«Когда мы победим в мировом масштабе, мы, думается мне, сделаем из золота общественные отхожие места на улицах нескольких самых больших городов мира… — писал Владимир Ильич Ленин в 1921 году. — Пока же: беречь надо в РСФСР золото, продавать его подороже, покупать на него товары подешевле».
В течение многих веков и тысячелетий золото было драгоценным металлом. Из него делали ювелиры украшения и чеканили монеты. На золото переводилась стоимость всего созданного человеческим трудом. Золото было всеобщим эквивалентом, в котором все товары выражали свою стоимость. Так было еще в Древнем Китае, Индии, Египте, Греции. Так было в Европе и Америке в эпоху капитализма.
Но так не будет в коммунистическом обществе. Настанет время — «наступит изобилие материальных и культурных благ и труд превратится для всех членов общества в первую жизненную потребность», — записано в Программе КПСС. Отпадет необходимость в наличии переводной универсальной единицы затраченного труда. На что же тогда будет использоваться золото?
Увы, этот металл за многие века отвык трудиться сам, поэтому ограниченны и сегодня его применения. Мастера золотых покрытий, ювелиры, зубные техники — вот, пожалуй, и весь список людей, заставляющих золото работать. Но найдутся еще разнообразнейшие применения и золоту.
Золотые статуи и обелиски поставят, возможно, на площадях коммунистических городов. Золото не ржавеет. Это великое достоинство. Чтобы передать вечности то, что вечности достойно, может быть, будет использоваться этот вечный металл.
К группе благородных относят и несколько других неокисляющихся металлов, соседей золота в периодической системе элементов, — серебро, платину и металлы платиновой группы — палладий, иридий, родий, рутений и осмий.
Целый ряд важнейших применений имеют эти металлы: и серебро, издавна бывшее наряду с золотом всеобщим эквивалентом, в древности ценившееся дороже золота; и платина, сегодня более дорогая, чем золото; и редкие металлы платиновой группы, хотя их несравненно меньше, чем золота, хотя они совсем недавно по сравнению с золотом стали служить человеку.
Скупой рыцарь из одноименной маленькой трагедии А. С. Пушкина, стоя над раскрытыми сундуками с собранным им золотом, восклицает:
Да! Если бы все слезы, кровь и пот,
Пролитые за все, что здесь хранится,
Из недр земных все выступили вдруг,
То был бы вновь потоп. — Я захлебнулся б
В моих подвалах верных…
Сверкающий вечный металл на протяжении тысячелетий, переходя из рук в руки, влек за собой преступления и войны, нищету большинства и бессмысленную роскошь немногих. Уже в древних сказаниях и легендах золото — тот узел, вокруг которого бушуют самые черные страсти.
В египетских папирусах, написанных тысячелетия тому назад, рассказывается о борьбе и походах за золотом.
Гибель прекрасных и своеобразных культур ацтеков и майя, уничтоженных европейскими завоевателями, в значительной степени произошла потому, что новый материк Америка на несчастье оказался богат золотом. Целые народы были стерты с лица земли, чтобы испанские, португальские и английские разбойники могли привести в свои страны суда, нагруженные желтым металлом.
История открытия каждого нового золотоносного района — это история массовой психической болезни, «золотой лихорадки», история бесчисленных трагедий, бессмысленных смертей, отвратительнейших преступлений. Так было, когда золото открыли в песках Бразилии. То же повторилось, когда толпы золотоискателей ринулись в раскаленную Калифорнию. Вакханалию «золотой горячки» в ледяном Клондайке изумительно описал в своих рассказах Джек Лондон.
Сколько войн в человеческой истории непосредственно было вызвано золотом! И не только войны Англии с Испанией за право грабить вновь открытую Америку или войны Англии с Трансваалем за драгоценные золотые и алмазные прииски. Нет, в конечном итоге все феодальные и капиталистические войны велись из-за золота, какими бы причинами — религиозными ли, национальными ли — это ни прикрывалось.
Более 50 тысяч тонн этого металла добыто на земном шаре. Большая половина его и сейчас, видимо, находится в сейфах и хранилищах банков разных стран мира.
А ведь золото может быть и прекрасным, стоит ему попасть в хорошие руки. Сколько вдохновенных шедевров создали из золота искусные руки ювелиров! И как часто эти шедевры превращались в лом только потому, что это было золото!
Золото начали добывать одновременно с медью, а может быть, и раньше меди. «Золото было в сущности первым металлом, который открыл человек», — заметил Карл Маркс. Ведь самородное золото не надо было ни выплавлять, ни очищать хитроумными способами. И поэтому уже в позднем неолите встречается обработанное человеком золото. Платон упоминает золото среди тех металлов, которыми была богата Атлантида.
Однако золота было не так уж много в странах древнего обитания человечества — Европе, Северной Африке, Южной Азии. И количество этого металла, находящегося в руках людей, поэтому долгое время оставалось стабильным. Открытие Америки и ее стремительное ограбление впервые резко нарушили установившееся равновесие: золото подешевело.
Рост добычи золота начался с конца XVII века, когда началась интенсивная разработка бразильских месторождений. В течение XVIII века в среднем в год добывалось около 19 тонн желтого металла. Начало XIX века заняла война американских колоний с Испанией, и добыча золота резко сократилась. Так, за период с 1801 по 1820 год его в среднем добывалось всего около 14,6 тонны. В середине этого века добыча золота резко выросла. Уже в 1851–1860 годах ежегодно добывали в среднем 201,3 тонны золота. К началу XX века эта цифра поднялась до 485,4 тонны.
В результате первой мировой войны добыча золота начала падать. Однако уже в 1938 году она достигла в капиталистических странах 1163 тонн, а в 1940 году— 1268 тонн.
