Михаил Васильевич Супотницкий МИКРООРГАНИЗМЫ, ТОКСИНЫ И ЭПИДЕМИИ

1. КАК МИКРООРГАНИЗМЫ ВЫЗЫВАЮТ БОЛЕЗНИ?

Неудачи последних лет в борьбе с возбудителями инфекционных болезней, заставили серьезно задуматься о причинах, обесценивающих наши усилия по созданию «мира без эпидемий». Почему это происходит? Лишь очень немногие из микроорганизмов (приблизительно 1/30000 часть) представляют угрозу для людей. Поэтому они должны обладать какими-то существенными отличиями, определяющими их способность вызывать болезнь или даже смерть своих жертв.

Глава 1.1. Инфекционная болезнь

Патогенность. Вирулентность. Инфекционный процесс и инфекционная болезнь.


По замечанию Клода Бернара, болезнь является обязательным проявлением жизни, спутником ее эволюции и усложняется в соответствии с усложнением функции и структуры живых существ, т. е., если болезнь рассматривать не только с узко антропоцентрической точки зрения, то болеют на всех этажах эволюционной лестницы — начиная с наиболее простых форм жизни: вирусов, бактерий, амеб. Первичным и основным звеном развития болезни является повреждение. В наиболее общем смысле, повреждение живого тела на любом уровне (молекулярном, субклеточном, клеточном, органном, организменном, популяционном) представляет такое изменение его строения и функции, которое не способствует, а мешает жизни и существованию организма в окружающей среде [Адо А.Д., 1985].

Для вируса, проникшего в клетку, болезнью будет его неспособность синтезировать макромолекулы, собирающиеся в вирусную частицу. У многоклеточных организмов такую болезнь вируса может вызвать, например, программируемая гибель клеток (апоптоз), инфицированных этим вирусом. Повреждение размножившегося в клетках хозяина вируса, способны вызвать антитела и система комплемента. В этом случае причиной болезни вируса будут его нейтрализация и опсонизация, лизис вирусинфицированных клеток, усиление воспалительного и иммунного ответов на него хозяина.

Бактерии могут быть разрушены антибактериальными веществами в жидкостях и любых тканях, в которые они проникают. Их могут переварить полиморфно-ядерные и одноядерные фагоциты, нейтрализовать и опсонизировать антитела, действующие совместно с системой комлемента, и др.

Повреждение макроорганизма начинается с изменения строения и свойств различных молекул в клетках тканей, где размножаются микроорганизмы, при этом клетки погибают. Однако повреждение на уровне отдельных тканей у многоклеточных практически всегда проявляется на организменном уровне. Например, вирус полиомиелита внедряется в нервные клетки передних рогов спинного мозга и размножается в них. В результате гибели этих клеток развивается повреждение моторных центров передних рогов с параличами и атрофией скелетной мускулатуры и другими проявлениями болезни.

Развитие, течение и исход болезни в значительной степени, кроме процессов повреждения, определяются реактивными процессами. В самой общей форме реактивность есть способность организма как целого отвечать изменением жизнедеятельности на воздействие окружающей среды. По своей сути термин «реактивность» означает механизм устойчивости организма к вредным влияниям среды [Адо А.Д:, 1985].

Реактивность микроорганизмов закреплялась естественным отбором миллиарды лет и отнюдь не носит примитивный характер, хотя их самих, нередко, в литературе называют примитивными формами жизни (правильнее их называть более древними формами жизни). Например, в настоящее время у ортопоксвирусов идентифицировано, по крайней мере, четыре гена, белковые продукты которых способны ингибировать апоптоз клеток по самым различным механизмам, и пять генов, способных контролировать развитие воспалительных реакций организма хозяина [Маренникова С.С., Щелкунов С.Н., 1998]. Бактерии способны замедлять воспаление, противодействовать хемотаксису фагоцитов, предотвращать иммунную реакцию и делать еще многое другое, что повышает их устойчивость к факторам среды макроорганизма [Smith H., 1995].

Но чем сложнее организован организм, тем большим арсеналом средств активного реагирования на повреждение он располагает. У многоклеточных таким арсеналом противодействия микроорганизмам стала система иммунитета (рис. 1). Термином «иммунитет» и его синонимами (невосприимчивость, толерантность, устойчивость, резистентность, неуязвимость и др.) обозначают способность живых существ противостоять агрессии со стороны представителей других биологических видов. Классификация явлений невосприимчивости (по механизмам их защитного действия) позволяет выделить конституциональные, фагоцитарные и лимфоидные факторы, образующие взаимодополняющие защитные системы [Румянцев С.Н., 1984]. Однако, даже действуя скоординировано, все системы иммунитета оказываются не в состоянии предотвратить развитие болезни у макроорганизма. Это вызвано тем, что два организма, способные как к повреждению, так и к реактивным ответам, вступают в особую биотическую связь, при которой повреждается один из них.

Рис. 1. Зависимость арсенала защитных механизмов, которым располагает биологический вид от его положения в эволюционно сложившейся иерархии видов. Системы иммунитета: 1 — конституциональная, 2 — фагоцитарная, 3 — лимфоидная


Макроорганизм в этой биотической связи выступает как хозяин, микроорганизм как паразит. Их взаимодействие носит антагонистический характер и называется инфекцией (от лат. infecto — вносить нечто вредное, заражать). Результат повреждения клеток — высвобождение энергии в окружающую среду. Поэтому паразитическое существование создает микроорганизму много преимуществ: он получает от хозяина ряд метаболитов без значительных энергетических затрат со своей стороны, а также использует его как территорию для обитания и размножения. Основываясь на первом законе термодинамики, мы можем прийти к выводу, что не может быть паразитизма без повреждения хозяина. Но из него же следует и обратный вывод — повреждение хозяина, которое мы наблюдаем, но пока не можем объяснить, может быть результатом паразитизма. Если взглянуть на данную проблему с эволюционной точки зрения, то переход к паразитизму для микроорганизма это, безусловно, успех. Болезнь же хозяина, обратная сторона этого успеха.

Теперь посмотрим, что же нужно паразиту для образования такой биотической связи. В отличие от неживой окружающей среды (почва, воздух, гниющие субстраты), хозяин для микроорганизма — высокоспециализированная среда обитания, которая способна активно реагировать на него и контролировать его размножение. Реакция же паразита на противодействие хозяина, должна обеспечить ему возможность паразитического существования, т. е. он должен быть для хозяина патогенным.

Патогенность — это способность некоторых микроорганизмов (патогенов) вызывать болезнь. Однако любая болезнь, в том числе и инфекционная, это свойство живого организма. Поэтому патогенность — не столько (иногда, не сколько) свойство микроорганизма, но и функция организма хозяина, иммунный статус которого «разрешает» тот или иной патогенез инфекции [Бухарин О.В., Литвин В.Ю., 1997].

Вирулентность — синонимичный термин, иногда его определяют как меру патогенности. Часто термин «патогенность» используется в отношении микробных видов, а «вирулентность» в отношении штаммов внутри видов: например, вид Bacillus anthracis более патогенен, чем Bacillus subtilis, а штамм Vollum Bacillus anthracis более вирулентен, чем штамм Sterne [Smith H., 1995].

Чем более патогенен микроорганизм, тем большие повреждения и нарушения он вызывает у макроорганизма. Чем менее способен организм хозяина предотвратить эти нарушения, тем тяжелее протекает инфекция, тем выраженнее проявления болезни. Адаптировать микроорганизм к организму того или иного вида животного — значит сделать данный микроорганизм для него патогенным. Однако известны так называемые авирулентные или апатогенные штаммы возбудителей инфекций (например, их вакцинные штаммы), способные размножаться в организме животного или человека, не причиняя ему вреда. Это явление можно рассматривать как взаимную адаптацию микро- и макроорганизма [Адо А.Д., 1985]. Другой сложный феномен взаимной адаптации макро- и микроорганизма, это носительство. Его можно рассматривать как одну из форм паразитизма, отражающую возможность выживания и сохранения тех паразитов, которые не приводят к гибели своих естественных хозяев [Бухарин О.В., Усвяцов Б.Я., 1996]. Поэтому в обоих случаях нет оснований говорить об инфекции, а в особенности об инфекционном процессе и болезни.

Инфекционный процесс и инфекционная болезнь наступают тогда, когда адаптация является односторонней, и микроорганизм размножается и разрушает макроорганизм, который оказался не в состоянии предотвратить эти разрушения [Адо А.Д., 1985].

Несколько обособлено стоит группа инфекционных болезней, вызываемых не живым возбудителем, а продуктами его жизнедеятельности, накопленными вне организма в различных субстратах (например, ботулинический токсин в продуктах питания). В патогенезе этих состояний нет инфекционного процесса, а присутствует лишь его составная часть — процесс интоксикации, тяжесть которого определяются видом и количеством токсина [Покровский и др., 1979].

В последние годы стал более сложным ответ на вопрос о причинах отдельных соматических и инфекционных болезней и, даже, проведения различий между ними. Казалось бы, что может быть проще? Причиной возникновения у человека сибирской язвы является его инфицирование В. anthracis; причиной гриппа, инфицирование вирусом гриппа, причиной атеросклероза отложение холестерина и т. п. Однако, что является причиной цитомегаловирусного ретинита или пневмонии? Цитомегаловирус? Известно, что причиной болезни можно считать только тот фактор, без которого возникновение и развитие именно данной болезни невозможно [Адо А.Д., 1985]. Но обе болезни возникают, в основном, у больных СПИДом, т. е. у лиц, иммунная система которых повреждена другим вирусом (рис. 2). Может ли ВИЧ-инфекция считаться фактором, способствующим развитию цитомегаловирусного ретинита или пневмонии? Ответ на этот вопрос может быть однозначным — да, может! Но будет ли он верным? Сам ВИЧ не убивает своего хозяина. Он является причиной болезни, называемой сегодня СПИДом, в свою очередь, представляющей целый комплекс различных инфекционных болезней. Гибель человека наступает от одной из них, в том числе и от вызванной цитомегаловирусом. D. Xuminer и соавт. (1987) сделали ретроспективный анализ медицинской литературы и выявили 14 случаев инфекционных болезней, описанных под разными диагнозами до 1981 г., которые соответствуют критериям, предложенным для СПИДа. Но ВИЧ тогда не был известен, поэтому несколько случаев пневмоний описаны ими как цитомегаловирусные, т. е., столкнувшись с какой-то новой инфекционной болезнью, мы легко можем принять ее следствие за ее причину. Но и этот ответ будет верен лишь отчасти.

Рис. 2. Цитомегаловирусное повреждение сетчатки глаза человека при СПИДе. В большинстве случаев цитомегаловирусной инфекции отмечается бессимптомное вирусоносительство. Однако при СПИДе патогенные свойства вируса проявляются разнообразными поражениями, невозможными в иммунокомпетентном организме. Цитомегаловирус, как и ВИЧ, способен подавлять клеточный иммунитет хозяина. Поэтому действие обоих вирусов на иммунную систему интегрировано. Видимо ближе к истине будут О.В. Бухарин, В.Ю. Литвин (1997), считающие, что патогенность не всегда удается адекватно оценить в «чистом виде», так как она может быть интегрированным результатом действия нескольких сочленов паразитоценоза хозяина. На рисунке видны участки отмершей ткани (светлые) и облитерация кровеносных сосудов (темные участки). Черная область — отслоившиеся участки [Милз Д., Мазур Г., 1990]


Рассмотрим другой пример сложности однозначного толкования причины инфекционной болезни. Лечение флюконазолом грибковой инфекции у больных СПИДом, приводит к заметному увеличению количества больных, инфицированных более устойчивым к препарату дрожжевым патогеном — Candida krusei (ранее практически не встречавшегося клиницистам), быстро приводящего их к летальному исходу от диссеминированного кандидоза [Samaranayake Y., Samaranayake L., 1994].

Получается, что причина болезни — ВИЧ, но клиницисты видят патологические проявления кандидоза, вызванного одним возбудителем (Candida albicans), а гибель больного наступает от другого возбудителя (Candida krusei). Видимо и в том и другом случае ближе к истине будет не А.Д. Адо (1985), а О.В. Бухарин, В.Ю. Литвин (1997), считающие, что патогенность не всегда удается адекватно оценить в «чистом виде», так как она может быть интегрированным результатом действия нескольких сочленов паразитоценоза хозяина.

* * *

Болезнь является обязательным проявлением жизни, спутником ее эволюции и усложняется соответственно функции и структуры живых существ. Первичным и основным звеном развития болезни является повреждение. При инфекционной болезни повреждение макроорганизма начинается с изменения в строении и свойствах различных молекул в клетках тканей, где размножаются микроорганизмы, при этом клетки погибают. Но развитие, течение, исход инфекционной болезни, в значительной степени, кроме процессов повреждения, определяются реактивными процессами. Чем более патогенен микроорганизм, тем большие повреждения и нарушения он вызывает в макроорганизме. Чем менее способен организм хозяина предотвратить эти нарушения, тем тяжелее протекает инфекция, тем выраженнее проявления болезни. Инфекционный процесс и инфекционная болезнь наступают тогда, когда адаптация является односторонней, и микроорганизм размножается и разрушает макроорганизм, который оказался не в состоянии предотвратить эти разрушения. Не всегда инфекционную болезнь вызывает какой-то один возбудитель. Она может быть интегрированным результатом действия нескольких сочленов паразитоценоза хозяина.

Глава 1.2. Патогенность и паразитизм

Абсурдизация коэволюции. Противоречия гипотезы закрепления патогенности естественным отбором. Типы паразитов. Патогенность микроорганизмов без критериев времени. Патогенность облигатных паразитов. Патогенность факультативных паразитов. Патогенность случайных паразитов. Смена типа (степени) паразитизма. Вторая стратегия паразитизма. Третья стратегия паразитизма.


Почему микроорганизмы бывают патогенными? Правильный ответ на этот вопрос позволит предварительно оценивать патогенный потенциал возбудителей новых инфекционных болезней исходя из критериев, которые невозможно определить в эксперименте.

Абсурдизация коэволюции. Понимание сути патогенности только как механизма, посредством которого реализуется возможность микроорганизма к паразитическому существованию, неизбежно приводит исследователей к мысли, что эта форма биотической связи временна, так как способна погубить хозяина и, следовательно, самого паразита. Поэтому длительное время считалось, что в ходе эволюции она должна быть вытеснена другими формами симбиоза, не наносящими вреда хозяину [Dubos R., 1965]. А сам процесс формирования таких форм симбиоза хозяина и паразита носит характер сопряженной эволюции (коэволюции), т. е. их «притирки».

Были получены данные, которые, казалось, свидетельствовали, что такая тенденция в эволюции патогенности может быть единственно верной. Рассмотрим пример, наиболее часто используемый для доказательства такой «коэволюции».

Для ограничения численности кроликов в Австралию в начале 50-х годов этого столетия был завезен вирус, вызывающий у кроликов смертельную болезнь — миксоматоз. На первом этапе эксперимента вирус, действительно, истребил до 95 % их первоначальной популяции. А дальше стали наблюдаться два параллельно развившихся процесса. Во-первых, произошло ослабление вирулентности вируса: он убивал не 95, а лишь нескольких десятков животных из сотни, а затем вообще перестал вызывать их гибель. Во-вторых, произошло быстрое распространение кроликов, которые оказались более устойчивыми к вирусу миксомы. В результате через 10–12 лет (после внедрения вируса) численность кроликов восстановилась до исходного уровня. Это пример стал настолько популярным, что сейчас трудно найти учебник по микробиологии, где бы его не привели. А известный биолог N. Ampel (1991) даже перенес его на всю I историю взаимодействия патогенных микроорганизмов с популяциями их хозяев.

Однако среди «коэволюционистов», извлекших из страданий австралийских фермеров столько пользы для торжества своей гипотезы, не нашлось никого, кто бы обратил внимание на результаты такого же эксперимента, выполненного на диких английских кроликах. После 12 лет исследований выяснилось, что в Англии нет ни устойчивых к вирусу миксомы кроликов, ни ослабленного вируса в их популяциях [Эндрюс К., 1969].

В Австралии вирус миксомы между кроликами переносят комары вида Culex annulirostris. Оставшиеся в живых (т. е., устойчивые к мисоматозу) кролики восстанавливали численность своих популяций за зимние месяцы, когда комаров, а, следовательно, вируса, значительно меньше.

В Англии переносчиками вируса миксомы были блохи. Между здоровыми и больными кроликами в естественных условиях «взаимообмен» блохами происходит в течение 3 сут, продолжительность же болезни 11 сут. Кроме того, после гибели животных, зараженные блохи могли оставаться в норах до 105 сут, не теряя своей инфекционности. Иными словами, для инфицирования отдельного животного даже не требовалось высокой плотности больных кроликов в их популяциях. Достаточно, чтобы он «заглянул» в опустевшую нору один раз за 3,5 мес. Сохранение незначительной части диких кроликов в Англии было связано не с «коэволюционным процессом», а с изменением образа их жизни. Они покинули родовые норы и стали жить на поверхности земли [Эндрюс К., 1969], т. е., австралийская «коэволюция» вируса и хозяина, это не более чем частный случай, а не всеобщая закономерность. Ошибочность этих интерпретаций была вызвана неправильным выбором объекта исследования. Пытаясь понять механизм эволюции патогенности исследователи, в действительности, изучали динамику отдельно взятого эпизоотического процесса.

Противоречия гипотезы закрепления патогенности естественным отбором. О том, что патогенность не артефакт недавней ассоциации между микроорганизмом и его хозяином, а более сложное явление, закрепленное естественным отбором, свидетельствуют и многие другие наблюдения. Способность холерного вибриона продуцировать повышенные количества холерного токсина, способствует увеличению количества холерных вибрионов в фекальных массах [Ewald Р., 1994]. Более вирулентный штамм ВИЧ, способный осуществлять сильную клеточную деструкцию в условиях in vitro, накапливается в значительных количествах в семянной жидкости больного СПИДом [Asjo В. et al., 1986]. Следовательно, в обоих случаях патогенность помогает паразиту решать другую важную задачу — осуществлять периодическую смену хозяина. Малярийные плазмодии, способные к интенсивному размножению, вызывают тяжелую болезнь с длительным течением и трудно поддающуюся лечению [Ewald P., 1984], т. е., увеличение патогенности продляет жизненный цикл малярийного паразита и одновременно способствует его переносу другим реципиентам. Высокая плотность и длительное циркулирование плазмодиев в крови человека повышают вероятность проникновения гаметоцитов в желудок комара-переносчика.

Микроорганизмы способны не только утрачивать патогенность, что предполагает теория коэволюции паразитов и их хозяев, (понимающая конечный результат этого процесса как потерю микроорганизмом паразитических свойств), но и приобретать ее. Об этом свидетельствует то обстоятельство, что многие факторы патогенности бактерий детерминируются генами, локализованными в плазмидах или мобильных элементах, способных к внутривидовому и к межвидовому обмену [Брода П., 1982; Пехов А.П., 1996].

Противоречит такой теории коэволюции и древность некоторых возбудителей инфекций, существующих в настоящее время. Поражения, напоминающие туберкулезные, найдены у ящеров мезозойской эры, населявших землю 185 млн. лет назад [Адо А.Д., 1985].

Существуют доказательства как наследственной резистентности млекопитающих к туберкулезу [Lurie M., 1964], так и аргументы в пользу того, что эпидемические штаммы возбудителя туберкулеза были селекционированны для людей, резистентных к данной болезни [Waters A., 1991]. Duff-негативные группы крови и специфические HLA-аллели в популяциях людей, поддерживаются посредством селекции малярийными плазмодиями. Это явление также может быть интерпретировано как доказательство длительной ассоциации возбудителя малярии с человеком, не приведшей к утрате паразитом патогенности (рис. 3).

Рис. 3. Взаимосвязи между малярийными паразитами людей и приматов. У обезьян находят более 26 видов плазмодий. Молекулярный и морфологический анализ показали, что возбудители малярии приматов и людей имеют сходные филогенетические деревья. Получены предварительные доказательства того, что эта группа паразитов имеет: 1) сходный диапазон коэволюционных сценариев, включающих видообразование P. vivax и близких к нему паразитов у азиатских приматов; 2) недавний обмен паразитами между людьми и обезьянами Нового Света; 3) и, возможно, произошедший в давнее время обмен falciparum-подобным паразитом от птиц и ящериц к африканским гоминоидам. Вирулентность малярийных плазмодиев варьирует, но сохраняется миллионы лет, Дальнейший анализ преподнесет еще другие сюрпризы [Escalante A. et al., 1998]


Однако существуют факты, которые трудно объяснить, если отбросить возможность коэволюции вообще и исходить только из гипотезы о закреплении естественным отбором патогенности за паразитическими микроорганизмами. Основное препятствие гипотезе создает то обстоятельство, что вызываемые этими микроорганизмами патологические симптомы, болезнь и смерть хозяина, не придают им никаких дополнительных преимуществ в процессе трансмиссии.

Эта группа возбудителей довольно большая. В нее входят как возбудители «новых» (легионеллез, болезнь Лайма, хантавирусная пневмония), так и «старых» инфекционных болезней (сибирская язва, мелиоидоз). На основе гипотезы закрепления патогенности естественным отбором трудно объяснить, зачем полиовирусу нужна инвазия и пролиферация в корешках спинного мозга. Полиовирус обычно реплицируется в клетках слизистого эпителия кишечника, а передается по фекально-оральному механизму. Размножившись в ЦНС, он не сможет передаться в другие организмы. То, что такой паразитизм не случайность и не свойство только вирусов, свидетельствуют примеры с бактериальными патогенами. Возбудители менингитов — Haemophilus influenzae и Neisseria meningitidis, обычно «проживают» в носоглотке и передаются воздушно-капельным путем. Проникновение в спинномозговую жидкость, по крайней мере для этих бактерий, является началом их конца. Организм отвечает неспецифическим воспалительным ответом на их размножение в ликворе, что приводит к симптомам менингита и смерти Хозяина [Levin В., 1996]. Эпидемическая цепочка, как и при инвазии вируса полиомиелита в корешки спинного мозга, обрывается.

