Часть I. ИСТОРИЯ ТИТАНА

Глава 1. ОТКРЫТИЕ ЭЛЕМЕНТА

ХОББИ СВЯЩЕННИКА

Семь металлов древности, а также сера и углерод — вот и все элементы, с которыми человечество познакомилось за многие тысячелетия своего существования вплоть до XIII века нашей эры. Восемь веков назад начался период алхимии. Он продолжался пятьсот лет, и за эти пять веков в качестве побочных продуктов алхимических поисков и при переработке руд металлургами было выделено еще пять химических элементов: мышьяк, сурьма, цинк, висмут, фосфор. В первой половине XVIII века были открыты платина, кобальт и никель. Таким образом, еще двести с небольшим лет назад людям были известны всего 17 химических элементов.

Со второй половины XVIII века начала формироваться современная химия. На смену алхимикам, пытавшимся искусственно получить золото, пришли химики-аналитики. Многовековой застой в химии кончился. За несколько десятилетий были исследованы сотни ранее неизвестных соединений, открыты многие химические элементы. Поисками новых веществ занимались не только ученые-химики, но и многочисленные любители. Одним из таких любителей был английский священник Уильям Грегор.

Грегор родился в 1762 году в графстве Корнуэлл, окончил полный курс Оксфордского университета и, будучи еще студентом, обращал на себя внимание незаурядными и разносторонними способностями. Молодой человек увлекался музыкой и литературой, живописью и математикой. Но самым серьезным его увлечением была минералогия. В 1783 году он стал бакалавром искусств, а еще через шесть лет получил ученую степень магистра.

Внешне жизнь его нисколько не была выдающейся и если бы не занятия минералогией, никто бы сейчас и не помнил, что жил когда-то на свете такой человек.

В своих записках об открытиях и свойствах новых минералов, о их химических свойствах выдающийся шведский ученый

Якоб Берцелиус неоднократно упоминал Грегора, называя его ^знаменитым минералогом”. Но был ли Грегор по-настоящему знаменит? Да и был ли он минералогом в самом точном значении этого слова? Вряд ли можно ответить на эти вопросы утвердительно.

Конечно, у Грегора имелась неплохо оборудованная лаборатория, поиску и анализу минералов он отдавал много времени и энергии (он стал со временем одним из создателей Геологического общества Корнуэлла и активнейшим членом этой организации) , но все это было занятием для души, своеобразным видом отдыха, то есть тем, что мы называем сейчас словом ”хобби”. И вполне вероятно, что на этом поприще, во время досуга святой отец мог бы и не добиться успехов. Но ему повезло.

ЭТО НЕ ИЗВЕСТЬ!

Однажды, исследуя окрестности прихода, в долине Менакин Уильям Грегор нашел любопытный песок. Песок был черный, как антрацит, притягивался магнитом, между его черными крупицами находилось небольшое количество обычного песка — мелкого, грязно-белого.

Придя к себе в лабораторию, Грегор первым делом растворил пробу найденного песка в соляной кислоте и тогда стало ясно, почему крупицы притягивались магнитом: они почти наполовину состояли из соединений железа. Остаток пробы Грегор поместил в серную кислоту и все вещество, кроме незначительного количества кремнезема, растворилось. Нагревание раствора привело к образованию мутноватой, напоминающей молоко суспензии, которая не стала прозрачной и после добавления значительного количества кислоты. После упаривания раствора на дне сосуда остался белый порошок.

Поначалу Грегор решил, что это особый вид извести. Но, оказалось, это была не известь. Порошок, подвергавшийся прокаливанию, желтел, а если при этом добавляли активированный древесный уголь, то он приобретал голубой цвет. Исследования порошка привели Грегора к выводу, что это соединение представляет собой оксид неизвестного металла.

У молодого священника был приятель, некто Хавкинс, занимавшийся минералогией профессионально. Грегор и сообщил ему о своем открытии. Хавкинс, ознакомившись с материала

-ми опытов, подтвердил, что Уильяму Грегору действительно удалось открыть новый химический элемент, и посоветовал передать в "Физический журнал” статью о результатах анализа темного магнитного железняка. Грегор так и сделал. И его сообщение вскоре увидело свет. Было это в 1791 году.

Минерал, обнаруженный Грегором, по имени местности, где он впервые был найден, вскоре назвали менаканитом, а белый оксид нового элемента получил название — менакин. Не получил имени только новый металл.

МЕТАЛЛ ОБРЕТАЕТ ИМЯ

Известный немецкий химик, член Берлинской Академии наук Мартин Генрих Клапрот познакомился со статьей Грегора в том же 1791 году. Публикация не произвела на него особого впечатления. Новый металл? Что же в этом особенного? Тогда новые элементы открывали один за другим едва ли не каждый год. Правда, нередко случалось, что открытия на поверку оказывались мнимыми, но многие исследователи в самом деле обнаруживали новые вещества.

Сам Мартин Клапрот, например, двумя годами раньше открыл уран и цирконий, а незадолго до этого были открыты теллур, молибден, марганец, барий, вольфрам. В то время Клапрот не был еще иностранным почетным членом Академии наук в Петербурге и профессором Берлинского университета, однако уже был достаточно авторитетным ученым.

Клапрот был сторонником воззрений великого французского химика Антуана Лавуазье, внесшего большой вклад в химию как в науку, основанную на точных измерениях, начало которой положил Михаил Васильевич Ломоносов.

Руководствуясь законом сохранения массы, открытым Ломоносовым, Лавуазье впервые правильно объяснил явление горения как процесс соединения вещества с кислородом и целым рядом работ опроверг ошибочную теорию флогистона.

Как и у каждого незаурядного человека, у Лавуазье было много противников и немало сторонников. Положения французского химика поддержали многие ученые в разных странах, в том числе и Мартин Клапрот, способствовавший распространению этих воззрений в Германии.

Но, разделяя взгляды великого химика на процессы превращений веществ, Клапрот в корне не соглашался в проектом новой химической номенклатуры, предложенным Лавуазье и другими французскими химиками. Создатели номенклатуры предложили называть элементы, основываясь на свойствах веществ. Для большинства известных в то время элементов предложено было оставить прежние названия, только в наименованиях трех из них решено было отразить основные химические свойства.

Кислород был назван оксигеном (родящим воздух), водород — гидрогеном (родящим воду), а слово ”азот” означало ” безжизненность” газа. Но уже тогда было очевидно, что азот далеко не безжизненный элемент. А что можно было сказать о названиях, даваемых впервые открытым химическим элементам? Требовалось быть по меньшей мере пророком, чтобы предвосхитить основные их свойства и отразить в наименовании . . .

Принцип, предложенный французской химической школой, подвергся резкой и справедливой критике. Клапрот тоже критиковал этот принцип.

Проект новой химической номенклатуры был завершен в 1787 году, а когда два года спустя Клапрот открыл новые элементы, он дал им наименования, основанные на совершенно иных принципах, чем предлагали французские химики.

Один из открытых им элементов Клапрот назвал ураном, так как исследование этого металла почти совпало с открытием планеты Уран. По старой, идущей еще от алхимиков,традиции каждой из планет небесной сферы соответствовал определенный металл. Немецкий химик помнил об этой традиции и, не мудрствуя лукаво, последовал ей.

С цирконием дело обстояло иначе. На Цейлоне был давно известен как драгоценный камень минерал гиацинт. В XVIII веке гиацинту дали минералогическое название "циркон”. Обнаружив в этом камне соединение нового элемента, Клапрот назвал металл по имени минерала, в котором он был найден, то есть цирконием.

В 1795 году, анализируя минерал, известный в то время как "красный венгерский шерл”, Клапрот выделил из него оксид неизвестного элемента. Предстояло назвать новый металл. Клапрот по этому поводу писал следующее: ”Для вновь открываемого элемента трудно подобрать название, указывающее на его свойства, и я нахожу, что лучше всего подбирать такие названия, которые бы ничего не говорили о свойствах и не давали бы таким образом повода для превратных толкований. В связи с этим мне захотелось для данной металлической субстанции подобрать, так же, как и для Урана, имя из мифологии; поэтому я называю новый металлический осадок титаном — в честь древних обитателей земли”.

Догадываясь, что титан и элемент, обнаруженный Грегором, один и тот же металл, Клапрот провел сравнительный анализ красного венгерского шерла и менаканита. Из минерала, открытого английским священником, немецкий химик выделил точно такой же металлический белый оксид, какой недавно получил при анализе венгерского шерла. Плотности обоих веществ оказались одинаковыми, и Мартин Клапрот признал приоритет Уильяма Грегора в открытии нового элемента. Но "крестным отцом” титана все же был признан Клапрот.

Немецкий ученый назвал новый химический элемент титаном, как он полагал, временно. Но это название прижилось. Давно уже нет в помине ни "менакина", ни "менаканита”, ни "красного венгерского шерла”: все эти вещества носят другие названия. А имя ”титан” осталось. Красивое и величественное, оно уводит нас в древнегреческую мифологию.

ДЕТИ ЗЕМЛИ

. . . Все произошло из вечного источника жизни — безграничного Хаоса. Из Хаоса возникли и сама Земля — богиня Гея, и Тартар — подземная бездна, черная и ужасная. Из Хаоса же появилась и Любовь — Эрос, неодолимая, всепобеждающая. И когда родилась Любовь, начал* создаваться мир.

Богиня Гея родила Урана — огромное Небо, раскинувшееся над нею. Уран стал владыкой мира и Гею он взял себе в жены. Но дети у них рождались уродами. Сначала это были три великана. Пять-десять голов у каждого из них и сто рук.

Против Сторуких ничто на целом свете не могло устоять, сила их была безгранична. Затем произвела Гея на свет трех других великанов — Циклопов с одним глазом во лбу. Уран ненавидел своих детей и возвращал в лоно Земли-матери, чтобы не видеть. Это вызывало у Геи страдание, давило и мучило ее.

Но вот, наконец, родились титаны — боги, похожие на огромных людей. Эти божества были бессмертны, умели перевоплощаться и ведали всем на свете. Одни титаны летали над землей ветрами, поднимались бурями и гремели грозами, другие — высоко в небе сияли звездами, иные владели морями и реками, лугами и лесами, горами и долинами. Сколько их было— никто не знает.

Не было у титанов врагов, множилось их счастливое племя, не зная страданий. И все было бы хорошо, да уж очень мучилась мать-Земля, благодатная Гея. Не давали вздохнуть ей гиганты, заключенные в ее недрах. Призвала она детей своих, титанов, и повелела восстать против власти Урана. Но титаны не посмели поднять руку на отца. Только самый младший из них, любимец Геи, коварный Крон согласился исполнить материнскую

волю и хитростью низверг Урана. Сам же захватил власть и воцарился над миром.

Облегченно вздохнула Гея: вышли на свет Сторукие и Циклопы. Но как только увидел их Крон — испугался безудержной мощи гигантов, поручил Циклопам сковать адамантовые цепи. Циклопы выковали оковы и Крон надел эти цепи на самих кузнецов и на Сторуких и снова вверг их в бездну Тартара.

Предание гласит, что, когда к власти пришел Крон, наступил золотой век. Дети земли не знали ни страданий, ни огорчений. Во всей красе раскрылась присущая им моральная чистота. Титаны на редкость правдивы, верны своему слову, необыкновенно стойки. Хитрость — качество, о котором они даже не подозревают. Они уверены в своей могучей силе и всегда рассчитывают только на нее. Титаны не знают ни в чем предела, они как сама природа — такие же неистовые и безудержные. Если они любят — то навсегда, если борются — то до победы или полного изнеможения и даже гибели, а если страдают — то чашу страдания выпивают до дна.

Титанам чуждо коварство. Но не таков титан Крон. Хитростью пришел он к власти, жестокостью пытается удержаться на царском троне. Знает он, что свергнет его один из потомков, и поэтому заставляет жену свою, титаниду Рею, приносить ему каждого родившегося ребенка и проглатывает его. Так погубил он уже пятерых. Не хотела Рея потерять еще одно свое дитя. И поэтому, когда подошел ей срок разрешиться от бремени, удалилась она на остров Крит и там, в пещере, родила сына Зевса. В этой пещере Зевс остался расти, а Рея завернула в пеленки продолговатый камень и дала проглотить его Крону. Тот не заметил обмана.

Вырос могучий бог Зевс и восстал против жестокого отца. С помощью волшебного зелья освободил он своих братьев и сестер, томившихся в чреве у Крона, а затем, по совету Геи, вывел из Тартара подземных кузнецов — одноглазых Циклопов.

И в благодарность за освобождение те выковали ему грозный перун, мечущий громы и молнии, а также и оружие для братьев.

И разгорелась жестокая битва двух поколений богов. Титаны сражались за свою вольность, за независимость, а младшие боги — за власть над миром. Десять лет длилась эта борьба, но никому не удалось добиться победы. Тогда решился Зевс освободить Сторуких, перед силой которых не могло устоять ничто.

В горной Фессалии разыгрался решающий бой. Титаны стояли на отрогах Офридского хребта, а дети Крона укрепились на горе Олимпе. Огонь охватил землю, закипели моря и реки. Но титаны были несокрушимы и уже подступали к Олимпу. Вот кликнул Зевс сторуких чудовищ и вступили они в бой. Сторукие отрывали от гор целые скалы и бросали в титанов. Сотни рук у чудовищ и сотни скал бросали они. Застонала Земля, все заходило ходуном. Зевс пронзал титанов огненными стрелами молний.