Вторая мировая война снова вызвала снижение добычи золота. В 1945 году было добыто всего 812 тонн этого металла. Однако уже в 1950 году восемь главных поставщиков золота капиталистической половины мира довели его добычу до 1011 тонн. В 1960 году в капиталистических странах было добыто 1067 тонн золота.
Основная часть этого золота была добыта в Трансваале. Трехкилометровой глубины шахты пробиты там в недра Земли к жилам, содержащим драгоценный металл. Температура воздуха в забоях не спускается ниже 35–40 градусов. Мучительным трудом рабочих, в подавляющем большинстве кафров добывается здесь желтый металл, приносящий невиданные богатства владельцам копий.
Богаты золотом недра нашей Родины. Умелые золотых дел мастера издавна жили в русских городах.
Есть невдалеке от индустриального Свердловска, за студенческим городком, озеро с древним названием Шарташ. На берегу его и ныне стоят крестьянские избы деревни — однофамилицы озера. В 1745 году житель этой деревни Ерофей Марков открыл первое на Урале коренное месторождение золота — Березовское. Это и положило начало в нашей стране золотодобывающей промышленности.
Но это было только самым началом открытия золотой кладовой Сибири. С 1820 годов начала быстро расти добыча золота в нашей стране. Этому способствовали открытия золотых россыпей в бассейне Енисея и в Забайкалье. А в 1846 году были открыты знаменитые Ленские россыпи.
Но и это еще было не все. В середине 50-х годов прошлого века дали золото россыпи в бассейне Амура, в 1871 году — россыпи Приморского края. Невиданно вырос удельный вес русского золота в мировой добыче.
До 1923 года включительно в нашей стране было добыто 2879 тонн золота. Наибольшее количество—63,7 тонны — дал 1910 год.
Тяжело было работать на приисках царской России. Нелегок был и труд наемных рабочих и «вольных» старателей. Официально рабочий день был установлен в 11,5 часа, однако в летнее время он нередко продолжался и 16 часов. Отсюда частые забастовки. Наиболее известная из них — на Ленских приисках 4 апреля 1912 года. Она вошла в историю революционного движения нашей страны.
Советское правительство сразу же после Великой Октябрьской революции обратило особое внимание на развитие золотой промышленности. Новая техника, новые порядки пришли на золотые прииски. И уже в 1933 году добыча золота в нашей стране значительно превысила продукцию царской России.
Из полукустарного промысла золотая промышленность стала одной из самых современных, самых технически оснащенных.
В природе золото встречается чаще всего в виде зерен, песчинок, однако нередко оно образует самородки довольно значительной величины. Самый большой самородок в нашей стране был найден на Южном Урале. Этот кусок золота весом в 35 кг и сегодня хранится в одном из музеев. А самый большой в мире самородок золота не каждому приподнять в одиночку: он весит 111,6 кг. Нашли его в Австралии.
Обычно самородное золото не бывает чистым, оно содержит примеси серебра от 5 до 30 процентов, меди — до 20 процентов. Оно бывает вкраплено в кварц — в коренных месторождениях. При разрушении кварцевых жил золото освобождается от материнской породы и уносится водой. Благодаря своему большому удельному весу оно отлагается в руслах рек, образуя те самые россыпи, из которых большую часть этого металла и берет человек.
Всем, наверное, известны по описаниям Джека Лондона и Мамина-Сибиряка способы добычи золота из песков промывкой. Элементарная установка для этой цели состоит из наклонного желоба, покрытого перфорированными железными листами или пеньковыми ковриками. Разрыхленная золотосодержащая порода промывается на этом желобе струей воды. Тяжелые частицы металла падают в углубления в железе или на пеньковом коврике, а легкая пустая порода уносится водой.
Если в месторождении есть самородная медь, она останется вместе с золотом. Не в силах вымыть вода и черный тяжелый порошок магнитного железняка — довольно частого спутника золота. От этого порошка золотой песок освобождают просто магнитом.
Этот же принцип извлечения золота из россыпей применяется и в гигантских драгах — своеобразных землеройных снарядах, способных поднимать и подвергать переработке породы с глубины в добрые 25 метров. Железные челюсти драги поднимают полные ковши золотосодержащей породы, она измельчается, промывается и выбрасывается из грохочущего нутра судна, освобожденная от крупинок желтого металла.
Идет такая драга по реке и перемывает все ее дно от берега до берега. Невелика команда судна, но велики результаты ее работы. Даже породу, содержащую десятые доли грамма на тонну, выгодно перерабатывать этим способом.
Руды золота после их измельчения и иногда обогащения обрабатывают ртутью. Ртуть приливают прямо в размельчаемую горную породу, и она образует с золотом амальгаму, легко отделяемую от пустой, не смачиваемой ртутью породы. При нагревании амальгамы ртуть испаряется и возвращается обратно для извлечения дальнейших порций золота. Получившееся губчатое «черновое» золото подвергают переплавке.
Однако амальгамированием не удается извлечь другие редкие металлы, содержащиеся в руде, да и золото редко удается извлечь полностью. Поэтому нередко применяют извлечение золота из руд раствором цианистого натрия или кальция. Затем этот раствор пропускают через цинковую пыль. Золото выделяется снова в металлическом виде. Заводы по химическому (гидрометаллургическому) извлечению золота имеют сложную технологию. Ею в дальнейшем воспользовались для химического извлечения других металлов — урана, цинка, меди и т. д., введя новые виды растворителей.
Самородное золото содержит в себе примеси других металлов. Отделение их осуществляют чаще всего электролитическим методом. Полученное в результате электролиза золото имеет чистоту не ниже 999,9 пробы.
Проба… Мы впервые столкнулись с этим словом, столь употребительным у ювелиров. Оно обозначает чистоту благородных металлов, определяет весовое содержание основного металла в сплаве, из которого делают ювелирные украшения. Проба чистого металла— 1000.
