой сознательно рассмотренной математиками неполной аксиоматической системой была абсолютная геометрия Я. Бойаи, получающаяся из обычной аксиоматики евклидовой геометрии отбрасыванием аксиомы параллельных; в рамках этой аксиоматической системы, описывающей, так сказать, «общую часть» евклидовой и гиперболической геометрии, нельзя было ответить, скажем, на вопрос, проходит ли через внешнюю по отношению к прямой a точку А одна или много не пересекающих a прямых.] Однако ранее математики, впрочем, обычно не формулируя этого утверждения явно, полагали, что любую неполную аксиоматику можно дополнить какими-то новыми аксиомами, с тем чтобы она стала полной; работы же Гёделя совсем по-новому поставили вопрос о том, что есть в математике истина.

140

Обычная математическая индукция доказывает, что теорема верна для всех конечных положительных целых чисел. Трансфинитная индукция использует тот же метод, но распространяет его на вполне упорядоченные множества трансфинитных ординальных чисел.

141

Доступен и начинающему рассказ [88] о работе Ю. Матиясевича; несколько больших знаний требуют комментарии к 10-й проблеме Гильберта в [51] (освещение ситуации, какой она представлялась до решения проблемы) и в [89], где статья о 10-й проблеме Гильберта, принадлежит основным участникам ее решения М. Девису, Ю. Матиясевичу и Дж. Робинсон. (Видный логик Джулия Робинсон, заложившая первые камни в основание построенного Матиясевичем здания, является сестрой создателя нестандартного анализа Абрахама Робинсона (см. далее), Мартин Девис — автор одного из лучших учебников нестандартного анализа [86].

142

Обобщенная гипотеза континуума утверждает, что кардинальное число множества всех подмножеств некоторого множества, обладающего кардинальным числом Nn, равно Nn+1 (т.е. 2Nn = Nn+1). Кантор доказал, что 2Nn > Nn.

143

Помимо статьи [17]*, рассчитанной на самую широкую аудиторию, можно назвать обстоятельную книгу [90] и обзор [91].

144

В теории групп аксиома коммутативности умножения не зависит от остальных аксиом группы. Существуют модели группы, удовлетворяющие аксиоме коммутативности (например, обычные положительные и отрицательные числа); другие же модели (скажем, кватернионы) аксиоме коммутативности не удовлетворяют.

145

В некоторых более ранних работах «доказывалось», что аксиоматические системы, положенные в основу той или иной области математики, категоричны, т.е. что все интерпретации любой из таких аксиоматических систем изоморфны — совпадают по существу и отличаются лишь терминологией. Но такого рода «доказательства» были нестрогими, поскольку строились на логических принципах, недопустимых в метаматематике Гильберта, и, кроме того, прежде аксиоматические основы не формулировались столь тщательно, как теперь. Ни одна система аксиом, несмотря на «доказательства» Гильберта и других авторов, не является категоричной.

146

Грубо говоря, аксиоматика «гипервещественных» чисел R* получается из аксиоматики вещественных чисел R («укороченный» вариант последней, включающей все необходимое для построения аналитической геометрии, содержится в книге [92], а более полные ее варианты — во многих учебных пособиях, например, [93] или [94]) прибавлением «отрицания аксиомы Архимеда», которому можно придать следующую форму: существует такое число ε («бесконечно малое число»), что ε > 0 и ε < 1/n при любом натуральном n. Следствием этой аксиомы и других аксиом, постулирующих свойства действий (сложение, умножение) над числами, являет довольно сложная структура «гипервещественной прямой» R*; впрочем, для использования бесконечно малых в (поставленных А. Робинсоном на твердую почву) рассуждениях детальное значение структуры R* вовсе не обязательно.