И дрогну ли титаны. Уступили они силе, соединенной с лукавством. Гордость не позволяла им прибегнуть в бою к обману, к хитрости, наивная вера в собственную природную мощь как в силу, которая может победить без помощи оружия, подвела их. Правдивость и простота сослужили им плохую службу. Заковали олимпийские боги титанов и сбросили в Тар- тар — самую глубокую часть преисподней, а вокруг вечно бушуют вихри. Приставлены к побежденным титанам Сторукие, чтобы стеречь их как самых грозных и сильных узников.

Властвуют над миром боги-олимпийцы во главе с громовержцем Зевсом. Глубоко в черной бездне томятся титаны. Они бессмертны и потому осуждены вечно жить в подземелье. Но жизнь их похожа на небытие, так как от мира земного они навсегда отлучены.

Титаны же вод и неба покорились власти богов-олимпийцев и остались в своей стихии, чтобы исправно действовали светила, моря, реки и ветры, чтобы был в мире порядок.

Но борьба олимпийцев с титанами закончилась далеко не сразу. Многие из побежденных не покорились и время от времени выступали против Зевса и его приближенных, и долгие века Зевс и его сын Аполлон будут снова низвергать восставших в Тартар.

Некоторых титанов олимпийцы наказали иначе.

. . . Небо стоит на трех столпах, подножия которых уходят в преисполню. Восточный столп — Кавказ. Средний столп, на котором держится небо, — гора Этна, а на западе стоит столпом титан Атлант. Накрепко приросли к краю небес у Атланта руки и вросли в землю ноги. На веки вечные обречен он держать страшную тяжесть небесного свода. Так наказал его Зевс за попытку свергнуть власть олимпийцев.

За Атлантом находится крайняя грань земли, которую омывает мировая река — океан. По небесной дороге к океану спускается Солнце — титан Гелиос. Он выпрягает из своей колесницы коней, купает их, затем плывет вместе с ними в золотой лодке на восток, туда, где прикован к кавказской скале титан Прометей — непримиримый борец с произволом богов-олимпийцев, бесстрашный защитник людей. Это он похитил отнятый богами огонь и снова принес его людям, научил их зодчеству и медицине, мореплаванию и письму и многим другим искусствам. В наказание Зевс и велел приковать Прометея к скале, собственноручно пробил грудь титана копьем. Каждое утро к скале прилетает огромный орел и клюет печень титана, страдающего за людей и за правду. Каждую ночь вновь отрастает печень, а наутро снова вонзает свой клюв орел в живую плоть.

Так продолжалось тысячелетия, и все это время не сдавался титан, жестокие муки не сломили его несокрушимую волю, пока, наконец, непобедимый герой Геракл не убил хищную птицу и не освободил Прометея . . .

Вот что поведали миру древние греки о своих богах и героях. И с тех пор Прометей и другие титаны стали символом мужества, бесстрашия, исполинской мощи.

В их честь и назван металл, обладающий, как выяснилось впоследствии, богатырской прочностью и несокрушимой стойкостью. Имя, случайно данное элементу Клапротом, оказалось пророческим.

ТИТАН В ПРИРОДЕ

Титан входит в первую десятку самых распространенных элементов нашей планеты.

В пятнадцатикилометровой толще земной коры его более половины процента: почти все кристаллические горные породы, пески, глины и прочие составляющие поверхности нашей планеты содержат титан. Содержание титана в почвах (а речь может идти только о его соединениях, так как в свободном виде титана в природе нет) в различных районах земного шара колеблется от половины до полутора процентов. В землях Европы, к примеру, полпроцента титана, в землях Азии — вдвое больше. В основных почвенных зонах Европейской части СССР содержание титана колеблется от одной до трех четвертей процента. Больше всего титана в глинах, в суглинках его меньше и совсем немного в известковых почвах. Меньше всего титана в пахотных землях и в пустынях. Высокий процент титана обнаружили в глинистых грунтах Средиземноморских Альп, в окрестностях Дели, в почвах Бразилии. На острове Святой Елены, где провел свои последние годы Наполеон Бонапарт, количество титана в земле доходит до двух с половиной процента. Но никакие другие земли не могут соперничать с красноземами Западного Самоа, содержание титана в которых колеблется от восьми до двенадцати процентов!

Титан находят в вулканической пыли, в газах, выделяющихся из кратеров вулканов, в каменных материалах. В 1866 году с помощью метода спектрального анализа наличие титана обнаружено в атмосфере Солнца. Элемент этот находится на ближайшей к нам звезде в ионизированной форме. Линии, соответствующие титану, открыты в спектрах большинства звезд.

Но вернемся на Землю. Теми же методами спектрального анализа титан обнаружен в морской воде, в водах Дуная, в горячих ключах Японии и минеральных водах Испании, в каменном угле и в торфе, в сырой нефти и других веществах.

В различных лабораториях мира подвергают исследованиям сотни видов зерен, плодов, стеблей, деревьев, кустарников, определяя содержание в них микроэлементов. Во многих растениях есть титан, правда, его меньше, чем в почвах, на которых они растут. Титан в растениях исчисляется сотыми и тысячными долями процента. Впервые он был там обнаружен немецким химиком Адергольдом в 1852 году.

Довольно высокое содержание этого элемента характерно для листьев табака, для водорослей, сахарного тростника, лука. Из других культур наиболее богаты им бобовые и гречиха. А вот плоды какао совсем не имеют титана. Бедны титаном морковь, люцерна, картофель, земляной и лесной орехи. Но о кокосовом и грецком орехах этого сказать нельзя. Наличие титана отмечено в семенах хлопка, подсолнечника, в красном клевере, каштане, тыкве, кукурузе, а также в различных деревьях.

Титан в живых организмах впервые обнаружил английский химик Риз в 1835 году. Растения, как правило, концентрируют титан в больших количествах, чем животные, но многие организмы тоже содержат немало этого элемента. К ним в первую очередь необходимо отнести крабов, устриц, ракушек, целый ряд рыб и других обитателей морей.

Титан найден в тканях лошадей, овец, собак, кроликов, телят, причем больше всего титана содержится в легких, печени, волосяном покрове и в почках животных.

В организме взрослого человека находится около 20 миллиграммов титана. Особенно богаты этим элементом селезенка, надпочечники и щитовидная железа. Так как титана сравнительно много в почвах, то мы постоянно вдыхаем его вместе с обычной пылью и, по-видимому, именно этим обстоятельством объясняется тот факт, что у пожилых людей в легких чуть ли не в сто раз больше титана, чем у новорожденных, тогда как в других органах количество элемента постоянно и с возрастом не меняется.

До сих пор неизвестно, какую роль выполняет титан в человеческом организме, но степень его концентрации позволила советскому академику В.И. Вернадскому высказать предположение о том, что титан нужен для организма и выполняет какие-то определенные жизненно важные функции. Во всяком случае на сегодняшний день точно установлено, что титан безвреден для людей и животных.

В медицинской литературе описан случай, когда один человек, очевидно, желая покончить с собой и не найдя под рукой ничего более существенного, принял внутрь почти полкилограмма диоксида титана. Никаких серьезных последствий для организма эта лошадиная доза не вызвала.

Небольшое количество титана есть в костях и зубах человека, в материнском молоке. Японские ученые установили, что титан находится и в волосах, но только в светлых, так что, выходит, шатены, брюнеты и рыжие этим элементом "обделены”.

Обнаружено также, что титан — составная часть коровьего молока, куриных яиц и многих других пищевых продуктов.

Таким образом по распространенности в природе титан занимает среди металлов четвертое место (после алюминия, железа и магния). В земной коре он составляет 0,6 %, то есть втрое больше, чем медь, цинк, никель, ванадий, хром и марганец вместе взятые.

Глава 2. НА ВТОРЫХ РОЛЯХ

ОШИБКИ И ЗАБЛУЖДЕНИЯ

Первую ошибку в исследованиях свойств титана совершил Клапрот. Наблюдая реакцию взаимодействия диоксида титана с железосинеродистым калием, немецкий химик отметил, что при этом образуется осадок зеленого цвета, тогда как в действительности осадок был желто-коричневым. На это указал русский ученый Товий Егорович Ловиц, тщательно изучивший свойства соединений титана, которые находятся в титано-магнетитовых рудах. О своих исследованиях Ловиц рассказал в статье "Показание некоторых замечаний о титане”, опубликованной в химических анналах Крелля за 1799 год. Правда, ошибка Клапрота была не столь уже принципиальной. Дальше последовала целая цепь ошибок намного серьезнее, сменявших друг друга на протяжении более чем вековой истории.

В течение всего XIX века ученые разных стран безуспешно пытались получить металлический титан, который практически был бы свободен от примесей. В природе не существует титана в чистом виде и предстояло извлечь этот металл из его чрезвычайно прочных соединений. Задача была не из легких и многие авторитетные химики попадали впросак.

В 1822 году ошибся известный английский химик Волластон. Исследуя найденные в шлаке металлургического завода кристаллы, он пришел к выводу, что они представляют собой титан, свободный от примесей. Выдающийся шведский ученый Йенс Якоб Берцелиус присоединился к мнению Волластона. Это заблуждение просуществовало почти 30 лет, пока, наконец, немецкий химик Фридрих Вёлер, сжигая эти кристаллы в струе хлора, не доказал, что ”титан” Волластона представляет собой химическое соединение титана с азотом и углеродом. Впрочем, принять соединения титана за чистый металл было нетрудно: ведь они отливали металлическим блеском, отличались твердостью и тугоплавкостью. Но всем нитридам, карбидам и низшим оксидам титана присуща хрупкость, и хрупкость эту ошибочно приписывали самому элементу.

В 1825 году, восстанавливая фтортитанат калия, Берцелиус пытался получить свободный титан, но эта попытка не дала ожидаемых результатов: металл был загрязнен большим количеством примесей. На протяжении XIX века выделить элемент пробуют многие ученые из разных стран: Вёлер и Девиль, Мерц и Керн, Эбельман, Нильсон и Петерсон, Леви, Муассан и другие. Шведские химики Ларе Фредерик Нильсон и Отто Петерсон получили металл из четыреххлористого титана при помощи натрия в герметическом стальном сосуде. Титан шведских химиков содержал 5 процентов примесей.

Относительно чистый титан в прошлом веке был получен, по всей вероятности, французским химиком Анри Муассаном. Муассан восстанавливал диоксид титана древесным углем, представляющим собой почти чистый углерод. Реакция проходила в известковом тигле при очень высокой температуре. Извлеченный таким способом металл содержал 5 процентов углерода, а последующей очисткой удалось снизить количество примесей в два с половиной раза. Спустя много лет два музейных металлических образца титана, полученного Муассаном, подвергли химическому анализу. Выяснилось, что образцы снаружи были окружены как бы стенкой из железа и карбида титана, а внутри находился относительно чистый металлический титан.

В России опыты над соединениями титана проводил Дмитрий Кириллович Кириллов. Талантливый ученый был тяжело болен, но вынужден был тратить свои личные средства не на серьезное лечение, а на проведение сложных опытов над титановыми рудами, так как царское правительство денег на научные исследования ему не давало. Работе с титаном Кириллов уделял почти все свое время, остающееся после чтения лекций в Московском университете. Результаты своих экспериментов Дмитрий Кириллович опубликовал в брошюре "Исследования над титаном", увидевшей свет в 1875 году.

Но научный поиск Кириллова остался незамеченным. Полученные результаты не привлекли внимания, не послужили базой для дальнейших исследований, не стали отправной точкой для более совершенных опытов и уже через небольшой промежуток времени были забыты. Такое пренебрежение к отечественной науке, равнодушие к ее достижениям и судьбам незаурядных ее представителей были характерными для всего периода существования царского самодержавия.

Наступил XX век, а элемент титан так и не был выделен в свободном состоянии. И Дмитрий Иванович Менделеев, делая обзор элементов IV группы, в своем последнем прижизненном издании "Основ химии", вышедшем в 1906 году, говорил не о металлическом титане, а о четырех его минералах — рутиле, титанистом железняке-ильмените, сфене и перовските. Впрочем, и о соединениях титана в книге говорилось немного. Почему? Об этом сказано буквально следующее: ”Так как титан и цирконий довольно редки в природе, имеют мало практического применения и не представляют новых форм соединений, то мы над ними не можем подробно останавливаться в этом сочинении”.

НЕОПРАВДАННЫЕ НАДЕЖДЫ

Принято считать, что первым технически чистый титан получил американский химик Хантер в 1910 году, через 120 лет после открытия элемента. Хантер с сотрудниками трудился в известной фирме ”Дженерал электрик компани”, занимаясь поиском новых тугоплавких материалов для волосков электрических ламп. В то время предполагали, что титан, если его удастся получить в чистом виде, должен плавиться при очень высокой температуре.

Вначале Хантер пытался выделить элемент из фторотитаната натрия при помощи калия в стальном цилиндре. Но лучшие образцы получаемого продукта содержали в себе только две трети титана. Остальную треть составляли примеси. Тогда ученый решил пойти по другому пути. Он попробовал восстановить металл из фторотитаната бария, но и это не дало сколько-нибудь ощущаемых результатов. После этого Хантер стал экспериментировать с оксидами титана.

По методу Муассана был получен титан, загрязненный небольшим количеством углерода, — карбид титана. Из этого соединения путем хлорирования получили четыреххлористый титан. Его очень тщательно очистили, в результате чего образовалась бесцветная, как бы кипящая от взаимодействия с воздухом жидкость. Дальше Хантер с сотрудниками использовал метод Нильсона — Петерсона, проявив максимум осторожности, чтобы не допустить воздух в реакционный сосуд.

