Небесные силы отказали нам в помощи. Остается расчитывать лишь на собственные силы, на могущество человеческой техники, преодолевшей уже не мало природных препятствий. Не найдем ли мы здесь достаточно могучего орудия, которое поможет нам разорвать оковы тяжести и ринуться в простор мироздания, чтобы исследовать иные миры?
Надо было обладать оригинальным и смелым умом Жюля Верна, чтобы в смертоносном орудии — пушке — усмотреть средство вознестись живым на небо. Большинство людей не отдает себе отчета в том, что, с механической точки зрения пушка, — самая мощная из машин, созданных человеческой изобретательностью. Пороховые газы, образующиеся при выстреле в канале орудия, оказывают на снаряд давление в 2–3 тонны на квадр. сантиметр. Это в 2–3 раза превышает чудовищное давление водных масс в глубочайших пучинах океана. Чтобы оценить работоспособность современной пушки в единицах мощности, т. е. в лошадиных силах, рассмотрим 40-сантиметровое Крупповское орудие, выбрасывающее 40-пудовый снаряд (600 килограммов) с начальной скоростью 900 метров в секунду. „Живая сила" такого снаряда — полупроизведение массы на квадрат скорости — составляет около 24.000.000 килограммометров. Если принять во внимание, что такой огромный запас живой силы развивается в течение небольшой доли секунды — в данном случае 1/30, — то окажется, что секундная работа, выполняемая пушкой, то-есть ее мощность, определяется числом 10.000.000 лошадиных сил. Между тем мощность машин величайшего океанского парохода („Мажестик", 1922 г.) только 60.000 лош. сил; понадобилось бы около двухсот таких гигантских паровых двигателей, чтобы выполнить механическую работу, совершаемую пороховыми газами при каждом выстреле крупного орудия.
Мы видим, что не без основания французский романист предлагал именно с помощью пушки разрешить проблему заатмосферных полетов. В своих романах он оставил нам самый смелый и самый популярный проект межпланетных путешествий. Кто из нас в юности не путешествовал с его героями на Луну, поместившись внутри пушечного ядра?
Эта остроумная идея, разработанная покойным романистом в двух произведениях — „От Земли до Луны" и „Вокруг Луны", заслуживает гораздо большего внимания, чем то, которое обычно уделяется ей. Увлекшись фабулой романов, читатели склонны превратно оценивать их основную мысль, считая ее фантастичной там, где она вполне реальна, и, наоборот — реальной там, где она превращается в несбыточную мечту. Рассмотрим же поближе проект Жюля Верна, как чисто техническую идею, и постараемся выяснить, что в нем осуществимо и что относится к области несбыточного.
Признаюсь, не без волнения приступаю я к техническому разбору пленительных повестей симпатичнейшего из романистов. За полвека, протекшие со времени появления (1865 г.) этих увлекательных произведений, увенчанных французской академией, они успели стать любимым чтением молодежи всех стран. В годы моей юности они впервые зажгли во мне живой интерес к „царице наук" — астрономии; не сомневаюсь, что тем же обязаны им и многие тысячи других читателей. И если все же я решаюсь теперь вонзить анатомический нож в поэтическое создание романиста, то совесть мою успокаивает мысль, что я лишь следую примеру известного физика Шарля Гильома[12], даровитого соотечественника Жюля Верна.
Вы имеете совершенно превратное представление о науке, если думаете, что она безжалостно подсекает крылья воображения и обрекает нас пресмыкаться в прозе и обыденности видимой действительности. Бесплодной Сахарой было бы поле научных исследований, если бы ученые не прибегали к услугам воображения, не умели отвлекаться от мира видимого, чтобы создавать мысленные, неосязаемые образы. Ни одного шага не делает наука без воображения; она постоянно питается плодами фантазии, но фантазии научной, рисующей воображаемые образы со всею возможною отчетливостью.