147

Доказательства Кантора и Пеано корректны, если использовать, обычное аксиоматические свойства вещественных чисел. Единственное свойство, которые необходимо изменить, чтобы гипервещественные числа стали возможными, — это аксиома Архимеда, о которой мы уже неоднократно упоминали. Система гипервещественных чисел R* неархимедова в обычном смысле слова. Но она становится архимедовой, если включить в систему гипервещественных чисел бесконечные кратные гипервещественного числа a*.

148

Например, в нестандартном анализе отношение бесконечно малых dy/dx существует в системе R* и для y = x2 отношение dy/dx равно 2x + dx, где dx — бесконечно малая, т.е. dy/dx — гипервещественное число. Производная функции y = x2 — это обычная вещественная часть гипервещественного числа dy/dx, т.е. (вещественное) число 2x. Аналогично определенный интеграл в нестандартном анализе есть сумма бесконечно большого числа бесконечно малых (число слагаемых — гипервещественное натуральное число).

149

Сегодня уже существуют задачи, которые удалось решить лишь с использованием нестандартного анализа; правда, видимо, все эти задачи можно было бы решить и традиционными методами, но в таком случае решения были бы, вероятно, значительно более сложными. Вообще, нестандартный анализ надо рассматривать не как новую область математики, а скорее лишь как еще один математический «язык», идущий от Лейбница, но лишь в наши дни ставший равноправным, скажем, с «ε-δ-языком» Коши. При этом язык нестандартного анализа оказывается весьма удобным и естественным в ряде прикладных задач (см., например, [87]; ср. со сказанным в тексте об использовании «бесконечно малых величин» физиками и техниками); ряд преподавателей высшей школы (например, в нашей стране Μ.Μ. Постников) высказывает убеждение в педагогических достоинствах этой модификации лейбницевского «исчисления дифференциалов» при изложении основ «высшей математики» начинающим (ср. [95], [96]).

150

Различие между математикой и «теоретическим» естествознанием полностью осознавал Лейбниц. «Универсальная математика, — писал он, — это, так сказать, логика воображения»; предметом ее является «все, что в области воображения поддается точному определению». В XIX в. специфику математики, отличие ее от естественных (и гуманитарных) наук отчетливо понимали, скажем, замечательный немецкий математик Герман Грассман, говоривший, что «чистая математика есть наука особого бытия, поскольку она рождена в мышлении», или один из создателей математической логики англичанин Джордж Буль, еще четче сформулировавший ту же мысль: «Математика изучает операции, рассматриваемые сами по себе, независимо от различных материй, к которым они могут быть приложены». Я. Бойаи (в отличие от Лобачевского или Гаусса) при создании неевклидовой геометрии подходил к ней не как к возможной системе устройства физической Вселенной, а как к чисто логической схеме, «аксиоматизированной структуре», как сказали бы мы сегодня. При этом любопытно отметить, что Лейбниц (в отличие от Ньютона), Грассман, Буль или Я. Бойаи не получили специального математического образования и были полностью свободны от давления сложившихся традиций, что в чем-то, конечно, ограничивало их возможности, но в то же время придавало их мышлению особую свежесть и остроту.

151

В применениях математики широко используются степенные ряды вида a0 + a1x + a2x2 + a3x3 + … и тригонометрические ряды, или ряды Фурье (скажем, a0 + a1cos x + b1sin x + a2cos 2x + b2sin 2x + …).

152

В противоположность этому попытки Паскаля заинтересовать Ферма и Гюйгенса теорией вероятностей, в значительной степени созданной этими тремя учеными, оказалась полностью удачными; частично, видимо, это объяснялось тем,что теория вероятностей возникла сразу же как «прикладная» наука (со столь, впрочем, малопочтенной областью применения, как теория азартных игр), а частично, может быть, прозорливой интуицией гениев, «предчувствующих» будущие глубочайшие прикладные возможности создаваемой ими области математической науки.

153

В частности, законы умножения гамильтоновых «кватернионных единиц» i, j и k прояснило идущее от Гамильтона отождествление этих «единиц» с (физическими) вращениями пространства на 90° вокруг трех взаимно перпендикулярный осей: 0x, 0y и 0z.