В этот стальной реактор — так называемую ”бомбу” емкостью 1 литр — были помещены полкилограмма четыреххлористого титана и вдвое меньшее количество металлического натрия. ”Бомбу” нагрели так, что стенки ее раскалились докрасна. И тогда раздался оглушительный взрыв: между находящимися в сосуде веществами произошла мгновенная химическая реакция.

Полученный продукт представлял собой небольшое количество спекшихся металлических бусинок и порошка.

После охлаждения и промывки бусинки подвергли химическому анализу и оказалось, что удалось получить металлический титан практически без примесей. Но металл разочаровал исследователей.

Предположение о его необычной высокой тугоплавкости не подтвердилось. Основываясь, вероятно, на тугоплавкости титана, загрязненного углеродом, думали, что

чистый металл будет плавиться при температуре еще более высокой — чуть ли не при 6000 °С,

превзойдя тем самым вольфрам и другие тугоплавкие материалы.

Надежды не оправдались. Выяснилось, что чистый титан плавится уже при температуре около 1800 °С и о его применении для нитей накаливания не могло быть и речи.

Но поскольку чистый металл получен, надо исследовать его свойства. Исследовали. И убедились, что титан — очень хрупкий материал, не пригодный для механической обработки. Ковать его можно было только в нагретом состоянии, а при обычной температуре металл рассыпался на куски от незначительного удара. И титан, подобно калию, натрию, кальцию, был отнесен к разряду "бесполезных” металлов — так называемых "элементов для химиков", с которыми можно экспериментировать, но которые не годятся для практического использования.

Но вряд ли и Хантеру удалось получить действительно чистый титан. Данные анализа свидетельствовали, что примесей в титановых бусинках содержалось не более 0,1 процента. Если бы это в самом деле было так, свойства полученного металла оказались бы совершенно иными. Металл, загрязненный даже впятеро большим количеством примесей, в наши дни находит широкое практическое применение. Именно такой титан производят промышленные предприятия. Кроме того, когда начали получать действительно чистый металл, обнаружили, что его точка плавления гораздо ниже того вещества, которое исследовал Хантер.

Трудно сейчас сказать, какой же все-таки частоты был получен тогда металл, но неверное представление о титане как о металле, не пригодном для применения в технике, существовало еще долгие годы. Соединения титана стали использовать значительно раньше чистого металла, но следует подчеркнуть, что и это произошло только спустя столетие после открытия элемента.

САМАЯ ЛУЧШАЯ КРАСКА

Чистый диоксид титана — это белый порошок, который при нагревании желтеет. Когда же он остывает, к нему вновь возвращается чистый белый цвет. Диоксид титана не имеет ни запаха, ни вкуса, не растворяется в воде. Он устойчив к воздействию слабых минеральных и концентрированных органических кислот, сравнительно устойчив в щелочах. Это вещество — самое стабильное среди химических соединений, обладающих красящими свойствами.

Диоксид титана применяют в различных отраслях промышленности, но главнейший его потребитель — лакокрасочное производство. Впервые титановая белая краска была изготовлена из минерала рутила в 1870 году, однако промышленное ее производство началось только в первые десятилетия XX века. Титановые белила превосходят все другие белые краски по целому ряду свойств.

В картинных галереях особенно заметно, как тускнеют со временем полотна живописцев прошлого. Свинцовые белила, которые в старину часто добавляли к краскам, на воздухе теряют первоначальную яркость. Титановые белила помогли бы сохранить картины, но, к сожалению, художники эпохи Возрождения и других минувших времен еще не располагали такими красками.

Кроме стойкости в атмосфере, титановые белила, как и чистый диоксид титана отличаются химической стойкостью против кислот и щелочей. Мало того, они безвредны для человека, чего нельзя сказать о свинцовых белилах.

Важное свойство любого красителя — укрывистость, способность перекрывать цвет поверхности, которую окрашивают. Вполне понятно, что чем выше кроющая способность (укрывистость), тем меньше требуется краски.

По своей кроющей способности диоксид титана в несколько раз превосходит другие белила, что позволяет существенно снизить расход материалов и затраты труда. Титановые белила применяются для окраски дерева и металла, мостов, надводной и подводной частей кораблей, так как белила стойки и водонепроницаемы.

Этот краситель подчеркивает яркость насыщенных цветов и ярче оттеняет пастельные тона, а также позволяет добиться самого интенсивного белого цвета. Благодаря свойственной им нетоксичности титановые белила можно применять для окраски игрушек, на предприятиях пищевой индустрии, в больницах, ресторанах, столовых, при получении бумаги для упаковки пищевых продуктов.

При помощи диоксида титана можно добиться также высокой степени глянца. Поэтому его используют в промышленных лаках для отделки автомобилей и электроприборов. Он делает бумагу белой и непрозрачной, его употребляют при изготовлении типографских красок, отделочных красок для кож, матовых и глянцевых паст для печатания по ткани. При помощи диоксида титана придают матовый оттенок синтетическому шелку, окрашивают в белый цвет резину, линолеум, полихлорвиниловые покрытия и другие виды пластических масс. Его применяют при .производстве тугоплавких стекол, глазурей, эмалей; он входит в состав люминесцентных покрытий, фарфоровых масс, мыла, медицинских и косметических препаратов, придает белизну искусственным зубам. Благодаря тому, что коэффициент преломления световых лучей у диоксида титана гораздо выше, чем у алмаза, из крупных ее кристаллов делают искусственные драгоценные камни. Диоксид титана — очень хороший изолятор. Это его свойство используется в электротехнике и радиопромышленности. Он служит ускорителем.

Выпуск диоксида титана растет с каждым годом, причем уровень его производства гораздо выше уровня производства металлического титана.

Кроме диоксида в качестве красителя применяют и другие соединения титана. Для окраски обоев используют ярко-зеленое вещество — железосинеродистый титан. Желтые и оранжевые красители получают из некоторых титансодержащих минералов. Из отходов титанового минерала сфена приготовляют розовую краску для штукатурных работ. Оксалатотитанаты калия и аммония применяют для окраски тканей, высококачественных кож. При соединении с определенными веществами эти соли придают изделиям золотистую, желто-коричневую и черную окраску, очень прочную и не изменяющуюся под действием света.

СКРОМНЫЙ ПОМОЩНИК

Титан давно нашел применение в черной металлургии из-за своей способности образовывать устойчивые соединения с различными примесями. Благотворное влияние этого металла на чугун и сталь было замечено еще в самом начале нашего века. Для сталеплавильного производства используют не очищенный титан, а так называемый ферротитан — сплав титана с железом, загрязненный большим количеством углерода. Если же в сталь нужно ввести титан и кремний, используют сплавы титана с железом и кремнием.

Когда титан попадает в жидкую сталь, обычно содержащую кислород, азот, углерод, он прежде всего соединяется с кислородом и, поглощая его, образует диоксид титана.

Поглощение кислорода из расплавленной стали называется ее раскислением. Вначале титан применяли только для этой цели, но затем выяснилось, что добавки металла в чугун и сталь приносят много и другой пользы. Ведь титан не только раскисляет сталь, но и существенно повышает ее чистоту, освобождая от силикатов марганца и железа, которые, соединившись с титаном, всплывают на поверхность расплавленного черного металла, откуда их уже нетрудно удалить. Однако польза, которую приносит титан, не ограничивается и этим.

В процессе остывания стали первоначально образующиеся кристаллы всегда бывают гораздо чище остающейся расплавленной массы; последняя же порция затвердевающего металла содержит наибольшее количество углерода, фосфора, серы и других вредных примесей. Эти загрязнения переходят из слитка в изделия, что приводит к их преждевременному разрушению. Было время, когда сталь раскисляли небольшим количеством кремния. Железнодорожные рельсы, сделанные из такой стали, часто выходили из строя, потому что в местах наибольшего скопления примесей появлялись трещины. Когда же металл начали обрабатывать титаном, количество трещин уменьшилось во много раз, так как сера, фосфор и углерод стали равномерно распределяться по всему сечению рельса благодаря большей химической активности титана.

Эта способность титана была широко использована в годы второй мировой войны, когда потребовалось упростить обработку стали при производстве снарядов, мин и других видов вооружения. Сталь обрабатывалась намного легче, если в ней содержалось серы больше обычного. Но серу следовало распределить в стали равномерно, мельчайшими частицами. С такой задачей успешно справился титан.

Справедливости ради следует все же признать, что лучший раскислитель стали — алюминий. Именно его почти всегда используют для выплавки мелкозернистой стали, так как, во-первых, он гораздо дешевле титана, во-вторых, его требуется меньше и, в-третьих, его намного проще использовать. Но для сталей, которые имеют склонность к росту зерна, алюминий применять нельзя. Тогда и применяют титан, который не только хорошо раскисляет металл, но и очищает его, равномерно распределяет примеси в его толще, намного улучшает качество поверхности стального листа.

В сталях с промежуточной зернистостью добавкой титана предупреждается появление и мелких, и крупных зерен, а в мелкозернистых сталях, для которых с успехом используется алюминий, титан способствует образованию правильной микроструктуры.

Соединения различных элементов с азотом называются нитридами. Нитрид титана — одно из самых прочных химических соединений. Способность титана связывать азот намного выше, чем тантала, алюминия, бора, ванадия и кремния. Другие же элементы, обычно используемые в сталеварении, пр^ высоких температурах образуют с азотом неустойчивые соединения, а значит, и не могут его обезвредить. Примеси азота в стали Делают ее чересчур пористой. Но если такую сталь расплавить и добавить в нее титан, дефект устраняется и слиток получается полноценным.

Вступая в реакцию с азотом, титан не только переводит его в нерастворимое состояние, но и уменьшает общее его содержание в стали. Это объясняется тем, что кристаллы нитрида титана, поскольку они значительно легче стали, стремятся всплыть на поверхность и переходят в шлак, который легко удалить. Нитрид титана нашел и самостоятельное, очень эффективное применение.

8 мая 1986 года в газете "Известия” под заголовком ”Золо- той блеск титана” был опубликован следующий текст: ”Внешне инструмент из быстрорежущей стали с новым износостойким покрытием выглядит позолоченным. И хотя в нем нет и грамма драгоценного металла, рабочие называют его золотым. Впрочем, он заслуживает такого определения не за внешний вид...

В нашей стране на 22 специализированных инструментальных заводах Минстанкопрома организовано производство широкой номенклатуры инструмента из быстрорежущей стали с износостойким покрытием на основе нитрида титана. Такой инструмент обеспечивает повышение производительности труда на 50 процентов и более, стойкость его в три- четыре раза превышает надежность обычного инструмента, что особенно важно при эксплуатации на станках с числовым программным управлением и в гибких производственных системах. Экономический эффект от внедрения новшества в народном хозяйстве уже превысил 41 миллион рублей. Разработанная технология защищена 20 патентами, 17 авторскими свидетельствами и получила широкое признание на международном рынке — лицензии на нее закуплены США, ЧССР, НРБ и Кубой”.

Отрадный факт. Небольшие добавки титана в литую сталь повышают ее прочность, улучшают все механические свойства и упрощают ее термическую обработку. Нередко титан добавляют в сочетании с бором, что обеспечивает лучшую прокаливаемость стали и обработку на токарных станках.

Добавление титана в чугун улучшает его обрабатываемость. И не только обрабатываемость, но и стойкость против ржавления, высоких температур, повышает сопротивляемость разрушающим воздействиям трения. Когда титан вводят в расплавленный чугун, содержащий большое количество углерода, титан и углерод вступают в реакцию между собой и образуют мелкие кристаллы карбида. При затвердевании чугуна частицы карбида титана выступают в роли центров кристаллизации и благодаря этому чугун получается с мелкозернистой структурой.

Присутствие карбида титана в инструментальных сталях уменьшает их растрескивание при закалке в воде, а поглощение титаном избытка углерода предотвращает межкристаллитное разрушение нержавеющей стали.

Титан повышает также прочность и твердость нержавеющих, долговечность жаропрочных сталей, способствует улучшению их свариваемости. Карбид титана используется не только для улучшения свойств чугуна и стали, но и в качестве самостоятельного материала для так называемых твердых сплавов, абразивов, при производстве материалов для инструментов и других важных узлов и деталей.

Впервые карбид титана был получен в 1887 году при обработке титанистого чугуна соляной кислотой. Вещество оказалось очень твердым и хрупким, обладающим некоторыми металлическими свойствами — блеском, хорошей электропроводностью. По своей жаростойкости карбид титана превосходит все другие тугоплавкие карбиды: он плавится при температуре свыше 3000 °С. В наши дни карбид титана получают прокаливанием диоксида титана с сажей в специальных индукционных печах.

Карбид титана — одно из самых устойчивых веществ, выдерживающих резкие смены температур. Он широко применяется как основа для получения жаростойких сплавов, режущих инструментов для обработки вязких материалов, благодаря высокой твердости используется для шлифования.

Вместе с карбидом вольфрама и кобальтом он входит в состав так называемых метал л о керамических твердых сплавов. Режущие инструменты, изготовленные из таких материалов, позволяют во много раз повысить скорость обработки сталей. Твердосплавные инструменты значительно повышают производительность труда в металлообрабатывающей, горнорудной, угольной и других отраслях промышленности. Они позволяют также обрабатывать вязкие материалы, с которыми не в состоянии справиться обычные резцы.