Не объясняет гипотеза закрепления патогенности естественным отбором и приобретение микроорганизмами некоторых «факторов патогенности». Адгезины, продуцируемые уропатогенными E. coli и ответственные за болезненные проявления инфекции в уринарном тракте, необходимы для поддержания возбудителя в кишечнике. Однако болезненные симптомы инфекции уринарного тракта, генерируются через неспецифический воспалительный ответ на эти же адгезины и не создают никаких преимуществ E. coli. Их экспрессия может привести только к «очищению» уринарного тракта от кишечной палочки. Какие преимущества дают E. coli 0157 токсины, вызывая гибель хозяина от гемолитической уремической комы [Levin В., 1990]? А «суперантигены», вызывающие сверхответ иммунной системы и, в конечном итоге, приводящие хозяина к гибели от сепсиса [Whitnack E., 1993], зачем они закрепляются естественным отбором в качестве «факторов патогенности»?

Неспособность обоих рассмотренных гипотез (коэволюции паразита и хозяина, и закрепления за паразитом патогенности естественным отбором) объяснить патогенные свойства одних микроорганизмов, при их полной релевантности в объяснении патогенности других, свидетельствует о многовариантности самого явления патогенности, препятствующей созданию какой то «единой теории патогена». Поэтому мы вернемся к первопричине патогенности микроорганизмов — их паразитическому существованию.

Типы паразитов. О.В. Бухарин и В.Ю. Литвин (1997) выделяют три типа паразитов. Облигатные паразиты — их единственной средой обитания всегда служит какой-то другой хозяин. Поэтому независимо от путей передачи такие возбудители отличаются наиболее выраженной зависимостью от хозяев. Среди возбудителей инфекционных болезней облигатными паразитами являются те, которые при пассажах от одного организма к другому не попадают во внешнюю среду (трансмиссивный, половой, трансплацентарный, лактационный пути передачи, а также укусы животных). Факультативные паразиты — помимо организма хозяина, в процессе циркуляции могут в разной мере использовать внешнюю среду, так что эта категория паразитов очень не однородна. Отличие их от облигатных паразитов состоит в возможности выхода во внешнюю среду различными нетрансмиссивными путями, а также в способности использовать внешнюю среду в процессах циркуляции и резервации. Случайные паразиты — эту группу составляют возбудители типичных сапронозов, для которых внешняя среда (почва, вода, растительные и другие органические субстраты) служит нормальной и наиболее обычной средой обитания. Особенность случайных паразитов состоит в обязательности внешней среды как их основной среды в той же мере, в какой для облигатных и факультативных паразитов обязателен организм хозяина.

Патогенность микроорганизмов без критерия времени. Прежде чем перейти к установлению связей между типами, паразитов и их патогенностью, вернемся к понятию «патогенность», но опустив фактор времени из его толкования. Такой подход вполне оправдан, если учитывать то обстоятельство, что микроорганизмы не знают смерти как разделения пространства и времени [Вернадский В.И. 1965].

Размножаясь делением (бактерии), либо реплицируясь с использованием «ферментативного аппарата» клеток хозяина (вирусы), паразитические микроорганизмы фактически являются бессмертными. Поэтому, смерть, как фактор биологической эволюции, значима только для их жертв. А сами они существуют в нашем понимании вне времени. Отсюда следует, что тот критерий патогенности возбудителя инфекционной болезни, в котором учитывается «фактор времени», лишь отражает нашу потребность в определенном комфорте при исследовании события. Давайте проверим этот тезис. Если мы определим патогенность (вирулентность) через временной интервал — от момента инфицирования паразитом хозяина, до момента гибели хозяина, то убедимся в чрезвычайной патогенности возбудителя натуральной оспы (гибель людей наступит в течение 2–3 нед.) и непатогенности ВИЧ. Однако если эту патогенность будем определять по «конечному результату», то окажется, что среди инфицированных вирусом натуральной оспы погибло только 30 % и эпидемия давно закончилась, а среди первично инфицированных ВИЧ — погибли все, а эпидемический процесс продолжается, приводя к инфицированию и гибели все большего числа людей, т. е. ВИЧ достиг предела патогенности, возможной для паразита — 100 % смертности своих жертв при сохранении способности к смене хозяев. Вирус натуральной оспы, в сравнении с ним, даже безобиден. По нашему восприятию времени полная гибель инфицированных займет 10 лет, однако для ВИЧ ни этот период, ни даже миллион лет, не означают ничего. Поэтому та патогенность (вирулентность), которая характеризуется быстрым инкубационным периодом и непродолжительной болезнью, завершающейся смертью, это только проявление определенной (условно назовем ее первой) стратегии паразитизма, где продолжительность инфекционного процесса лимитируется иммунной системой хозяина (вернее, эволюционно сложившейся для данного биологического вида нормой иммунного ответа). Отсюда можно прийти к выводу и о существовании стратегий паразитизма, при которых продолжительность болезни хозяина будет ограничена продолжительностью его жизни (вторая стратегия), и, даже, продолжительностью жизни его как вида (третья стратегия). Однако о последних двух стратегиях мы поговорим позже.

Патогенность облигатных паразитов (возбудители кори, коклюша, гриппа, желтой лихорадка, чумы, натуральной оспы, лихорадки Денге, Ку-лихорадки и др.). Патогенность таких паразитов является исключительно вынужденной и существует через необходимость сохранения хозяина живым для последующего переноса к новым хозяевам (рис. 4). В зависимости от способа переноса (основные — трансмиссивный и воздушно-капельный), плотности и чувствительности инфицируемой популяции, вирулентность возбудителя новой болезни может значительно колебаться, однако в его распространении всегда можно отследить эпидемическую цепочку. Клиническая картина болезни может носить характер давно сформировавшейся инфекционной патологии, т. е., иметь четкий клинико-патогенетический синдром и эпидемиологию. Наиболее опасно появление в человеческих популяциях новых возбудителей данного типа, использующих трансмиссию с помощью какого либо переносчика, который уменьшает зависимость паразитического микроорганизма от живого хозяина. Более того, он будет поддерживать отбор высоковирулентных штаммов из-за большой вероятности захвата им возбудителя с кровью больных с тяжелыми формами инфекции. Однако процесс формирования таких форм симбиоза хозяина и паразита носит характер коэволюции. Поэтому в инфицированных популяциях новый возбудитель никогда не достигает максимума своей вирулентности, в чем можно убедиться опытным путем, уменьшая его LD50 последовательными пассажами через хозяев. Эффект пассажей делает паразитическую трансмиссию независящей от выживания самого хозяина. Посредством этого ему «дозволяется» большая вирулентность без компромисса, необходимого для его способности передаваться другим хозяевам [Levin В., 1996].

Рис. 4. Снижение средней продолжительности жизни людей на планете после пандемии испанки в 1918 г. и с начала 1960-х гг. Масштабные эпидемии и пандемии, вызываемые облигатными микроорганизмами, использующими первую стратегию паразитизма, способны приводить к опустошению отдельных стран. Патогенность таких паразитов существует через необходимость оставлять хозяина живым. Поэтому численность населения не только восстанавливается, но и может превысить «доэпидемический» период. Однако с начала 1960-х годов рост средней продолжительности жизни замедлился [Lederberg J., 1997]. В XXI столетии возможна ее отрицательная динамика из-за давления, оказываемого возбудителями инфекций, использующими вторую и третью стратегии паразитизма и существующими без необходимости сохранять жизнь своим жертвам


Таким образом, вышеуказанные противоречия «теории коэволюции», созданы теми «коэволюционистами», которые понимают взаимную адаптацию макро- и микроорганизмов, как процесс, ведущий к утрате микроорганизмом паразитических свойств и к превращению его в свою противоположность — комменсал. О.В. Бухарин и Б.Я. Усвяцов (1996), опираясь на предложенный В. Беляковым и соавт. (1987) «принцип саморегуляции паразитарных систем», «развили» эволюционное учение «правилом», в соответствии с которым «эволюция не дает существенных преимуществ ни одному из взаимодействующих видов — она направлена на достижение динамического противоречивого равновесия». Т. е. эволюции как естественного отбора наиболее приспособленных видов, не существует. А эволюция симбиотических систем представлена ими в виде последовательности событий — «комменсализм-паразитизм-аменсализм-комменсализм» и т. д., напоминающей ламарковское упражнение органов. О.В. Бухарин и Б.Я. Усвяцов (1996), так же как и N. Ampel (1991), принимают частный случай снижения вирулентности микроорганизмом в конце эпидемического процесса за общую закономерность — утрату им паразитических свойств в ходе «эволюции симбиотических систем».

Возможна ли вообще утрата паразитических свойств облигатным организмом, как настаивают указанные выше авторы? Чтобы ответить на этот вопрос, посмотрим, какую цену платят другие биологические виды за переход к паразитическому существованию. Например, внутренние паразиты теряют органы чувств, затем у них до предела упрощается нервная система, и, как у ленточных червей, исчезает пищеварительная — она им больше не нужна. Т. е., отбор перестает следить за формированием структуры, и этого достаточно. Остальное делает второе начало термодинамики. Те структуры, которые поддерживает отбор, сохраняются и развиваются, например, органы прикрепления к стенке кишечника [Медников Б.М., 1982]. Эта закономерность носит общебиологический характер. Поэтому она справедлива и для микроорганизмов. Таким образом, переход к облигатному паразитизму всегда сопровождаемся упрощением организма. Организм не может «скачком» вернуть те утраченные структуры, которые бы позволили ему вновь вернуться в прежнюю среду обитания, перейти к другим формам симбиоза, либо изменить стратегию паразитизма. Для этого ему нужно стать другим видом. А так как это менее вероятно, то при смене условий окружающей среды происходит либо его замещение другим паразитом, либо формирование других форм симбиоза, которые могут не включать паразитические микроорганизмы. Следовательно, патогенность облигатных паразитов является адаптивным признаком, а их поддержание в популяциях отдельных видов может достигаться за счет других механизмов (гетерогенность популяции паразита по вирулентности, использование им переносчиков, сохранение в резервуарах и т. п.). Даже сильное отрицательное давление против высокопатогенных паразитов, вызванное небольшой численностью хозяина, либо ограниченным диапазоном паразитизма возбудителя, ведет не к становлению его как комменсала, а к его вытеснению из популяции хозяина новым микроорганизмом с другой стратегией паразитизма (второго и/или третьего типа). Поэтому теории коэволюции не противоречит ни длительная ассоциация патогенных видов микроорганизмов с их хозяевами, ни поддержание патогенности естественным отбором, но только тогда, когда речь идет об облигатных паразитах и исключается придуманная некоторыми исследователями возможность их перехода к другим формам симбиоза.

Патогенность факультативных паразитов (возбудители полиомиелита, холеры, гепатита А, ботулизма, бактериальных менингитов и др.). Для возбудителей инфекционных болезней, являющихся факультативными паразитами, характерны фекально-оральный и воздушно-капельный пути передачи, высокая степень носительства и лишь эпизодическое проявление их в форме тяжелых инфекций. Так, на одного больного менингитом приходится 180 бактерионосителей [Покровский и др., 1976]. По данным В.В. Алексеенко (1991) соотношение больных холерой и вибрионосителей колеблется в разных регионах от 1:1 до 1:100. Проникновение вируса полиомиелита через гематоэнцефалический барьер происходит не чаще чем в 1 % случае от числа инфицированных [Болотовский В.М., 1993]. Колонизация факультативными паразитами слизистых поверхностей макроорганизма (кишечник, носоглотка) осуществляется в условия противодействия со стороны микробов-антагонистов, местных барьерных факторов и др. Поэтому создаются условия для природной селекции высоковирулентных штаммов в виде локального феномена. Это позволяет паразитическому микроорганизму:

1) избежать ингибирования своего размножения механизмами защиты хозяина;

2) пролиферировать в этом хозяине;

3) проникать и размножаться в органах, тканях и клетках, в которых он будет меньше конкурировать с другими представителями своего вида и иметь преимущества в данном хозяине [Levin В., 1996].

Экспрессия факторов, ответственных за локальные преимущества микроорганизма, не направлена на его трансмиссию к другим хозяевам. У «новых» возбудителей данного типа вероятно обнаружение генов известных, т. е., «старых» факторов патогенности (например, термолабильных и термостабильных энтеротоксинов). Как мы уже указывали выше, для менингококка проникновение в ликвор и для полиовируса проникновение в клетки ЦНС, является началом их конца. Однако степень факультативности у микроорганизмов различна. Поэтому при некоторых инфекциях, например, кишечных, обсемененность окружающей среды данным возбудителем может возрасти, что, при наличии фекально-орального механизма передачи, приведет к распространению паразитического микроорганизма по эпидемической цепочке. Но патогенность возбудителя холеры не имеет такого решающего значения для его распространения в природе, как для облигатного, например, малярии. В большинстве случаев, «внезапно» появившаяся вирулентность сокращает популяцию носителя и снижает скорость передачи возбудителя. Для других условий, факторы, создавшие локальные преимущества микроорганизму, значения не имеют. Они не придают микроорганизмам большей способности выживать в окружающей среде, не повышают вероятность выживания их популяций в будущем. Это «недальновидная эволюция» вирулентности микроорганизма [Levin В., Bull J., 1994].

Патогенность случайных паразитов (возбудители сибирской язвы, легионеллеза, мелиоидоза, псевдотурберкулеза и др.). Применительно к организму теплокровных патогенность их случайных паразитов не может ни поддерживаться посредством природной селекции, ни представлять собой результат «недальновидной» эволюции. Эпизодичность паразитической фазы их существования в теплокровных организмах исключает иной путь развития инфекционной болезни, кроме как случайного проявления ответа макроорганизма на экспрессируемые микроорганизмом вещества — так называемые факторы вирулентности, обычно имеющие другие функции. Клинические проявления таких новых инфекций могут не носить специфической картины (как мелиоидоз) и зависеть от пути проникновения возбудителя (как сибирская язва). Так как жизнь или смерть случайно инфицированного теплокровного организма ничего не значат для поддержания такого паразита в природе, то его вирулентность не лимитируется необходимостью сохранения жизни своим жертвам. Болезнь может протекать в септической форме и сопровождаться высокой смертностью (сибирская язва, мелиоидоз). Массовые инфекции носят характер вспышек (болезнь легионеров, псевдотуберкулез) и редко напоминают классический эпидемический процесс, т. е. передачу возбудителя по цепочке от одного заболевшего к другому. Возбудитель сибирской язвы является исключением — инфицирование крупного рогатого скота происходит через траву, а затем, при употреблении недостаточно термически обработанного мяса, инфицируются люди. Но для сохранения возбудителя в природе эти жертвы никакого значения не имеют.

Смена типа (степени) паразитизма. Среди возбудителей инфекций мы нигде не видим «идеальных убийц». Так или иначе, возможности их поддержания в окружающей среде и проникновения в организм теплокровных, ограничены. Ареалы возбудителей малярии, лихорадки Денге и желтой лихорадки лимитированы ареалами их переносчиков, те, в свою очередь, климатическими и ландшафтными условиями. Возбудитель мелиоидоза может существовать только в определенном типе почв. Возбудитель сибирской язвы для того, чтобы проникнуть в организм животного, должен быть сначала захвачен корневой системой травянистых растений. ВИЧ не сохраняется в окружающей среде и не передается воздушно-капельным путем как вирус гриппа. Тот же, в свою очередь, неспособен передаваться половым путем и т. д. Признавая роль Творца в создании паразитических организмов, нам бы пришлось признать и то, что в каждом конкретном случае им не все было продумано. Признавая роль естественного отбора (как выразился писатель АзекАзимов — «демона Дарвина»), нам также придется считаться с тем, что и он не во всех случаях работает безотказно.

Посмотрим, что должно произойти с облигатным паразитом, прежде чем тот станет «случайным» и после гибели своего хозяина обретет «спокойное существование» где-то в почве.

Облигатные паразиты утрачивают ненужные им гены, т. е. те, которые обеспечивают выживание в другой среде обитания. Значит, для смены типа паразитизма такие гены должны вновь возникнуть. Для этого в распоряжении «демона Дарвина» есть мутации. Вероятность мутации в гене 10–5. Однако гарантии того, что эта мутация не создаст бессмысленную последовательность, нет. Бессмысленную мутацию отбор не пропустит. Предположим, что для создания нужного структурного гена в исходном гене должны возникнуть две мутации, тогда их вероятность уже 10–10. Такие ничтожные вероятности не столь часто реализуются, чтобы провести бессмысленную последовательность на следующий этап естественного отбора. Придется оставлять старую [Медников Б.М., 1982].

Для бактерий «демон Дарвина» может использовать генетический перенос. Однако плазмиды и фаги случайных и даже факультативных паразитов находятся в другой среде обитания. Красивые опыты по межвидовому переносу генов между бактериями, выполненные в условиях in vitro, очень трудно экстраполировать на каждый конкретный эпизод биологической эволюции в природных условиях. Например, конъюгацию, легко получаемую в лабораторных условиях на фильтрах, видимо, можно осуществить и в кишечнике теплокровного животного. Но если мы возьмем конкретные микроорганизмы, например, облигатный паразит — возбудитель чумы и факультативный — возбудитель дизентерии, то убедимся, что встреча их в одном организме, даже при развитии двух инфекций сразу, маловероятна. А если она случайно произойдет в другой среде обитания, например, в каких-нибудь почвенных амебах? Много ли получит с этого «демон Дарвина»? Скорее всего, что немного. Плазмиды, как правило, несут только дополнительные к основным гены, позволяющие микроорганизму выдерживать конкуренцию с другими членами среды его обитания (гены токсинов, антибиотиков и т. п.). Но они не могут определить тип паразитизма.

Тогда как же совместить успехи, достигнутые эволюцией в создании отдельных патогенных видов и явное бессилие эволюции, когда рассматривается возможность большей адаптации этих видов к изменившейся среде обитания, за счет смены типа (степени) паразитизма?

Парадоксальное бессилие «демона Дарвина» генетик С. Райт представил в виде очень наглядной картины. Вообразим разные степени приспособленности к внешним условиям в виде холмистого ландшафта («ландшафта приспособленности»), где высота холма (адаптивного пика) соответствует степени его приспособления (в рассматриваемом нами случае — это вирулентность и тип паразитизма). Популяция, поднявшаяся на маленький пик, не может сменить его на большой, стать более приспособленной, ибо при смене пиков отбор пойдет против уровня приспособленности. Как кошка во время наводнения, спасаясь на низком заборе, может утонуть, хотя рядом был высокий дом, так и паразитический вид вынужден приспосабливаться к меняющейся среде обитания в рамках той способности к паразитизму, которая была закреплена за ним естественным отбором. Поэтому, все надежды на смену каким-то возбудителем типа паразитизма, как и на его переход к комменсализму, иллюзия. Также трудно судить, какой из пиков выше. А вот какой опасней для нас, как биологического вида — это, несомненно, облигатный паразитизм. Именно в его рамках может измениться стратегия паразитизма, «новый» паразитический микроорганизм внезапно достигнет вершины адаптивного пика, а кошка запрыгнет на крышу дома (рис. 5).

Рис. 5. Т-лимфоцит, инфицированный ВИЧ. ВИЧ использует Т-лимфоциты для своего размножения (частицы вируса выглядят как маленькие шарики [Вебер Д., Вейсс Р., 1988]). Одновременно он разрушает иммунную систему хозяина, что делает невозможным существование большого количества ВИЧ-инфицированных людей в условиях, когда их популяции подвергаются давлению со стороны возбудителей контагиозных болезней. «Победа» над контагиозными возбудителями привела не к переходу их в комменсалы, а к их смене паразитом с другой стратегией паразитизма. И в настоящее время использующий вторую стратегию паразитизма ВИЧ — наиболее «идеальный убийца»


Вторая стратегия паразитизма. Постоянное наращивание возможностей человеческого общества по активному воздействию на распространение и размножение патогенных микроорганизмов привело к изменению характера пандемий. Массовая иммунизация и антибиотикотерапия, возможность распознавать возбудителя инфекционной болезни, проводить карантинные мероприятия, дезинфекцию, Дератизацию резко снизили риск проникновения в человеческую популяцию паразитических видов микроорганизмов, вызывающих непродолжительную болезнь с коротким инкубационным периодом и интенсивным размножением возбудителя. Появились пути передачи, которые раньше были невозможными (гемотрансфузии, внутривенные инъекции, трансплантации). Тем самым была открыта Дорога облигатным паразитическим микроорганизмам, способным распространяться при невысокой плотности населения и низкой интенсивности передачи. Проникновение в человеческое общество новых возбудителей, использующих вторую стратегию паразитизма, возможно как из родственных природных резервуаров, в которых по каким-то причинам они были законсервированы, так и из латентных очагов в человеческих популяциях, видимо, представляющих собой один общий резервуар. Вызываемая ими инфекция носит медленный характер, возбудитель стремится быть не узнанным иммунной системой и сохранить себя в человеческих популяциях, интегрируясь с геномом человека (ретровирусы, герпесвирусы, вирус гепатита В, аденоассоциируемые вирусы и др.) либо как микоплазменное образование. Продолжительность таких инфекционных процессов не лимитируется иммунной системой хозяина. В механизме передачи преобладает половой путь, который одновременно необходим для сохранения вида-хозяина и не может быть разорван. Эпидемическая цепочка ограничивается лишь количеством человеческих особей в популяции, поэтому распространение некоторых паразитических микроорганизмов приобрело характер пандемии (ВИЧ, вирус гепатита В, некоторые виды вирусов герпеса и микоплазм). Возбудитель не накапливается в больших количествах. Например, концентрация ВИЧ в периферической крови редко превышает 104 частиц в 1 мл3 [Медников Б.М., 1990]. Использующий первую стратегию паразитизма возбудитель сибирской язвы накапливается на терминальной стадии болезни до 109 колониеобразующих единиц в 1 мл3 крови [Frittz D. et al., 1995].