Научный разбор романа Жюля Верна не есть поэтому столкновение действительности с фантазией. Нет, это соперничество двух родов воображения — научного и ненаучного. И победа остается на стороне науки вовсе не потому, что романист слишком много фантазировал. Напротив, он фантазировал недостаточно, он не достроил до конца своих мысленных образов. Созданная им воображаемая картина межпланетного путешествия страдает неполнотой, недоделанностью. Нам придется восполнить эти недостающие подробности, и не наша вина, если упущенные детали существенно изменяют всю картину.
Надо ли пересказывать содержание романа, который у всех в памяти? Напомню лишь вкратце, словами самого Жюля Верна, главнейшие из интересующих нас обстоятельств.
„В 186… году весь мир был в высшей степени взволнован одним научным опытом, первым и совершенно оргинальным в летописях науки. Члены Пушечного Клуба, основанного артиллеристами в Балтиморе после американской войны, вздумали вступить в сношение, с Луной, — да, с Луной, — послав на нее ядро. Их председатель, Барбикен, инициатор предприятия, посоветовавшись по этому поводу с астрономами Кэмбриджской [в Сев. Америке] обсерватории, принял все необходимые меры, чтобы обеспечить это необыкновенное предприятие.
„Согласно указаниям, данным членами обсерватории, пушка, из которой будет сделан выстрел, должна быть установлена в стране, расположенной между 0° и 28° северной или южной широты, чтобы можно было навести ее на Луну в зените. Ядру должна быть дана первоначальная скорость в 16 тысяч метров в секунду. Выпущенное 1-го декабря в десять часов сорок шесть минут сорок секунд вечера, оно должно достичь Луны через четыре дня после своего отправления, 5-го декабря ровно в полночь, в тот самый момент, когда она будет находиться в своем перигее, т.-е. в ближайшем расстоянии от Земли.
„Решено было, что: 1) ядро будет представлять собою алюминиевую гранату, диаметром в 108 дюймов, со стенками толщиною в двенадцать дюймов, и будет весить девятнадцать тысяч двести сорок фунтов; 2) пушка будет чугунная, длиною в девятьсот футов, и будет вылита прямо в земле; 3) на заряд будет взято четыреста тысяч фунтов пироксилина, который, развив под ядром шесть миллиардов литров газа, легко добросит его до ночного светила.
„Когда эти вопросы были разрешены, председатель клуба, Барбикен, выбрал место, где после чудовищной работы и была вполне успешно отлита эта колумбиада [пушка].
„В таком положении находились дела, когда случилось событие, во сто раз увеличившее интерес, возбужденный этим великим предприятием.
„Один француз, фантаст-парижанин, умный и отважный артист, попросил запереть его в ядро, так как он хочет попасть на Луну и познакомиться с земным спутником. "Он помирил председателя Барбикена с его смертельным врагом, капитаном Николем, и в залог этого примирения уговорил их отправиться вместе с ним в ядре. Предложение было принято. Изменили форму ядра. Теперь оно стало цилиндро-коническим. Этот род воздушного вагона снабдили сильными пружинами и легко разбивающимися перегородками, которые должны были ослабить силу толчка при выстреле. Захватили съестных припасов на год, воды на несколько месяцев, газа на несколько дней. Особый автоматический аппарат изготовлял и доставлял воздух, необходимый для дыхания трем путешественникам.
„1-го декабря в назначенный час, в присутствии необычайного скопления зрителей, начался полет, — и в первый раз три человеческих существа, покинув земной шар, понеслись в межпланетные пространства с полной уверенностью, что достигнут своей цели".
Первый вопрос, который нам предстоит обсудить — это, конечно, вопрос о том, насколько допустима самая идея закинуть пушечное ядро на Луну. Многим кажется совершенно нелепой мысль о возможности бросить тело с такою скоростью, которая навсегда унесла бы его с Земли. Большинство людей привыкло думать, что всякое брошенное тело непременно должно упасть обратно. Таким людям фантастическая идея Жюля Верна о посылке ядра на Луну представляется совершенно беспочвенной. Мыслимо ли, в самом деле, сообщить земному телу такую скорость, чтобы оно не упало обратно на Землю, а безвозвратно покинуло бы нашу планету? Механика дает нам на этот вопрос вполне удовлетворительный ответ.