Благодаря высокой твердости, жаростойкости и жаропрочности карбид титана используется для получения материала, из которого делают лопатки турбин реактивных авиационных двигателей, защитные покрытия для сопел и головных частей ракет. Эти же свойства карбида титана, а также достаточная электропроводность и низкая скорость испарения позволяют использовать его в электродах для подводной электрокислородной резки стали и в электродах термопар, предназначенных для замера температур до 200 °С.

Из сплава карбида титана с вольфрамом делают детали насосов для перекачки расплавленного натрия, стойкие при температурах более 1000 С и давлениях, превышающих 8 атмосфер.

Соединений титана — многие сотни, но практическое применение нашли далеко не все из них. В технике используется еще соединение титана с бором — борид титана. Как и карбид, он обладает очень высокой твердостью и тоже пригоден для обработки материалов. Некоторые соединения титана применяются для проведения лабораторных анализов.

Глава 3. ОСВОБОЖДЕНИЕ ИСПОЛИНА

ИОДИДНЫЙ ТИТАН

Титан, полученный из тетрахлорида с помощью натрия, по мнению голландских исследователей ван Аркеля и де Бура, непременно должен содержать много оксидов и нитридов, загрязняющих материал и тем самым изменяющих его свойства. Эти ученые пришли к выводу, что самый чистый металлический титан может быть выделен не из четыреххлористого, а из четырехиодистого титана. В 1925 году ван Аркель и де Бур разработали метод повышения чистоты металлического титана, сущность которого состоит в следующем.

Черновой металл (титан, который предстоит очистить) при температурах 150—400 °С взаимодействует с иодом. Образуется четырехиодистый титан. При обычной температуре это кристаллическое вещество, цвет у него красно-бурый, оно интенсивно поглощает влагу. При высоких же температурах это соединение переходит в пар. Пары четырехиодистого титана при температуре около 1400 °С разлагаются. Молекула четырехиодистого титана распадается на составные части: на атомы титана и иода. Атомы титана осаждаются на какой-либо раскаленной поверхности, а освобожденный иод тут же соединяется с остающимся черновым металлом и снова участвует в процессе, перенося новую порцию титана на раскаленный предмет. Реакция протекает до тех пор, пока весь черновой металл, очищенный и облагороженный, не перекочует на раскаленную поверхность.

В установке, предложенной голландскими исследователями, титан осаждался на раскаленной вольфрамовой нити, медленно 26 и неуклонно обволакивая ее. Этот процесс осуществляли в стеклянной камере, из которой предварительно выкачивали воздух. Впоследствии метод ван Аркеля и де Бура усовершенствовали другие исследователи. В частности, вольфрамовую нить заменили титановой (чтобы не нарушать однородности получаемого металла), определили наиболее подходящие температурные режимы, улучшили аппаратурное оформление процесса. Но сущность способа осталась прежней.

Очистка чернового титана иодидным методом основана на том, что не все примеси, находящиеся в обычном металле, взаимодействуют с иодом и, следовательно, не все попадают на раскаленную нить. Элементы, которые вступают с иодом в реакцию, образуют неустойчивые соединения, не выдерживающие высоких температур, и тоже почти не попадают в иодидный титан. Полученный таким образом металл считается чистейшим.

Иодидный метод применяется и для очистки циркония, хрома, ниобия, тантала, ванадия, некоторых других элементов. Недостаток способа — малая производительность и высокая стоимость очищенного металла. Да, иодидный титан дороже обычного технического титана почти в двадцать раз! И все же наряду с существующими способами промышленного получения титана используется и иодидный метод.

Этим методом получают сверхчистый титан для нужд электротехники, вакуумной техники и для специальных областей применения. Яркие, внешне похожие на никель кристаллы иодидного титана используют для лабораторных исследований. Именно таким — серебристыми, сверкающими на свету кристаллами — и предстает перед человеком химический элемент титан.

ТИТАН В РЯДУ ЭЛЕМЕНТОВ

серебристо-серого цвета металлы, имеющие одинаковую шестигранную кристаллическую решетку и обладающие очень похожими свойствами.

Цирконий был открыт двумя годами раньше титана тем же Клапротом, а гафний — один из самь*х молодых элементов. Его существование впервые обнаружили в 1923 году.

Название новому элементу было дано от латинского корня старинного названия столицы Скандинавии — Гафн (havn) — теперешнего города Копенгагена.

Цирконий вдвое тяжелее титана, а гафний — почти втрое. Плавятся "родственники” титана при более высокой температуре, чем глава под- группы. Все три металла, поглощая кислород, становятся хрупкими, с азотом они образуют очень тугоплавкие соединения. Титан, цирконий, гафний охотно реагируют с углеродом, серой, галогенами.

Атом титана состоит из положительно заряженного ядра, вокруг которого вращаются 22 электрона, образуя четырехслойную оболочку. Величина заряда ядра соответственно составляет 22 элементарные единицы положительного электричества, то есть 22 протона, а количество нейтронов в ядре атома колеблется от 20 до 32.

Атомную массу титана пытались определить начиная с 1813 года. Первым предпринял такие попытки шведский ученый Берцелиус. Он получил результат, очень далекий от правильной цифры, но уже через десять лет различные исследователи в своих определениях были близки к истине. В конце XIX века для атомной массы титана было официально определено значение 48,1. В 1924 году установили, что атомная масса элемента № 22 — 47,90. Именно эту цифру вы и обнаружите, взглянув на периодическую таблицу элементов, в клетке, отведенной титану. Химический символ титана — Ti

Титан, как уже говорилось, находится в четвертой группе периодической системы. А это значит, что во всех своих важнейших и наиболее распространенных соединениях он четырехвалентен, то есть каждый атом титана, вступая в химическую связь, отдает четыре своих электрона. Однако титан довольно легко образует и такие соединения, в которых он трехвалентен. Встречается и двухвалентный титан, но таких соединений немного и они в своем большинстве неустойчивы.

Элементарный титан — очень активный химический элемент, его химическая активность еще более возрастает при высоких температурах. По своей способности вступать в реакцию с другими элементами титан превосходит многие металлы и его металлические свойства, под которыми в химии понимают способность элемента легко отдавать электроны, ярко выражены.

Но исследователей гораздо больше интересовал элемент титан в качестве материала для технического использования. Можно ли найти ему применение в конструкциях машин, механизмов. Выяснилось, что можно. Больше того, свойства чистого металлического титана оказались настолько уникальными, что встал вопрос о немедленном использовании его для нужд специальной техники. Но способа промышленного получения достаточно чистого титана еще не существовало. Однако очень скоро был найден и он.

СПОСОБ КРОЛЛЯ

В тридцатые годы XX века в Люксембурге усердно трудился над разработкой способа восстановления четыреххлористого титана металлическим магнием немецкий исследователь Вильгельм Кролль. Его не очень смущало то обстоятельство, что такая попытка была сделана еще в 1892 году и закончилась неудачей. Первые опыты по восстановлению титана металлическим магнием проводили в среде углекислого газа, вследствие чего получаемый металл оказывался загрязненным большим количеством углерода. Кролль же оформлял свои опыты несколько по-другому — так, чтобы не допустить попадания в металлический титан примесей водорода, азота, углерода и кислорода — самых вредных для титана, резко ухудшающих его пластичность.

Процесс шел в атмосфере очищенного инертного газа аргона при температуре около 1000 °С. Для предотвращения взаимодействия реакционной массы со стенками внутренняя поверхность реактора была облицована молибденом. Полученный металл обрабатывали слабым раствором соляной кислоты для удаления солей магния, которыми он был пропитан. Зерна титана прессовали в прутки и плавили в специальном электровакуумном устройстве, после чего металл прокатывали в полосы миллиметровой толщины. Полосы можно было сгибать не только в горячем состоянии, но и в холодном,и они не ломались. Свои опыты на крупной лабораторной установке Кролль проводил по заданию немецкого химического концерна "Сименс”. Запатентовал же он свой метод получения титана в США в 1940 году.

После тщательного изучения всех методов получения технически чистого титана специалисты из Горного бюро США остановились на способе Кролля, как самом подходящем для промышленного освоения. Начиная с 1942 года Горное бюро проводило опыты в полупромышленном масштабе на установке в Буолдер-Сити (штат Невада). Вскоре Вильгельм Кролль стал сотрудником бюро и дальнейшие эксперименты проходили при его непосредственном участии.

В установке, предложенной Кроллем, предусматривалась загрузка слитков магния в реактор из мягкой стали. Когда магний расплавлялся, в реактор начинал поступать жидкий четыреххлористый титан. Образующийся в результате реакции хлористый магний удаляли по ходу плавки. Однако некоторое количество хлорида все же оставалось и вместе с неизрасходованным металлическим магнием загрязняло получаемый титан. Кроме того, при выщелачивании крупиц титана слабым раствором соляной кислоты в готовый продукт попадало некоторое количество водорода, что снижало качество металла. Поэтому для очистки реакционной массы получила распространение в дальнейшем отгонка примесей в вакууме при высокой температуре — так называемая вакуумная дистилляция.

Возможные области применения титана по-настоящему выяснились только в 1943 году. Одним из важнейших потребителей нового промышленного металла должна была стать реактивная авиация, и вскоре после окончания второй мировой войны исследования способа восстановления металлического титана проводились особенно интенсивно. В 1946 году Горное Бюро США на основании длительных экспериментов подтвердило возможность промышленного производства титана способом, предложенным Вильгельмом Кроллем.

18 сентября 1948 года американский химический концерн ”Дюпон де Немур” объявил о начале промышленного производства нового конструкционного материала. Выпуск титана- сырца на рынок в те годы составлял всего 45 килограммов в сутки, а каждый килограмм металла стоил более 10 долларов.

Быстрый рост производства титана обусловливался возникновением и развитием новых отраслей промышленности и техники — в первую очередь космической, которая потребовала новых конструкционных материалов, обладающих высокими качествами.

Глава 4. ЗНАКОМЬТЕСЬ - ТИТАН!

ЛЕГКАЯ СТАЛЬ

Брусок металла неяркого серебристо-серого цвета. ”Сталь” — привычно мелькает в сознании. Но стоит взять брусок в руку, как на мгновение возникает ощущение нереальности происходящего: металл оказывается удивительно, неправдоподобно легким. Это не сталь, а титан.

Любопытно наблюдать за реакцией людей, плохо знакомых с цветными металлами, когда к ним в руки попадает какой- нибудь предмет из титана. Первоначальное удивление (темный металл, а такой легкий!) сменяется недоумением, а затем убеждением, что их "разыгрывают”, и они пытаются разобраться, где же скрывается подвох: вертят предмет в руках, говорят, что внутри металла имеются пустоты и тому подобное. Но никакого подвоха нет. Титан действительно почти вдвое легче железа и всего лишь в полтора раза тяжелее алюминия. Один кубический сантиметр железа имеет массу 7,8 грамма, алюминия — 2,7, титана — 4,5 грамма. Надо признать все же, что 4,5 грамма в кубическом сантиметре не так уж и мало, особенно если учесть, что в кубическом сантиметре магния содержится 1,7 грамма, а такой металл, как литий, вдвое легче воды.

Поскольку к легким относят металлы, удельная масса которых не превышает 5 граммов на кубический сантиметр, то титан, следовательно, самый тяжелый среди легких металлов. Но и ”самый тяжелый”, он все-таки по праву принадлежит к числу легких металлов.

Однако легкость сама по себе еще ничего не решает. Легок натрий, но он плавится уже при температуре около 100 °С и как щелочной металл настолько активен, что его нельзя хранить на открытом воздухе. Хранят этот элемент в керосине. Еще легче и активнее металл литий. Он, как и остальные щелочные металлы, так непрочен, что легко режется обыкновенным ножом.

Мы привыкли к тому, что всякий конструкционный материал имеет свои достоинства и недостатки. Если алюминий,

например, почти в три раза легче стали, то он и в несколько раз менее прочен и плавится уже при 660 градусах, тогда как точка плавления стали находится выше 1500 °С. Примерно то же самое можно сказать и о магнии.

Интересно, а насколько титан уступает стали по прочности? Титан не уступает стали: он в полтора раза прочнее! Но, может быть, этот металл плавится при невысоких температурах? Титан плавится только при 1660 °С, то есть при более высокой температуре, чем железо и сталь. Так что не зря титан отливает стальным блеском: этот отлив не обманывает.

Но, кроме хорошей прочности, конструкционный материал обязательно должен иметь и такое важное качество, как пластичность. Пластичность — это способность материала изменять свою форму не разрушаясь, и именно в этой способности титану долго было отказано. Еще в сороковые годы нашего века о титане писали, что он ”хрупок и легко превращается в порошок при дроблении в ступке”. Любопытна и следующая запись: "Попытки вытянуть проволоку из титана безуспешны”.

Меньше всего хотелось бы иронизировать над автором приведенных строк, тем более что он поставил перед собой задачу ”заполнить досадный пробел в литературе, посвященной столь важному и интересному химическому элементу”.

На протяжении полутора столетий подлинных свойств металла не знал никто в мире. Но как только стали получать титан достаточной степени чистоты, сразу выяснилось, что причиной хрупкости металла являются примеси, а чистый титан очень пластичный материал. Его куют, как железо, вытягивают в проволоку, прокатывают в листы, трубы, ленты и даже в фольгу толщиной в сотые доли миллиметра.

Титан — более упругий металл, чем магний и алюминий, но менее упругий, чем сталь. Он гораздо тверже алюминия, магния, меди, железа и почти не уступает особо обработанным легированным сталям. Титан — один из немногих металлов, которые наряду с высокой прочностью и пластичностью обладают хорошей вязкостью, то есть противостоят воздействию ударов. Этот металл характеризуется еще и таким ценным свойством, как отличная выносливость.