Если в сплаве содержится 250 граммов примеси на килограмм сплава, то проба его будет 750. Для изготовления ювелирных изделий у нас используют золото 375, 500, 583, 750 и 958 пробы, серебро — 750, 800, 875, 916 и 960 пробы, платину — 950 пробы и палладий — 500 и 850 пробы.
Примеси в драгоценный металл… Нет, это не случайные вещества, а совершенно определенные, строго дозированные добавки меди, серебра, кадмия, никеля, палладия. Называют их лигатуры. И вводятся они не для того, чтобы обесценить сплав, а чтобы придать ему необходимую прочность. Золоту лигатуры придают и требующийся цвет — красный, розовый, зеленый, синий или даже белый. Вот почему так разнообразны оттенки золотых ювелирных изделий.
На золотом кольце, серебряной чайной ложечке и любом другом изделии из драгоценных металлов вы всегда можете найти пробу— пробирное клеймо — крохотные знаки, оттиснутые на металле. Посмотрите на них через увеличительное стекло. Вы увидите голову рабочего, трехзначное число и несколько букв. Голова рабочего — это эмблема, символизирующая государственное клеймо Советского Союза. Трехзначное число — собственно проба, о которой мы уже говорили. А буквы за ней — это «подпись» того учреждения пробирного надзора, в котором изделие прошло контрольное испытание.
Впрочем, проба может иметь и другой рисунок. Если вещь окажется дореволюционного изготовления, вы увидите в клейме женскую головку в кокошнике. Вещь, изготовленная после 1-го июня 1958 года, имеет в клейме пятиконечную звезду с серпом и молотом. Ну и, конечно, вещи, изготовленные зарубежными мастерами, имеют совсем другие пробы. А встречаются изделия из драгоценных металлов и совсем без пробы.
Нет, конечно, вовсе не обязательно производить точный химический анализ каждого изделия из золота или серебра. Чтобы выяснить, какую пробу имеет тот или иной сплав, ведут обычно испытания на пробирном камне. Это пластинка одного из природных минералов — чистого сланца, имеющая достаточно высокую твердость и черную матовую поверхность. На чистой поверхности этого камня испытуемым изделием натирают черту шириной 3–4 мм. Рядом натирают другую черту иглой, проба которой известна. Уже первое сопоставление цвета черточек позволяет судить о соответствии сплава изделия и эталонного сплава иглы.
Для уточнения обе черточки смачивают специальным раствором. Происходит химическая реакция. Если пробуется золотой сплав, то в результате этой реакции образуется тончайший порошок золота коричневого цвета. Оттенок его зависит от содержания в золоте примесей. Если цвет черты, нанесенной исследуемым сплавом, окажется светлее контрольной черты, сплав содержит больше золота, чем эталонный сплав. Если черта темнее контрольной, сплав беднее золотом.
Этим способом удается установить пробу золотого изделия с точностью до 3 единиц, серебряного — до 5 единиц. Такая точность вполне достаточна в большинстве практических случаев.
Метрическая система проб, о которой мы рассказали, введена в нашей стране в 1926 году. А «пробирное искусство» существует уже в течение по крайней мере четырех тысячелетий, ибо оно зародилось уже в Древнем Египте, И, конечно, в разные времена применяли разные системы проб. Так, до Октябрьской революции в нашей стране использовали так называемую русскую систему проб. Она была построена на основе русского фунта, содержащего 96 золотников. Проба выражала количество золотников драгоценного металла в сплаве. Золото 92 пробы содержало соответственно 4 золотника примесей на фунт сплава, серебро 88 пробы — 8 золотников примесей.
Есть и другие системы проб, например каратная, применяемая в Англии, Швейцарии и некоторых других странах. Металл высшей чистоты по этой системе соответствует 24 пробе.
Золото — один из самых тяжелых металлов. Кубик золота со стороной в 1 см весит 19,25 г. Чистое от примесей, оно обладает ярким желтым цветом, очень тягуче и ковко.
Старые мастера, пользуясь этим его свойством, изготовляли сусаль— тончайшую золотую фольгу. Сначала золото раскатывали для этого в валках. Когда получали пластинки примерно такой же толщины, как писчая бумага, начинался ручной процесс. Кусочки золотой «бумаги» укладывали между тонкими пленками, снятыми с бычьей печени, и осторожно проковывали. Расковав пластинку, разрезали ее на части и снова ковали между бычьими пленками. Повторяя эту операцию несколько раз, получали тончайшую фольгу. Толщина ее иногда достигала 0,00001 мм. Золотая пленка такой толщины просвечивает синеватозеленым цветом.
Умели древние мастера делать и «двойники» — современным языком металлурга их следовало бы назвать биметаллической фольгой. Чтобы изготовить двойник, между бычьими пленками закладывали сложенные вместе золотой и серебряный листки. Фольга получалась желтой с одной стороны и белой, сверкающей — с другой.
Сусальное золото и двойник широко использовались для золочения икон, церковной утвари и т. д. Да и сегодня золотых дел мастера изготовляют их и применяют для покрытия мебели, в переплетных и других работах. Предел прочности золота в отожженном состоянии на разрыв не превышает 12 кг на кв. мм. Это металл весьма средней прочности. Он мягок, уже ногтем можно провести черту на пластинке чистого золота.
Золото плавится при 1063 градусах. Если продолжать нагревать расплавленное золото, над ним скоро начнет подниматься желто-зеленый пар — парообразное золото. А при 2970 градусах оно закипает.
Золото обладает завидной химической стойкостью (такую бы железу иметь!). Оно не растворяется ни в щелочах, ни в кислотах.
Первая неудача Дон-Жуана.
Только смеси кислот, вроде царской водки, да еще растворы цианистых солей в присутствии (Кислорода властны над ним. Оно неохотно вступает в химические реакции, а если и удается получить его соединения, то они легко разлагаются — одни при нагревании, другие просто под действием света.
Практически применяются только сплавы золота с серебром, медью и платиной, да еще амальгамы.