Предоставим здесь слово великому Ньютону. В своих „Математических началах физики", этом фундаменте величественного здания современной астрономии, он писал:
Пушка, стреляющая с воображаемой горы.
„Брошенный камень под действием тяжести отклоняется от прямолинейного пути и падает на Землю, описывая кривую линию. Если бросить камень с большей скоростью, то он полетит дальше; поэтому может случиться, что он опишет дугу в десять, сто, тысячу миль и, наконец, выйдет за пределы Земли и не вернется на нее больше. Пусть АВF (см. прилаг. рис.) представляет поверхность Земли С — ее центр, а — VD, VE, VF — кривые линии, которые описывает тело, брошенное в горизонтальном направлении с очень высокой горы с все большей и большей скоростью. Мы не принимаем во внимание противодействия атмосферы, т. — е. предполагаем, что она совершенно отсутствует. При меньшей первоначальной скорости тело описывает кривую VD, при большей скорости — кривую VE, при еще большей скорости — кривые VF, VG. Дри еще большей скорости тело обойдет вокруг всей Земли и возвратится к вершине горы, с которой его бросили. Так как при возвращении к исходному пункту скорость тела будет не меньше, чем в начале, то тело будет продолжать двигаться и дальше по той же кривой".
Теперь вам, без сомнения, понятно, что если бы на вершине этой воображаемой Ньютоновой горы помещалась пушка, то извергнутое ею ядро, при известной скорости и при отсутствии атмосферы, никогда не упало бы на Землю, а безостановочно кружилось бы вокруг нашей планеты, на подобие крошечной Луны. Мы можем даже в точности вычислить, какая начальная скорость нужна для такого полета ядра. Вычисление это настолько просто и результат настолько любопытен, что читатели, конечно, не откажутся произвести его сейчас вместе со мною.
Вычисление начальной скорости ядра, которое никогда не должно упасть на Землю.
Чтобы найти искомую скорость, спросим себя сначала: почему всякое ядро, выброшенное пушкой горизонтально, в конце концов, падает на Землю? Потому что земное притяжение искривляет путь полета ядра — снаряд летит не по прямой линии, а по кривой, которая, в конце концов, упирается в земную поверхность. Легко понять, что если бы мы могли уменьшить кривизну пути ядра настолько, чтобы сделать ее одинаковой с кривизной шарообразной земной поверхности, то ядро наше никогда на Землю не упало бы, — оно вечно мчалось бы по кривой, концентрической с окружностью нашей планеты. Этого можно добиться, сообщив ядру достаточную скорость. Какую — мы сейчас определим. Взгляните на чертеж. Ядро, выброшенное пушкой из точки А по касательной, спустя одну секунду было бы, скажем, в точке В, — если бы не существовало земного притяжения. Тяжесть меняет дело, и под ее влиянием ядро через секунду окажется не в точке В, а ниже — настолько ниже, насколько всякое свободное тело опускается в первую секунду своего падения, именно — на 5 метров[13]. Если, опустившись на эти пять метров, ядро наше окажется выше уровня Земли ровно настолько же, насколько находилось оно и в точке А его исхода, то, значит, ядро летит как бы параллельно земной поверхности, не приближаясь и не удаляясь от нее. А это и есть то, чего мы желаем добиться. Нам остается теперь вычислить лишь длину АВ — т.-е. тот путь, какой должно было бы пройти ядро в одну секунду; результат и даст нам искомую секундную скорость ядра.
Знаменитая теорема Пифагора поможет нам вычислить этот отрезок АВ. В прямоугольном треугольнике АВО линия АО есть не что иное, как земной радиус, равный 6371000 метров. Отрезок ОС=АО, отрезок ВС = 5 метр., следовательно, OB=6371005 метр.
По теореме Пифагора имеем: 6371052=6371002 + АВ2.
Отсюда уже легко вычислить искомую величину скорости: АВ =7740 метров (около 7½ верст).