Возбудители, использующие вторую стратегию паразитизма, вызывают либо пролиферативные болезни, например, лейкемии (HTLV-1 и HTLV-2), либо как ВИЧ, не вызывают конкретную болезнь, делая организм беззащитным перед лицом какой угодно болезни [Лем С, 1989], либо имитируют соматические болезни — атеросклероз, нарушения психики и др. (герпесвирусы, микоплазмы). Продолжительный латентный период этих болезней сочетается с максимальной вирулентностью их возбудителей, определяемой без учета временного критерия. Длительность болезни может быть сопоставима с продолжительность жизни человека, но не равна ей, так как для сохранения и передачи микроорганизма, жизнь хозяина при данной стратегии паразитизма, значения не имеет. Уже сейчас можно сказать, что вызываемая такими микроорганизмами патология, замедлила рост средней продолжительности жизни человечества, начавшийся в начале XX столетия (см. рис. 4), а все надежды победить ВИЧ с помощью современных технологий, провалились (рис. 6).

Рис. 6. Неоправданные надежды на быструю победу над СПИДом. Так оптимистически в 1988 г. ученым виделись перспективные подходы к борьбе с ВИЧ [Яркоан Р., Мицуя Х., Бродер С., 1988] За более чем десятилетний период были потрачены миллиарды долларов, Однако надежды на высокие технологии не оправдались. Пандемия продолжается


Третья стратегия паразитизма. Об этой стратегии можно пока высказать только гипотезу. В отсутствие селективного давления происходит полиморфизация популяции ВИЧ и ВИЧ-подобных вирусов, проникновение других аналогичных и подобных видов, что ведет к конкуренции между ними, их отдельными подтипами, эндогенными ретровирусами и другими мобильными элементами генома человека. По данным J. Lederberg (1997), с геномом человека способны интегрироваться от 400 до 500 ретровирусов. Этот процесс сложен и не изучен. Само появление живых систем обязано ретроэлементам, которые сыграли важную роль в формировании геномов позвоночных и составляют значительную часть генома человека. Ретротранспозиция ретроэлементов считается главным регулятором темпа эволюции самых различных организмов, включая видообразование новых ретровирусов. Эндогенные ретроэлементы могут играть роль «защитных экранов», препятствующих специфической интеграции ретровирусов в геном высших животных. Конкуренция между эндогенными и экзогенными ретроэлементами происходит в рамках генома хозяина и ее конечной задачей является усиление влияния на него. Поэтому можно предположить, что дальнейшее развитие пандемии СПИДа приведет к появлению новой инфекционной патологии, связанной с избирательным поражением жизненно важных участков генома человека. Распространение же такого возбудителя будет предполагать как половой, так и наследственный механизмы. Инкубационный период значительно превысит таковой для ВИЧ. Болезнь проявит себя разнообразной соматической и наследственной патологией, не принимаемой за инфекционную. Длительность эпидемического процесса — несколько столетий. Растянутость этого процесса во времени не имеет значения за пределами человеческих ощущений. Его результатом могут быть необратимая депопуляция, либо даже запуск механизма случайного (т. е., не обусловленного резким ухудшением внешних условий) уничтожения вида, действующего на генетическом уровне.

* * *

По типу паразитизма возбудителей инфекционных болезней можно разделить на три большие группы. Облигатные паразиты — их единственной средой обитания всегда служит какой-то другой хозяин. Поэтому, независимо от путей передачи такие возбудители отличаются наиболее выраженной зависимостью от хозяев. Факультативные паразиты — помимо организма хозяина, в процессе циркуляции могут в разной мере использовать внешнюю среду. Случайные паразиты — эту группу составляют возбудители типичных сапронозов, для которых внешняя среда (почва, вода, растительные и другие органические субстраты) служит нормальной и наиболее обычной средой обитания. Возбудители инфекционных болезней используют принципиально разные стратегии паразитизма. К первой мы относим ту, при которой продолжительность инфекционного процесса лимитируется иммунной системой хозяина. Ко второй, стратегию, при которой продолжительность болезни хозяина будет ограничена продолжительностью его жизни. К третьей, стратегию, при которой продолжительность инфекции ограничивается сроком вида. Патогенность облигатных паразитов является адаптивным признаком. Их взаимодействие с хозяином носит характер коэволюции. Патогенность факультативных паразитов не придает им большей способности выживать в окружающей среде, не повышает, вероятность выживания их популяций в будущем, а является результатом «недальновидной эволюции» их вирулентности. Так как жизнь или смерть инфицированного теплокровного организма ни чего не значат для поддержания случайного паразита в природе, то его вирулентность не лимитируется необходимостью сохранения жизни своим жертвам. Болезнь может протекать в септической форме и сопровождаться высокой смертностью. Паразитический вид вынужден приспосабливаться к меняющейся среде обитания в рамках той способности к паразитизму, которая была закреплена за ним естественным отбором. Сильное отрицательное давление против высокопатогенных паразитов, использующих первую стратегию паразитизма, вызванное либо небольшой численность хозяина, либо ограниченным диапазоном паразитизма возбудителя, ведет не к становлению его как комменсала, а к его вытеснению из популяции хозяина новым микроорганизмом с другой (второй и/или третьей) стратегией паразитизма.

Глава 1.3. Патогенность бактерий

Факторы патогенности. Инфицирование слизистых поверхностей. Инвазия. Внутриклеточная жизнь бактериальных патогенов. Жизнь внутри вакуоли. Взаимодействие бактериальных патогенов с иммунной системой хозяина. «Острова патогенности» и система секреции бактериальной клетки.


Наличие пептидогликана у бактериальной клетки определяет основную стратегию ее паразитизма, при которой продолжительность инфекционного процесса лимитируется иммунной системой хозяина (первая стратегия). Патогенная бактерия может кратковременно имитировать вторую стратегию путем несбалансированного роста, когда утрачивается клеточная стенка (L-формы бактерий) и она становится менее узнаваемой для иммунной системы хозяина. Однако в этом случае бактерия вынуждено переходит на более низкий уровень биосинтеза органических веществ, что приводит к замедлению ее размножения. В результате возбудитель не накапливается до такой степени, что бы вызвать типичный инфекционный процесс. Болезнь переходит в стадию резидентного бактерионосительства и может закончиться гибелью паразита без смены им хозяина. Для того, что бы быть патогенными, бактерии должны: инфицировать слизистые поверхности; проникать через них в хозяина; размножаться во внутренней среде хозяина; противодействовать его защитным механизмам и причинять ему вред. Необходимость в выполнении первых двух требований отпадает, если бактерии проникают в ткани через альвеолы (в составе мелкодисперсного аэрозоля) и поврежденную кожу (укусы переносчиков). Для выполнения каждого из этих требований бактерии должны обладать рядом биологических факторов, которые кратко описаны ниже [Smith H., 1995; Finlay В., Falkow S., 1997; Бухарин О.В., Литвин В.Ю., 1997].

Факторы патогенности. Каждый из них ответственен за проявление конкретных свойств микроорганизма в инфекционном процессе. К ним относят: факторы адгезии и колонизации — с их помощью бактерии распознают рецепторы на мембранах клеток, прикрепляются к ним и колонизируют клетки (различные поверхностные структуры клеточной стенки); факторы инвазии — благодаря им бактерия проникает в клетку (белки наружной мембраны); факторы, препятствующие фагоцитозу — либо маскируют бактерию от фагоцитоза (капсула), либо подавляют фагоцитоз (различные белки — белок А у стафилококков, белок М у стрептококков); факторы, подавляющие фагоцитоз — вещества, подавляющие окислительный взрыв фагоцитов (например, V-W-антигены Y. pestis); ферменты «защиты и агрессии» бактерий — способствуют распространению бактерий по тканям хозяина (гиалуронидаза, лецитиназа, протеазы и др.); эндотоксины — представлены только у грамотрицательных микроорганизмов (липосахариды и связанные с ними белки клеточной стенки). Высвобождаются в среду организма после гибели клетки и обладают многообразным воспалительным и пирогенным действием неспецифического характера; экзотоксины (подробно о них в разделе 1.5) — токсические молекулы, активно секретируемые в окружающую среду с помощью специальных секретируемых систем [Коротяев А.И., Бабичев С.А., 1998]. Далее мы покажем участие этих факторов в инфекционных процессах.

Инфицирование слизистых поверхностей. Слизистые поверхности носоглотки, желудочно-кишечного тракта и половых путей, изобилуют комменсалами, которые ограничивают доступ патогенов к питательным веществам. Кроме того комменсалы занимают поверхностное пространство и продуцируют различные ингибирующие вещества. Механизм противодействия бактериальных патогенов комменсалам плохо изучен. Известно, что лишь очень небольшим количествам патогенов слизистой оболочки удается преодолеть эту защиту. Следующий барьер, который они должны преодолеть, это слизь. Обнаружено, по крайней мере, два механизма, позволяющие бактериям преодолевать этот барьер. Первый — это подвижность (т. е., обладание жгутиками) и хемотаксис. Второй — наличие в слизи рецепторов хозяина для адгезинов бактерий, которые удерживают бактерии и блокируют взаимодействие с рецепторами эпителиальных клеток. Патогенные бактерии способны расти в слизи, тем самым подавляя любые рецепторы или другие блокирующие агенты [Smith H., 1995]. Далее, что бы не допустить удаления в результате движения воздушного потока либо содержимого кишечника, им необходимо закрепиться на поверхности эпителия. Способность бактерий к адгезии и колонизации поверхностей закреплена естественным отбором. Она наблюдается не только в организме человека и теплокровных животных. Эта функция необходима бактериям при сапрофитическом существовании. Например, легионеллы активно прикрепляются к поверхности цианобактерий [Bohach, Snyder 1983], холерные вибрионы активно колонизируют зоопланктон, хитин которых используется ими как источник питания и стимулируют размножение холерных вибрионов [Nalin at al., 1979]. Таким об разом адгезия — это общебиологическое явление, известное как свойство микроорганизмов фиксироваться и размножаться, колонизируя поверхности различной природы. Большинство грамотрицательных бактерий прикрепляются к эпителиальным клеткам человека и животных с помощью адгезинов, представляющих собой особые органеллы [Бухарин О.В. и Усвяцов Б.Я., 1996]. Отдельные патогены используют сразу несколько «факторов адгезии», например, B. pertussis и H. influenzae. Наиболее распространенными являются пили — выросты нитевидной формы, расположенные на полюсах бактериальной клетки. Как правило, они состоят из белковых субъединиц с молекулярной массой 15000—30000 и содержат до 50 % гидрофобных аминокислот [Мороз А.Ф., 1988]. Пили используются бактериями для связи с субстратами почвы, и этот процесс нередко имеет характер адгезин-рецепторного взаимодействия, обеспечивающего им высокую специфичность при колонизации в организме теплокровного. Например, пили уропатогенньп кишечных палочек связываются с группировкой альфа-D-галактопиранозил-(1–4) — бета-В-галактопиранозида, входящей в состав гликолипида поверхности эпителия, выстилающего верхний отдел уринарного тракта [Hultgren S. et al., 1993]. Количество и тонкая структура таких рецепторов в уринарном тракте человека варьируют, однако у уропатогенных бактерий синтезируются различные адгезиновые варианты пилей, что значительно повышает вероятность их адгезии Синегнойная палочка проявляет адгезивные свойства по отношению к эпителию дыхательного тракта, чем объясняется частая его колонизация при застойных явлениях в трахее и бронхах. Адгезия синегнойной палочки к другим эукариотическим клеткам происходит только в случае их термического или химического повреждения [Мороз А.Ф., 1988].

Адгезия бактериального патогена может осуществляться к компонентам внеклеточного матрикса — фибронектину, коллагену, ламинину и др. Матриксные белки имеют последовательность RGD, с которой взаимодействуют интегрины клеточной поверхности. Тем самым белки внеклеточного матрикса способствуют «приклеиванию» бактерий к клеткам-мишеням хозяина [Finlay В., Falkow S., 1997]. Адгезия бактерий к таким белкам носит специфический характер и каждый патоген реализует эту возможность «по-своему». Для проявления патогенности некоторых бактерий критическое значение имеет их взаимодействие с матриксными белками. Например, белок YadA способствует связыванию Yersinia enterocolitica с клеточным, но не плазменным фибронектином посредством адгезии с коллагенами и ламинининами. Утрата YadA снижает вирулентность возбудителя иерсиниоза для мышей почти в 100 раз [Pere J.C. et al., 1995].

В последние годы стало ясно, что адгезия бактерий не является простым механическим взаимодействием их лиганд-структур с рецепторами на поверхности клеток-мишеней хозяина, имеющими другое предназначение. Взаимодействие патогена с клеткой хозяина может приводить к активации сигнальных систем клеток непосредственно бактериальным компонентом, либо через стимуляцию активационных факторов хозяина, например, воспалительных цитокинов. Было показано, что энтеропатогенные кишечные палочки (ЕРЕС) секретируют белки, активирующие сигнальный путь, включающий фосфорилирование одного из белков клетки-хозяина — Нр90. После этого становится возможной адгезия бактерии к поверхности клетки. Самым удивительным для ученых, обнаружившим данное явление, оказалось то, что тирозин-фосфорилированная форма Нр90 и есть тот рецептор, с которым взаимодействует адгезии ЕРЕС — наружный мембранный белок интимин (94 кд), кодируемый еае-геном [Rosenshine et al., 1996; Goosney D. et al., 1999]. Механизм, запускающий инвазию бактерий после их адгезии к клеткам хозяина, включается еще до того, как эта адгезия произошла. Бактерии способны «чувствовать» свое окружение и регулировать плотность своих популяций посредством сигналов «от клетки к клетке» (рис. 7).

Рис. 7. Схематическое изображение запуска генов инвазии пролиферирующими бактериями. Самая простая система передачи сигнала «от клетки к клетке» предполагает взаимодействие двух генов. Первый — это ген I, кодирующий автоиндуцируемую синтетазу, второй — R-ген, кодирующий транскрипциональный активаторный белок (R-белок). Автоиндуцируемая синтетаза отвечает за синтез автоиндуцируемой молекулы (AI), которая проникает: через клеточную мембрану. С увеличением клеточной плотности внеклеточная концентрация AI возрастает тысячекратно, и AI связывает транскрипциональный активатор. Комплекс R-белок/АI активирует экспрессию гена-мишени, например, обеспечивающего бактерии способность проникать в клетку-мишень [Van Delden С, Iglewski В., 1998]


Заметим, что почти все факторы вирулентности бактерий строго регулируются, при этом их экспрессия связана с различными сигналами окружающей среды (температура, концентрация ионов, осмолярность, количество железа, рН, наличие источника углерода, содержание кислорода и др.). Патогены используют один или более из этих факторов для того, чтобы «понять» в какой микросреде, т. е., на какой стадии инфекционного процесса они находятся в настоящее время. Например, гены инвазии обычно включаются на ранней стадии инфекции, но подавляются, когда бактерии проникают внутрь клеток хозяина [Finlay В., Falkow S., 1997].

Обращает на себя внимание избыточность механизмов адгезии и колонизации у бактерий.

Инвазия. Многие патогенные микроорганизмы способны проникать в клетки хозяина и активно в них размножаться. Для проникновения в клетки бактерии используют адгезивные молекулы, называемые инвазинами. Наиболее распространенный механизм адгезии включает активацию сигналов в клетке хозяина, которые делают возможным инвазию бактерий посредством запуска нормальных клеточных реакций. Проникновение же бактерий в клетку обеспечивается элементами ее цитоскелета.

Некоторые патогены, например, Rickettsia prowazeckii, продуцируют фосфолипазы, разрушающие клеточную стенку вокруг «прилипшего» микроорганизма и он проникает непосредственно в цитоплазму [Walker D.H. et al., 1983]. Однако каким образом осуществляется контроль энзиматической деградации, предотвращающий клеточный лизис и как клетки хозяина восстанавливают свои мембраны после инвазии, остается неизвестным [Finlay В., Falkow S., 1997].

Рассмотрим более изученные механизмы инвазии. В табл. 1 сопоставлены механизмы инвазии некоторых патогенных бактерий.

Таблица 1
Сравнение механизмов инвазии патогенных бактерий

Бактерия | Бактериальный инвазин | Рецептор(ы) хозяина | Особенности

Yersinia | Инвазин | бета1-интегрин | «Зип-лайк» — фагоцитоз, инвазия опосредованная актином, но не разрушающая мембрану клетки, (активированная тирозинкиназой)

Yersinia | Yad A | бета1-интегрин | Менее эффективный чем инвазин

Yersinia | Ail |? | Инвазия неэффективна и менее специфична

L. monocytogenes | Интерналин | (Inl A) | Е-кадхерин | «Зип-лайк» — фагоцитоз, опосредованная актином, мембрана клетки не разрушается, активация тирозинкиназой

S. flexneri | Ipa-D | альфа5бета1-интегрин? | Разрушение мембраны, изменение клеточного цитоскелета без истечения кальция

S. typhimurium | SipB-D |? | «Рифление» мембраны, изменение клеточного цитоскелета, макропиноцитоз, ток кальция и некоторые другие сигналы (не ингибируемые киназными ингибиторами), формирование поверхностных отростков

Энтеропатогенная E. coli | Инвазин | Hp90 | Формирование «пьедестала» и тесная адгезия (зависимая от микротрубок и актина), опосредована тирозинкиназой


Pseudomonasaeruginosa. Возбудитель синегнойной инфекции продуцирует несколько внеклеточных белков, способствующих его инвазии и диссеминации (рис. 8).

Рис. 8. Схематическое изображение факторов вирулентности Pseudomonas aeruginosa. P. aeruginosa имеет факторы вирулентности, связанные с клеткой (жгутики, пили, непилиевые адгезины, альгинат, ЛПС) и внеклеточные факторы вирулентности [Van Delden С., Iglewski В., 1998]


Прежде всего это экзотоксин А (является ADP-рибозилтрансферазой). Он способен инактивировать фактор элонгации 2 и тем самым ингибировать в клетке белковый синтез. Экзотоксин А ответственен за локальные повреждения тканей и иммуносупрессию. Экзоэнзим S также является ADP-рибозилтрансферазой, но преимущественно рибозилирут GTP-белки, такие как Ras. Он ответственен за непосредственное разрушение легочной ткани. Два гемолизина — фосфолипаза С и рамноллипид, могут действовать как синергисты при разрушении липидов и лектинов. Рамноллипид содержит детергент-подобную структуру и благодаря ей он растворяет фосфолипиды легочных тканей, делая их более доступными для разрушения фосфолипазой С. Протеазы (LasB-эластаза, LasA-эластаза и щелочная протеаза) играют основную роль во время острой фазы инфекции. Роль щелочной протеазы в инвазии P. aeruginosa, неизвестна. LasA-эластаза является сериновой протеазой и действует как синергист LasB-протеазы (цинк металлопротеаза) при деградации эластина легочной ткани. LasB-эластаза деградирует не только эластин, но и фибрин и коллаген, а также инактивирует человеческие иммуноглобулины G и А, компоненты комплемента и лизоцим, находящийся в воздушных путях, т. е., LasB-эластаза еще и препятствует действию механизмов защиты хозяина [Van Delden С, Iglewski В., 1998]. Система регуляции генов патогенности P. aeruginosa показана на рис. 9.

Рис. 9. Схематическое изображение регуляции генов патогенности Pseudomonas aeruginosa. Система сигналов las, передаваемых от «клетки к клетке», в иерархическом каскаде контролируется посредством сигнальной системы белка rhi Комплекс LasR/-3-oxo-C12-HSL активирует транскрипцию rhlR. 3-охо-12HSL блокирует активацию RhlR посредством C4-HSL. Сама las-система контролируется позитивно — посредством Vfr и GacA, и негативно — посредством RsaL. 3-oxo-C12-HSL требуется для дифференциации биопленки и обладает иммуномодуляторной активностью. Обе сигнальные системы регулируют экспрессию различных генов (lasB — LasB-эластаза; lasA — LasA-эластаза; toxA — экзотоксин А; аргА — щелочная протеаза хсрР и xcpR — гены хср-секреторного пути; rhlАВ — рамнозилтрансфераза, требуемая для продукции рамноллипида; rpoS — сигма-фактор стационарной фазы [Van Delden С, Iglewski В., 1998]


Shigella flexneri — возбудитель дизентерии у людей. Посредством эндоцитоза, через лимфатические фолликулы пейферовых бляшек тонкого кишечника, шигеллы проникают в слизистую оболочку ободочной кишки (рис. 10). Продуктами генов, которые инициируют процесс инвазии, являются три белка: IpaB (плазмидный антиген инвазии — 62 кд), IpaD (38 кд), IpaC (42 кд). В lamina prdpria они инфицируют макрофаги и вызывают запрограммированную гибель клеток. Цитокины высвобождаются и индуцируют воспаление. Вследствие притока полиморфно-ядерных фагоцитов разрушается базальная мембрана и разрывается эпителий. Клетки, теперь уже лишенные щеточной каемки, становятся уязвимыми и не защищенными от индуцируемого плазмидой проникновения шигелл. Детерминантой апоптической гибели макрофагов является белок IpaB. В течение короткого времени после проникновения шигелл в клетки, вакуоли лизируются под действием IpaB. Высвободившись, бактерии быстро размножаются внутри цитоплазмы. Шигеллы неподвижны и лишены жгутиков, но они перемещаются внутри клетки и распространяются от одной клетки к другой. Это обусловлено образованием у них «хвоста» из полимеризованного актина хозяина под влиянием гена ics (гена внутриклеточного распространения), который кодирует 120 кд белок. Перенос шигелл осуществляется через выступы на поверхности одной клетки, которые вставлены в инвагинации соседней клетки. Затем части, содержащие бактерии, отсекаются. Двойные мембраны лизируются продуктами плазмидного гена icsB, высвобождая бактерии для дальнейших циклов роста и переноса [Smith H., 1995; Finlay В Falkow S., 1997; Goosney D. et al., 1999].