154

Здесь трудно удержаться от соблазна процитировать одно место из предисловия к книге [100] замечательных математиков и педагогов Д. Пойа (Полиа) и Г. Сегё: «Не нужно забывать, что существуют обобщения двух родов: малоценные и полноценные. Первые — обобщения путем разрежения, другие — путем сгущения. Разредить — значит, наболтав воды, изготовить жиденькую похлебку, сгустить — значит составить полезный, питательный экстракт. Соединение понятий, мало связанных друг с другом для обычного представления, в одно объемлющее есть сгущение; так сгущает, например, теория групп рассуждения, которые прежде, будучи рассеянными… выглядели совершенно различными. Привести примеры обобщения путем разрежения было бы еще легче, но мы не хотим наживать себе врагов».

155

Вожди группы Бурбаки охотно декларировали «антиприкладной» характер своего творчества (ср., например, цитируемую ниже статью [115] Ж. Дьедонне), но к этому их тезису, как и к некоторым другим высказываниям, следует относиться с осторожностью. Известно, что один из основателей (и наиболее влиятельных членов) группы Бурбаки Андре Вейль по просьбе знаменитого антрополога и философа Клода Леви-Стросса написал математическое приложение «Математическая теория брачных союзов» к диссертации Леви-Стросса «Элементарные системы родства» (1949). С другой стороны, весьма близкий группе Бурбаки Рене Том является создателем имеющей огромное прикладное значение так называемой теории катастроф (см. [101]) и отличается поразительной широтой внематематических интересов (см., например, [102]). Кроме того, несмотря на неоднократно декларировавшуюся вождями группы Бурбаки антиприкладную направленность их группы, в целом свойственное этой группе стремление рассматривать математику как науку о математических структурах (см. [11]*) идет навстречу определенным устремлениям в современной прикладной математике, выражающимся в росте значения математического моделирования внематематических феноменов (ср. [103]).

156

Поразительна близость этой позиции Фурье к воззрениям пифагорейцев (гл. I).

157

В последней части «Применение к пространству» замечательной лекции [106] Риман сам подробно обсуждает приложимость к (будущей) физике предложенных им геометрических схем.

158

Классификация дифференциальных уравнений по свойственным им группам симметрии была произведена великим норвежским математиком Софусом Ли (1842-1899), который построил своеобразную «теорию Галуа для дифференциальных уравнений», где вопрос о решимости алгебраического уравнения в радикалах заменялся вопросом о решимости дифференциального уравнения «в квадратурах» (т.е. с применением операции интегрирования). В свое время эта теория пользовалась очень большой популярностью, но затем в связи с наступлением века ЭВМ, поставившего совсем по-другому вопрос о решении дифференциальных уравнений, была почти забыта. Взрывоподобный рост интереса к учению Ли о «группах симметрии дифференциальных уравнений», выразившийся, в частности, в появлении большого числа посвященных этой теме книг (см., например, [109]) и диссертаций, относится к последним десятилетиям; это связано с той большой ролью, которую играют соображения симметрии в современной физике.

159

Артур Кали дал общее (абстрактное) определение группы еще в работах 1849-1854 гг. [у Э. Галуа фигурировали только группы подстановок. — Ред.], но значение этого понятия было оценено по достоинству лишь после того, как оно стало широко применяться в математике и естественных науках (о некоторых применениях мы упоминали выше).

160

Характерно даже название, которое дал Харди своему учебнику [110] (классического) математического анализа. [Заметим, что, вероятно, не меньше 90% всех упоминаний имени воинственного адепта «чистой» математики Харди в современной научной, научно-популярной и учебной литературе связано не с его на самом деле выдающимися достижениями в теории чисел, а с единственным «греком» — с выполненной в молодости несложной работой прикладного характера (так называемый закон Харди — Вейнберга популяционной генетики — см., например, [111]).]