Итак, если бы пушка могла сообщить ядру начальную скорость 8 километров в секунду, то, при отсутствии атмосферы, такое ядро никогда уже не упало бы на Землю, а вечно обращалось бы вокруг земного шара. Пролетая в каждую секунду 8 килом., оно в течение 1 ч. 23 мин. уже описало бы полный круг в 40000 килом, и возвратилось в точку своего исхода, чтобы начать новый круг, и т. д. Это был бы настоящий спутник земного шара, наша вторая Луна, более близкая и более быстрая, чем первая. Ее „месяц" равнялся бы всего только 1 часу 23 минутам. Она мчалась бы в 17 раз быстрее, чем любая точка земного экватора, и если вы вспомните то, что сказано было нами выше об ослаблении тяжести вследствие вращения Земли (см. стр. 35), то вам станет вполне ясно, почему наше ядро не падает на Землю. Ведь мы знаем уже, что если бы земной шар вращался в 17 раз быстрее, то тела на экваторе потеряли бы целиком свой вес; скорость же нашего ядра — 8 килом, в секунду — именно в 17 раз больше скорости точек земного экватора.
Как видите, мы могли бы и сразу, без всяких геометрических построений и выкладок, найти интересующую нас скорость ядра: для этого достаточно было бы просто увеличить в 17 раз скорость движения точек земного экватора. Надеюсь, читатель не посетует на меня за то, что я провел его окольной дорогой, с тайным умыслом дать некоторое представление о простейших расчетах в механике…
Человеческой гордости должно льстить сознание, что мы имеем возможность — пока, правда, лишь теоретическую — подарить Земле хоть и маленького, но все же настоящего спутника. Пылкий герой Жюль-Вернова „Путешествия на Луну" Дж. Мастон не без основания воскликнул, что в создании пушечного ядра человек, по силе своего могущества, наиболее приблизился к богу: „Как бог создал звезды и планеты, так человек создал ядро, это подобие несущихся в пространстве светил, которые, в сущности, те же ядра". Еще справедливее это для того ядра, которое человек может закинуть в мировое пространство. Это новое небесное тело, при всей своей миниатюрности, будет нисколько не хуже всех остальных. Оно строго подчинится трем законам Кеплера, управляющим движениями планет и их спутников.
Нужды нет, что пушечное ядро — предмет „земной": очутившись в мировом пространстве, он превращается в настоящее небесное тело. В удрученном кошмаром мозгу Ивана Карамазова промелькнула совершенно правильная мысль, что и простой топор в мировом пространстве становится космическим телом и подчиняется законам небесной механики:
„Что станется в пространстве с топором?.. Если куда попадет подальше, то примется, я думаю, летать вокруг Земли, сам не зная зачем, в виде спутника. Астрономы вычислят восхождение и захождение топора, Гатцук внесет в календарь, вот и все".
Мы можем, если хотите, тут же устроить краткий экзамен нашему пушечному ядру, "выступающему в роли небесного тела. Проверим, подчиняется ли оно, например, третьему закону Кеплера, гласящему: „Квадраты времен обращения небесных тел относятся между собой, как кубы их средних расстояний от общего центра притяжения". Для подобной проверки мы должны приложить этот закон к Луне и к нашему пушечному ядру, как к двум телам, обращающимся вокруг земного шара. Луна совершает полный оборот вокруг Земли в 27⅓ суток, или в 656 часов, и находится на расстоянии 60 земных радиусов от центра Земли. Пушечное ядро делает полный оборот всего в 1½ часа и находится от земного центра в расстоянии одного земного радиуса. Для торжества закона Кеплера требуется, чтобы для обоих небесных тел существовало такое соотношение:
Если дадите себе труд проделать это вычисление, вы убедитесь, что равенство отношений получается довольно близкое (надо считаться с тем, что числа этой пропорции, ради простоты, закруглены, так что полной точности ожидать нельзя).
Итак, сообщив пушечному ядру начальную скорость 8 килом, в секунду, мы превращаем его в маленькие небесное тело, которое, побеждая силу притяжения, уже не возвращается на Землю[14]. Что же будет, если мы сообщим ядру еще большую начальную скорость? В небесной механике доказывается, что при начальной секундной скорости в 8, в 9, в 10 килом, ядро, горизонтально выброшенное пушкой, будет описывать вокруг Земли не окружность, а эллипс — тем более вытянутый, чем значительнее начальная скорость.