Рис. 10. Механизм инвазии Shigella flexneri. A. Иммунофлюоресцентная фотография, показывающая Shigella (темноевключение), проникающую через цитоплазму посредством полимеризованного актина (светлые нити). B. Перестановки цитоскелета, обусловленные инвазией Shigella. Наружный мембранный белок IcsA используется шигеллой для продвижения вклетку хозяина. IcsA непосредственно соединяется с двумя белками клетке хозяина — винкулином и белком нейрального синдрома Вискота-Аль-Дрехта (N-WASP). Шигелла расщепляет винкулин, в результате образуется 90 кд фрагмент, который присоединяется к IcsA и к вазодилататорстимулирующему белку (VASP). VASP рекрутирует белки цитоскелета клетки хозяина (актин и профилин) к бактериальной поверхности и формирует актиновый «мотор» для продвижения шигеллы


Salmonella typhimurium — возбудитель энтероинфекции людей (рис. 11). Для проникновения возбудителя в нефагоцитирующий эпителий необходимы несколько хромосомных генов (inv/spa), кластированных на «острове патогенности», названном SPI1 (Salmonella pathogenicity island 1; более подробно см. «острова патогенности» и «системы секреции бактериальной клетки»). Подобно ЕРЕС, АРМ кодирует третий тип секреторной системы, активируемой посредством межклеточного контакта. Это позволяет экспортировать и клетку хозяина детерминанты вирулентности, необходимые для бактериальной инвазии [Goosney D. et al., 1999].

Рис. 11. Механизм инвазии Salmonella typhimurium. A. Трансмиссионная электронная микрофотография индуцированного Salmonella «рифления» мембраны поляризованных Сасо-2 эпителиальных клеток. B. Инвазия Salmonella в эпителиальные клетки хозяина. Salmonella секретирует белки вирулентности, включающие SopE и SptP с помощью секреторной системы III типа. SopE функционирует как фактор обмена гуанидина для небольших СТР(гуанидинтрифосфат) — связывающих белков, вероятно, вызывая обмен GDP на GTP белка CDC42, члена семейства Rho. SptR является фосфатазой, необходимой для инвазии. Предполагается, что она разрушает цитоскелет. Инвазия также стимулирует активность фосфолипазы С (PLC1, приводящей к истечению из клетки и иозитолтрифосфата (IP3) и Са2+. Последний, в свою очередь, «обратным ходом» может быть вовлечен в перестройку цитоскелета, что приводит к «рифлению» мембраны эукариотической клетки и интернализации Salmonella [Goosney D. et al., 1999]


Yersinia. Наиболее изучены системы инвазии у Yersinia enterocolitica и у Yersinia pseudotuberculosis. Первоначально они проникают в организм через посредничество М-клеток пейеровых бляшек подвздошной кишки. Дальнейшая диссеминация происходит благодаря выживанию внутри макрофагов, которые мигрируют через лимфатическую систему. Оба микроорганизма обладают хромосомными генами, кодирующими наружный мембранный белок инвазии, способствующий их адгезии и проникновению в нефагоцитирующие клетки. Показано, что инвазин эффективно присоединяется к белкам семейства (бета1-интегринов. После тесного связывания с интегринами, инвазин индуцирует проникновение бактерии во внутрь клетки с помощью механизма, подобного «застежке молнии» («zipper-like» mechanism — «зип-лайк» механизм). Он заключается в «расстегивании» мембраны вокруг бактерии в момент ее проникновения в клетку хозяина. Энтеропатогенные Yersinia обладают еще двумя инвазинами: Ail и YadA. Белок Ail способствует более эффективной адгезии к эпителиальным клеткам, но не участвует в их инвазии. Зато он способствует устойчивости Yersinia к действию сыворотки (такие белки широко распространены среди других инвазивных бактерий). YadA — это белок, закодированный на плазмиде. Подобно инвазину он связывается с (бета1-интегринами клеток хозяина. Присоединение Yersinia к бета1-интегрину клетки хозяина запускает механизм контакт-зависимой секреции плазмидных факторов вирулентности и последующей транслокации в ее цитоплазму отдельных бактериальных белков [Smith H., 1995; Finlay В, Falkow S., 1997].

Патогены, связывающие молекулы хозяина для осуществления инвазии. Механизмы инвазии отдельных патогенов не поддаются логике. Легионеллы и микобактерии связывают фрагменты комплемента СЗb и СЗbi, которые облегчают их проникновение в фагоцитирующие клетки, и тем самым, уменьшают для них риск подвергнуться воздействию окислительных радикалов [Schlesinger L.S., Haas R., 1994]. Другие микроорганизмы связывают фибронектин, который затем функционирует как мостик между бактерией и фибронектиновым рецептором клетки хозяина, способствуя их инвазии. Например, Mycobacterium leprae продуцирует фибронектинсвязывающий белок, который способствует ее проникновению в эпителий и шванновские клеточные линии [Schorey А.В. et al., 1995]. Интересно, что механизмы, используемые для инвазии в нефагоцитирующие клетки функционируют и в отношении фагоцитирующих клеток. Например, мутант S. typhimurium, утративший способность к инвазии эпителиальных клеток, одновременно значительно снижает свою способность проникать в фагоцитирующие клетки [Gahring L.C., 1990]. Это возможно потому, что использование бактериями путей активной инвазии, помогает им избежать антибактериальной активности фагосом, куда они неизбежно попадают при традиционном фагоцитозе [Finlay В., Falkow S., 1997].

Внутриклеточная жизнь бактериальных патогенов. Механизм блокирования активного фагоцитоза макрофагами теплокровных имеет аналоги в природе: легионеллы, проникая в амебы и инфузории, используют те же механизмы, предотвращающие их переваривание и позволяющие микробам активно размножаться в вакуолях простейших [Бухарин О.В., Литвин В.Ю., 1997]. Т. е. патогенность «новых» для человека бактерий может объясняться тем, что они уже были преадаптированы к такой встрече. С. Richmond (1987) считает, что проникновение легионелл в легочные макрофаги обусловлено их «ошибкой» (по определению В. Levin — это «недальновидная эволюция»), ставшей возможной из-за большого сходства этих клеток с их природными хозяевами — амебами. Любопытно и то, как легионеллы убивают человеческие фагоциты. Для этого они используют эволюционно очень древний прием — индуцирование апоптоза, видимо «отработанный» еще на амебах [Hagele S., et al., 1998]. В ряде исследований обнаружена прямая корреляция между успешным внутриклеточным ростом бактерии и ее вирулентностью |Finlay В., Falkow S., 1997].

Большинство фагоцитированных бактерий все же погибает в макрофагах и полиморфно-ядерных лейкоцитах. Однако некоторые применяют удачные стратегии собственного выживания. Например, S. flexneri и L. monocytogenes растворяют мембрану образовавшейся вокруг них вакуоли и таким образом получают доступ к богатой питательными веществами цитоплазме. Coxiella burnetii выживает и даже «процветает» среди бактерицидных агентов, доставляемых клеткой хозяина в фаголизосомы. Основным требованием Демона Дарвина к патогену является способность того приспособиться к температуре, осмолярности, концентрации кислорода и уровню питательных веществ внутри тканей хозяина. Это позволит ему достичь такой скорости размножения, которая в наибольшей степени способствует использованию ресурсов хозяина при данной стратегии паразитизма, а, следовательно, ведет к дальнейшему развитию болезни.

Жизнь внутри вакуоли. Патогены используют разнообразные механизмы, позволяющие им избежать гибели в вакуолях («непробиваемые» капсулы; ферменты, нейтрализующие кислородные радикалы и протеолитические ферменты и др.). Но удивительно то, что некоторые из них фактически зависят от факторов, обнаруженных в фаголизосомах! Например, С. burnetii и S. typhimurium нуждаются в кислых значениях рН в качестве сигнала для внутриклеточной репликации. При этом само проникновение именно в данную фаголизосому, тоже предопределено. Специфический рецептор, который патоген использует для вторжения в эпителиальную клетку или для поглощения фагоцитом, в значительной степени влияет на конечную внутриклеточную локализацию вакуоли, которая окружает патоген [Finlay В., Falkow S., 1997]. Вот уж действительно, паразитические микроорганизмы это не примитивные, а более древние формы жизни!

Взаимодействие бактериальных патогенов с иммунной системой хозяина. Локальное взаимодействие бактериального патогена с тканями, как правило, вызывает большое количество системных реакций, посредством которых организм хозяина пытается контролировать течение инфекции. Иммунная система млекопитающих способна узнавать многие компоненты бактерий, особенно ЛПС и пептидогликан. Однако на некоторые из них эта реакция чрезмерна. Staphylococcus aureus продуцирует токсин, названный «суперантигеном» из-за того, что он вызывает токсический шок. «Суперанти-генными» свойствами обладают отдельные антигены возбудителя псевдотуберкулеза и уропатогенных кишечных палочек. Их роль в инфекционном процессе не ясна. Предполагается, что «суперантигены» позволяют бактериям преодолевать локальные защитные системы хозяина [Finlay В., Falkow S., 1997], т. е. их синтез является следствием «недальновидной эволюции».

В результате длительного селекционного давления (в том числе и в окружающей среде), наиболее «удачливые» патогены вырабатывают стратегию, позволяющую либо избежать, либо вводить в заблуждение иммунную систему нового хозяина. О.В. Бухарин и Б.Я. Усвяцов (1996) выделяют 4 типовых механизма защиты бактерий от факторов иммунитета.

Экранирование клеточной стенки бактерий. Механизмы экранирования структур бактерий (пептидогликан, поверхностные белки клеточной стенки и др.), опознаваемых иммунной системой хозяина, могут иметь как специфический, так и неспецифический характер. Из неспецифических «экранов», наиболее изучены капсулы и капсулоподобные образования.

Создание бактериями капсульного материала полисахаридной и протеиновой природы представляет наиболее типичную тактику бактериального уклонения от фагоцитоза. Являясь по своей природе полимером N-ацетилнейраминовой кислоты, капсулы многих бактерий сходны не только в химическом, но и в биологическом отношении. Они покрывают основные компоненты клеточной стенки и препятствуют активации комплемента сыворотки [Бухарин О.В., Литвин В.Ю., 1997].

Капсулоподобные образования формируются за счет неспецифической сорбции поверхности бактериальной клетки сывороточных протеинов хозяина (иммуноглобулинов, фибриногена, 2-микроглобулина, гаптоглобулина, сывороточного альбумина, и др.). Такое иммуноглобулиновое покрытие может достигать толщины 100 нм. Оно помогает бактериям уйти от распознавания иммунной системой, придает устойчивость к фагоцитозу и прикрывает их поверхность от лиганд-рецепторных взаимодействий [Бухарин О.В., Литвин В.Ю., 1997].

Сходную функцию — экранирование петидогликана и воспрепятствование опсонизирующему действию системы комплемента, выполняет у стафилококков — белок А, у стрептококков — белок М [Езепчук Ю.В., 1985].

К специфическому механизму экранирования клеточной стенки бактерий, видимо, можно отнести их антигенную вариабельность.

Многие поверхностные структуры бактерий способны к антигенному варьированию — это жгутики, пили, ЛПС, капсулы, S-слой, секретируемые ферменты и отдельные белки клеточной стенки. Однако это не означает, что они все сразу варьируют у каждого патогена. Интенсивному варьированию подвержены только некоторые из них, как правило, это активно экспрессируемые (или экспонируемые) иммунодоминантные поверхностные белки патогенов, «проживающих» на поверхности слизистых оболочек. Примеров антигенной вариабельности среди внутриклеточных бактерий, значительно меньше. Видимо, это связано с тем, что основной иммунный ответ хозяина вызывают другие их антигены [Finlay В., Falkow S., 1997].

Наиболее хорошо механизм антигенной вариации изучен у Neisseria (N. gonorrhoeae, N. meningitidis). Основной варьирующей антигенной структурой у представителей этого семейства являются пили. Гонококки располагают потенциально большим набором серологически различных пилей, однако всегда экспрессируется ген только одного из них. Это вызвано тем, что в бактериальной клетке постоянно экспрессируется только один функционально активный пилиновый локус (pil E). Но одновременно с ним в хромосоме разбросаны еще более чем 50 усеченных нетранскрибируемых генов пилей. В случае генетической перестановки, происходящей по принципу «русской рулетки» (и посредством Rec А), экспрессируемый ген в pil Е заменяется одним из молчащих, с другими серологическими свойствами — антигенная структура гонококка меняется [Seifert H.S., 1992].

Другой варьирующей структурой семейства являются их поверхностные белки Ора. Экспрессия гена каждого такого белка независима от других и реализуется через «двухпозиционный переключатель». Каждый ора-ген в регионе, кодирующем гидрофобную сигнальную последовательность, имеет серию повторов последовательности СТСТТ. Количество СТСТТ определено рамкой трансляции гена и, в итоге, один из двух полных белков Ора экспрессируется. Рекомбинация между СТСТТ-последовательностями меняет количество СТСТТ-повторов и антигенную специфичность белка Ора [Stern A., Meyer T.F., 1987].

Borreliahermsii — возбудитель возвратной лихорадки, демонстрирует другой пример антигенных вариаций. Этот микроорганизм содержит линейную плазмиду, которая кодирует множество молчащих копий вариабельных основных белков. Подобно пилям Neisseria, через Перестановки ДНК в экспрессионные сайты на других линейных плазмидах, боррелией осуществляется экспрессия антигенно различных основных белков [Girons S., Barbour A.G., 1991].

Многие бактериальные поверхностные компоненты варьируют от штамма к штамму. Вот только несколько примеров: ЛПС сальмонелл — более 60 типов; капсула S. pneumoniae — более 80 типов; IgA-протеаза H. influenzae — более 30 вариантов; М-белок стрептококков — более 80 серотипов. Большинство вариаций вызвано маленькими нуклеотидными заменами, вставками и делециями генов, которые кодируют эти факторы вирулентности, а в результате этих процессов мы наблюдаем антигенный дрейф у возбудителя инфекции [Finlay В., Falkow S., 1997].

Продукция бактериями секретируемых факторов, инактивирующих защиту хозяина. Микробная клетка обладает средствами дистанционного действия, которые представляют многочисленную группу секретируемых бактериальных субстанций, направленных на инактивацию механизмов иммунной защиты.

Наиболее изучено образование трипсиноподобных ферментов, расщепляющих иммуноглобулины класса A (IgA). Продукция данных ферментов характерна для бактерий, инфицирующих слизистые оболочки бактерий. Протеазы данного типа некоторых микроорганизмов (P. aeruginosa и S. marcescens) действуют неспецифично и расщепляют другие гуморальные защитные протеины хозяина — лизоцим, фибронектин, и даже компоненты тканей, включая фибробласты. Бактерии также продуцируют ферменты, деградирующие комплемент, лизоцим, бактерицидный компонент лейкоцитарного интерферона, гистоны, дефенсины и др. Наши знания об этих факторах постоянно расширяются [Бухарин О.В., Усвяцов Б.Я., 1996]. Очень важным представляется их способность к полифункциональному действию (см., например, действие LasB-эластазы). Благодаря этому патоген может добиться «успехов» в новом для себя хозяине не нарушая «принципа экономии генов».

Антигенная мимикрия. Под антигенной мимикрией понимается наличие сходных структур у хозяина и паразита, представленных молекулами разного генетического набора (рис. 12). Сходство между протеинами, закодированными у микроорганизмов, и собственными протеинами хозяина — встречается достаточно широко. Данное явление оставляет отчетливые генетические следы в человеческих популяциях после глобальных эпидемических катастроф.

Рис. 12. Схема антигенной мимикрии между Kl. pneumoniae и HLA человека. Гомологичный участок Kl. pneumoniae и антигены гистосовместимости человека (HLA B-27) имеют 6 из 9 пар сходных аминокислот [Бухарин О.В., Усвяцов Б.Я., 1996]


Образование форм бактерий с отсутствием (дефектом) клеточной стенки. Невозможность «замаскировать» пептидогликан бактериальной клетки приводит к тому, что бактерия либо частично, либо полностью теряет его вместе с клеточной стенкой. С точки зрения паразита, это биологически оправданный шаг, так как возбудитель для организма становится неузнаваем и персистирование его в среде обитания продолжается [Бухарин О.В., Усвяцов Б.Я., 1996].

«Острова патогенности» и системы секреции бактериальной клетке. Так как инфекционная болезнь проявляется разнообразными патологическими процессами, протекающими в органах и тканях, то первоначально считалось, что патогенные свойства бактерий формируются с помощью каких-то редких и уникальных механизмов. Однако спектр таких механизмов оказался не так широк, как первоначально предполагалось. Была установлена общность ряда молекулярных инструментов, используемых бактериями для достижения разных целей [Finlay В., Falkow S., 1989]. Постепенно возникло и другое противоречие в представлениях о бактериальной патогенности. В ранних поисках генов вирулентности, исследователями была обнаружена локализация многих из них на плазмидах или Фагах [Брода П., 1982]. Позже стало ясно, что гены патогенности, переносимые фагами и плазмидами, не способны вызвать в организме хозяина все те патологические изменения, которые вызывают различные патогенные микроорганизмы [Mecsas J., Strauss E.J 1996], и их роль в эволюции патогенных бактерий явно преувеличена. Оба противоречия разрешились тогда, когда для исследователей интерес стали представлять хромосомы.

Было обнаружено, что большая часть так называемых факторов патогенности располагается на хромосомах отдельными кластерами из функционально связанных групп генов. Последовательности этих кластеров отличались от большей части генома, что позволили выдвинуть предположение об их «чужеродном» происхождении. Позже подобные структуры были найдены на плазмидах, однако они не охватывают всего многообразия таких структур, имеющихся на хромосомах. Эти наблюдения позволили выдвинуть концепцию «островов патогенности», расположенных на дискретных и часто имеющих чужеродное происхождение участках ДНК, кодирующих группы вирулентных признаков (табл. 2). Одновременно стали накапливаться сведения о механизме доставки синтезируемых факторов патогенности за пределы бактериальной клетки (рис. 13). В частности у вида Yersinia была обнаружена секреторная система (III типа), закодированная в одном из «островов патогенности» [Salmond G., Reeves PJ., 1993]. Механизм действия такой системы способствует продвижению эффекторных молекул в участки клетки хозяина, где они оказываются способными изменять его физиологию [Rosqvist R. et al., 1991; Rosqvist R., 1990].