Сплавы золота с серебром отличаются разнообразием цветов и оттенков. При 20–40 процентах серебра они имеют зеленовато-желтый цвет, при 50 процентах — бледно-желтый и т. д. Все сплавы золота с серебром (они применяются в ювелирном деле) мягки и ковки. Отжиг придает этим сплавам твердость и хрупкость, закалка — мягкость и пластичность. Как раз обратное тому, что мы имеем при закалке и отпуске стали.
Из сплавов золота с медью изготовляют монеты, ювелирные изделия, зубные протезы. Золото-платиновые сплавы, но с обязательной добавкой серебра идут для производства электрических контактов.
Вот, пожалуй, и все основные применения золотых сплавов.
Высоко должна была подняться сверкающая голова «Исаакия» — прекраснейшего из соборов Петербурга! Двадцатидвухметровый купол собора, поднятый на тяжелых колоннах (из сплошного куска гранита!), покрывали листами меди. А чтобы сиял он, как солнце, и даже ярче солнца, медь золотили.
Тяжелые листы шлифовали, полировали, очищали от жира, промывали кислотой. Затем их амальгамировали, натирали полужидкой желтой амальгамой. Потом клали на жаровни, наполненные горящим углем. Легкий синевато-зеленый дымок поднимался над листом — пары улетающей ртути, и чудесным солнечным светом начинал сиять медный лист.
Так повторяли 2–3 раза, чтобы получить слой драгоценного металла толщиной в 3–5 микрон.
Легче казалась на первый взгляд работа людей, возившихся с медными листами под дощатым навесом у жаровен, чем труд каменотесов и землекопов.
Но это только на первый взгляд. Ведь все без исключения рабочие, золотившие листы, погибли страшной, мучительной смертью. «Отравление парами ртути», — констатировали бы врачи, если бы они осмотрели заболевших. Сколько человеческих жизней вложено в тонкую золотую пленку на куполе Исаакиевского собора! И хотя золотое покрытие, нанесенное таким способом, держится добрых полторы сотни лет, вряд ли это искупает загубленные жизни.
Вот почему так важно открытие русского ученого Б. С. Якоби, нашедшего другой способ покрывать металлические изделия тонкими пленками металлов же — гальванопластику. Осуществляется она в гальванических ваннах электрическим током. Покрытие это не менее прочно, чем огневое.
Гальваническим способом нанесено золото на медные главы Благовещенского собора в Московском Кремле, шпиль Петропавловского собора в Петербурге и т. д. В советские годы этим способом позолотили каркасы рубиновых кремлевских звезд.
Разного цвета могут быть золотые покрытия, нанесенные гальваническим способом. Добавить в золотой электролит цианистой меди — и красным станет металл, долить еще цианистого серебра — и розовым засияет покрытие. А если добавить одного цианистого серебра, оно станет зеленым.
Новейшим способом нанесения золотого слоя является катодное распыление. Его применили лишь во второй четверти XX века. Этим способом можно создать тончайший слой золота — иногда в тысячные доли микрона. Совершенно очевидно, что применяют его лишь в особых случаях — при изготовлении фотоэлементов, специальных зеркал, граммофонных пластинок и т. п.
Сущность способа такова. Электрический разряд в разреженном газе сопровождается разрушением катода. Частицы катода летят с огромной скоростью в направлении разряда и осаждаются на поверхности самых различных материалов — не только металлов, но и бумаги, дерева и т. д.
Впрочем, золотить деревянные предметы умели еще в глубокой древности. В Египте еще за 3 тысячи лет до нашей эры покрывали деревянные изделия тончайшей золотой фольгой. Так украшали носилки и коляски фараона и его приближенных, саркофаги и т. д. В России этим способом пользовались с XI века до середины XIX века для золочения глав церквей, крыш и шпилей дворцов и т. д. Золотая фольга приклеивалась к медным или железным основаниям с помощью специальных лаков. Срок службы таких покрытий на вещах, находящихся в употреблении или на чистом воздухе, редко превосходил пятьдесят лет.
Был и другой способ золочения — порошковый. Изделие, подлежащее золочению, покрывали слоем специального клея и посыпали тончайшим золотым порошком.
Но все эти способы уступают открытой Б. С. Якоби гальванопластике.
У фотографии длинная предыстория.
Еще в средние века было подмечено свойство ляписа, одного из соединений серебра, чернеть со временем. Но должно было пройти несколько столетий, пока в 1839 году родилась фотография. Создателем ее был французский художник Л. Дагер. Полчаса, а то и дольше должен был сидеть фотографируемый совершенно неподвижно, чтобы получился сносный дагерротип — так назывались получаемые по способу Дагера фотографии. Делались они на тщательно отполированных серебряных пластинках. Как сильно усовершенствовалась фотография! Тысячные доли секунды нужно теперь, чтобы сделать снимок. Фотоизображение стало движущимся. Но по-прежнему в фотографии применяется серебро в виде самых различных соединений. По-прежнему свойство соединений серебра изменять свой химический состав под действием лучей света является основой фотографического процесса.
Как и золото, серебро принадлежит к числу благородных металлов, как и золото, хотя и значительно реже, встречается в самородном виде. Добывать его начали, вероятно, одновременно с золотом или чуть позже. А выплавлять из руд в Малой Азии умели уже за 3 тысячи лет до нашей эры.
Серебро имеет известный всем красивый белый цвет. Оно значительно легче золота — удельный вес серебра всего 10,49. Плавится оно при 961 градусе, кипит при 1955 градусах. Как и золото, серебро очень пластично, хорошо полируется.
Полированное серебро обладает максимальной из всех металлов отражательной способностью. Оно отражает 95 процентов падающих на него лучей. Именно поэтому его применяют для изготовления зеркал, причем не только тех, которые висят и стоят в наших комнатах, а и зеркал телескопов, оптических приборов и т. д.