Важный показатель любого металла — предел текучести. Чем он выше, тем лучше металл сопротивляется нагрузкам, стремящимся смять его, изменить размеры и форму изготовленной из него детали. У титана предел текучести весьма высок: в два с половиной раза выше, чем у железа, в три с лишним раза выше, чем у меди, и почти в 18 раз превосходит этот же показатель для алюминия.

Итак, титан гораздо прочнее и легче обычной углеродистой стали, получаемой из чугуна. Но в современном машиностроении широко распространены не столько углеродистые, сколько легированные стали, то есть сплавы на основе железа с добавками никеля, хрома, марганца, молибдена, вольфрама, а также других цветных и редких металлов. Легированные стали значительно прочнее углеродистых и в несколько раз прочнее технического титана. Выходит, что титан все-таки уступает стали? Нет не уступает! Титан тоже можно легировать и тогда получают сплавы, прочность которых в два- три раза больше прочности чистого титана.

Титановые сплавы — это, быть может, самые совершенные материалы, которыми располагает современная техника. Они превосходят все другие распространенные металлы по такому важному показателю, как удельная прочность. Что это такое? Не что иное, как прочность, приходящаяся на единицу массы.

Чтобы нагляднее постичь это, представим себе такую картину. На помост выходят тяжелоатлеты. Вряд ли нас удивит то, что грузный человек поднимает большую тяжесть. Ведь так оно и должно быть: те, кто полегче, обладают, как правило, меньшей силой, а от массивного, с мощными бицепсами атлета мы ждем и высокого результата. Не зря же в тяжелоатлетическом спорте введены различные весовые категории. А теперь вообразим, что после этого тяжелоатлета на помост вышел скромный, на первый взгляд ничем не примечательный спортсмен, худощавый, среднего роста и с первой попытки покорил тот же самый вес. Кто же из них сильнее? Конечно же, худощавый!

Такую же аналогию можно провести относительно титановых сплавов и специальных сталей. Титановые сплавы почти вдвое легче, а нагрузки выдерживают почти такие же.

Если бы все достоинства титана заключались только в его легкости и прочности, то и этого было бы уже достаточно для развития титановой промышленности, так как и в этом случае игра стоила свеч и нашлось бы немало отраслей, заинтересованных в таком материале. Но, помимо прочности и легкости, титан отличается еще и замечательной стойкостью против коррозии.

КОГДА ОТСТУПАЕТ ЗОЛОТО

Среди семи с лишним десятков металлов в периодической системе есть небольшая группа элементов, стоящих особняком. Это "химическая аристократия", так называемые благородные металлы. Как патриции среди плебеев, возвышаются они над остальными, неблагородными металлами. Ценность их подчеркивается еще и высокой стоимостью. "Аристократов" всего восемь. Золото, серебро, платину знают все. Остальные пять — металлы платиновой группы: иридий, рутений, родий, осмий, палладий.

Все эти металлы очень тяжелые и одновременно мягкие, хорошо проводят электричество и тепло, легко обрабатываются. Они плавятся при сравнительно высокой температуре, имеют красивый внешний вид. Но не это самое главное, не поэтому они благородные. Всем им свойственна стойкость против воздействия кислот, щелочей, солей и газов. Разнообразно применение благородных металлов. Их используют в химической и ювелирной промышленности, в электротехнике и зубоврачебном деле. Золото является валютным металлом.

Невозмутимость, инертность, спокойствие — вот что такое благородство металла. Золото почти ни с чем не вступает в реакцию и именно поэтому в земной коре оно находится в самородном состоянии. Сколько бы ни пролежало золото под открытым небом, оно не окислится, не заржавеет. Благодаря такой стойкости сохраняются почти в первозданном виде произведения искусства древности, утварь, украшения, которые находят в раскопках спустя тысячелетия.

Черные металлы — основные материалы для современной техники и им поручена самая черная и неблагодарная работа. Миллионы тонн чугуна и стали быстро уничтожает коррозия, и на смену им выплавляют новые миллионы.

С олимпийским спокойствием взирает на события в стане плебеев золото — царь металлов. И так же спокойно ведет оно себя при встрече с агрессивными реагентами — сильнейшими кислотами и щелочами. Золото не вступает в реакцию ни с одним из них, подобно тому как надменный аристократ не снисходит до разговора с первым встречным.

Да, золото не реагирует с сильнейшими разрушителями многих других металлов. Это — правило. Но из некоторых правил бывают и исключения. Так и здесь. Смесь трех частей соляной и одной части азотной кислоты легко растворяет ”царя”. Оттого смесь эта образно названа "царской водкой”. Точно такой результат будет и в том случае, если золото поместить в смесь азотной и серной кислот, в хлорную воду и еще в некоторые реагенты.

Если даже золото не стойко против этих веществ, то что же тогда говорить о неблагородных металлах! Как, наверное, беззащитно будут выглядеть они по сравнению с золотом!.. Но так думать нельзя, потому что предположение это ошибочно.

Как знатность по рождению не гарантирует талантов и высоких моральных качеств, точно так же и химическое "неблагородство” не умаляет имеющихся достоинств. И в хлорной воде, и в смеси азотной и серной кислот, и в разрушительной ”царской водке” при обычной температуре стоек титан!

Разумеется, это совсем не значит, что титан превосходит по своей стойкости золото и другие драгоценные металлы. В подавляющем большинстве агрессивных сред ”химическая аристократия” подтвердит свое благородство и поставит титан на место. Но все равно это не ”подрывает авторитета” нового промышленного металла: нередко он демонстрирует поистине феноменальную стойкость, и не зря пишут в серьезных научных изданиях, что по коррозионной стойкости во многих средах титан не уступает платине.

БРАТ ОКЕАНА

Если погрузить в океан одинаковые — миллиметровой толщины — пластинки алюминия, медноникелевого сплава ”мо- нель”, нержавеющей стали и титана, то дальнейшие события будут развиваться так.

Вскоре, буквально через несколько дней, алюминий покроется серыми пятнами, а сплав "монель" станет темно-зеленым. Спустя пять месяцев со дня погружения в океан разрушится алюминиевая пластинка. Пластинка "монеля" просуществует на четыре месяца дольше. Нержавеющая сталь более стойко сопротивляется воздействию едкой воды, но и ее образец, довольно быстро сделавшись ржаво-коричневым, растворится через четыре года. Уничтожить сталь помогут ракушки и водоросли — прирастая к металлу, они вызывают разрушительную точечную коррозию.

Пройдут еще годы, десятилетия... Пластинка титана тоже обрастет водорослями и моллюсками, но будет оставаться под их слоем блестящей и невредимой. Минуют столетия, но и через века с титаном практически ничего не случится. За тысячу лет коррозия проникнет в глубь металла... на 20 микрон.

Чем же объясняется такая феноменальная стойкость? Быть может, играют роль далекие родственные связи — ведь, как вы помните, океан — тоже титан?! Нет, разумеется, мифология здесь не при чем. Просто морская вода содержит в себе растворы неорганических солей, особенно хлористые соединения, против которых титан устойчив в противоположность другим металлам.

Но ученым надо знать, как ведет себя тот или иной металл не только в спокойном состоянии, но и в условиях кавитации.

Слово "кавитация” образовано от латинского — "пустота". Чем же вредна пустота? И откуда она берется?! В движущейся воде образуются небольшие пространства (пузырьки), заполненные воздухом. Эти пузырьки очень опасны. Лопаясь, они вызывают постоянные удары жидкости о поверхность обтекаемого тела, такие систематические "выстрелы" разрушают любой материал. Титан очень хорошо противостоит гидравлической кавитации. Вот один очень характерный пример.

Диски из различных материалов вращались в морской воде со скоростью свыше 1000 оборотов в минуту. В подобных опытах особенно повреждаются внешние края диска, так как именно там потоки воды достигают наивысшей скорости. После двухмесячного непрерывного вращения титановый диск "похудел" всего на 0,05 грамма, второй же после титана по стойкости материал разрушался в 80 раз интенсивнее, и его толщина по наружной кромке уменьшилась, тогда как титановый диск нисколько не сделался тоньше.

С титаном связывают будущее судостроения — ведь в морской воде он самый стойкий из промышленных металлов. Ни бронза, ни латунь, ни все другие сплавы на основе меди и никеля не могут соперничать с ним, не говоря уже о нержавеющих сталях, алюминии или магнии.

Правда, драгоценные металлы, за исключением серебра, тоже

не вызывают никаких претензий по части стойкости в агрессивной среде морей и океанов, но разве можно серьезно говорить об их широком применении в конструкциях судов? Мы никогда не увидим кораблей с золотыми якорями, с платиновым корпусом или с мачтами из иридия. А вот титановые корпуса и мачты — не пустая мечта.

В мире очень много веществ, обладающих способностью активно разрушать металлы, но подавляющее большинство их получено человеком искусственно и по сравнению с природными веществами количество их еще не так велико. Однако и в самой природе есть весьма агрессивные среды и важнейшая из них — морская вода. Важнейшая потому, что добрых две трети поверхности нашей планеты занимают океаны и моря, и потому, что морская вода, как мы уже узнали, крайне разрушительно действует на металлы. Воздействие это проявляется не только в случае погружения металлов в воду, но и тогда, когда они находятся над океаном или на его берегу. И как хорошо, что люди, наконец, имеют в своем распоряжении металл, который ничуть не боится моря и запасы которого в мире огромны!

Титан очень нужен не только судостроению, но и морской авиации, различным прибрежным сооружениям. В будущем, когда суша нашей планеты будет полностью освоена, когда будут возделаны все без исключения плодородные земли, а потребность в продовольственных ресурсах будет продолжать расти, люди вплотную займутся освоением богатств мирового океана. Помогут им в этом металлы и в первую очередь ~~ титан.

Если титан настолько устойчив в морской воде, то пресная вода для него, вероятно, совершенно не представляет опасности? Да, именно так. Хотя пресная вода тоже далеко не безобидна: обычная мягкая сталь, опущенная в водопроводную воду, уже через сутки покрывается толстым слоем ржавчины. Титан же не разрушается не только в обычной холодной, но даже в кипящей воде.

Одно из коррозионных испытаний титана заключалось в том, что пластинки металла помещали в автоклав, который в свою очередь ставили в печь. Температура нагрева составляла 280 °С, в результате чего давление в автоклаве достигало 480 кПа и на каждый квадратный сантиметр титановой пластинки действовало разрушающее усилие в 140 килограммов. И так продолжалось 13 суток.

Когда же испытания закончились, взору исследователей предстали совершенно не поврежденные титановые пластинки. Они не потеряли ни миллиграмма своей массы и не утратили прочности. А ведь перед испытанием пластинки намеренно изгибали, чтобы титан находился в напряженном состоянии, так как под напряжением металлы разрушаются быстрее.

Титану не страшны никакие атмосферные осадки — ни дожди, ни туманы, ни снег, ни град, совсем не опасен воздух, загрязненный отходами промышленных предприятий. Под открытым небом титан даже не тускнеет. Вот почему его называют "вечным” металлом.

НЕВИДИМАЯ БРОНЯ

Благородные металлы устойчивы против коррозии вследствие своего "благородства” — то есть присущей им химической невозмутимости. Но почему стоек титан? Ведь его даже при всем желании нельзя отнести к разряду инертных — это один из наиболее активных элементов, постоянно стремящихся вступить в реакцию, и именно этим прежде всего объясняется трудность его выделения из соединений. Все это так, но тем не менее металл демонстрирует завидную коррозионную стойкость.

Теоретически стойкость того или иного металла против коррозии прямо зависит и от так называемого электродного потенциала: чем он выше, тем лучше и коррозионная стойкость, и наоборот. Так вот, по подсчетам и экспериментам, электродный потенциал титана невысок и теоретически титан должен быть по коррозионной стойкости примерно таким же "середнячком”, как магний или алюминий. Чем же объясняется в таком случае его нередко прямо-таки поразительная стойкость?

Вот здесь-то как раз химическая активность металла, стремление вступать в реакцию с другими элементами служит добрую службу. Благодаря своей химической активности титан интенсивно окисляется и на его поверхности образуется тончайшая пленка диоксида титана. И где бы ни находился металл — на воздухе, в воде или в производственных агрессивных растворах — от дальнейшего взаимодействия с разрушающими веществами толщу металла защищает эта тонкая, но чрезвычайно прочная пленка. Пленка настолько тонка, что ее невозможно увидеть не то что невооруженным глазом, но даже и в обычный микроскоп. В быту мы редко пользуемся малыми величинами и кажется, что меньше микрона — тысячной доли миллиметра — нет уже никаких единиц измерения. Однако есть еще ангстрем — десятитысячная доля микрона. Вот в ангстремах-то как раз и выражают толщину оксидной пленки титана.

Хотя защитная пленка необычайно тонка, она достаточно прочна и надежна. Если ее в каком-либо месте специально сцарапать, она ”самозалечивается” и возникает снова как ни в чем не бывало. Оксидная пленка защищает титан не только от коррозии, но и от умеренного механического воздействия, поэтому металл стоек также против эрозии и кавитации.

”Лучший друг” титана — кислород, поскольку является одним из сильнейших окислителей. Другие окисляющие агенты — азотная и хромовая кислоты, вода тоже помогает титану окисляться и тем самым покрываться невидимым защитным панцирем. Наблюдается удивительная картина: окисление, тот же самый процесс, который стремительно съедает железо, превращая его в окисел — ржавчину, делает титан сказочным богатырем, не боящимся почти никаких врагов.