Таблица 2
Характеристика отдельных «островов патогенности»

Микроорганизм | Наименование | Локализация | Районы | Стабильность | Чужеродность происхождения, G-C: % островов/ % хромосомы | Функция | Размер, Кб |

Уропатогенная E. coli 536 | Остров патогенности I (Pai I) | Sel Ca, 82' | 16 кб, прямые повторы, производные от sel C общий мотив с Pai II повторами | Нет | Прямые повторы; отсутствуют в E. coli нормальных фекалий и в лабораторных штаммах | альфа-гемолизин | 70

Уропатогенная E. coli 536 | Pai II | Leu Xa, 97' | 18 кб, прямые повторы, производные от leu X, общий мотив с Pai I повторами | Нет | То же | альфа-гемолизин, prf (фибрии, адгезивные к клеткам хозяина), транскрипционные активаторы хромосомных генов | 190

Уропатогенные E. coli J96 | (Pai I) | Вблизи Phe Va, 64' | — | — | То же | альфа-гемолизин, pap (фибрии, адгезивные к клеткам хозяина), последовательности IS-элементов, последовательности R-плазмид, последовательности фага Р4 | >170

Уропатогенные E. coli J96 | Pai II | Phe Ra,94' | 135 кб, неполный прямой повторяющийся | Нет | То же | альфа — гемолизин, pis (фимбрии, адгезивные для клеток хозяина), цитотоксический некротизирующий фактор I типа, последовательности IS-элементов, последовательности фага Р4, Omp R гомолог | 106

Энтеропатогенные E. coli | Локус стирания энтероцитов, LEE | Sel Ca, 82' | Повторов или IS-элементов не найдено | Даb | G+C:39/51, не показано тесной связи | Вызывает АЕ-поражения, секреторная система III-типа | 35

S. typhymurium | SPI 1 | Между fhe и mut S, 63' | Повторов или IS-элементов не найдено; | в некоторых серологически различных штаммах граничат с IS3 | Да | G+C:42/52, отсутствуют в E. coli | Инвазия в культуры эпителиальных клеток, секреторная система III-типа | 40

S. typhymurium | SPI 2 | между ydh E и pyk F, 31' | Даb | G+C:42/52, отсутствуют в E.coli, законсервирован среди Salmonella | III тип секреции | 40

S. typhymurium | Сальмонелла-индуцируемый жгутиковый ген А, sif A | potB/potC | 140 кб, прямые повторы | Да | G+C:41/52, прямые повторы; отсутствие в E. coli; законсервирован среди Salmonella | Для формирования структур, связанных с сальмонелла-ассоциированными вакуолями в пределах эпителиальных клеток | 1,6

Y. pestis | Способность к адсорбции экзогенных пигментов, Pgm | Pho E | 2,2 кб, прямой повтор (=IS 100) | Нет | G+C: регион накопления гемина 47/46–50; | Рецептор иерсинеобактина / регион железорегулируемого белка 56–60/46–50; | Прямые повторы | Связывание гемина и конго красного. | Пестицинчувствительность. | Связывание железа. | Рост при 37 °C в обедненной среде | 102

V. cholerae 0137 | Otn A otn B | rfb | Фланкирован двумя различными IS — элементами | — | IS-элемент; не содержится в Vibrio cholerae 01 El Tor | Синтез капсулы и О антигена | 35

L. monocytogenes | — | Между prs и ldh | IS-элементов не обнаружено | Даb | В непатогенных видах отсутствует | Избавляет листерию от вакуоли; внутри и внеклеточное распространение | 9,6

Примечание: а — ген tRNA; b — сравнительно

Рис. 13. Схема типов систем секреции бактерий. Для осуществления секреции все системы используют энергию АТФ-гидролиза. I и III типы секретируют белки через внутреннюю мембрану и клеточную оболочку бактерии за одну стадию; секретируемые белки не делают промежуточной остановки в периплазматическом пространстве, как это наблюдается при II типе секреции. Системы I и III типа сходны еще тем, что они не удаляют какой-то части секретируемого белка. В противоположность этому, N-концы белков, секретируемых по второму пути, утрачиваются ими при прохождении периплазматического пространства. Первый тип систем секреции представлен значительно меньшим количеством компонентов, чем третий (на рисунке это показано различающимися по форме и размеру белками). Третий тип секреции зависит от контакта с поверхностью эукариотической клетки [Galbn J., 1996]


У грамотрицательных бактерий такие белки проходят через две мембраны: внутреннюю, которая окружает цитоплазму, и внешнюю оболочку, которая является барьером между клеткой и окружающей средой. Между ними располагается периплазматическое пространство, через которое проходит общий путь секреции белков перед тем как была идентифицирована секреторная система рода Yersinia, уже были известны две другие системы (I и II типов) специализирующиеся на транспорте молекул к клеточной поверхности [Salmond G., Reeves PJ., 1993]. Протеины, секретируемые по механизму I типа, переходят непосредственно из цитоплазмы к клеточной поверхности, используя общий секреторный путь. Механизм секреции II типа использует этот путь до достижения белками периплазматического пространства. Затем белок переходит через наружную мембрану посредством других канальных белков. Обе системы (I и II типов) вовлечены в различные функции, включая ипатогенез. Например, альфа-гемолизин E. coli использует систему I типа Пилеформирующие энтеропатогеные E. coli (EPEC) и энтеропатогенные E. coli (BTBC), используют II тип секретирующей системы [Mecsas J., Strauss E.J., 1996].

3а последние годы у многих грамположительных бактерий, вызывающих болезни животных и растений, были обнаружены высококоннсервативные системы III типа [Gijsegem F., 1995]. Они ответственны за транспортировку эффекторных молекул непосредственно из цитоплазмы к клеточной поверхности, где эти молекулы взаимодействуют с клетками макроорганизма и изменяют функционирование их белков таким образом, чтобы способствовать выживанию и репликации бактерии [Michiels Т. et al., 1990]. Секреция эффекторных белков системой III типа происходит непосредственно после контакта возбудителя инфекционной болезни с клеткой хозяина (в отличие от систем I и II типов). Поэтому ее можно назвать контактзависимой секрецией [Galbn J., 1996]. Из возбудителей, использующих III тип секреторной системы, лучше всего изучена Yersinia pestis, вызывающая чуму, а также некоторые энтеропатогены (семейств Yersinia, Salmonella, Shigella и ЕРЕС), вызывающие как диарею, так и системные инфекции. Из-за того, что секретируемые бактериями эффекторные молекулы могут поражать различные цели, эти системные инфекции могут проявляться различными синдромами [Salyers A., Whitt D., 1994]. Представители семейства Yersinia используют для этих целей эффекторные молекулы, разрушающие ключевые функции иммунных клеток и делают их «безвредными» для себя [Cornelis G., 1992]. В опытах на культурах клеток было установлено, что Yersinia секретируется примерно 10 типов эффекторных молекул и, по крайней мере, 3 из них инъецируются в клетки-мишени [Rosqvist R., 1994]. Два типа — Yop E и Yop H, модифицируют белки макрофагов и нарушают способность макрофагиальных клеток нейтрализовать действие этих эффекторных молекул, что позволяет Yersinia «процветать» в ретикулоэндотелии.

В отличие от эффекторных молекул семейства Yersinia, блокирующих нормальные клеточные функции, эффекторные молекулы Shigella и одной из сальмонелл с III типом секреции, побуждают клетки к осуществлению ими функций, не являющихся для них обычными [Mecsas J., Strauss E.J., 1996].

«Острова патогенности» могут включать несколько различающихся фрагментов (табл. 2). Например, нестабильный участок ДНК, протяженностью 102 кб, отвечающий за вирулентность возбудителя чумы, включает несколько самостоятельных регионов. Один содержит ген накопления гемина — его G+C состав аналогичен G+C составу хромосомы чумного микроба. У другого региона, содержащего гены, кодирующие рецептор иерсиниобактина и железорегулирующего белка, процентное содержание G+C значительно выше характерного для хромосомы Y. pestis в целом. Весь 102 кб участок может быть делетирован у возбудителя чумы. Но делеция может захватить и только один из генов участка [Mecsas J., Strauss E.J., 1996]. В геноме другого представителя семейства — Y. enterocolitica, представлен только регион, кодирующий рецептор иерсиниобактина и железо-регулирующего белка [Fetherston J., 1992]. У других бактерий, например, Helicobacter pylori, строение «островов патогенности» еще сложнее [Mecsas J., Strauss E.J., 1996].

Нестабильность, как и наоборот, стабильность «островов», видимо не случайность в проявлении бактерией патогенности. Эти свойства способны создать бактерии дополнительные адаптивные преимущества. Высокая вирулентность может оказаться невыгодной бактерии на определенной стадии инфекционного процесса. Нестабильность же «островов патогенности» будет способствовать координированному снижению вирулентности всей популяцией возбудителя инфекции. Делеция «островов патогенности» может усилить экспрессию других, рядом расположенных, генов [Ritter A., 1995].

С другой стороны, отдельные факторы вирулентности являются адаптивными для бактерий. По этой причине они должны кодироваться на стабильных «островах патогенности». «Чужеродность» «островов» придает даже большую стабильность факторам вирулентности. Чужеродная ДНК, интегрировавшаяся с хромосомой, не вовлекается в рекомбинацию с ДНК близкородственных микроорганизмов, поэтому она может длительно поддерживаться в бактериальных популяциях [Falkow S., 1996]. Видимо применительно к каждому патогенному микроорганизму «стабильность» и «нестабильность» «островов» закрепляется естественным отбором.

В настоящее время нет полной ясности, каким образом «острова патогенности» приобретаются бактериями, но есть косвенные признаки того, что этот процесс идет непрерывно. Новый эпидемический штамм Vibrio cholerae О139 появился в результате приобретения «острова патогенности». Хотя известно, что он возник из штамма того же серотипа (О1), который является причиной происходящей в настоящее время пандемии холеры (О1 El Tor), V. cholerae О139 содержит дополнительный участок ДНК, который замещает часть О-антигенного кластера О1-штамма. Вставленная ДНК содержит открытую рамку считывания, гомологичную протеину, вовлеченному в синтез капсулы и О-антигена — двух факторов, по которым можно провести различия между О139 и О1 Е1 Тог. Тем самым повышается способность возбудителя холеры к инвазии [Mecsas J. Strauss E.J., 1996].

* * *

Бактерии являются мощными раздражителями иммунной системы, поэтому они могут использовать только первую стратегию паразитизма и в иммунокомпетентном хозяине лишь кратковременно имитировать вторую стратегию (L-формы). Бактерии обладают избыточными и альтернативными механизмами адгезии и колонизации, что позволяет им проявлять большую гибкость в выборе новых хозяев. Адгезия бактерий не является простым механическим взаимодействием их лиганд-структур с рецепторами на поверхности клеток-мишеней хозяина, имеющими другое предназначение. Взаимодействие патогена с клеткой хозяина приводит к активации сигнальных систем клеток-мишеней непосредственно каким-то бактериальным компонентом, либо через стимуляцию активационных факторов хозяина. Для противодействия иммунной системе бактерии используют как механизмы уклонения (экранирование клеточной стенки бактерий, антигенная мимикрия, образование L-форм бактерий и др.), так и разрушения (продуцирование секретируемых факторов, инактивирующих защиту хозяина; продуцирование «суперантигенов» и др.). Гены, кодирующие факторы патогенности бактерий и системы их секреции, вопреки распространенному еще недавно мнению об их преимущественно плазмидной локализации, в большинстве своем кластированны на участках хромосомной ДНК, называемых «островами патогенности». Эти участки активно участвуют в генетическом обмене между бактериями по пока еще неизвестному механизму. Патогенность «новых» для человека бактерий может объясняться тем, что они уже были преадаптированы к такой встрече в занимаемых ими ранее экологических нишах.

Глава 1.4. Патогенность микоплазм

Происхождение микоплазм. Патогенность микоплазм. Болезни, вызываемые микоплазмами.


Микоплазмы — это уникальные прокариотические организмы, имеющие лишь одну липопротеиновую мембрану, которая выполняет функции и клеточной стенки, и цитоплазматической мембраны. Они входят в класс Mollicutes, объединяющий также и ахолеплазмы, спироплазмы, уреаплазмы, анаэроплазмы [Прозоровский СВ. и др., 1995]. По форме и структурной организации молликуты очень близки к L-формам бактерий [Бухарин О.В., Усвяцов Б.Я., 1996]. Но в отличие от них, геном молликут крайне упрощен и экономен, что не предполагает возможность реверсии клеточной стенки. Микоплазмы являются самыми маленькими самореплицирующимися формами жизни и способны вызывать инфекционный процесс, используя вторую стратегию паразитизма. Болезни, вызываемые микоплазмами, называются микоплазмозами.

Происхождение микоплазм. Филогенетические связи класса Mollicutes и пути их эволюции обсуждаются специалистами в основном с двух точек зрения. Согласно одной из них микоплазмы являются выжившей ветвью примитивных организмов, из которых впоследствии произошли прокариоты и эукариоты. Они появились, как продукт прогрессивной эволюции еще до образования присущей бактериям клеточной стенки. Другая точка зрения состоит в том, что микоплазмы являются регрессивной ветвью эволюции некоторых грамположительных бактерий и (или) клостридий. Второе предположение находит экспериментальные подтверждения и рассматривается в двух возможных вариантах. Все микоплазмы происходят либо из одного предка, общего с грамположительными бактериями, либо от разных бактерий [Прозоровский СВ. и др., 1995].

Патогенность микоплазм. Так же как и бактерии, микоплазмы, что бы быть патогенными, должны инфицировать поверхности клеток хозяина. Поэтому многие патогенные микоплазмы имеют форму нитей или колбочек и на их поверхности, при электронной микроскопии, видны кончики выступающих полярных органелл, участвующих в процессе адгезии к клетке хозяина [Kirchhoff H. et al., 1984]. Эти концевые структуры имеют сложное строение. Они сплетены из интерактивных белков адгезинов и белков, участвующих в адгезии. Интересной особенностью адгезинов микоплазм является генетическое регулирование их антигенной структуры (рис. 14 и 15).

Рис. 14. Концевая структура органеллы, участвующей в адгезии микоплазмы. Трансмиссионная электронная микрофотография М. pneumoniae: a) скрученная структура концевой части органеллы с пар (участок адгезии); b) кластированые цитоадгезиновые белки (Р1, В, С, Р30) в иммунолабильном участке концевой части органеллы (окрашивание ферритином и коллоидальным золотом); с) резистентная к Тритону Х-100 цитоскелетоподобная структура с отчетливыми пузырьками и параллельными нитями [Baseman J., Tully J., 1997]

Рис. 15. Адгезия микоплазм к трахеальному эпителию хомячка.


Трансмиссионная электронная микрофотография М. pneumoniae: M — микоплазма; m — микроворсинки; С — реснички. Обращает на себя внимание ориентация микоплазмы, достигнутая с помощью специализированной адгезивной органнеллы [Baseman J., 1992]

Уклонение микоплазм от иммунной системы хозяина. На уклонении от иммунной системы хозяина построена вся стратегия паразитизма микоплазм. Один из механизмов такого уклонения заключается, в использовании множественных копий генов белков адгезии. В опероне адгезивного белка присутствует только одна полная копия гена адгезина со всеми регуляторными элементами. Однако в геноме микоплазмы присутствуют множество усеченных копий генов адгезинов, имеющих сходные (но не идентичные!) последовательности. Это дает возможность микоплазмам посредством гомологичной рекомбинации образовывать множество вариантов адгезинов, что приводит к изменению их специфичности и аффинитета. Однако иммунодоминантные эпитопы микоплазменных адгезинов не идентичны участкам, ответственным за адгезию [Jacobs E., 1991]. Последние закодированы через однокопийные регионы генов адгезии и высоко консервативны. Тем самым закрепляется роль таких участков (пар) в распознавании микоплазмами рецепторов клеток хозяина и их колонизации [Gerstenecker В., Jacobs Е., 1991]. Конформация иммунодоминантных эпитопов меняется благодаря пептидил-пролил изомеразе (циклофилину), воздействующей на складчатые участки адгезивных белков с повышенным содержанием пролина. Таким образом, иммунные ответы хозяина направлены на вариабельные регионы, не имеющие непосредственного отношения к адгезии. Это делает маловероятным образование антител, способных блокировать адгезию микоплазм и частично объясняет причину высокой величины реинфицирования больных [Baseman J., Tully J., 1997].

Другой механизм уклонения микоплазм от иммунной системы хозяина использует антигенную мимикрию. В ее основе лежит высокая гомология адгезинов и структурных белков млекопитающих [Tully J. et al., 1995]. Однако антигенная мимикрия используется микоплазмами не столько для маскировки, сколько для подавления иммунной системы хозяина и ее переключения на разрушение собственных органов и тканей [Biberfeld G., 1985]. У пациентов, с документированными микоплазменными респираторными инфекциями (М. pneumoniae), обнаруживали сероконверсию к миозину, кератину и фибриногену, а также экстрапульмональные проявления инфекции — экзантемы и кардиальные нарушения [Tully J. et al., 1995]. В дальнейшем были обнаружены признаки классического бактериального аутоиммунного процесса — острой ревматической лихорадки, сходной с вызываемой стрептококковой инфекцией [Cunningham M., 1993]. Антистрептококковые антитела, направленные против альфа-спирального кольцевого участка М-белка, перекрестно реагировали с сердечным миозином, тропомиозином и микоплазменными адгезинами [Cunningham M., 1993]. Установлена гомология аминокислотных последовательностей микоплазменных адгезинов, и человеческих CD4 и белков главного комплекса гистосовместимости II класса. Антитела к этим белкам запускают клеточную Гибель и иммуносупрессию. Одновременно микоплазмы выступают как митогены В- и Т-клеток, индуцируя аутоиммунное состояние Через активацию аутоиммунных Т-клеток и поликлональных В-клеток. Таким образом, разнообразные полиорганные проявления микоплазменной инфекции вызваны аутоиммунным характером их патогенеза [Baseman J., Tully J., 1997].

Для размножения во внутренней среде хозяина, противодействия его защитным механизмам и причинения ему вреда, микоплазмы используют ряд других, очень сложно действующих факторов патогенности. Они включают:

1) образование микоплазмами перекиси водорода и перекисных радикалов, вызывающих в участках адгезии повреждение мембраны клетки через окислительный;

2) конкуренцию и истощение микоплазмами питательных компонентов и прекурсоров клетки;

3) капсулоподобный материал и электронно-плотные поверхностностные слои, повышающие прочность микоплазмы и придающие им иммунорегулирующую активность;

4) секрецию в окружение клетки хозяина микоплазменных ферментов, таких как фосфолипазы, АТФазы, гемолизины, протеазы и нуклеазы, вызывающих локальное клеточное разрушение и хромосомные аберрации [Theiss P., 1996].

Болезни, вызываемые микоплазмами. У иммунокомпетентных людей ими наиболее часто вызываются респираторный микоплазмоз (M. pneumoniae) и болезни урогенитального тракта (M. hominis, M. genitalium, M. fermentans, M. primatum, M. urealyticum).

Микоплазмы являются кофакторами, способствующими развитию и активизации инфекций, использующих ту же стратегию паразитизма, например, ВИЧ-инфекции [Eisner R., 1990].

Длительное персистирование микоплазм в организме человека так же проявляется болезнями, инфекционная природа которых долгое время подвергалась сомнению (болезнь Крона, артриты, малигнизация и др.).

* * *

Микоплазмы являются самыми маленькими самореплицирующимися формами жизни и способны вызывать инфекционный процесс, используя вторую стратегию паразитизма. Микоплазмы вызывают локальное клеточное разрушение и хромосомные аберрации. Они не только уклоняются от иммунной системы хозяина, но, благодаря использованию антигенной мимикрии, переключают ее на разрушение собственных органов и тканей. Разнообразные полиорганные проявления микоплазменной инфекции вызваны аутоиммунным характером их патогенеза. Микоплазмы способствуют развитию и активизации инфекций, использующих ту же стратегию паразитизма, например, ВИЧ-инфекции

Глава 1.5. Токсины патогенных бактерий

Организация и механизм действия токсической молекулы. Происхождение токсинов. Образование молекул токсинов. Максимально возможная токсичность.


Патогенные бактерии продуцируют загадочные субстанции, которые прямо или косвенно оказывают токсическое действие на клетки и организм хозяина. По определению В. Finlay, S. Falkow (1997), отражающему представления авторов о предназначении таких субстанций для развития инфекционной болезни, токсины — это секретируемые микробные протеины, обычно ферменты, которые убивают клетки хозяина в исключительно маленьких концентрациях. Ю.В. Вертиев (1996), стремясь избежать узкого медицинского толкования функции бактериальных токсинов в природе, определяет их как регуляторные элементы, действующие в гетерологических клеточных системах вне их контроля и сдвигающие равновесие, протекающих в них, физиологических процессов. Оба определения, видимо, справедливы. Первое — для понимания опасности отдельных токсинов, второе — для понимания их сути.

При многих инфекционных болезнях токсины, действительно, определяют их основные симптомы. Это дифтерия, коклюш, холера, сибирская язва, ботулизм, столбняк, гемолититический уремический синдром и др. [Smitt C.K et al., 1999] В качестве примера, иллюстрирующего участие токсина в инфекционном процессе, приведена схема патогенеза дифтерии (рис. 16). Однако к настоящему времени уже накоплены данные, показывающие возможность выполнения бактериальными токсинами и других функций. Среди них: защита хозяина от хищников в почвенных (водных) сообществах (токсины сине-зеленых водорослей защищают их от поедания беспозвоночными животными и рыбами); использование токсинов как средства антагонизма в микробных сообществах (холерный токсин оказывает ингибирующее действие на ряд бактерий); участие токсинов в авторегуляторных процессах в бактериальных популяциях (энтеротоксин C.perfringens) и др. [Бухарин О.В., Литвин В.Ю., 1997].

Рис. 16. Схема патогенеза дифтерии. При дифтерии коринебактерии не проникают за пределы входных ворот инфекции. За счет дифтерийных экзотоксинов создаются условия для возникновения дифтерического воспаления в месте проникновения возбудителя в организм и развитие различных органных поражений с нарушением функций и структуры жизненно важных органов и систем организма [Гавришева Н.Ф., Антонова Т.В., 1999]


Организация и механизм действия токсической молекулы. Большинство токсинов представляют собой А-В структуру. Эта структура предполагает наличие двух компонентов — В-субъединицы, которая участвует в связывании токсина с рецептором на поверхности клетки хозяина и способствует транспортировке токсина в клетку хозяина; и А-субъединицы — проявляющей энзиматическую (токсическую) активность в клетке хозяина. Структура В-доменов зависит от структуры рецепторов-мишеней, с которыми взаимодействует токсин. А-субъединицы более консервативны чем В, особенно в участках, критических для их ферментативной активности [Finlay В., Falkow S.,1997].

По механизму действия С. Smitt и соавт. (1999) подразделяют все токсины на 5 типов (табл. 3 и рис. 17).

Таблица 3
Характеристика бактериальных токсинов[1]

Микроорганизм / Токсин | Механизм действия | Мишень | Болезнь | Участие токсина в болезни | LD50 на кг

Повреждающие мембраны

Aeromonas hydrophila / Аэролизин | Пороформирующий | Гликопротеин | Диарея | (да) | ~7 мкг (м)

Clostridium perfringens / Перфринголизин O | То же | Холестерин | Газовая гангрена |?