Серебро обладает максимальной — лучшей, чем металл электротехники медь, — электропроводностью. Поэтому из серебра делают проволоку точнейших физических приборов, паяют серебряным припоем измерительную радиоаппаратуру, изготовляют из серебра наиболее ответственные клеммы разнобразнейших реле.
Серебро обладает большей химической активностью, чем золото, однако и оно не окисляется на воздухе. Серебряная ложечка может неограниченно долго лежать на воздухе и не покроется даже мельчайшими пятнышками окислов, если в воздухе не будет сероводорода или окислов серы. Эти газы — страшные враги серебра. Сернистый газ обычно содержится в воздухе городов, он образуется при сгорании каменного угля. Сероводород возникает при гниении органических веществ, в частности при разложении яичного белка. И стоит поесть серебряной ложечкой, годами не терявшей своего блеска, не очень свежее яйцо — серебро потемнеет. Виноват в этом сероводород.
Первый друг фотолюбителей.
Есть у серебра одно чрезвычайно важное свойство. Уже давно заметили, что вода, налитая в серебряный сосуд, не загнивает. Этим немало пользовались церковники. Они держали «святую» воду в серебряных сосудах. Разлитая и по стеклянным бутылочкам вода, в которой остались растворенными ионы драгоценного металла, губительные для многих бактерий, не портится.
Поэтому полезно есть серебряными ложками. Поэтому покрывают серебром поверхности автоклавов, вакуум-аппаратов и других устройств, применяемых в пищевой, кондитерской и консервной промышленности.
На земном шаре производится раз в пять больше серебра, чем золота. Так, в капиталистических странах в 1953 году было получено около 5520 тонн этого металла.
Мы уже говорили о применении серебра в радиотехнике и фотографии. Кроме того, серебро используется для изготовления столовой посуды и ювелирных изделий.
Когда говорят о самородной платине, геолог еще не может сказать, о чем идет речь. Ибо химически чистая платина не встречается в природе. Значительно чаще встречаются ее сплавы с другими металлами — железом, медью, никелем, палладием, иридием, родием. Группа сплавов с этими металлами, содержащими в среднем около 80 процентов платины, и называется самородной платиной.
Платина реже золота образует крупные самородки, к тому же они редко бывают большими. Самые крупные из них достигают 8–9 кг. Обычно же находят небольшие зерна или чешуйки платины.
Самородная платина, как самородные железо и серебро, была известна в глубокой древности. Название ей дали в XVI веке испанские колонизаторы, привозившие этот металл из Южной Америки. Кстати, древние обитатели Америки, ацтеки, уже умели обрабатывать этот металл. Их последний властитель, Монтесума, послал в подарок испанскому королю прекрасные платиновые зеркала. Как удавалось справиться древним американским металлургам с этим тугоплавким металлом— и сегодня тайна.
В России, на Урале, платина была впервые найдена в 1819 году.
Наша страна исключительно богата платиной. Промышленная добыча ее началась в конце первой четверти прошлого века. В 1825 году было добыто 190 кг платины, а в 1843 году — уже около 3,5 тонны. В последующие годы, в зависимости от спроса на нее и некоторых причин политического характера, производство этого металла то резко возрастало, то так же резко падало. Во второй половине XIX века большую часть русской платины вывозили за границу. Продавали ее там по самым низким ценам.
Кто разгадает секрет древних?
В 1870 году во всем мире было добыто несколько больше 2 тонн платины. К 1900 году эта цифра почти достигла 6 тонн, а к 1913 году превзошла 7 тонн. В этом количестве русская платина составляла 93–95 процентов.
Кроме России, поставлявшей основное количество мировой добычи, платину добывали в Колумбии, США, Канаде. В тридцатых годах этого века платину стал поставлять во все возрастающих количествах и Южно-Африканский Союз.
В послереволюционное время платиновая промышленность в нашей стране развивалась стремительно и энергично. Вместе с тем крупнейшими поставщиками платины стали Канада и Южно-Африканский Союз.
В 1960 году в капиталистических странах было добыто около 16,6 тонны платины.
По цвету платина напоминает олово, по удельному весу— 21,4 — она несколько тяжелее золота. Она принадлежит к числу тугоплавких металлов — немало пришлось повозиться русским металлургам, прежде чем они научились делать из нее монеты: ведь плавится она лишь при 1773 градусах, а кипит при 4400 градусах. Нелегко вскипятить платиновый напиток!
Чистая платина — мягкий пластический металл. Из нее можно вытянуть проволоку толщиной в 0,001 мм! Но самым главным ее достоинством является удивительная химическая стойкость. Она не окисляется на воздухе даже при самом сильном накаливании; кислоты, кроме царской водки, на нее не действуют. Именно поэтому платину так охотно используют для изготовления химической посуды — тиглей, трубок, чашек, сеток и т. д. Делают из нее и специальную заводскую аппаратуру, котлы, реторты: ведь ее высокая химическая стойкость сочетается и с высокой жароупорностью.
Еще одним удивительным свойством обладает платина. Она — отличный катализатор. Бывает нередко: смешают химики требующиеся вещества, чтобы получить новые вещества, а реакция идет так медленно, что хоть плачь, а то и совсем не идет. И ничего не помогает: ни подогревание, ни повышение давления. Да и не всегда можно повышать давление и температуру.
Но в целом ряде таких случаев помогает платина. В ее присутствии многие химические реакции ускоряются в десятки раз. А сама она остается без изменения, в реакции не участвует. В частности, платина помогает вырабатывать в заводских условиях серную кислоту.
Однако основными потребителями платины сегодня являются не химическая промышленность, а ювелирное и зубоврачебное дело. Именно сюда уходит большая часть добываемой на нашей планете платины.
Как у астронома небесные тела Фобос и Деймос всегда ассоциируются с Марсом, спутниками которого они являются, так для химика и геолога палладий, иридий, осмий, родий и рутений ассоциируются с платиной, ибо они являются ее постоянными спутниками. Без нее они обычно не встречаются.