По этой же самой причине влага и сырость — злейшие враги железа и многих других металлов — для титана являются чем-то вроде водных процедур, закаливая и укрепляя его. Так обстоит дело на практике.

Впрочем, свежезачищенная поверхность титана, опущенного в морскую воду или другой раствор, в котором металл стоек, поначалу действительно имеет низкий электродный потенциал— гораздо ниже нуля. Но сразу после погружения потенциал начинает повышаться и вскоре из отрицательного делается положительным. Так что в действительности расхождения между теорией и практикой нет: высокой стойкостью против коррозии обладают металлы с высоким электродным потенциалом, которым обладает и титан, когда находится во многих агрессивных средах.

Поскольку азотная и хромовая кислоты — сильнейшие окислители, не удивительно, что титан не разрушается в них при любых концентрациях и при любых температурах — вплоть до температур кипения. В органических кислотах — уксусной, молочной, стеариновой, лимонной, виннокаменной и многих других — металл настолько стоек, что отполированная его поверхность нисколько не утрачивает своего блеска. Металл абсолютно устойчив во влажном хлоре и его водных соединениях, в соединениях серы, хрома. Хорошую стойкость титан демонстрирует в щелочах, растворах гипохлорита кальция и натрия.

Титан стоек и в целом ряде расплавленных металлов — в жидком магнии, нагретом до 700 °С, в горячих олове, галлии, ртути, литии, натрии, калии. (Это позволяет изготовлять из него специальные контейнеры для транспортировки перечисленных расплавленных материалов, а также черпаки для взятия проб.) Титан стоек и в расплавленной сере.

В растворах серной и соляной кислот титан не разрушается только в том случае, если концентрация их не превышает 5 процентов. Это, конечно, не бог весть какое достижение. Ведь золото, к примеру, без малейшего для себя ущерба переносит соляную и серную кислоты самой высокой концентрации. Но надо все же сравнивать титан с металлами, близко стоящими к нему по своей стоимости и доступности, а не с золотом. Так вот, нержавеющая сталь гораздо менее устойчива в тех же кислотах, чем титан. Хотя титан и разрушается, все же в 25-процентном растворе соляной кислоты он почти в 250 раз устойчивее, чем нержавеющая сталь.

Было бы очень неплохо иметь хотя бы один материал, который совершенно не подвергался бы коррозии. Увы, это нереально. В природе нет ничего вечного. Тогда, может быть, есть такой материал, который хотя и разрушается, но везде одинаково, незаметно, то есть такой, который был бы практически стоек во всех агрессивных средах? Нет и такого материала. Чудес не бывает.

Как разрушается золото — уже говорилось выше. И его "свита” тоже уязвима. В азотной кислоте растворяются палладий и осмий, в "царской водке" — палладий и платина. Серебро интенсивно корродирует при встрече с хлором, сурьмой, мышьяком.

Титан тоже не всемогущ и не претендует на то, чтобы с его помощью решать все проблемы. При контакте со щавелевой, фосфорной, с концентрированными соляной и серной кислотами защитная пленка на поверхности металла разрушается (точнее, скорость ее растворения превосходит скорость образования) , обнажается активный металл и начинается интенсивная коррозия.

Титан не стоек в пероксиде водорода, сухих хлоре и броме, в спиртовой настойке иода. Самый же страшный разрушитель титана — фтор. Совершенно незначительное количество ионов фтора вызывает стремительную коррозию металла. В плавиковой кислоте (соединении фтора с водородом) титан растворяется буквально на глазах — как сахар в горячем чае. Фтор вообще удивительный элемент, он разрушает все на свете. В его струе загораются вещества, которые обычно никогда не горят — кирпич, асбест, железо, сталь и даже... вода, если ее подогреть!

Фтор — самый активный, самый агрессивный элемент в природе, само его название в переводе с греческого языка означает "разрушающий все". И свое название фтор подтверждает на каждом шагу. Так, инертные газы (аргон, гелий, криптон, неон и др.) потому и названы инертными, что не вступают в реакцию ни с одним элементом. Ни с одним! Кроме... фтора. Этот газ светло-желтого цвета воспламеняет (если приблизить к нему) кремний и теллур, мышьяк и бром, иод и сурьму. Благородные платиновые металлы полностью проявляют свое "благородство" и при комнатной температуре не вспыхивают во фторе, как это делают названные выше элементы, но стоит платиновые металлы чуть-чуть нагреть — их постигает та же плачевная участь. И вправду, фтор — "разрушающий все"! Перед таким противником не стыдно отступить и титану.

Коррозионную стойкость титана можно повысить. Делается это различными путями. Вот один из них. В соляной и серной кислотах титан не стоек. Однако достаточно добавить в них немного азотной или хромовой кислоты, как поведение титана меняется самым разительным образом — он делается устойчивым материалом, его разрушение практически прекращается. Точно так действуют на титан и присутствующие в растворе ионы железа, меди и некоторых других металлов.

Поэтому иногда в растворы, в которых титан обычно не стоек, специально добавляют азотную или хромовую кислоту, соединения хлора и некоторые другие вещества, чтобы металл сделался пассивным, устойчивым. Способностью азотной кислоты пассивировать титан как раз и объясняется его кажущаяся столь феноменальной стойкость в "царской водке".

А бывает, что вещества, пассивирующие титан, так называемые ингибиторы коррозии, уже имеются в растворе.

В этом случае металл будет устойчив в концентрированных серной и соляной кислотах, а также в других соединениях, в которых он, как правило, разрушается.

Вот почему лучше всего исследовать стойкость титана в каждом конкретном случае, а особенно когда пригодность титана для применения в данной среде вызывает сомнения.

Ну а если в агрессивном растворе нет пассивирующих титан веществ или ввести их туда невозможно из-за особенностей технологии, что тогда? Отказаться от титана, поискать что-нибудь другое, более стойкое? Можно и так. Но только и среди более стойких, чем обычные сплавы титана, материалов тоже окажутся... титановые сплавы. Речь действительно идет о сплавах титана, но с повышенной коррозионной стойкостью.

Если в титан добавить всего две десятых доли процента благородного металла палладия, то такой сплав делается в десятки, а иногда и в сотни раз более стойким, чем обычные титановые сплавы, а сплав титана с молибденом настолько стоек, что применяется вместо золота в крепких растворах серной, соляной и других минеральных кислот.

Да, наверное, скажете вы, но при чем здесь титан? Ведь высокую стойкость против коррозии обеспечивают палладий, молибден, тантал и другие редкие и благородные металлы. И все же стоек именно титан, добавки других металлов только способствуют этой стойкости.

Если такие же количества ценных металлов добавлять в железо, алюминий, магний или другой какой-нибудь распространенный металл, эффект не будет таким впечатляющим, потому что титан в гораздо большей степени, чем другие металлы, обладает способностью к пассивации — состоянию, когда его надежно укрывает и предохраняет от разрушения тончайшая оксидная пленка — невидимая броня.

ПАРАДОКСАЛЬНЫЙ МЕТАЛЛ

В 1955 году в одном из номеров американского журнала "Современные металлы" появилась небезынтересная статья, автор которой назвал титан "парадоксальным металлом", имея в виду его противоречивые свойства. А противоречий у металла действительно оказалось предостаточно.

В самом деле, сырье для производства титана имеется в изобилии, добыча руды обходится очень недорого, а металл в деформированном виде в то время стоил дороже, чем серебро. Даже сейчас титан никак не назовешь дешевым материалом.

Еще один парадокс. Точка плавления титана лежит за пределами 1600 °С, но уже при температурах чуть выше 400 °С защитная оксидная пленка на его поверхности повреждается, металл насыщается газами и прочность его значительно понижается. Небольшие добавки других элементов повышают жаростойкость титана на 600 °С, однако такой показатель, конечно же, недостаточен для того, чтобы конкурировать с жаростойкими сплавами на основе железа и никеля.

Сварка титана с титаном не представляет особой сложности, но методы сварки этого металла с другими не разработаны до сих пор. Невозможность сварки титана с различными металлами представляет собой серьезную проблему, на решение которой расходуется много времени и средств. Любопытно и то, что, будучи цветным металлом, титан претерпевает фазовые превращения подобно железу и стали — металлам черным.

Рентгеновские исследования показали, что при комнатной и не слишком высокой температуре кристаллическая решетка у титана — шестигранной формы. С дальнейшим повышением температуры атомы титана перегруппировываются. Решетка

принимает форму куба и сохраняет ее вплоть до точки плавления.

Положения статьи можно развить и продолжить.

В азотной кислоте титан демонстрирует превосходную стойкость. Но вот что произошло однажды на американской военной базе Ванденберг. К запуску готовили очередную ракету. Обслуживающий персонал был достаточно квалифицированным и хорошо выполнял знакомую работу. Ничто как-будто не предвещало катастрофы. Но вот бак для окислителя стали заполнять азотной кислотой и в этот момент ракета взорвалась! Тревожно завыли сирены, засуетились машины скорой помощи, грузовики со спасателями помчались к месту аварии. В чем же причина взрыва и последующего пожара? Обслуживающий персонал не допустил никаких оплошностей, никаких нарушений. Но кто-то же был виновен в случившемся? Позднее выяснили, что этот ”кто-то” — титан, из которого был изготовлен бак для окислителя.

Да, титан показывает в концентрированной азотной кислоте завидную стойкость и практически в ней не разрушается. Но иногда при соприкосновении с кислотой, насыщенной оксидами азота, с так называемой красной дымящей азотной кислотой, титан, если он находится под напряжением, может взорваться. Причина кроется в том, что при определенном соотношении в кислоте воды и оксида азота защитная пленка на поверхности титана разрушается и начинается бурная химическая реакция, при которой выделяется водород и много тепла. А затем — взрыв! Взрывная волна в мгновение ока срывает с титана всю защитную пленку и тогда металл загорается.

Но загораются не только ракеты и не обязательно в контакте с кислотой. При определенных условиях порошок титана может вспыхнуть безо всяких контактов с огнем или с какими-либо пожароопасными веществами. Он может загореться самопроизвольно. Точно так же самопроизвольно способны вспыхивать и мелкая стружка, и титановые опилки. Стружка покрупнее может загореться от спички.

Огонь способен возникнуть и на листах титана, которые извлекают из травильных ванн, если температура раствора очень высокая.

Погасить горящий титан очень непросто. Обычно горение обеспечивает и поддерживает кислород, но титан горит даже тогда, когда в воздухе совершенно нет кислорода — ведь этот металл вступает в реакцию с азотом и горит в нем. Чтобы потушить титан, не прибегают к помощи пены, углекислого газа из огнетушителя, воды, которая, попадая на горячий металл, мгновенно разлагается на составляющие элементы — водород и кислород. Образуется гремучая смесь, которая тут же взрывается. Но чем же, в таком случае, тушат воспламенившийся титан? На помощь приходит специальный огнетушительный порошок или совершенно сухой песок. Они и справляются с полыхающим огнем титаном.

Справедливости ради надо заметить, что воспламенение титана случается очень и очень редко, причем почти всегда только в том случае, если недостаточно соблюдались меры предосторожности. Крупные же куски и обрезки металла сами не загораются. Впрочем, то, что титан способен воспламеняться, не всегда плохо. Пиротехники, например, считают, что основное достоинство титана как раз в этом и состоит: ведь благодаря этому можно устраивать ослепительно яркие фейерверки.

В магнитном поле титан не отталкивается подобно меди, золоту или серебру, но и почти не обладает магнитной восприимчивостью. И если железо, никель и некоторые другие металлы сильно притягиваются магнитным полем и остаются намагниченными, когда никакое поле на них уже не действует, то титан можно смело считать практически немагнитным материалом, так как его магнитные свойства выражены очень слабо.

Часто для бытовой электропроводки используют алюминий, так как он проводит электрический ток не намного хуже меди. В подобной роли мы никогда не увидим титан и не потому, что металл этот относительно дорог. Сколько бы ни снижалась его стоимость, электропроводность металла останется постоянной: в тридцать с лишним раз хуже, чем у меди.

Это тоже странно, так как металлы тем и отличаются от неметаллов, что хорошо проводят электричество и тепло. А вот титан — не такой. Кстати, и тепло он проводит тоже плохо.

Титан тверже железа, его ни в коем случае нельзя назвать мягким металлом. Алюминий, мы это прекрасно знаем, тоже не так уж и мягок. Так вот титан в двенадцать раз тверже, чем

алюминий, и однако Однако твердость его далеко не всегда

достаточна. Особенно это проявляется в тех случаях, когда нужно получить острую кромку, которая обладала бы режущими свойствами.

На одном из предприятий была выпущена опытная партия комплектов столовых приборов. Но когда хозяйки пустили в ход кухонные ножи с лезвиями из титана, разочарованию не было границ: ножи были тупыми и ничего не резали. Экспериментаторы решили было, что ножи просто плохо заточены и интенсивно принялись точить лезвия. Но лезвия по-прежнему остались тупыми. В чем же дело?

А в том, что для ножей титан — недостаточно твердый металл. Их обычно делают из особотвердой инструментальной стали, которая гораздо тверже титана. Поэтому затачивать ножи из титана — пустая затея. Вот почему в комплектах хирургических инструментов из титановых сплавов лезвия скальпелей сделаны не из титана, а из стали. В титановых же столовых наборах только вилки и ложки пригодны к употреблению, а что касается ножей, то они выполняют скорее декоративные, чем непосредственно режущие функции.