Escherichia coli / Гемолизинd | То же | Плазматическая мембрана | Инфекция уринарного тракта | (да) | —

Listeria monocytogenes /Листериолизин О | то же | Холестерин | Ситемные пищевые инфекции, менингиты | (да) | 3…12 мкг (м)

Staphylococcus aureus / альфа-токсин | То же | Плазматическая мембрана | Абсцессыс | (да) | 40…60 нг (м)

Staphylococcus pneumoniae / | Пневмолизин | То же | Холестерин | Пневмонияс | (да) | ~1.5 мкг (к)

Streptococcus pyogenes / | Стрептолизин О | То же | Холестерин | Стрептококовая ангина, скарлатинас |? | ~8 мкг (м) | 1…2 мкг (к)

Ингибиторы белкового синтеза

Сorynebacterium diphtheriae / Дифтерийный токсин | АDФ-рибозил-трансфереза | Фактор элонгации-2 | Дифтерия | Да | ~1.6 мкг (м) ~100 нг (ч)

E. coli / Shigella dysenteriae /Шига-токсин | N-гликозидаза | 28SpPHK | Геморрагический колит, гемолитический уремический синдром | Да | —

Pseudomonas aeruginosa / | Экзотоксин А | ADФ-рибозилтрансфераза | Фактор элонгации-2 | Пневмонияe | (Да) | ~3 мкг (м)

Активация путей вторичных мессенджеров

E. coli: Цитотоксический никротизирующий фактор | Деамидаза | Rho-G-белок | Инфекция уринарного тракта |? | —

Термолабильный токсин | АДФ-рибозилтранс-фераза | G-белки | Диарея | Да | —

Температурно стабильный токсинd | Стимуляция гуанилатциклазы | Гуанилатциклазный рецептор | Тоже | Да | —

Цитолетальный растягивающий токсинd | Блокирование G2 | Неизвестна | Тоже | (Да) | —

EAST | Стимуляция гуанилатциклазы? | Неизвестна | Тоже |? | —

Bacillus anthracis / Отечный фактор | Аденилатциклаза | АТФ | Сибирская язва | Да | —

Bordetella pertussis / Коклюшный токсин | АДФ-рибозилтрансфераза | G-белки | Коклюш | Да | 21 мкг (м)

Дермонекротический токсин | Деамидаза | Rho G-белки | Риниты | (Да) | —

Clostridium botulinum / C2-токсин | АДФ-рибозилтрансфераза | Мономерный G-актин | Ботулизм |? | —

C.botulinim / C3 токсин | Тоже | RhoG-белок | Ботулизм |? | —

Clostridium difficile / | Токсин А | Гликозилтрансфераза | RhoG-белок (и) | Диарея / PC | (Да) | —

Токсин В | Тоже | Тоже | Тоже |? | —

Vibrio cholerae / Холерный токсин | АДФ-рибозилтрансфераза | G-белок (и) | Холера | Да | ~250 мкг (м)

Активаторы иммунного ответа

S.aureus/ Энтеротоксины | Суперантиген | TCR и MHC II | Пищевое отравлениес | Да | 20…50 мкг (о)

Эксфолиативный токсин | Суперантиген (и сериновая протеаза?) | То же | Синдром шелушения кожи | Да | —

S.pyogenes/ Пирогенный экзотоксин | Тоже | То же | Скарлатина / синдром токсического шокаc | Да | 3…6 мг (м)

Токсин синдрома токсического шока | Суперантиген | То же | Синдром токсического шокаc | Да | —

Протеазы

B.anthracis / Летальный фактор | Металлопротеаза | MAPKK1/MAPKK2 | Сибирская язва | Да | <114 мкг (м)

C.botulinum / Нейротоксины А-С | Цинк-металлопротеазы | VAMP /синаптобревин, SNAP-25, синтаксин | Ботулизм | Да | 0.5…1.2 нг (м) |

Clostridium tetani / Столбнячный токсин | Тоже | VAMP / синаптобревин | Столбняк | Да | ~1 нг (м)

СОКРАЩЕНИЯ:

EAST — энтероаггрегативный температуростабильный токсин E.coli; TCR — рецептор Т-клеток;

МНС II — главный комплекс гистосовместимости, класс 2;

МАРКК — митоген активированная протеин киназа киназа;

VAMP — везикуло-ассоциированный мембранный белок;

SNAP-25 — синаптосомал-ассоциированный белок;

PC — антибиотикоассоциированные псевдомембранозные колиты;

Да — строго доказанная связь между токсином и болезнью; (Да) — роль в патогенезе была показана на животных моделях или клеточных культурах;? — неизвестно; с — другие болезни также ассоциированы с этим организмом; d — токсин также продуцируется другими семействами бактерий; (м) — мышь; (к) — кролик; (ч) — человек; (о) — обезьяны.

Рис. 17. Механизм действия бактериальных токсинов. А. Повреждение клеточных мембран альфа-токсином S. aureus. После связывания и олигомеризации, ножка похожего на шампиньон гептамера альфа-токсина вставляется в клетку-мишень и вызывает приток, или наоборот, отток из клетки ионов (обозначены как темные и светлые кружки, соответственно). В. Ингибирование белкового синтеза клетки шига-токсином (Stx). Голотоксин, который состоит из энзиматически активной субъединицы (А) и пяти связывающих субъединиц (В), входит в клетку через глоботриазилцерамидный рецептор (Gb3). Затем А-субъединица, обладающая N-гликозидной активностью, отсекает аденозиновый остаток с 28S рвбосомальной РНК, что останавливает белковый синтез. С. Примеры бактериальных токсинов, активирующих пути вторичных мессенджеров. Связывание температурно-стабильного энтеротоксина (ST) с рецептором гуанилатциклазы приводит к увеличению количества ГМФ (цГМФ), который обращает в обратную сторону ток электролитов. Посредством АДФ-рибозилирования или гликозилирования (соответственно), экзоэнзим С3 C. botulinum и токсины A (CdA) и В (CdB) C. difficile, инактивируют небольшие Rho ГТФ-связывающие белки. Цитотоксический некротизирующий фактор (CNF) E. coli и дермонекротический токсин (DNT) рода Bordetella, активируют Rho через дезаминирование [Smitt С. et al., 1999]. Механизм их действия, а также протеолитических токсинов и активаторов иммунного ответа, приведен в тексте


Порообразующие токсины. К ним относят бактериальные токсины, функционирующие посредством вставки в плазматическую мембрану хозяина и формирующие в ней трансмембранные поры, приводящие клетку к лизису. Такие токсины еще называют RTX-семейством из-за наличия в их молекулах большого количества повторов [Finlay В., Falkow S., 1997]. Механизм их действия хорошо прослеживается на примере альфа-токсина S.aureus, рассматриваемого как прототип олигомеризующегося пороформирующегося цитотоксина [Smitt C.K et al., 1999]. Альфа-токсин синтезируется как прекурсорная молекула из 319 аминокислот, содержащая N-терминальную последовательность из 26 аминокислот. Секретируемый бактерией «зрелый» токсин (протомер), является гидрофильной молекулой с массой 33 кд, утратившей цистеиновые остатки [Bhakdi S., Tranum-Jensen J., 1991]. Протомер «узнает» клетку-мишень по высокоаффинным рецепторам или не специфически сорбируется в участках плазматической мембраны, содержащих фосфатидилхолин или холестерин. На мембране семь протомерных токсинов собираются в пору, формируя грибоподобный гептамер (232 кд), включающий три различных домена [Song L. et al., 1996]. Шляпка и ободочная область гептамера альфа-токсина располагаются на поверхности плазматической мембраны, в то время как ножка служит трансмембранным каналом. Образовавшаяся пора позволяет маленьким молекулам и ионам двухстороннее движение, что, в конечном итоге, приводит клетку к вздутию и гибели от осмотического шока [Smitt С. et al., 1999].

Альфа-токсин является цитолитическим в отношении различных типов клеток. У человека он способен лизировать моноциты, клетки, но точная его роль в стафилококковом заболевании людей, неизвестна [Bhakdi S. et al., 1996].

К другим членам RTX-семейства относят гемолизин E.coli (HlyA), аденилатциклазу В. pertussis, лейкотоксин Pasterella haemolitica. Это семейство токсинов является также частью консервативного механизма секреции I типа, который отвечает за их транспорт из бактериальной клетки [Finlay В., Falkow S., 1997]. Образование поры включает целый каскад вторичных реакций, приводящих к другим патологическим последствиям. Среди них активация эндонуклеаз, высвобождение цитокинов и медиаторов вое паления, синтез эйкозаноидов [Bhakdi S. et al., 1996].

Токсины, ингибирующие синтез белка. Субстратами для этих токсинов служат факторы элонгации и рибосомальная РНК [Езепчук Ю.В., 1985]. Дифтерийный токсин и экзотоксин А псевдомонад являются дифтамид специфическими АДФ-рибозилтрансферазами, которые рибозилируют фактор элонгации 2 и, таким образом, инактивируя его, подавляют синтез белка в клетках. Шига-токсин (Stx-токсин), так же называемый веротоксином, продуцируется S. disenteriae первого серотипа и недавно появившимися Stx-продуцирующими штаммами E. coli (STEC) [Вертиев Ю.И., 1996]. Рассмотрим на его примере механизм действия таких токсинов.

Stx-токсины имеют типичную АВ структуру. Энзиматически активная А-субъединица (35 кд) нековалентно связана с В-субъединицей (7,5 кд). Голотоксин содержит 5 В-субъединиц. В-субъединичный пентамер связывает голотоксин с эукариотической клеткой через специфические гликолипидные рецепторы. После интернализации, полипептид А расщепляется на энзиматическую часть (А1) и фрагмент А2, остающиеся связанными через дисульфидный мостик. А2-фрагмент связывает A1 с В-пентамером [Smitt С. et al., 1999]. A1 проявляет N-гликозидазную активность и расщепляет N-гликозидную связь у аденина в положении 4324 на 28S рибосомальной РНК. В результате происходит отщепление 400 нуклеотидов с 3-конца рРНК, что служит препятствием для присоединения аминоацил-тРНК, синтез белка прекращается и клетка гибнет [Вертиев Ю.И., 1996].

Токсины, генерирующие образование вторичных мессенджеров (посредников). Бактериальные токсины могут влиять на функцию; отдельных белков эукариотической клетки, не приводя ее к гибели. Для этого они активируют так называемых вторичных посредников, которые способны в большой степени усиливать и искажать клеточную реакцию на внеклеточные сигналы [Smitt С. et al., 1999]. Рассмотрим механизм действия таких токсинов на примере цитотоксического некротического фактора (CNF).

CNF первого и второго типов (CNF1/2) относятся к группе бактериальных, токсинов, модифицирующих Rho — субсемейство маленьких ГТФ-связывающих белков, участвующих в модификации регуляторов актина цитоскелета [Aktories К., 1997]. Ген CNF1 у E. coli закодирован на хромосоме и располагается на «острове патогенности» [Blum G. et al., 1995]. Токсин синтезируется как гидрфильный полипептид (115 кд). Он остается цитоплазматическим из-за отсутствия сигнальной последовательности и имеет связывающий (N-терминальная половина CNF1) и ферментативный (С-терминальная половина CNF1) домены [Lemichez E. et al., 1997]. Видимо в клетки хозяина он попадает с помощью секреторного механизма III типа. Недавно было показано, что CNF1 деаминирует глутаминовый остаток Rho в положении 64. Такая модификация приводит к преобладанию активности Rho, неспособного гидролизовать связанный с ним ГТФ. Эукариотические клетки, подвергнутые воздействию CNF1, приобретают характерный вид. У них наблюдается «рифление» мембраны, формируется локальное сжатие актиновых нитей. Репликация ДНК при отсутствии клеточного деления, приводит к образованию многоядерных клеток. Внутрикожное введение CNF1 вызывает длительное воспаление и образование некротического очага [Smitt С. et al., 1999].

Установлена критическая роль небольших ГТФ-связывающих белков не только в регуляции цитоскелета (семейство белков Rho), но и в везикулярном транспорте (семейство Rab), и в регуляции роста и дифференциации клеток (семейство Ras). Поэтому не исключено, что существуют пока еще неизвестные нам токсины, способные воздействовать на основные клеточные процессы через эти белки [Finlay В., Falkow S., 1997].

Протеолитические токсины. Ботулинический и столбнячный (оба цинк-металлоэндопротеазы), в опытах на животных обнаруживают наименьшую из известных LD50. Удивительно, насколько различную клиническую картину дают поражения этими токсинами, имеющими столь значительное сходство в структуре, энзиматической активности и мишенях среди клеток нервной системы, но при различающиеся путями проникновения в макроорганизм. Например, ботулинический токсин проникает в организм энтерально и вызывает вялые параличи периферических нервов. Столбнячный же токсин, образуясь на поверхностях ран, колонизированных C. tetani, приводит к спастическим параличам через поражение ЦНС [Finlay В., Falkow S., 1997].

Эти самые токсичные токсины имеют и наиболее сложную молекулу. Оба синтезируются в виде неактивных полипептидов массой 150 Кд и высвобождаются из лизировавшихся клеток. Затем они активируются посредством протеолитического расщепления открытой петли в структуре своей молекулы. Каждая активная молекула нейротоксина включает тяжелую (100 кд) и легкую (50 кд) цепи, связанные посредством межцепочечной дисульфидной связи. Тяжелые цепи обоих токсинов содержат два домена — регион, необходимый для транслокации токсина (N-терминальная последовательность) и регион, необходимый для связывания с клеткой (С-терминальная последовательность). Легкие цепи обоих токсинов содержат цинк-связывающий мотив, необходимый для цинк-зависимой протеазы, активирующей молекулу [Schiavo G., Montecucco С, 1997].

Ботулинические токсины связываются с рецепторами на поверхности пресинаптической мембраны двигательных нейронов периферической нервной системы и вызывают протеолиз белков в нейронах. Это приводит к ингибированию высвобождения ацетилхолина и к предотвращению мышечных сокращений — возникает вялый паралич [Halpern J., Neale E., 1995]. Столбнячный токсин сначала связывается с рецепторами на пресинаптической мембране моторных нейронов, но затем, с помощью ретроградного везикулярного транспорта, он перемещается в нейроны спинного мозга. Спастический паралич возникает из-за того, что рассечение везикуло-ассоциированных белков и синаптобревина в нейронах, нарушает высвобождение глицина и гамма-амино-битуриковой кислоты, прекращающих мышечное сокращение [Arnon S., 1997].

Активаторы иммунного ответа. Отдельные бактериальные токсины могут действовать непосредственно на Т-клетки и антигенпрезентирующие клетки иммунной системы. Самое большое семейство токсинов данного типа называют токсинами-суперантигенами (PTSAg).

Как правило, иммуностимулирующий потенциал таких токсинов является следствием их способности связывать различные участки белков главного комплекса гистосовместимости II типа, экспрессированных на поверхности антигенпрезентирующих клеток и Vбета-элементы на Т-клеточном рецепторе [Smitt С. et al., 1999]. В частности, В-домен стафилококкового TSST-1, связывает альфа-цепь антигена DR1 человеческого лейкоцита, одновременно его А-домен специфически связывается с Vбета-элементами Т-клеточного рецептора [Schlievert P., 1997]. Связывание TSST-1 с Vбета2 приводит к массивной пролиферации более 20 % периферических Т-клеток. Следствием Т-клеточной экспансии является массивное высвобождение интерлейкинов (1, 2 и 6 типов), гамма-интерферона, факторов некроза опухолей (альфа и бета) и др. [Schlievert P., 1997]. Совместно эти цитокины вызывают гипотензию, высокую температуру и диффузные эритематозные высыпания [Smitt С. et al., 1999]. Токсины данного типа характерны для случайных и факультативных паразитов.

Трехсоставные токсины. К ним мы относим структуры типа A1-B-A2, где В — это субъединица, участвующая в связывании токсина с рецептором, А1 — и А2 — субъединицы, проявляющие различную энзиматическую (токсическую) активность в клетке хозяина. Наиболее изученным токсином данного типа является сибиреязвенный. Он состоит из В-субъединицы, называемой протективным антигеном (ее используют для иммунизации против B. anthracis) и двух ферментативных субъединиц (А-субъединиц), одна из которых — отечный фактор (кальмодулинзависимая аденилатциклаза), индуцирует образование вторичных мессенджеров (цАМФ); другая — летальный фактор, является металлопротеазой (см. табл. 3).

Введение чувствительным животным любой из этих субъединиц по отдельности, не приводило ни к каким патологическим последствиям. Внутрикожное введение комбинации В-субъединицы и отечного фактора, приводило к развитию кожных отеков у морских свинок и кроликов. Смесь В-субъединицы и летального фактора при внутривенном введении вызывала гибель мышей и крыс, но не давала образования отеков при внутрикожном введении. При введении смеси трех компонентов токсина, они действовали синергически в тестах проверки летальности на мышах [Бургасов П.Н., Рожков Г.И., 1984]. В более поздних исследованиях было показано: что отечный фактор вызывает только кратковременное повышение внутриклеточного уровня цАМФ, поскольку он быстро разрушается Клеточными протеазами [Motecucco С. et al., 1994]. Т. е. развитие сибиреязвенной интоксикации предполагает обязательное участие всех трех компонентов сибиреязвенного токсина.

С. Petosa и соавт. (1997), выявили тонкие механизмы этого процесса. В-субъединица (протективный антиген — ПА, РА) сибиреязвенного токсина представляет длинную плоскую молекулу, размером 100х50х30 ангстрем, состоящую из 4 доменов. Связывание ПА с рецептором клетки-мишени начинается с домена 4. Этот домен (остатки 596–735) имеет первичную шпильку и спираль, за которыми следует бета-сендвич с иммуноглобулиновой складкой. Домены 1, 2 и 3 тесно связаны между собой, но домен 4 имеет с ними ограниченный контакт. Внутри иммуноглобулиновой складки домена 4 содержится доступная петля из 19 аминокислотных остатков, аналогичная антигенсвязывающей CDRS-петле антител и рецепторсвязывающей петле дифтерийного токсина. Протеолитическая активация происходит на клеточной поверхности. Протеаза фурин (она же используется для протеолитическои активации дифтерийного токсина, экзотоксина А псевдомонад и некоторых вирусов) расщепляет поверхностную петлю внутри домена 1. В результате высвобождается N-терминальный 20 кд фрагмент (ПА20). Этот фрагмент не играет какой-либо дополнительной роли в интоксикации. Однако его удаление приводит к образованию большой гидрофобной поверхности на оставшемся фрагменте ПА (ПАб3). Остальная часть домена 1, называемого теперь домен 1', образует N-окончание активного ПАб3. После утраты ПА20. ПАб3 формирует гептамер, который вставляется в мембраны при кислых значениях рН, формируя катионселективные каналы как в искусственных липидных бислоях, так и в клетках. Новая гидрофобная поверхность домена 1' полностью обнажается, формируя часть большого, плоского гидрофобного пятна на «вершине» гептамера. Эта поверхность обеспечивает открытый сайт для связывания фактора отека и летального фактора, которые теперь связывают ПАб3 с высоким аффинитетом (рис. 18).

Рис. 18. Стадии сибиреязвенной интоксикации. a.1 — РА связывается с рецептором клетки хозяина; 2 — фурин расщепляет и высвобождает ПА20; 3 — ПАб3 формирует гептамер; 4 — токсические ферменты связываются с ПАбз; 5 — опосредованный рецептором эндоцитоз; 6 — подкисление эндосомы приводит к мембранной вставке ПАб3; 7 — транслокация токсических ферментов в цитозоль. LF — летальный фактор; EF — фактор отека. b. Ортогональные проекции РА, окрашенного по доменам. Домен 1 включает РА плюс домен 1' и два иона Са2+. ПА20 отщепляясь, больше не играет роли в процессе интоксикации. Образовавшаяся гидрофобная поверхность домена 1' формирует участок связывания для LF и EF [Petosaet al., 1997]


Т.е. трехкомпонентные токсины используют общую В-субъединицу, обеспечивающую ферментативным субъединицам единый механизм проникновения в цитозоль. Видимо это необходимо для проявления синергидного эффекта токсического действия ферментативных субъединиц.

Происхождение токсинов. С момента открытия Roux и Yersin в 1888 г. дифтерийного токсина, этот вопрос вызывает много споров. В последние годы появилась возможность проведения тонких молекулярных сравнений между структурами отдельных токсинов. Результаты этих сравнений оказались неожиданными для ученых [Finlay В., Falkow S., 1997]. Токсины микроорганизмов из отдаленных семейств и даже родов, занимающих различные экологические ниши и вызывающие совершенно не похожие инфекционные болезни, оказались весьма сходными по механизму действия и по критическим для проявления токсичности структурам (например, шигатоксин, коклюшный и холерный токсины). Было обнаружено сходство между токсинами и ферментами эукариотических клеток (например, отечный фактор B. anthracis и аденилатциклаза человека). По этим данным создается впечатление не только широкого эволюционного родства токсинов между собой. Но, как заметил Ю. Вертиев (1996), у некоторых исследователей даже возникает мысль, что токсины возникли путем захвата из эукариотической клетки генетического материала, кодирующего токсин. Накопление экспериментального материала по тонкой структуре и механизму действия токсинов создало условия для выдвижения интересных гипотез об их происхождении. Но, видимо, трудно рассчитывать на то, что этот вопрос будет однозначно решен для каждого бактериального токсина в рамках какой-то общей гипотезы.

По нашему мнению, очень серьезное влияние на его решение в будущем окажут экспериментальные данные по участию токсинов в функциях микробной клетки, которые не имеют прямого отношения к проявлению бактерией патогенных свойств, но используют консервативные механизмы, сходные как в эукариотических, так и прокариотических организмах.