161

Этот тезис можно и оспаривать: так, например, в теории кодирования, имеющей огромное прикладное значение в условиях современной недостаточности пропускной способности большинства линий связи, большую роль играет абстрактная алгебра (в частности, так называемые конечные поля Галуа), конечные геометрии (геометрии в плоскостях или пространствах, содержащих всего конечное число точек) и прочие разделы «абстрактной» математики, созданные вне всякой связи с возможными их приложениями (ср., например, [112] или статью [113]). Также и такие области математики, как топология или алгебраическая геометрия, (не говоря уже о функциональном анализе), совсем еще недавно считавшиеся чисто абстрактными, в последнее время стали активно изучаться (и применяться) физиками (см., например, [114]; ср. [103]).

162

Стоун, видимо, имел в виду совершенно новые разделы математической науки (математическую теорию связи, или теорию информации; теорию кодирования; теорию игр), возникшие сравнительно недавно в связи с их применениями, в далее развивавшиеся как чисто абстрактные области знания, бурный прогресс которых, безусловно, стимулировался возможностями немедленного использования полученных в этих направлениях результатов (осуществляющегося, однако, чаще всего, не математиками, а техниками, экономистами или биологами).

163

SIAM [Society for Industrial and Applied Mathematics] Review, October 1962, pp. 297-320.

164

Классический пример, подкрепляющий высказанную мысль, доставляет нам хотя бы теория пределов, начавшаяся с принадлежащей Ньютону «чисто физической» концепции предела; также и первое определение предела, данное Д'Аламбером в одноименной статье знаменитой «Энциклопедии», с нашей сегодняшней точки зрения было дефектным (так, например, Д'Аламбер настаивал на монотонном приближении переменной величины к своему пределу). Ныне же мы имеем много разных определений этого понятия с разными областями применимости. (О другом примере такого рода — лейбницевском исчислении дифференциалов — ниже говорит сам автор.)

165

Напомним, что в те времена под словом «геометрия» часто понималась вся математика.

166

Довольно распространенным ныне является такое «определение» (математического) доказательства: доказательство — это рассуждение, которое убеждает нас в справедливости теоремы. При этом вполне допустимо (и даже неизбежно) сосуществование в одной стране и в одно время совершенно разных уровней строгости допустимых доказательств в зависимости от научных школ или даже математических дисциплин (скажем, математическая логика и дифференциальная геометрия).

167

Карл Раймунд Поппер выдвинул также так называемый принцип фальсификации (опровержимости), согласно которому критерий научности теории задается возможностью опытного ее опровержения.

168

Название книги Клейна (Elementarmathematik vom höheren Standpunkte aus) точнее было бы перевести как «Элементарная математика с высшей точки зрения». — Прим. ред.

169

Ср. со сказанным в гл. VIII.

170

Противоположной точки зрения придерживался Гильберт — см. приведенную выше цитату из его статьи «О бесконечном» или с. 22 книги [51]. Популярно также известное высказывание А. Эйнштейна: «Самое непостижимое во Вселенной — это то, что она все-таки постижима».

171

Ср. с примечанием {6} к Введению.

172

Здесь естественно вспомнить о знаменитом физическом принципе неопределенности Гейзенберга, одна из распространенных интерпретаций которого говорит о неизбежном изменении физической интуиции при попытке ее наблюдения, скажем, об отклонении частицы от первоначального положения при падении на нее фотона света, без чего частицу нельзя увидеть. Аналогично этому филологи иногда говорят об определенной деформации природного явления при описании его на том или ином языке (Аристотель говорил о бесконечности природных явлений и конечности числа слов любого языка) и т.д.

173

Так, от Вейля идет, в частности, важная идея классификации физических объектов по свойственным им группам симметрии [121] (независимо от Вейля эту идею выдвинул в 1963 г. американский физик венгерского происхождения Юджин (Эуген) Вигнер (1963), уже после смерти Вейля удостоенный за нее Нобелевской премий по физике); Вейлю же принадлежит первый, притом выдающийся, учебник [122] общей теории относительности, содержащий свежие физические идеи, сыгравшие большую роль в дальнейшем прогрессе физической науки (ср., например, [123], а также [124]).