Титан имеет и другую характерную особенность, которая в еще большей мере препятствует широкому его использованию в трущихся узлах и деталях. Речь пойдет о склонности титана к налипанию, поверхностному схватыванию с другими металлами, в результате чего детали очень быстро выходят из строя.

При трении титан как бы прикипает к поверхности других металлов. Это приводит к тому, что металлические частицы отрываются от основной массы детали, причем если титан соприкасается с металлами, более твердыми, чем он, то вскоре они оказываются покрытыми слоем растертых частиц титана. И наоборот, если металлы более мягкие, то их частицы отрываются и прирастают к титану. Как в том, так и в другом случае, итог малоутешителен: детали как бы съедают одна другую.

Чтобы при трении изделия не разрушались, обычно применяют смазку, которая в значительной мере ослабляет трение. Это — обычно. Но титан — металл необычный, парадоксальный. Вот и при смазке он нисколько не изменяет своих свойств по части трения и налипания — не помогают масла и жиры, ни мыла, ни спирты и кислоты, ни другие обычно с успехом применяемые смазочные материалы. Даже твердая смазка — и та недостаточно эффективна. Лишь только графит и сернистый молибден оказываются более или менее пригодными смазочными веществами, но лишь в течение непродолжительного времени.

И все же титановые сплавы используют для изготовления трущихся деталей. Благодаря различным трудоемким методам обработки повышается твердость поверхности и намного уменьшается склонность металла к налипанию и задирам, что уменьшает износ деталей.

По склонности к налипанию в сомнительных случаях можно очень точно определить — титан ли тот металл, который у вас в руках. Если по мокрому стеклу провести куском металла и после этого на стекле останется серо-белая черта, значит, это действительно титан. Проба на искру также позволяет легко узнать его среди других металлов: при соприкосновении с абразивным кругом титан испускает пучок белых блестящих искр.

Как уже известно, титан противостоит действию серной кислоты только в том случае, если она очень разбавлена и ее концентрация не превышает 5 процентов. Чем выше концентрация, тем интенсивнее коррозия. Но как вы думаете, когда титан разрушается сильнее: находясь в 40-процентной или же в 60-процентной серной кислоте? Вы, вероятно, решите, что в более концентрированном растворе титан будет и корродировать болев интенсивно. Но в действительности все наоборот. Сначала, правда, титан в 60-процентной кислоте разрушается сильнее, но через несколько часов коррозия его почти совершенно прекращается.

Титан беззащитен против галогенов — фтора, иода, брома, хлора. Погруженный в жидкий бром, металл уже через 15 минут вспыхивает и сгорает дотла. То же самое происходит с титаном и в сухом газообразном хлоре с той, правда, разницей, что воспламенение наступает несколько позже — через сутки. Но если в хлоре будет совершенно мизерное количество влаги (хотя бы одна частичка воды на 20000 частей хлора), поведение металла меняется самым разительным образом и из совершенно нестойкого материала он делается абсолютно стойким в этой среде. Что и говорить, действительно, странный, парадоксальный металл!

Металл, который внезапно вспыхивает и горит так яростно, что его погасить почти невозможно, — успешно используют для противопожарных переборок. Металл, который может взорваться, — широко применяют в ракетных и самолетных двигателях.

А стоит ли того большого внимания, которое ему уделяют, такой капризный металл с целой массой недостатков? Он легкий, да, этого не отнимешь, но ведь алюминий гораздо легче, а о магнии и говорить не приходится... Что же касается прочности, то специальные стали гораздо прочнее его. И по стойкости против коррозии он тоже не чемпион: некоторые металлы превосходят его, причем металлы эти не благородные, а (хотя и редкие, и более дорогие) такие же рядовые, как он, — тантал, к примеру, или цирконий.

Все это так. Но, уступая некоторым другим металлам в легкости, прочности, стойкости против коррозии, титан остается по-прежнему уникальным материалом. Ведь он — единственный металл, сочетающий в себе все перечисленные свойства и тем самым как бы работающий за троих. Именно такое сочетание оправдывает все его недостатки, с избытком компенсируя затраты и трудности, связанные с его производством и применением.

Глава 5. СТРАТЕГИЧЕСКИЙ МЕТАЛЛ

ТИТАНОВЫЙ БУМ

Тот, кто видел фильм кинорежиссера Михаила Ромма ”9 дней одного года”, вряд ли когда-либо забудет эту сцену. Бетонный коридор, вдоль которого тянутся бесчисленные сгустки проводов. Этот длинный коридор, или туннель, символизирующий долгий путь поисков истины, как бы проходит через весь кинофильм. По коридору к вам приближается группа сотрудников ядерного института. Их несколько, но спорят двое:

Когда-то война не нуждалась в науке, а сейчас она кормит ее, ибо стала нуждаться в ней, — говорит Николай Иванович.

Выходит, спасибо войне? Вот это ловко! — возмущается оппонент.

Зря ухмыляетесь! Что, по-вашему, двинуло вперед авиацию, ракетостроение, кибернетику, радиоэлектронику?

Но оппонента, Валерия Ивановича, переубедить трудно. Однако Николай Иванович не рисуется, когда продолжает аргументировать свою парадоксальную мысль:

Кюри-Складовская своими руками .... перетаскала двадцать тонн урановой руды. А у нас любой опыт готовят триста человек. И никто нас не ограничивает. Почему?

Ну какое мы-то имеем отношение к войне? — недоумевает и возмущается оппонент. — Самый мирный институт!

А сейчас нельзя двигать одну область. Все взаимосвязано, — заявляет Николай Иванович.

Спор продолжается. Подходят знакомые, здороваются и отходят, звучат шутки, раздаются пустячные реплики, а спор не окончен. Оппонента переубедить не удалось, но последнее слово принадлежит все же Николаю Ивановичу. В дверях своей лаборатории он категорически подводит черту:

И тем не менее современная война стремительно движет науку. В этом заключается ядовитейший парадокс двадцатого века.

Парадокс — неожиданное положение, противоречащее здравому смыслу, общепринятым представлениям, но противоречие это нередко только внешнее. По всей сути мнение Николая Ивановича не просто парадоксально.

Собственно говоря, металлургия с давних пор тесно связана с военным делом. Сначала из металлов изготовляли холодное оружие, затем — огнестрельное. Постепенно совершенствовались методы получения металлов, создания сплавов с особыми свойствами. Так родились известные булат и дамасская сталь, из которых делали непревзойденные мечи и клинки.

Потребность в ружьях, пушках, ядрах, снарядах вызывала необходимость увеличения выпуска стали и чугуна, создания металлов и сплавов с особыми свойствами, так как качество материала, из которого изготовлено оружие, нередко определяло исход военных действий. На протяжении всей истории нового и новейшего времени происходит прекращающееся соревнование брони и бронебойных снарядов, дальности действия орудий и их мощи в количественном и качественном отношениях.

Однако справедливость требует того, чтобы признать: военное дело прежде всего стимулировало совершенствование уже имевшихся металлов, полученных человечеством в результате поступательного развития общества. Что же касается титана, то можно вполне уверенно сказать: не будь потребности в подобном материале в военном самолетостроении, титан до сих пор не был бы нам знаком.

С момента своего возникновения производство металлического титана имело исключительно военную направленность, было вызвано к жизни нуждами военной техники, ими поддерживалось. В США этот металл неспроста образно назвали ”\уаг- ЬаЬу” — ”дитя войны”.

По темпам роста производства титан не имеет себе равных среди других промышленных металлов.

Первые несколько килограммов металлического титана были использованы в военных американских самолетах в 1950 году — спустя пять лет после того, как американская военщина впервые применила атомное оружие для уничтожения двух японских городов. Этот зловещий отсвет лежит на становлении и развитии титановой промышленности США в бесславное время военной авантюры в Корее, в период "холодной войны”, политики ”с позиции силы”. Начатое под давлением американских военных производство титана имело сугубо военную направленность и все новшества в этой области первое время охранялись почти с такой же строгостью, как и сведения об атомной бомбе.

Одновременно со стратегическими запасами ядерных бомб интенсивно наращивались мощности по производству металлического титана.Первый титановый завод был пущен в 1951 году в городе Гендерсоне (штат Невада). Один за другим вводились в действие титановые предприятия в штатах Делавер, Мичиган, Теннесси, Огайо. Строительство заводов происходило при непосредственной помощи государства. Правительство США в начале 50-х годов заключило с некоторыми фирмами контракты, предоставив им целый ряд льгот, и обязалось скупать продукцию, которая не будет находить сбыта по заранее оговоренным ценам.

В течение десяти лет в развитие титановой промышленности правительство США вложило около 200 миллионов долларов и неменьшую сумму составили вложения частных фирм. Темпы роста производства нового конструкционного материала в эти годы были почти в четыре раза выше, чем темпы роста выпуска алюминия в первые годы возникновения алюминиевой промышленности. Если в 1949—1950 годах производство титана исчислялось десятками тонн, то в дальнейшем оно составляло сотни и тысячи тонн. В 1957 году выпуск этого металла в США превысил 15000 тонн.

Несмотря на стремительный рост производства, в первые годы ощущалась острая нехватка титанового проката. Американское правительство приняло специальное постановление, запрещавшее фирмам-производителям продавать титановый прокат невоенным предприятиям.

Интерес к титану как к перспективному конструкционному материалу появился в конце второй мировой войны в связи с возникновением реактивной авиации и основным потребителем металла в первое время были военно-воздушные силы. На долю военного самолетостроения в 50-е годы приходилось 95 процентов всего применяемого в США металла.

Титановый бум продолжался до 1957 года. Но уже в следующем году количество произведенного металла уменьшилось вчетверо, а еще через год сократилось до 3,5 тысячи тонн. Резкое падение производства титана было вызвано уменьшением выпуска пилотируемых машин и перенесением центра тяжести на изготовление самолетов-снарядов. В связи с этим значительно сократился выпуск тяжелых бомбардировщиков В-52, для производства которых в основном и применяли новый металл.

Титан не находил спроса, а о том, чтобы использовать его в мирных отраслях промышленности, в те времена даже речи не возникало.

Но вскоре после описанных событий в связи с гонкой ракетно-ядерного вооружения, созданием сверхзвуковых самолетов, исследованием космического пространства уровень производства титана в США начал возрастать. Он пережил и переживает 50 еще немало взлетов и падений, ибо полностью зависит от требований военной промышленности США.

Разительный контраст в этом смысле представляет собой развитие советской титановой индустрии. Она не знала спадов, потому что была ориентирована не только на нужды обороны, но и на потребности всего народного хозяйства. Почти одновременно с обеспечением специальных отраслей титан в нашей стране стал поступать на химические и металлургические заводы, в цехи, лаборатории, повышая надежность техники и производительность труда, улучшая условия работы.

И не случайно в мире нет стран, равных СССР по степени использования титана в невоенных областях — как в абсолютных цифрах, так и по масштабам насыщенности титаном той или иной отрасли народного хозяйства. Выдающийся вклад нашей страны в освоение титана как материала мирного отмечали сами американские специалисты.

АЛЮМИНИЙ . . . ТЯЖЕЛЕЕ?

Нет, алюминий не тяжелее титана. Напротив — в полтора раза легче. Но почему же в таком случае титановые детали используют вместо алюминиевых для облегчения самолета? Когда обычную сталь заменяют "легкой сталью", это понятно, и никаких особенных разъяснений не требуется. Но алюминий ... Если уж облегчать конструкцию, то, казалось бы, алюминий следует заменять более легким металлом. Но все объясняется иной причиной — высокой удельной прочностью титановых сплавов.

Каждый узел, каждая деталь самолета должны с гарантией выдерживать определенную нагрузку, быть достаточно прочными для этого. Есть поговорка: "Где тонко, там и рвется", то есть, говоря иначе, заданная прочность обеспечивается определенной массой материала. Титан несколько тяжелее алюминия, но он и гораздо прочнее его, и для тех же деталей самолета титана требуется меньше, чем алюминия, стало быть, конструкция становится легче.

Благодаря использованию титана взамен алюминия массу самолета удается уменьшить на 20—25 процентов. А это чрезвычайно важно. Облегчить самолет — значит повысить его скорость, потолок и радиус действия, увеличить маневренность и грузоподъемность. Поэтому авиация заинтересована в использовании титана при изготовлении реактивных двигателей, кожухов камер сгорания, капотов, роторов турбин, деталей планера, колес — везде, где только возможно, вплоть до таких несложных изделий, как гайки и болты.

Подсчитано, что если при утяжелении конструкции масса самолета повышается всего на одну десятую, то чтобы сохранить неизменными все его прежние летные характеристики, необходимо настолько увеличить мощность двигателя, запас горючего, площадь крыла и т.п., что полетная масса самолета возрастает вдвое.

Каждый сэкономленный килограмм массы двигателя позволяет сберечь за счет облегчения фюзеляжа до десяти килограммов в общей массе самолета. Отсюда становится еще более понятным, как много значит каждый дополнительный килограмм массы, на который удается облегчить самолет благодаря применению титановых сплавов. В результате замены стали и алюминия титаном масса самолета снижается на сотни килограммов, а нередко и тонны. Крыло сверхзвукового военного самолета, целиком изготовленное из стали, имеет массу более двух тонн, титановое же крыло — чуть больше 1800 килограммов. В этом случае экономится 200—250 килограммов массы.