На этот аспект проблемы ранее обратил внимание Ю. Вертиев (1996). Он считает, что бактериальные токсины, интерфероны, бактериоцины и гормоны обнаруживают сходство в отношении целого ряда важных свойств. Эти вещества синтезируются одним типом клеток, в то время как воздействуют на другие типы клеток: они действуют на клетки в чрезвычайно низкой концентрации (Ю-11–10-14 М); обладают сходной молекулярной организацией состоят как минимум из двух функционально и структурно различных белков: энзиматического и рецепторного; имеют сходные звенья молекулярного механизма действия (связывание с рецепторами, активация, транслокация внутрь клетки и модификация клеточных мишеней); обладают сходной кинетикой биологического эффекта — одноударный эффект; и, наконец, все эти вещества токсичны.

Мы еще только начинаем понимать первичную функцию биологических токсинов в природе. Если предположить, что способность бактерией синтезировать токсины закрепляло какую-то неизвестную сегодня сигнальную функцию в образуемом ими биоценозе, то понятен и двухкомпонентный состав, и одноударность их действия. Преимущество такой структуры для передачи сигналов в том, что при ее распространении из центра, сигнал не ослабляется на большом расстоянии. Если бы передача сигнала осуществлялась структурами, не способными к лиганд-специфическому взаимодействию, то сигнал ослабевал бы по мере диффузии сигнальных молекул. Отсюда, как следствие, способность воздействовать на другие типы клеток в чрезвычайно низких концентрациях.

Сопоставляя структурные особенности молекул различных бактериальных токсинов с механизмами их функционирования, нельзя не заметить, что сходство между ними обусловлено сходно направленным действием естественного отбора.

Так, способность В-субъединиц к узнаванию клетки-мишени, сопровождается закреплением за ними и других свойств. Например, кроме взаимодействия с рецептором, В-субъединица экранирует ферментативную субъединицу, предотвращая ее взаимодействие с субстратом, как в собственной клетке, так и за пределами клетки-мишени [Вертиев Ю.В., 1996]. Она служит и своего рода предохранителем, предотвращающим «случайный выстрел». Для активации токсической субъединицы необходимо протеолитическое расщепление В-субъединицы после ее взаимодействия с клеткой, мишенью. Это исключает действие токсической субъединицы на другие клетки [см., например, действие сибиреязвенного токсина). И, как мы убедились на примере протективного антигена, она способна «вводить» клетку несколько токсических ферментов, действующих синергидно. Плейротропность функций В-субъединиц находится в соответствии с «принципом экономии генов».

Механизм лиганд-рецепторного взаимодействия исключает бесконечное разнообразие структур В-субъединиц, взаимодействующих с лигандом. В основе этого явления лежит то обстоятельство, что токсины в организме хозяина используют уже готовые структуры, участвующие в эндокринной, паракринной и синаптическои сигнализации, а, следовательно, жестко поддерживаемых естественным отбором. То, что эти структуры не являются абсолютно консервативными, свидетельствуют внутривидовые различия в чувствительности к отдельным токсинам, но их консервативности хватает на выход аналогий в структуре рецепторсвязывающих участков, за пределы В-субъединиц токсинов. Например, иммуноглобулин-подобная складка домена 4 протективного антигена аналогична не только рецепторсвязывающей петле дифтерийного токсина, но и антигенсвязывающей CDR3 петле антител [Petosa et al., 1997].

Формирование белкового канала (поры) также не является уникальным свойством токсинов. Посредством поры осуществляется транспорт специфических ионов через мембраны эукариотических и прокариотических организмов (пориновые белки грамотрицательных бактерий). К образованию пор способны не только токсины бактерий, но и зоотоксины [Орлов Б.Н., Гелашвили Д.Б., 1985] и даже белки слияния вирусов [Филдс Б., Найп Д., 1989]. Сама же пора формируется в определенной цитоплазматической мембране и предназначена для определенной функции, т. е. она не может не быть консервативной. Это предопределяет консервативность выполняющих одну функцию доменов образующих пору белков (рис. 19). Большая петля домена 2 ПА B. anthracis (ответственна за вставку гептамера в цитоплазматическую мембрану), демонстрирует консервативный характер чередующихся гидрофильных и гидрофобных остатков, аналогичный таковому у поринов бактерии Rhodopseudomonas blastica, а также, у выполняющих ту же функцию структур токсина VIP1 инсектицидного белка Bacillus thuringiensis [Petosa et al., 1997] и йота-b-токсина Clostridium perfringens [Perelle S. et al., 1993]. Аминокислотная последовательность связывающего клетку домена CNF1 уропатогенной E. coli, имеет обширную гомологию с аналогичной последовательностью митогенного токсина Pasteurella multicoda — бактерии, вызывающей атрофический ринит у свиней [Falbo V. et al., 1993].

Рис. 19. Конвергентное сходство каналообразующих структур токсинов-гомологов ПА и пориновых белков бактерий. а) консервативные чередующиеся гидрофильные (подчеркнуты) и гидрофобные (выделены полужирным) остатки большой петли домена 2 ПА аналогичны таковым у поринов и токсинов-гомологов, что предполагает одинаковый и наиболее оптимальный характер формирования перекрывающих мембрану шпилек (b) и мембранной вставки (d); с) аналогичное явление в природе — положение глаз у таких полуводных животных в высшей степени сходно: оно оптимально для наблюдения под водой при погружении в воду тела. На основе рисунков Б.М. Медникова (1975) и Petosa et al. 1997)


Неожиданное сходство было найдено и на макромолекулярном уровне, т. е., между В-олигомерами. Оказалось, что хотя холерный и температуролабильный токсины имеют по 5 идентичных В-субъединиц, а коклюшный токсин имеет 4, но различные В-субъединицы, 2 субъединицы коклюшного токсина обладают складчатыми структурами, сходными с таковыми у В-субъединиц холерного токсина и шига-токсина [Finlay В., Falkow S., 1997].

Такая же ситуация сходства и между ферментативными субъединицами токсинов. Отечный фактор сибиреязвенного микроба представляет собой аденилатциклазу, которая не только по кинетическим, но и по антигенным свойствам имеет сходство с действующей на ту же мишень кальмодулинзависимой аденилатциклазой эукариотических клеток [Petosa et al., 1997]. По крайней мере 5 АДФ-рибозилирующих токсинов (коклюшный, холерный и дифтерийный токсины, температуролабильный токсин кишечной палочки и экзотоксин А псевдомонад) имеют общий НАД-связывающий сайт [Finlay В., Falkow S., 1997]. Участок протяженностью в 100 аминокислот ферментативного домена CNF1, гомологичен участку ферментативного домена дермонекротического токсина бордетелл. Оба одинаковых участка выполняют одинаковую функцию — активируют Rho и являются активными сайтами токсинов [Lemichez E. et al., 1997]. Таким образом, нельзя объяснить только генетическим обменом и «общностью происхождения» сходство структур токсинов микроорганизмов различных видов, семейств и родов, к тому же занимающих разные экологические ниши и вызывающих различную инфекционную патологию. В эволюции возможно повторное возникновение отдельных признаков, вызванное сходно направленным действием естественного отбора (эволюционная конвергенция), но невозможно возникновение не родственных форм, одинаковых по всей своей организации — правило необратимой эволюции [Медников Б.М., 1975]. По этой причине нельзя рассматривать, эволюцию токсинов отдельно от эволюции синтезирующих их микроорганизмов. Конвергентное сходство по одному признаку, например, по способности В-субъединицы токсина образовывать поры, не затрагивает большинства других черт организации бактерии. Как бегемот остается типичным млекопитающим, а крокодил — рептилией при сходном положении глаз, так и кишечная палочка не становится бордетеллой или псевдомонадой из-за наличия гомологичных последовательностей в структурах их токсинов, выполняющих одинаковую функцию (см. рис. 19).

Однако при изменении направления отбора в разных условиях происходит дивергенция (расхождение) сначала структуры, а потом и биологических свойств токсинов. Так, Stx-цитотоксины могут быть разделены на две антигенно различные группы, имеющие от 50 % до 60 % гомологии: Stx/ Stx1 и Stx2 [Tesh V., O'Brien A., 1991]. Stx и Stxl различаются только одной аминокислотной последовательностью и встречаются преимущественно в S. disenteriae. Stx2-цитотоксин обнаружен недавно у кишечных палочек, т. е. его образование может быть результатом действия длительной изоляции в другой экологической нише. Любопытны и оцениваемые сроки такой дивергенции. Анализ молчащих замещений нуклеотидных последовательностей генов холерного, LT- и ST-токсинов показал, что эти гены дивергировали не менее чем 130 млн. лет назад [Вертиев Ю.В.,1996]. Т. е. в эпоху расцвета пресмыкающихся и уже в знакомом нам виде они пережили не только их вымирание, но и расцвет млекопитающих в миоцене, и их массовое вымирание и юнце плиоцена. Если это так, то тогда появление прототипного холерного токсина теряется где-то в глубине геологического времени. С антропоцентрической точки зрения, какая-то есть в этом нецелесообразность. Мы явно переоцениваем свое значение в природе, когда утверждаем, что человек является единственным хозяином холерного вибриона.

Образование молекул токсинов. Использование методов точечного мутагенеза для модификации структуры бактериальных токсинов, выявило удивительно точную «пригнанность» их структур к выполняемой ими функции. Оказалось, что они построены настолько точно, что даже замена одной аминокислоты может привести к катастрофическим изменениям функции. Так одиночные замены в S1-субъединице коклюшного токсина снижают ее ферментативную активность и токсичность в 1000 раз, множественные — в 106 раз. Одновременно резко снижается ее иммуногенность [Loosmore S. et al., 1990], нарушается пространственная структура и способность взаимодействовать с олигомером [Lobet Y. et al., 1989].

Как мы убедились на примере порообразующих доменов, сходность функциональных структур токсинов между собой и с отдельными ферментами клеток хозяина обусловлена тем, что различные белки с родственными функциями имеют схожую последовательность аминокислот. Полагают, что такие семейства белков возникли путем дупликации одного предкового гена и последующего накопления в процессе эволюции мутаций, постепенно обусловивших появление родственных белков с новыми функциями [Альберте Б. с соав., 1994]. Наличие А и В субъединиц (доменов) в структурах молекул подавляющего большинства белковых токсинов, свидетельствует о том, что они, как правило, являются крупными функциональными белковыми агрегатами. Образование таких агрегатов стало возможным путем объединения двух или более белков в результате как нековалентных взаимодействий (сибиреязвенный, коклюшный и другие токсины), так и путем образования ковалентной связи между ними (ботулинический и столбнячный токсины). В свою очередь отдельные субъединицы токсинов так же состоят из некогда различных белков, объединенных в пептид, проявляющий несколько активностей сразу. Например, тяжелые цепи ботулинического и столбнячного токсина содержат два домена — регион, необходимый для транслокации токсина и регион, необходимый для взывания с клеткой. Белки такого типа образуются слиянием соответствующих генов в один ген, кодирующий большую полипептидную цепь. Для всех токсинов характерна «мультидоменная» структура. Это означает, что разные их части состоят из некогда отдельных глобулярных белков, объединенных естественным отбором ходе эволюции (рис. 20).

Рис. 20. «Мультидоменная» структура бактериальных токсинов. А. Общий принцип, по которому наложение двух различных белковых поверхностей в процессе эволюции приводит к появлению белков, содержащих новые центры связывания для других молекул — лигандсвязывающие центры часто располагаются в месте соприкосновения двух белковых доменов [Альберте Б. с соавт., 1994]. Б. Пространственные ленточные модели кристаллов шига-токсина S. dysenteriae [Frasier M. et al., 1994], температуро-лабильного токсина кишечной палочки [Sixma Т. et al., 1993] и коклюшного токсина [Stein P. et al., 1994]. Несмотря на выраженное конформационное сходство, каждый из этих белков имеет собственную эволюционную историю. Наличие большого количества доменов, независимо свертывающихся в разных частях молекул, свидетельствует о происхождении этих токсинов путем объединения генов различных глобулярных белков


Если, не ввязываясь в спор о том, что прогрессивно в эволюции, что нет, подойти к эволюции токсинов только исходя из сложности их молекул, то можно построить своего рода эволюционную «лестницу». На ее нижнюю ступеньку, видимо, можно поместить порообразующие токсины, типа альфа-токсина стафилококка. Они способны лигандрецепторному узнаванию и образуют поры, через которые могут быть введены ферментативные молекулы, однако такие молекулы появляются уже на следующей эволюционной ступеньке. Ее занимают двухкомпонентные токсины, А- и В-субъединицы которых взаимодействуют без образования ковалентной связи, т. е. либо клетка еще не способна образовывать дисульфидные связи между субъединицами, либо еще не произошло слияния их генов. Последней ступенькой можно считать крупномолекулярные токсины, состоящие из тяжелых и легких цепей, объединенных ковалентными связями. Такие токсины имеют максимально возможную для белков молекулярную массу и, видимо, токсичность (супертоксины — ботулинический и столбнячный). Трехсоставные токсины типа сибиреязвенного и двухсоставные, объединенные ковалентной связью, занимают промежуточную ступеньку между крупномолекулярными супертоксинами, а так же двухсоставными, компоненты которых взаимодействуют без образования ковалентных связей. Видимо оба типа токсинов являются альтернативами эффективных структур, выбор между которыми в конкретных обстоятельствах остается за естественным отбором.

Максимально возможная токсичность. Такая постановка вопроса не имеет смысла при исследовании патогенности бактерий, так как токсины — это только часть механизма их паразитирования, устроенного невероятно сложно и имеющего много альтернативных, взаимодополняющих элементов. Однако ответ на него чрезвычайно интересует зарубежных военных токсикологов, рассматривающих токсины как опасное средства поражения.

Незнание условий, которые в процессе эволюции способствовали естественному отбору биологических токсинов, привело к формированию у таких исследователей представления о возможности снижения летальных доз биологических токсинов с помощью методов генной инженерии и породило множество спекуляций на эту тему [Tucker J.B., 1985; Гайслер Э., 1986].

Выше мы уже приводили примеры последствий вмешательства в структуру токсина. Н.С. Антонов (1994), используя элементарные приемы математической статистики, установил любопытную закономерность (рис. 21). Если на эвклидовой поверхности в логарифмических координатах «LD50 — молекулярная масса» отобразить весь массив веществ, для которых летальные дозы экспериментально установлены, то плоскость графика оказывается разделенной на две части: на одной из них сосредоточены отображения всех взятых веществ, в то время как другая часть плоскости графика остается свободной, ибо в природе не существует веществ, которые по величине летальной дозы и молекулярной массы соответствовали бы той части плоскости графика. Между указанными частями плоскости графика отчетливо прослеживается граница (токсоида), формируемая отображениями наиболее токсичных веществ в соответствующих интервалах изменения величины молекулярной массы. Наиболее токсичному веществу — ботулиническому токсину, соответствует и наибольшая молекулярная масса.

Рис. 21. График токсоиды по Н.С. Антонову. Максимальная токсичность супертоксинов достигается за счет предельного увеличения размеров и сложности их молекул


Эффект возрастания биологической активности по мере увеличения молекулярной массы отмечался ранее Н.И. Кобозевым у алкалоидов, гликозидов, гормонов, витаминов и синтетических лекарственных веществ. Им было показано, что путем вариации состава и строения молекул можно добиться некоторого увеличения активности веществ. Но если требуется добиться увеличения активности в десятки и более раз, одних структурных изменений молекул уже недостаточно, требуется переход к соединениям с большей величиной молекулярной массы [Антонов Н.С, 1994], т. е. более сложно организованных.

Молекулярная масса ботулинического токсина составляет 150 кд [Езепчук Ю.В., 1985]. Молекулярная масса типичной белковой цепи достигает 50 кд, размер лишь немногих пептидов превышает эту среднюю величину [Альберте Б. и др., 1994]. Молекулярная масса ботулинических токсинов приближается к верхнему пределу возможных молекулярных масс белков. Из закономерностей, установленных Н.С. Антоновым и Н.И. Кобозевым следует, что молекулярная масса токсинов с LD50, меньшей на один порядок, чем у ботулинического, должна превышать 1,5 мд (описано лишь несколько белков с такой массой), — на два порядка — 15 мд (такие не описаны). Таким образом, вполне обоснованно можно сделать следующие предположения:

1) токсичность ботулинического токсина является предельной не только для бактериальных токсинов, но и для природных токсических веществ;

2) LD50 рекомбинантных токсинов не будет достигать данной величины для ботулинического токсина.

Но почему же LD50 большинства природных токсинов в тех случаях, когда их токсичность создает преимущества микроорганизмам, не достигают того предельного значения, которое нам демонстрирует ботулинический токсин? Видимо это проявление все того же бессилия демона Дарвина, которое генетик С. Райт представил в виде холмистого ландшафта, где высота холма (адаптивного пика) ответствует степени его приспособления (в рассматриваемом нами случае — это LD50 токсина, имеющего значение для патогенности бактерии). Популяция, поднявшаяся на маленький пик ландшафта приспособленности (например, с помощью простейшего порообразующего токсина), не может сменить его на больший (например, с помощью более эффективного токсина, использующего порообразующую субъединицу для транслокации в клетку хозяина ферментативной субъединицы) и стать более приспособленной, ибо при смене пиков отбор пойдет против уровня приспособленности (часть жизненно важных генов должна мутировать либо слиться).

* * *

Подлинная роль биологических токсинов в живой природе на сегодняшний день известна не до конца. Сложность и многофункциональность молекул токсинов свидетельствуют об их длительном эволюционном пути. Токсичность, это частное проявление первичной функции сигнальных молекул отдельных бактерий. В настоящее время выделяют 5 типов токсинов. Одинаково направленное действие отбора привело к конвергентным гомологиям отдельных структур токсических молекул, а также выполняющих сходную функцию структур белков эукариотов и вирусов. Максимальная токсичность достигнута ботулиническим токсином за счет предельного увеличения размера и сложности молекулы.

Глава 1.6. Патогенность вирусов

Происхождение вирусов. Общие принципы вирусного патогенеза. Особенности строения геномов вируса натуральной оспы (ВНО) и вируса иммунодефицита человека (ВИЧ), предопределяющих стратегии паразитизма. Различия в организации геномов ВНО и ВИЧ. Сравнение патогенезов. Эволюционная цена, уплаченная обоими паразитами демону Дарвина. Какая стратегия «лучше» для паразита.


Вирусы для человека и животных являются облигатными паразитами. Они используют обе стратегии паразитизма и в столь разнообразных проявлениях, что объем данной книги не позволяет даже кратко остановиться на этом. Мы ограничимся сравнением патогенных свойств двух, крайне опасных для людей вирусов — ВНО и ВИЧ. Первый уже унес десятки миллионов жизней, второму, видимо, еще предстоит это сделать. Эти вирусы используют альтернативные стратегии паразитизма, у них совершенно несходные пути передачи, эпидемиология, патогенез и многое другое. Однако их сближает удивительная адаптированность к человеку, необычайно высокая способность распространяться в человеческих популяциях, продолжительность поддержания эпидемических очагов без постоянной циркуляции в природных резервуарах и, еще, видимо, древность, то есть способность появляться как бы ни откуда, собирать свою смертельную жатву, а затем исчезать на столь длительное время, что для потомков людей, переживших вызванные ими эпидемии они становятся возбудителями новых болезней (рис. 22).

Рис. 22. Древность возбудителей натуральной оспы и СПИДа. Мумия Рамзеса V, умершего в 1157 г. до н. э. Четко видны следы оспенных пустул — археологическое подтверждение существования оспы в древнем Египте. Однако живший 7 столетий позже Гиппократ (IV век до н. э.) об оспе ничего не знает. И только спустя еще 6 столетий, натуральную оспу описывает римский врач Гален (II век). Тогда она не кажется современникам грозной болезнью. Но в XVII столетии оспа превращается в то страшное бедствие — черную смерть, которое, как мы считаем сегодня, побеждено навсегда.

Американский исследователь R. Ablin (1996) считает, что СПИД задокументирован в этих иероглифах из древнеегипетских папирусов Эберса. Geiger (1994), нашел описание СПИДа в древних китайских трактатах по медицине под названием «Киу Лао», означающее «пустоту» или истощение». Там же описаны и симптомы столь знакомой сегодня болезни: похудание, припухлость лимфатических узлов, ночные поты, выпадение волос, понос и др. В качестве лечебного средства древние китайцы использовали сборы трав, стимулирующих иммунную систему.


Происхождение вирусов. По мнению J. Lederberg (1997), как само происхождение жизни, так и происхождение вирусов, пока остаются предметом рассмотрения многих теорий (табл. 4). Каждый вирус отличается от другого. Очень мало известно об их филогенезе и сегодня трудно даже доказать различие между сотнями их категорий. Мы не знаем их происхождения, но знаем, что они взаимодействуют с нашим геномом многими способами. Вирусные частицы могли бы произойти из любого генома, став свободно живущими (т. е., независимыми, автономно реплицирующимися единицами в клетке хозяина), реинтегрируя в геном хозяина как ретровирусы (что возможно делают и другие вирусы) и повторяя эти циклы тысячи раз.