Разделение металлов платиновой группы и их очистка — большой и сложный технологический процесс, называемый аффинажем. Сущность его заключается в том, что самородную платину, содержащую в себе другие металлы, растворяют в царской водке. Затем действием различных реагентов — хлористым аммонием, сахаром и т. д. — вызывают выпадение различных металлов в осадок.
Наиболее известен из группы платиновых металлов иридий.
В 1802 году английский химик С. Теннант растворил в царской водке несколько зерен самородной платины, однако на дне пробирки остался нерастворимый осадок. Исследуя его химический состав, ученый выделил два новых металла. Один из них за яркую, радужную окраску он назвал иридием — от греческого слова «радуга».
Чистый иридий впервые получил русский химик М. Козицкий. Новый металл оказался чрезвычайно тяжелым — его удельный вес 22,4 г на куб. см и очень тугоплавким — 2454 градуса; температура кипения иридия лежит выше 4800 градусов.
Иридий отличается еще большей химической стойкостью против коррозии, чем платина. Даже царская водка на него не действует. Только в очень измельченном виде он медленно с ней реагирует.
Иридий отличается исключительной твердостью, неистираемостью, поэтому из него изготовляют острия хирургических инструментов, кончики вечных перьев, поверхности электрических контактов магнето. Из природного сплава иридия с осмием, также очень твердого, делают опоры шестерен часовых механизмов и точных приборов.
Метр… Это международная мера, основа метрической системы мер. «Самый главный» метр хранится в Международном бюро мер и весов во Франции. С него снимают копии и рассылают всем другим странам. Есть такая копия и в нашей стране, во Всесоюзной палате мер и весов.
Для изготовления этих первоначальных эталонов выбрали самый прочный, твердый, тугоплавкий материал, самый износоустойчивый, не стареющий и не корродирующий, обладающий малым коэффициентом линейного расширения.
Таким самым вечным из известных людям материалов оказался сплав 10 процентов иридия с 90 процентами платины. Из этого сплава и изготовлен как французский «главный метр», так и его иностранные собратья.
Осмий — сосед иридия в периодической системе элементов. Он близок к иридию и по своим свойствам — твердости, хрупкости, устойчивости против разъедающего действия кислот. Однако он постепенно окисляется на воздухе даже при обычных условиях. Плавится осмий около 2700 градусов.
Осмий — самый тяжелый из всех элементов, известных на земле. Его удельный вес — 22,5 г на куб. см. Всего чуть больше 4 куб. см осмия надо для того, чтобы сделать гирьку весом в 100 г.
Осмий — еще очень мало изученный металл. Известно только, что, кроме иридия, он очень мало с какими металлами образует сплавы. Некоторые его соединения применяются в медицине и биологии, в частности для окраски нервных тканей при их исследовании под микроскопом.
Палладий — третий из группы платиновых металлов. Как и два предыдущих, он относится к числу редких и рассеянных элементов. Впервые был отделен от платины английским ученым У. Волластоном. В 1804 году, незадолго перед этим, был открыт крупный астероид Паллада. В честь этой планеты и назвал английский химик новый металл.
Палладий плавится всего при 1554 градусах. Удельный вес его почти вдвое ниже, чем у осмия и иридия, — 12,1 г на куб. см. Механические его свойства таковы, что он легко обрабатывается.
Среди металлов платиновой группы он обладает самой высокой химической активностью. Окисляется при нагревании на воздухе, растворяется не только в царской водке, но и в азотной кислоте.
Интересна способность палладия растворять газы. Особенно хорошо в нем растворяется водород. Один объем палладия способен растворить 300 объемов водорода.
Из палладия изготовляют колпачки с массой тончайших отверстий— так называемые фильеры для промышленности искусственных волокон. Сквозь отверстия фильер продавливают массу, из которой и образуются нити.
Из сплавов палладия с медью, серебром и золотом делают части часовых механизмов и иногда те детали лабораторного оборудования, которые обычно изготовляются из платины. Нашел он себе применение и в электротехнике. Из него делают контакты телефонных аппаратов, термопары, некоторые виды медицинского инструмента.
Тот же английский ученый У. Волластон открыл и еще один металл платиновой группы. Соединения этого металла были окрашены, как правило, в красивые розовые и красные цвета. За это ученый дал новому металлу имя «родий» — от греческого слова «розовый».
Свойства родия были изучены позже. Новый металл оказался весьма средним среди металлов платиновой группы. Он плавится при температуре в 1966 градусов. Удельный вес родия— 12,4. Окисляется он только при нагревании до 600—1000 градусов, не растворяется в кислотах и очень слабо — в царской водке.
Родий применяется в виде сплава с платиной в термопарах и для изготовления химической посуды. Кроме того, им иногда покрывают отражающие поверхности зеркал крупных прожекторов.
Последним из группы платиновых металлов был открыт рутений. Выпала честь совершить это открытие в 1844 году русскому химику К. Клаусу. Ученый назвал новый металл в честь своей родины России.
Рутений плавится при температуре в 2450 градусов, кипит при 4150 градусах. Удельный вес его близок к весу родия и палладия — 12,2. Подобно другим металлам платиновой группы, он в раздробленном состоянии хорошо поглощает газы. Окисляется при нагревании кислородом воздуха, но не растворим ни кислотами, ни царской водкой. Чрезвычайно тверд и хрупок.
Применение рутения очень ограниченно. Добавка его в некоторые сплавы платиновых металлов упрочняет их. Кроме того, рутений входит в состав некоторых катализаторов для химической промышленности и в краску для фарфора. Вот, пожалуй, и все применения этого чрезвычайно редкого элемента.