174

Учебник математической логики [125] отличается от многих других пособий широким обсуждением (гл. 1-4, с. 17-244) общих вопросов (смежных между математической логикой и философией математики) обоснования математической науки; с этой точки зрения вдумчивому читателю, желающему глубже ознакомиться с затронутыми в настоящей книге вопросами, вполне можно порекомендовать книгу [125] наряду, скажем, с классическим сочинением [86]* и довольно сложными, но высокосодержательными книгами [81].

175

При этом, разумеется, следует различать, скажем, опровержения теорий флогистона или эфира, полностью отброшенные современной наукой, и уточнения ньютоновской механики и гюйгенсовской оптики, не отменяющие, а лишь дополняющие эти выдающиеся достижения науки XVII в.

176

По поводу возможных вариантов геометрической структуры физического пространства, отличных от классической геометрии Евклида, см. гл. IV. Что касается случаев, в которых может оказаться неприемлемой обычная арифметика, то здесь можно, например, порекомендовать читателю неконкретную, но весьма выразительно написанную заметку [30].

177

Сходные результаты может дать анализ русского РЖ «Математика» или немецкого (ГДР / ФРГ) журнала Zentralblaft für Mathematik.

178

Здесь естественно вспомнить призыв Д'Аламбера, хорошо понимавшего шаткость оснований, на которых зиждилась математика его времени: «Работайте, работайте — понимание придет потом».

179

Сложность трактовки материи в квантовой механике (упомянутые в этой книге «размазанность» элементарных частиц в задание их исключительно с помощью абстрактных математических конструкций) не отменяет, скажем, понятия массы, играющего основную роль как в физике макромира, так и в описании колоссальных объектов современной астрофизики и в физике микромира.

180

Здесь имеются в виду описывающая пространство-время специальной теории относительности (СТО) так называемая псевдоевклидова геометрия Минковского (см. по этому поводу, например, классическую книгу [127]) и риманова (точнее, псевдориманова) геометрия, являющаяся базисом общей теории относительности (см., скажем, основополагающую статью [128] или ту же книгу [127]).

181

Последовательное (и в ряде отношений расходящееся с современными физическими концепциями) убеждение Эйнштейна в принципиальной прогнозируемости всех физических явлений (ср., например, [129]) обусловило непринятие им квантовой механики (отчасти базирующейся на его же классических работах по теории фотоэффекта) — в связи со статистической трактовкой мира этой наукой.

182

См. примечание {115} к гл. X и книгу [69].

183

Разумеется, ненадежность здесь может быть связана, скажем, с неполным знанием начальных условий фигурирующего в решении задачи дифференциального уравнения или в неопределенности коэффициентов уравнения (связанных с физическими характеристиками сооружения), но никак не с теми относящимися и основам математики полуфилософскими трудностями, которым посвящены гл. IX-XII.

184

Паскаль писал эти слова в XVII в. В настоящее время физика смело излагает свои позиций в вопросе о поведении Вселенной в ближайшей окрестности (во времени превышающей всего лишь величину порядка 10−33 с) так называемого Большого взрыва, от которого астрофизики датируют существование Вселенной с привычным нам «пространством-временем» (ср., например, книги [135] или статью [136]); будущее Вселенной астрофизики также прогнозируют в очень больших пределах времени — почти до ее (гипотетического) «конца».

185

Ср. с принадлежащей Г. Вейлю (в статье «Место Феликгеа Клейна в математической современности», 1930) характеризацией той роли, какую играет математика в человеческой культуре ([124], с. 11). [Названная статья намечена к публикации в подготавливаемом издательством «Наука» сборнике научных статей Вейля и в сборнике его научно-популярных статей.]

Загрузка...