По каким путям направились бы пушечные ядра, если бы можно былобросать их с Земли с весьма большими скоростями
Когда же мы доведем эту скорость приблизительно до 11 килом., то эллипс превратится уже в незамкнутую кривую, — в параболу. Точнее говоря, он должен был бы превратиться в параболу, если бы Земля была единственным телом, притяжение которого влияет на путь нашего ядра. Могучее притягательное действие Солнца существенно усложнит путь ядра, — но, во всяком случае, при указанной начальной скорости, 11 килом., ядро навсегда удалится от Земли. Если оно будет при этом брошено в надлежащем направлении, то избегнет падения на Солнце и будет вечно обращаться вокруг него, подобно земному шару и другим планетам. В астрономическом смысле оно повысится в ранге: из спутника Земли превратится в спутника Солнца, в самостоятельную планету. Человечество подарит вселенной новое миниатюрное небесное тело.
Судьба ядер, выброшенных пушкой с весьма большой скоростью.
Ради простоты, мы начали с рассмотрения горизонтально брошенного тела. В небесной механике доказывается, однако, что те же выводы справедливы и для тела, брошенного под углом к горизонту или даже вертикально, как ядро в романе Жюля Верна. Во всех случаях, при достаточной скорости, брошенное тело навсегда покидает Землю и уносится в пустыни мирового пространства.
Вот какие чудесные возможности открывает перед нами теория. Но что же говорит ее несговорчивая сестра — практика? В состоянии ли современная артиллерия осуществить эти возможности?
К сожалению, пока еще нет. Самые могучие из наших пушек не в силах пока сообщить своим ядрам таких огромных скоростей. Снаряды современной самой дальнобойной пушки[15] покидают жерло с начальной скоростью, достигающей 1½ верст. Это втрое быстрее, чем движение точек земного экватора, но в пять раз медленнее, чем нужно, чтобы бросить ядро на Луну.
Однако, не будем терять надежды. Переход от 1 к 5 не так уж значителен. Техника в своем победном шествии оставила за собою гораздо большую пропасть, когда заменила жалкие катапульты древних мощными орудиями современной артиллерии. Римские легионеры назвали бы безумцем всякого, кто сказал бы им, что их потомки будут перебрасывать 60-пудовые ядра на расстояние 30-ти и более верст. Едва ли даже Жюль Верн мог думать, что через полвека 16-дюймовые крепостные и морские орудия будут извергать снаряды в 65 пудов на расстояние 37-ми верст, а германцы — обстреливать Париж в 1917 г. почти с 80-верстного расстояния!.. Энергия, выбрасывающая снаряд из крупного орудия, превышает энергию человека, бросающего камень невооруженной рукой, в десять миллионов раз. Если мы могли так головокружительно далеко превзойти силу первобытного дикаря, то можно ли ставить какие — нибудь границы дальнейшему росту могущества техники?
Нет ничего невозможного в том, что Шварц или Нобель недалекого будущего изобретет орудие, которое по силе извержения настолько же превзойдет современную пушку, насколько последняя превосходит катапульту древних римлян…
На Луне, где напряжение тяжести вшестеро слабее, чем на Земле, и где совершенно отсутствует атмосфера, служащая серьезным препятствием полету ядра, — там для осуществления горделивого замысла героев Жюля Верна вполне достаточна была бы одна из тех чудовищных пушек, которыми мы уже располагаем в данный момент[16].
А на спутнике Марса — на крошечном Фобосе — достаточно было бы просто бросить камень рукой, чтобы он никогда уже не упал обратно. По поверхности такого миниатюрного мира (не более 10 верст в поперечнике) опасно кататься в автомобиле или на велосипеде; развив даже умеренную скорость, седоки вместе с их машинами рискуют взлететь вверх, умчаться с мировое пространство и превратиться в самостоятельные небесные тела…
Но мы живем не на Фобосе и не на Луне, а на Земле. Нам необходимо поэтому добиваться секундной скорости в восемь и более верст, чтобы иметь возможность перекидывать пушечные ядра на иные планеты.