Если бы не удивительная способность оставаться жидкой до минус 38 градусов, ртуть, безусловно, еще в глубокой древности вошла в число благородных металлов. Из нее чеканили бы деньги, делали затейливую оправу для драгоценных камней, вырезали фигурные кубки и чаши: ведь ртуть по своей химической стойкости близка к золоту и серебру. Она сосед золота и в периодической системе элементов. Как золото и серебро, правда значительно реже, она встречается в природе в самородном виде. Но так как есть из ртутной посуды и носить броши из ртути могла бы, пожалуй, лишь снежная королева из андерсеновской сказки, этому любопытнейшему металлу нашли в современной технике другие применения. И хотя с ним имеют дело не ювелиры, а ученые и инженеры, для человечества ртуть — самая тяжелая среди всех известных жидкостей (ее удельный вес 13,6 г на куб. см), обладательница уникальных свойств — пожалуй, драгоценнее и золота и серебра.
Ртуть — это и яркое сияние чрезвычайно экономичной лампы дневного света, и мощные выпрямители, стоящие на подстанциях метро, и электрички, и бесчисленные физические приборы, самым распространенным из которых является обыкновенный градусник. Удивительное свойство ртути — образовывать с золотом амальгамы — еще древние использовали для извлечения этого драгоценного металла из старых золототканых одеяний. Сегодня его применяют при добыче золота из руд. Гремучая ртуть — одно из соединений ртути — является сильнейшим взрывчатым веществом. И в медицине широко применяются многие ее соединения. Ртуть входит в состав красок, которыми красят днища океанских судов — и они не обрастают ракушками и водорослями. А в сельском хозяйстве веществами, содержащими ртуть, протравливают семена. Разве насчитывает золото столько незаменимых применений в самых различных областях науки, техники, производства!
…И вот мы в Хайдаркане, на металлургическом заводе, продукцией которого является металлическая ртуть. Позади — полторы сотни километров по отличному горному шоссе, бесчисленные витки которого, впрочем, непреодолимы для людей, склонных к морской болезни. Позади и пленительный миг, когда, вырвавшись к очередному перевалу, мы увидели внизу в изумительно живописной долине прилепившиеся к склону горы строения завода и весь в зелени садов его поселок.
Как прекрасны горы Тянь-Шаня! Мы летали на самолетах наравне с их вершинами так, что крылья, казалось, вот-вот заденут каменистые осыпи или грозно вздыбившиеся скалы. Мы ездили по горным дорогам, свитым в запутанный узор, прыгающим из долины в долину. И всегда, прильнув к стеклу иллюминатора, высунувшись из кабины, мы не уставали любоваться этой окаменевшей музыкой. Да, именно с прекрасной музыкой хочется сравнить эти горы! Кажется, какой-то немыслимый волшебник дирижировал здесь фантастическим оркестром и, подчиняясь зову пленительной симфонии, от радости, гнева, счастья вольно вздымались каменные громады. Вдруг — в момент наивысшего напряжения и страсти — умолк оркестр, и застыли навек гранитные гиганты, запечатлев в своих вечных чертах восторг, порыв, радость…
Как бесконечно разнообразен пейзаж этих каменных волн, то сурово сдвинувшихся над тонкой и блестящей, как лезвие, струей горной реки, то привольно разошедшихся вокруг изумрудно-зеленой долины! Как легки похожие на зацепившиеся облака вечные снега на вершинах, как неотвратимо тяжелы, как мучительно давят всплеснувшиеся ввысь и нависшие над дорогой черные глыбы скалы!..
В сердце этих гор, в долине, на высоте полутора тысяч метров над уровнем моря, и расположился ртутный завод. Давно, тысячи лет назад, добывали здесь ртутную руду древние горняки. Проходя штреки в самое сердце горы, иногда натыкаются на пробитые ими ходы. Они безошибочно ведут к рудным жилам. Как находили они верное направление, как определяли под толщей гранита местоположение ртутных руд — и сегодня загадка. В этих древних ходах — множество человеческих скелетов. Они умирали здесь же, в сердце горы, рабы неведомых народов, добывавших целительный металл, важнейшее лекарственное средство древних медиков.
…Электровоз, погромыхивая вагонетками на стыках рельсов, вытягивает из черного отверстия шахты, уводящего прямо в сердце горы, свой длинный состав. В вагонетках среди кварца, гранита попадаются камни, словно густо обрызганные запекшейся кровью. Это и есть драгоценная руда ртути. Ее разгружают в бункер дробилки. Это ворота металлургического завода.
— Вы просите рассказать о наших рационализаторах, — говорит директор завода Владимир Львович Резницкий. У него доброе лицо с могучими шевченковскими усами, неторопливые движения. — А пробовали ли вы представить себе, какое это чудо — наш завод? Наше индустриальное предприятие, организованное по последнему слову науки и техники, не уступающее лучшим зарубежным, — здесь, среди совеем еще недавно диких, почти необитаемых гор!
Аланский хребет да и вся Киргизия были колониальными окраинами Российской империи. Что ж, в колониях нередки залежи драгоценных руд. Но как их используют? Рабским трудом местного населения получают руду, грузят ее — в мешках на яков или лошадей, перегружают на плоты и спускают вниз по реке. А где-нибудь «в культурном центре», поближе к метрополии, строят уже плавильные заводы. И путь руды от штрека до металла устилают костями туземцев. Помните, у Киплинга: «Я худшую смерть предпочту работе на ртутных рудниках, где крошатся зубы во рту…» Вот попробовали бы вы на таном «предприятии» поговорить о рационализаторах! А у нас…
За последние два года мы снизили расход топлива на тонну получаемого металла на одиннадцать процентов. Снизили потери ртути в огарках на сорок процентов. За счет утилизации тепла в огарках отказались вообще от специальной котельной — там за окном ее пустое здание. И самое главное — рационализаторской деятельностью у нас занимаются многие и многие, начиная с директора завода и кончая молодыми рабочими, несколько месяцев назад пришедшими на завод. Всех увлекает это важное и интересное дело…
И вот мы идем по заводу. Впрочем, здесь нет традиционных заводских кирпичных зданий, в которых работают машины. Все агрегаты завода находятся на открытой площадке. Целительный воздух горных вершин овевает каждое рабочее место. И может быть, поэтому здесь совершенно нет профессиональных заболеваний, почти неизбежных при работе с ртутью.