В самолетах применяется большое количество болтов, гаек, винтов, заклепок и других крепежных деталей, которые должны быть очень прочными и надежными. Казалось бы, что эти изделия незначительно утяжеляют конструкцию, так как масса каждого из них исчисляется граммами. Но если учесть, что число крепежных деталей в истребителе достигает 20 тысяч, а в транспортном реактивном самолете — почти 50 тысяч, то суммарная их масса составляет солидную цифру — около 100 килограммов в истребителе и 300 килограммов в транспортном самолете. Замена стали титаном уменьшает массу крепежных деталей на одну треть. Чем крупнее самолет, тем ощутимее замена. В гигантском военно-транспортном самолете США ”Локхид С-5А” благодаря использованию титановых заклепок взамен алюминиевых сэкономлено 3,5 тонны массы.

Большая, чем у алюминия, прочность титана позволила уменьшить диаметр заклепок, в результате чего конструкции самолета в состоянии нести более высокие динамические нагрузки, так как усталостная прочность титана выше, чем алюминия или стали.

Титановые сплавы применяют для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов, элементов жесткости, лонжеронов. Замена титаном алюминиевых сплавов несколько снижает жесткость конструкции, так как применяют листы более тонкие, чем прежде. Чтобы сохранить высокую жесткость, используют "сотовые” титановые панели. Благодаря высокой сопротивляемости окислению и достаточной жаропрочности титан используют вместо стали для изготовления противопожарных перегородок.

В последнее время титан успешно применяют в конструкциях вертолетов. Из титановых сплавов изготовляют двери, пол, лопасти несущих винтов. В частности, обшивка титаном лопастей винтов позволяет снизить массу вертолета на 30 килограммов.

МЕТАЛЛ СВЕРХЗВУКОВЫХ СКОРОСТЕЙ

Стремительный рост скоростей полета самолетов и значительное повышение в связи с этим аэродинамического нагрева вызвали резкое увеличение применения титановых сплавов для обшивки фюзеляжа.

При скорости, втрое превышающей скорость звука, на высоте более 20 километров, несмотря на пятидесятиградусный мороз за бортом, поверхность самолета на отдельных участках полета нагревается до 500 градусов и выше. Особенно сильно нагреваются передние кромки стабилизаторов и крыльев, носовые конусы, элероны. Летчик, пилотирующий самолет, видит, что отдельные части обшивки в результате трения о воздух накалены докрасна.

Алюминиевые и магниевые сплавы не выдерживают длительного нагрева при температурах 250°С и выше, размягчаются, теряют прочность. Это делает их непригодными для обшивки сверхзвуковых машин. Специальные жаропрочные сплавы титана не утрачивают своих свойств до 550—600 градусов, а при кратковременном нагреве — и до 800°С. При температуре около 300°С титановые сплавы прочнее алюминиевых в 10 раз! Поэтому титановые плиты и листы широко применяют для изготовления обшивки сверхзвуковых самолетов.

Самолеты нагреваются не только вследствие трения о воздух, но и от находящихся на борту реактивных двигателей — сильных источников тепла. Большое количество титана используют в турбореактивных двигателях 'В виде лопаток и дисков воздушных компрессоров, деталей газовых турбин, кожухов двигателей и т.д.

У реактивных двигателей самолетов, летающих со скоростями, вдвое превышающими скорость звука, температура воздуха на входе в компрессор составляет более 200°С, а на выходе — 500. При таких температурах алюминиевые сплавы применять уже нельзя. Можно, правда, использовать стали, но ведь они гораздо тяжелее титановых сплавов, поэтому применяют сплавы нового металла. Титановые сплавы составляют четвертую часть от массы современных зарубежных реактивных двигателей. Двигатель известного американского самолета-разведчика У-2, один из которых, пилотируемый американским разведчиком Пауэрсом, нарушил воздушные границы СССР и был в свое время сбит под Свердловском, содержал в своей конструкции около 1400 килограммов титана.

Применяемые в газовых турбинах титановые детали выдерживают нагрев при температуре 480°С и позволяют снизить массу турбины дозвукового двигателя на 200, а сверхзвукового — на 100 килограммов.

По мере того, как растут скорости полета и размеры самолетов, расширяется и применение титана в конструкциях летательных аппаратов. Если в дозвуковых самолетах количество титана составляет 1—3 процента от общей массы машин, то в самолетах, летающих со скоростью до 2400 километров в час, на титан приходится уже 3—10 процентов, а в самолетах, мчащихся с еще большими скоростями, количество титана в общей массе машины доходит до 90 процентов, то есть самолет практически полностью состоит из титана, за исключением, разумеется, тех деталей, которые вообще не делаются из металлов.

В США разработан и построен самолет-перехватчик ”Локхид

А-11”. Он достигает высот в 20 километров и более и развивает скорость 3200 километров в час. Это первый американский полностью титановый самолет, в конструкции которого более 30 тонн титана.

Можно назвать десятки серийных военных самолетов, в которых использован титан. Среди них истребители и бомбардировщики, перехватчики, транспортные и военно-морские машины, взлетающие с палуб авианосцев. Титановые сплавы занимают большое' место в конструкции самолета широкого назначения ”Р-4 Фантом” и в экспериментальном, оснащенном ракетным двигателем самолете ”Х-15”, в машине с вертикальными взлетом и посадкой ”ХВ-5А” и в сверхзвуковом бомбардировщике ”ХВ-70А”, в котором число деталей из титана достигает 22 тысяч.

Титан используется не только в американских самолетах. Во Франции новый промышленный материал применяют в самолете ”Мираж-1У”, в реактивном двигателе ”Адур” для самолета ”Ягуар”. Широко применяют его в самолетостроении других стран.

В НЕБЕСАХ . .. НА ЗЕМЛЕ.. . И НА МОРЕ

Как сообщает американская печать, применение титана в ракетной технике США началось в 1957 году, когда потребовалось снизить массу ракеты ,,Атлас,\ Замена стальных баллонов высокого давления резервуарами из титана позволила облегчить ракету на 68 килограммов.

В последние годы в США почти все резервуары, предназначенные для хранения сжатых и сжиженных газов на ракетах, изготовляли из титановых сплавов. Эти сплавы применяют также для изготовления реактивных сопел, станин двигателя, коммуникаций подачи топлива и окислителя и других важных узлов ракет.

Из титановых сплавов делают корпуса ракет, работающих на твердом топливе, что дает весьма существенные преимущества. Так, например, благодаря применению титана корпус второй ступени межконтинентального баллистического снаряда ”Минитмэн-2” имеет массу всего 160 кг, тогда как точно такой же корпус из стали имел бы массу 290 кг. Стоимость корпуса всего лишь на 20 процентов выше стоимости стального.

Экономия массы ракет улучшает их основные характеристики — скорость и дальность полета, грузоподъемность и т.п. Но уменьшение массы — не единственное преимущество, которое дает титан.

Корпуса ракет, изготовленные из нового промышленного металла, отличаются высокой жесткостью и продольной устойчивостью. Титановый корпус реактивного снаряда легче обрабатывается резанием и не требует в отличие от стали дополнительной термической обработки сварного шва.

Высокая коррозионная стойкость титановых сплавов, их жаропрочность позволяют изготовлять из них форсуночные головки и форсунки ракет. В частности, титановый сплав применен для передней части корпуса ракеты ”Авангард”. В результате трения о воздух эта чать корпуса сильно нагревается, ее температура в некоторые моменты превышает 800°С. Но титановый сплав выдерживает такой нагрев и даже при столь высокой температуре обеспечивает необходимую прочность конструкции.

Сплав системы титан — алюминий — ванадий исследовали и как конструкционный материал ионных ракетных двигателей. Из этого сплава разработана конструкция труб, отходящих от титановых сосудов к двигателю. Такое соединение может выдерживать вибрационные нагрузки, сильные удары, резкие колебания температур за короткий промежуток времени.

Предлагают использовать титановые сплавы в опорной конструкции термоядерного двигателя. Топливные баки из титановых сплавов для хранения жидкого кислорода и водорода не разрушаются при сверхнизких температурах, как это бывает с большинством металлов, напротив — они становятся еще прочнее.

Титан использован в конструкциях таких хорошо известных американский ракет, как ”Аджена*\ ”Тор”, "Титан”, ”Эйблстар”, в управляемом снаряде ”Першинг”, морской ракете ”Поларис”. Новый конструкционный материал используется также в ракетостроении Японии, ФРГ и других зарубежных стран.

Крупными потребителями титана станут со временем артиллерия и бронетанковые войска.

Согласно опубликованной информации, уже довольно продолжительное время в США, например, ведутся исследования опытных образцов армейской боевой техники из сплавов титана. Вполне понятно, что при этом основное внимание направлено на оружие, которое переводят по воздуху или переносят вручную.

Еще в начале 50-х годов сотрудники лаборатории Уотертаунского арсенала предложили изготовить из титана опорную плиту миномета. Замена стали титаном и некоторая конструктивная переделка позволили вместо двух деталей плиты общей массой 22 килограмма изготовить одну деталь массой 11 килограммов, переносить которую в состоянии один человек.Успешно прошли испытания титановые крестовины лафетов, кронштейны зенитных орудий, цилиндры противооткатных приспособлений, орудийные станки и пламегасители. Титановые артиллерийские пламегасители повышают эффективность использования орудий и отлично противостоят развивающимся при стрельбе нагрузкам, а новые крестовины лафетов почти вдвое легче старых стальных.

В 1960 году лаборатория сконструировала безоткатное атомное орудие малой мощности ”Дэви Крокетт” для вооружения пехоты. Применение титановых сплавов позволило сделать это орудие легким и портативным, хорошо противостоящим коррозии.

Самые первые исследования нового промышленного металла показали, что он пригоден и для изготовления брони. Более того, использование титановой брони, снарядостойкость которой такая же, как у стали, дает экономию массы до 25 процентов, а сплавы титана повышенного качества позволяют облегчить броню почти вдвое. Если же при этом массу ее оставить без изменения, то надежность защиты значительно повышается. Опытные работы по изготовлению из титана отдельных деталей среднего танка в США ведут уже давно, однако, по мнению американских специалистов, использование этого металла в серийном танкостроении возможно лишь в будущем.

При современном уровне развития транспортной авиации весьма эффективно использование самолетов для переброски танков и транспортеров, для сбрасывания их с парашютом. Титан позволяет существенно облегчить такой десант, а также стрелковое оружие, радиостанции, комплекты медицинского оборудования и другие виды снаряжения авиадесантных войск.

Широкое использование титановых сплавов для производства средств вооружения сухопутных войск возможно только при некотором снижении стоимости металла. При значительном снижении цен на титан можно ожидать его применения для строительства мостов, посадочных матов аэродромов и прочих сооружений.

Феноменальная коррозионная стойкость титана в морской воде со всеми прочими его достоинствами делает этот металл очень ценным для судостроения.

Малая плотность металла повышает маневренность и дальность действия кораблей, а высокая стойкость против коррозии снижает расходы на ремонт материальной части и уход за нею. Корпуса судов, обшитые листами титана, никогда не потребуют окраски, так как даже намека на ржавчину ожидать не приходится.

Титан, как известно, стоек против эрозии и кавитации. В движущейся морской воде со взвешенными в ней песчинками титан, по меньшей мере, в 12 раз устойчивее, чем самые лучшие распространенные сплавы на основе других металлов. Все это открывает металлу немалые перспективы.

По опубликованным зарубежным данным, в военно-морском флоте США из титановых сплавов изготовляют валы, распорки, опоры, части якоря, фиттинги для крейсеров, выхлопных глушителей подводных лодок, глушители с водяным охлаждением для шлюпочных моторов. Титановые глушители значительно легче и прочнее глушителей из медноникелевых и других сплавов и срок их службы намного выше. Титановые сплавы используют в газотурбинных двигателях некоторых торпедных катеров и кораблей морской пограничной охраны.

Когда диски приборов для измерения уровня масла, газолина, морской воды изготовляют из титана, то срок их службы становится практически неограниченным и намного повышается точность показаний приборов.

Из титана целесообразно делать различные рукоятки и детали морского электронного оборудования, радарные антенны, экраны навигационных приборов, палубную арматуру подводных лодок, детали помп, соприкасающихся с морской водой, и многое другое.

Самому большому коррозионному разрушению на морских судах подвергаются корма, руль и другие части, находящиеся в непосредственной близости от винта, который обычно действует как катод большой площади. Применение титана позволяет в значительной степени снизить интенсивность коррозии.

Немагнитность титана устраняет так называемую девиацию — мешающее воздействие металлических конструкций на навигационные приборы — и тем самым уменьшает опасность подрыва на магнитных минах.

Титановые сплавы весьма перспективные конструкционные материалы для изготовления корпусов подводных лодок сверхглубокого погружения, способных достигать глубин до 6 километров. Далеко не всякий материал способен выдержать чудовищное давление многокилометровых океанских глубин.

Основные конкуренты титана в качестве материалов для подводного кораблестроения — это специальные виды сталей и . . . стекло. Да, и стекло. Особые виды стекла способны выдерживать прямо-таки фантастические нагрузки без всяких следов разрушения. Далеко ходить за примерами не надо: вспомним хотя бы пуленепробиваемые стекла. Подобные материалы несоизмеримо прочнее любых металлов и сплавов, в том числе и титановых. Но назвать стекло конструкционным материалом без существующих оговорок нельзя, так как оно имеет очень важный недостаток. Стекла нельзя соединять и почти невозможно обрабатывать. Они не поддаются ни сварке, ни резке, ни штамповке.

Обработка специальных сталей тоже представляет целую проблему. Пластичность таких сталей очень низка, их высокая твердость достигнута ценой повышения хрупкости. Так что титан во всех отношениях предпочтительнее своих конкурентов.

Загрузка...