Пройдя дробление, руда поступает во вращающиеся обжиговые печи. Это огромные, длиной в добрые полтора десятка, диаметром более двух метров, наклонные цилиндры. Руда поступает в верхнюю часть печи и постепенно, пронизываемая пламенем, опускается, переваливаясь вдоль цилиндра. Рабочий приоткрывает дверку печи, находящуюся в ее торце, и нам виден вихрь пламени, пронизывающего обвал раскаленного камня. Здесь при температуре около 800 градусов распадается соединение ртути и ее пары увлекаются из печи потоком газов горения.
А остатки руды — их называют огарки — спускаются в специальный бункер.
— Им досталось от рационализаторов, этим бункерам, — говорит Резницкий, улыбаясь и поглаживая усы. — Видите паутину труб, опоясывающую этот бункер? Отдельные трубы даже пронизывают его насквозь. Это и есть устройство для использования тепла огарков. Ведь даже в машину мы их грузили с температурой двести-триста градусов. В трубах циркулирует вода. Она нагревается, и мы используем ее для технологических нужд завода. В ближайшее время пустим ее и для отопления поселка.
Но это еще не все, что сделали рационализаторы с нашими бункерами. Ведь в них еще продолжается выделение из руды паров ртути. Поэтому надо выдерживать огарки в бункерах до тех пор, пока они не охладятся. Л проведенные рационализаторами исследования показали, что при разгрузке бункера в самосвал попадают в первую очередь еще горячие огарки из центральной части бункера, а остывшие, с краев, так и остаются в нем. Переоборудован бункер так, чтобы разгрузка происходила по частям, с краев, а не из центра. И потери ртути в огарках сразу же резко снизились.
Инженер рассказывает о дальнейшей судьбе паров ртути, выделившейся во вращающейся печи.
— Заметили ли вы, что, когда рабочий приоткрыл дверку печи, ни один язык пламени не вырвался наружу? Мало того, пламя словно бы отшатнулось от открывшегося отверстия внутрь печи.
Дело в том, что весь процесс обжига, очистки, конденсации ртути осуществляется в вакууме. Поэтому ни одна струйка содержащих ртутные пары газов из печи не может вырваться наружу. Наоборот, наружный воздух стремится ворваться внутрь сквозь любую мельчайшую щель или отверстие.
Огненный вихрь увлекает за собой из печи не только пары ртути, а и огромное количество мельчайшей пыли. Чтобы очистить от нее, газы пропускают сквозь специальные устройства — циклоны. Поток газа в них закручивают тугим вихрем, и центробежная сила отделяет от него твердые частицы. Очищенные газы поступают в холодильники. Огромные батареи их высятся рядом с печами. В них происходит конденсация — сжижение ртути. Жидкая ртуть собирается в огромной, десятиметровой длины кастрюле под слоем воды. Вместе с ней в эту кастрюлю попадают и мелкие частицы рудной пыли, окислы сурьмы и мышьяка и другие вещества. Чем меньше попадет сюда пыли, чем больше уловят их циклоны, тем больше ртути удастся получить сразу в чистом виде. А это чрезвычайно выгодно для производства.
Рационализаторы завода тщательно изучили работу циклонов. Удалось выяснить, что качество их работы снижается из-за твердого осадка на завихрителях. Тщательное изучение показало, что осадок этот возникает не во время нормальной работы печи, а в моменты пуска ее.
Тогда инженеры разработали новую технологию пуска печи, при которой на завихрителях циклонов осадка не возникает, и сэкономили государству на этом сотни тысяч рублей…
Мы проходим по разным участкам завода и везде сталкиваемся с плодами мудрой рационализаторской мысли. Вот стоит неказистый на вид пресс для правки лодочек, в которых дожигают ту самую смесь пыли и мельчайших капелек ртути, которую получают под конденсатором. Вот устройство для закупорки сосудов с ртутью высших марок, также созданное на заводе. В цехе упаковки готовой продукции стоит приспособление для развешивания металла высших марок — также воплощение идеи заводского рационализатора.
Нет тяжелее жидкости на свете.
Мы в крохотном домике, где производится окончательная очистка ртути промыванием щелочами, азотной кислотой и где ее упаковывают для отправки с завода. Рафинированную, высшего качества разливают в фарфоровые стаканы — по 5 кг в каждом. А небольшие стальные баллоны, в которых отправляют с завода обычную ртуть, уже не каждый поднимет: в них по 35 кг драгоценного металла.
В большой железный бак, стоящий здесь, стекает ртуть со всего завода. Инженер бросает в нее гирю, и гиря плавает в жидком металле, как пробка в стакане воды. Может быть, это против правил, но я опускаю руку в сверкающее жидкое серебро. Какая она неподатливая и упругая, эта ртуть, как она упрямо выталкивает руку — драгоценная кровь гор, добытая смелыми и умными людьми, не потерянными и заброшенными в медвежьем углу, а живущими одной жизнью, одним биением сердца со всей страной…
Снова петляет машина по горной дороге… Сколько металлургических заводов в моей стране — не только всемирно известных гигантов, но и скромных предприятий, вроде этого, приютившегося среди гор! Разные металлы вырабатывают на них. И везде есть в технологическое процессе производства «белые пятна» — неиспользованные возможности, ибо каким бы высокосовершенным ни был технологический процесс, он всегда может быть еще усовершенствован.
И так же, как здесь, в Хайдаркане, в сердце Киргизских гор, пылает и на тех заводах творческая пытливая мысль, поднимая все выше техническое совершенство советской металлургии.