Таблица 4
Происхождение вирусов[2]

Вирусы являются фрагментами генома, способными к репликации только в пределах интактной живой клетки, следовательно, они не могут быть предшественниками клеток

В пределах взятого вида, вирусы могут возникать как генетические фрагменты или редуцированные версии хромосом, плазмид или РНК:

1) хозяина или близкородственных видов;

2) отдаленных видов;

3) более крупных паразитов этого или другого хозяина;

4) дальнейшей эволюции или генетического обмена между существующими вирусами

В прошлом они уже могли иметь жизненный цикл в геноме хозяина как интегрирующаяся эписома. В геноме они могут выполнять определенные генетические функции и, в принципе, способны вновь появляться в виде новых вирусов

Существование таких циклов показано в мире бактериальных вирусов, однако мы не имеем четких данных, объясняющих происхождение вирусов животных и растений


Общие принципы вирусного патогенеза. Для того, что бы быть патогенными, вирусы, так же как и бактерии, должны инфицировать слизистые поверхности; проникать в хозяина через эти поверхности; вступать в контакт с чувствительными тканями; размножаться во внутренней среде хозяина; противодействовать его защитным механизмам и причинять ему вред. Необходимость в выполнении первых двух требований отпадает, если вирусы проникают в ткани через альвеолы (в составе мелкодисперсного аэрозоля), поврежденную переносчиком кожу или через слизистые.

Общие принципы вирусного патогенеза представлены в упрощенной схеме (табл. 5). В правом столбце таблицы перечислены события, происходящие внутри клетки с момента начала ее инфицирования. Эти внутриклеточные стадии репликации вирусов, в конечном счете, определяют судьбу инфицированной клетки, т. е. ведут к ее гибели; клеточной трансформации, характеризующейся снятием ограничения роста; персистентной или латентной инфекции. В левом столбце приведены события на уровне организма или ткани, ведущие к инфицированию клеток и включающие иммунный ответ хозяина [Филдс Б. и др., 1989]. Схема развития острой вирусной инфекции показана на рис. 23.

Таблица 5
Хозяйские и клеточные стадии вирусного патогенеза[3]

Организм | Клетка

Проникновение вируса в хозяина | Адсорбция

Первичная репликация | Проникновение

Распространение вируса внутри хозяина | Раздевание

Клеточный и тканевой тропизм и клеточные рецепторы | Транскрипция

Повреждение клеток | Трансляция |

Иммунный ответ и другие защитные факторы хозяина | Сборка вируса

Персистенция вируса, латентность и медленные вирусные инфекции | Выход из клетки

Рис. 23. Схема развития острой вирусной инфекции. [По Н.А. Гавришевой и Т.В. Антоновой (1999)]


Вирусы, так же как и бактерии, должны быть способными преодолеть слизистые барьеры и проникнуть в те органы и ткани, где происходит их репликация. Прежде чем распространиться по организму, они могут реплицироваться в месте первичного проникновения и в ближайших регионарных лимфатических узлах. В отличие от бактерий, вирусы могут использовать нейрональный путь проникновения в поражаемые ими органы-мишени (вирус бешенства) и тем самым избежать противодействия иммунной системы. Однако чаще всего они, как и бактерии, распространяются с кровью и лимфой (вирусемия). С наибольшим постоянством вирусемия наблюдается при острых инфекциях, особенно тяжелых формах болезни. Однако циркуляция вирусов в крови установлена и при многих латентных, хронических инфекциях. Вирусы, свободно циркулирующие в плазме, представляют плазменный тип вирусемии (вирус Синдбис, ВЭЛ, японского энцефалита). Более распространенным является клеточный тип вирусемии, при котором вирусы циркулируют в тесной связи с клетками крови. ВНО циркулируют, адсорбируясь на лимфоцитах и моноцитах крови, возбудители кори, гриппа, аденовирусы тесно связываются с полиморфно-ядерными лейкоцитами [Гавришева Н.А., Антонова Т.В., 1999]. Специфическое сродство вирусов к клеткам и тканям определяется присутствием на клеточной поверхности особых рецепторов. Отдельные; вирусы, после проникновения в клетку, могут индуцировать образование на ее поверхности дополнительных рецепторов, которыми «пользуются» другие вирусы [Филдс Б. и др., 1989]. Метаболизм вирусов направлен на использование структур цитоплазматического или ядерного белкового скелета клеток. Вирусспецифический цитопатический эффект обусловлен не бессмысленным для вируса повреждением клетки, а специфической перестройкой элементов клеточного скелета, цель которой — создание условий для размножения вируса [Маренникова С.С., Щелкунов С.Н., 1998]. Основным внешним проявление вирулентности вируса, являются разрушение инфицированных вирусом клеток в тканях-мишенях и возникающие в результате разрушения тканей физиологические изменения в организме хозяина [Филдс Б. и др., 1989].

У иммунокомпетентного хозяина большинство вирусных инфекций, возбудители которых используют первую стратегию паразитизма, самоограничиваются. Смертельные исходы в эпидемических очагах могут достигать очень высоких значений, однако в крупных популяциях людей они никогда не достигают 100 %. При недостаточности иммунной системы хозяина, эти же вирусы могут вызывать персистентные или латентные инфекции.

Персистирующая инфекция. Это бессимптомная персистенция вируса, сопровождающаяся его выделением в окружающую среду. В механизме развития вирусной персистирующей инфекции значительная роль отводится особому состоянию возбудителя — дефектным интерферирующим частицам вируса или его мутантам, а также блокированию апоптоза клеток хозяина. Персистирующий инфекционный процесс лежит в основе латентной инфекции [Гавришева Н.А., Антонова Т.В., 1999].

Латентная инфекция. Это бессимптомная персистенция вируса, не сопровождающаяся его выделением в окружающую среду. При латентной инфекции вирус не удается обнаружить с помощью диагностических приемов в связи с тем, что он находится в дефектной форме или интегрирован в геном клетки. Этот процесс плохо изучен. Значительно большая ясность имеется в вопросе реактивации вируса. Считается, что для этого необходимо действие одного или нескольких активирующих факторов (травма, стресс, иммуносупрессия, суперинфицирование и др.). В результате латентная инфекция переходит манифестную форму — развиваются симптомы, свойственные острой инфекции. Примерами латентных инфекций служат герпесвирусные (рис. 24), цитомегаловирусные инфекции, сывороточные гепатиты и ряд других [Гавришева Н.А., Антонова Т.В., 1999]. Однако нельзя полностью согласиться с вышеуказанными авторами, утверждающими, что латентную инфекцию можно рассматривать как фазу инфекционного процесса. Способность вызывать персистирующую или латентную инфекцию не является общим свойством для всех вирусов. Например, ВНО и отдельные возбудители геморрагических лихорадок либо вызывают смерть инфицированного, либо разрешаются с развитием стерильного иммунитета. Сколь бы многочисленной не осталась пережившая эпидемию популяция, они в ней не сохраняются, а для их поддержания в природе используются другие механизмы. Поэтому, можно считать, что способность вызывать латентные инфекции является проявлением более глубокой специализации к хозяину вируса, утратившего связь с первичным резервуаром. Латентность этих вирусов необходимо рассматривать только как их свойство, проявляющееся в иммунокомпетентном хозяине, т. е. вирусы такого типа способны использовать обе стратегии паразитизма, но в разной степени. Основную для них вторую стратегию они используют в иммунокомпетентных хозяевах, а в иммунодефицитных вынужденно проявляют первую.

Рис. 24. Схема патогенеза простого герпеса. У большинства лиц с момента первичного инфицирования происходит пожизненная персистенция, находящегося в организме в латентном состоянии вируса. Под воздействием различных активирующих факторов, к которым относятся дефекты иммунной системы, вирус по аксонам выходит из нервных ганглиев, поражая участки кожи и слизистых оболочек, иннервируемые соответствующим нервом. По мере прогрессирования иммуносупрессии активация вируса становится все более частой, в процесс могут вовлекаться все новые ганглии, что приводит к изменению локализации и увеличению распространенности очагов поражения кожи и слизистых оболочек [Гавришева Н.А., Антонова Т.В., 1999]


Медленные инфекции. Их вызывают паразитические микроорганизмы, использующие только вторую стратегию паразитизма. Медленные инфекции характеризуются длительным инкубационным периодом, прогрессирующим течением и неизбежной смертью. Кроме вирусов, медленные инфекции вызывают прионы — инфекционные безнуклеиновые структуры, состоящие из низкомолекулярного белка, молекулярная масса которого составляет 27…30 кд. Прионы имеют свойства, типичные для обычных вирусов, однако отличаются от них выраженной устойчивостью к действию многих физических факторов. Они не имеют сердцевины из нуклеиновых кислот, окруженных протеинами, а также липидной оболочки, в связи с чем при электронной микроскопии не распознаются как вирусы. Характеристика медленных инфекций, вызываемых прионами, представлена в табл. 6.

Таблица 6
Характеристика медленных инфекций, вызванных прионами[4]

Нозологическая форма

Источник и факторы передачи

Клинические проявления

Патоморфология

Болезнь Крейтцфельда-Якоба

Животные, органы и ткани которых заражены прионами; мясо, сырые морепродукты

Прогрессирующее слабоумие, миоклонус, прогрессирующие двигательные нарушения, атаксия, бульбарные нарушения — афония, дисфагия. Средняя продолжительность — 6 месяцев

Демиелинизация передних рогов спинного мозга; комбинированные поражения коры, гипоталамуса, базальных ганглиев, мозжечка и спинного мозга

Куру

Умершие от куру люди; факторы передачи — их ткани (особенно мозг). Каннибализм

Нарушение походки, дрожание туловища, конечностей, головы. Повышенная возбудимость, необоснованный смех. У обездвиженных больных присоединяется вторичная инфекция. Средняя продолжительность клинических проявлений — 6–9 месяцев

Губкообразная энцефалопатия: в коре, подкорке, подбугровой области и мозжечке вакуолизация дендритов, аксонов и тела нейронов. Из-за выраженной вакуолизации серое вещество больших полушарий приобретает вид губки

Синдром Герстманна-Штреуслера

Не установлен

Мозжечковые нарушения, слабоумие, пирамидные знаки, очень медленное прогрессирование заболевания. Средняя продолжительность — 60 месяцев

Медленное формирование многочисленных и распространенных во всей ткани мозга амилоидных бляшек

Амиотрофический лейкоспонгиоз

Не установлен

Слабость в кистях рук, затем — в ногах, параличи конечностей, затем брюшных мышц и мышц грудной клетки, спинальный тип нарушения дыхания

Поражение центральных и периферических двигательных нейронов, дегенерация и перерождение клеток передних рогов и боковых столбов спинного мозга


Медленные инфекции могут вызывать некоторые вирусы, использующие первую стратегию паразитизма (например, вирусы кори — подострый склерозирующий панэнцефалит, клещевого энцефалита — прогредиентная форма клещевого энцефалита). Но это не является всеобщей закономерностью и происходит только при определенном состоянии иммунной системы, когда эффективные иммунные реакции макроорганизма на вирус заблокированы.

Для поддержания в природе возбудителей инфекций, использующих стратегию паразитирования II типа, размер инфицированной популяции имеет значительно меньшее значение, чем для возбудителей, использующих стратегию I типа.

Теперь попробуем понять, как эти стратегии реализуются в инфекционных процессах и жизненных циклах ВНО и ВИЧ.

Особенности строения геномов ВНО и ВИЧ, предопределяющие стратегии паразитизма. Геномы вирусов сформированы различными типами нуклеиновой кислоты. У ВНО — ДНК, у ВИЧ — РНК. Уже это предопределяет различную стратегию преодоления противодействия защитных механизмов хозяина.

РНК-вирусы имеют определенный лимит генетической сложности, обусловленный небольшими размерами их геномов — от 3 до 30 кб. Однако они более эффективно, чем ДНК-вирусы используют мутационный процесс для изменения своей антигенной структуры и тропизма в организме хозяина, а также для уклонения от антител и цитотоксических лимфоцитов. Высокую частоту мутаций у РНК-вирусов обычно объясняют отсутствием механизмов корректировок в синтезе РНК. Все молекулы вирусной РНК обычно реплицируют через ассиметричную транскрипцию от одной цепи, исключающую большинство корректирующих механизмов, характерных для репликации молекул ДНК. S. Holland и соавт. (1982) экспериментально доказали, что вероятность ошибки во время копирования РНК-молекулы будет в 105—107 раз больше, чем при копировании ДНК-молекулы. Ими также была установлена средняя частота мутаций для РНК-вирусов, составляющая приблизительно 10-4,5. Это означает, что до 10 % всех молекул РНК в популяции вируса, могут содержать мутации.

Репликация ДНК-вирусов сопровождается проверочным считыванием и пострепликационной репарацией. Поэтому механизм мутационной изменчивости играет меньшую роль в их стратегиях противодействия иммунной системе хозяина. Зато эволюцией за ними были закреплены другие изощренные механизмы выживания. Например, белки ЕЗ/19К и Е1а аденовирусов, супрессируют поверхностные молекулы, необходимые для Т-клеточного распознавания [Murphy P., 1993]. Белок BCRF1 вируса Эпштейна-Барра является гомологом интерлейкина-10 (IL-10) и взаимодействует с его рецептором [Domingo E. et al., 1998]. Филогенетический анализ генов герпесвирусов, способных инфицировать широкий круг хозяев, позволил сделать вывод о совместной эволюции этих вирусов и их хозяев. Свои гены-двойники в геноме хозяина имеются и у РНК-вирусов (например, вирусы саркомы и лейкемии). Однако использование в стратегиях инвазии захватов ДНК хозяина и антигенной мимикрии белков, более характерно для ДНК-вирусов.

Различия в организации геномов ВНО и ВИЧ. В отличие от большинства ДНК-содержащих вирусов животных, жизненный цикл поксвирусов проходит в цитоплазме клетки в значительной степени автономно от ее ядра (рис. 25). Для этого они, как и бактерии (!), располагают своими ферментативными системами синтеза РНК и ДНК (рис. 26).

Рис. 25. Структура внеклеточного вириона ортопоксвирусов. 1 — сердцевина, 2 — мембрана сердцевины, 3 — боковые тела, 4 — поверхностная мембрана IMV, липопротеидная оболочка EEV, 6 — трубчатые структуры поверхностной мембраны IMV.

Рис. 26. Жизненный цикл осповирусов. Вирионы, содержащие двухцепочечную геномную ДНК, ферменты, факторы транскрипции, адсорбируются на клетке (1) и сливаются с плазматической мембраной клетки, высвобождая сердцевины в цитоплазму (2). Сердцевины синтезируют ранние мРНК, с которых транслируются различные белки, включая факторы роста, молекулы защиты от иммунной системы, ферменты и факторы для репликации ДНК и транскрипции промежуточных генов (3). Происходит раздевание сердцевины (4) и вирусная ДНК реплицируется, формируя конкатемерные молекулы (5). Промежуточные гены транскрибируются на дочерних молекулах ДНК и с этих мРНК транслируются факторы поздней транскрипции (6). Затем транскрибируются поздние гены. С их мРНК транслируются вирионные структурные белки, ферменты и факторы ранней транскрипции (7). Сборка вирионов начинается с образования дискретных мембранных структур (8). Конкатемерные промежуточные формы вирусной ДНК разделяются на единичные геномы и упаковываются в незрелые вирионы (9). Созревание приводит к образованию внутриклеточных зрелых вирионов (10). Эти вирионы покрываются модифицированными мембранами аппарата Гольджи и перемещаются к периферии клетки (11). Слияние таких вирионов с плазматической мембраной завершается высвобождением внеклеточных вирионов. Хотя размножение вируса происходит полностью в цитоплазме, ядерные факторы могут быть вовлечены в процессы транскрипции генов и сборки вирионов [Маренникова С.С., Щелкунов С.Н., 1998]


Инфекционные частицы поксвирусов содержат в своем составе полную ферментативную систему транскрипции, способную синтезировать функциональную мРНК в полиаденилированной, кэпированной и метилированной форме [Маренникова С.С, Щелкунов С.Н., 1998]. Это позволяет ВНО:

1) самостоятельно осуществлять эффективную защиту от ранних специфических реакций на инфекцию и противодействовать развивающимся позже специфическим реакциям;

2) размножаться до высокого уровня, обеспечивающего быструю передачу другому хозяину.

В отличие от других РНК-вирусов, ВИЧ, как и остальные ретровирусы, является примитивным «половым» организмом и способен к примитивному «половому воспроизведению» [Burke D., 1997]. Каждая вирусная частица содержит две РНК-цепи положительной полярности, полной длины и способные к репликации (рис. 27 и 28). В природе не существует других диплоидных семейств ДНК- или РНК-вирусов [Coffin J., 1992].

Рис. 27. Структура вириона ВИЧ. В морфологическом отношении ВИЧ-1 и ВИЧ-2 сходны с другими ретровирусами. Наружная оболочка заимствуется вирионом из мембраны клетки хозяина при отпочковывании. Она пронизана вирусными белками: трансмембранными (гликопротеин gp41) и внешним (gp120). Оба называются оболочечными (кодируются геном env) и участвуют в прикреплении к мембране клетки-хозяина, выполняя функцию иммуногенной детерминанты. С внутренней стороны липидной оболочки расположен матриксный каркас, образованный белком р17. Он окружает внутреннюю структуру вириона — нуклеотид или сердцевину (англ. — core). Собственная оболочка сердцевины образована «коровым» белком р24. Внутри нуклеотида различают геном вируса, состоящий из двух цепочек РНК, окруженных белками р7 и р9. Вблизи молекул РНК расположены различные ферменты (обратная транскриптаза или ревертаза, РНКаза Н, протеаза). Большинство изображенных на рисунке морфологических элементов являются антигенами [Лысенко А.Я. и др., 1996]

Рис. 28. Жизненный цикл ВИЧ. На врезке показано, что связывание вириона с мембраной клетки (рецепция) возможно только при слиянии вирусного gp120 со специфическим рецептором на мембране клетки хозяина (см. рис. 51). После проникновения вириона, происходит его «раздевание», когда вследствие точечного протеолиза освобождается вирусная РНК. Центральным событием является синтез ДНК на матрице РНК. Уникальный фермент ретровирусов — обратная транскриптаза или ревертаза — разрушает нити РНК и синтезирует новую нуклеиновую кислоту, ДНК. Зрелые вирионы, образовавшиеся в клетке хозяина, отпочковываются, разрушая при этом клетку. Очень существенно, что репликация вируса с образованием множества вирионов, происходит только тогда, когда инфицированная клетка хозяина находится в активированном состоянии. В неактивированной клетке ВИЧ может находиться в латентном состоянии (в стадии провируса) неопределенно долго и с этим связана его кардинальная особенность его эпидемиологии как медленного вируса [Лысенко А.Я. и др., 1996]


Обычно обе цепи РНК в ретровирусной частице являются производными от одного родительского провируса. Однако если инфицированная клетка одновременно содержит два различных провируса, то их РНК-транскрипты могут сформировать отдельный гетерозиготный вирион. После проникновения в новую клетку, под действием обратной транскриптазы, заново синтезированная ретровирусная последовательность будет рекомбинантом двух родительских. Сходство с половым процессом здесь в том, что:

1) обе цепи РНК как две родительские гаметы сливаются в одну;

2) генетическая информация потомков будет рекомбинантной

3) последующие «поколения» будут нести информацию обоих родителей [Temin Н., 1991].

«Половой процесс» дает ВИЧ ряд существенных преимуществ перед другими РНК-вирусами. Легко возникающие мутации, способствуют отбору и закреплению вариантов РНК-вируса, наиболее «удачно» использующих данного хозяина. Но для любого микроорганизма, который достиг пика на «ландшафте приспособленности», новая мутация не создает однозначных преимуществ. Более того, для него это ступенька на нижний уровень приспособленности. Генетическая рекомбинация может создать условия для регенерации геномов более «удачливых» ретровирусов из предковых геномов вирусов, менее адаптированных из-за мутаций. Однако, при смене условий существования такая консервация на высоте адаптивного пика превращается для вируса в ловушку. Рекомбинация между РНК-геномами двух высокоадаптированных ВИЧ, дает возможность рекомбинанту «сесть» на другой адаптивный пик, более соответствующий изменившимся условиям. Т. е., как заметил S. Kaufman (1993), помочь ему совершить «эволюционно широкий прыжок».

Сравнение патогенезов. Патогенез ВНО определяется необходимостью его быстрого размножения до количеств, позволяющих смену хозяина в течение короткого промежутка времени — от момента его инфицирования до его гибели или выздоровления. Выздоровление — это процесс разрешения от инфекции, осуществляемый иммунной системой хозяина.

ВНО variola maior обуславливает генерализованную инфекцию, которая в высоком проценте случаев завершается летальным исходом. Для этого вирус располагает беспрецедентным, по сравнению с вирусами других семейств, набором генов, белковые продукты которых эффективно изменяют многочисленные защитные реакции организма (рис. 29).

Рис. 29. Общая схема синтеза ВНО молекулярных факторов, обеспечивающих вирусу преодоление защитных барьеров человека. Вирус располагает беспрецедентным, по сравнению с вирусами других семейств, набором генов, белковые продукты которых эффективно изменяют многочисленные защитные реакции организма [Маренникова С.С., Щелкунов С.Н., 1998]


Первым неспецифическим и, возможно, самым древним барьером, который вынужден преодолевать ВНО, является программированная гибель клеток (апоптоз). Инфицирование клетки запускает механизм ее самоубийства, благодаря чему предотвращается размножение вируса и его распространение среди соседних клеток. ВНО располагает, по крайней мере, четырьмя генами, белковые продукты которых ингибируют апоптоз по альтернативным и дублирующим механизмам [Маренникова С.С., Щелкунов С.Н., 1998].

Вторым неспецифическим барьером являются местные воспалительные процессы. Они быстро индуцируются для ограничения распространения вируса в первые часы и дни после инфицирования, пока формируется полноценный иммунный ответ. ВНО несет гены не менее чем пяти белков, блокирующих различные этапы развития воспаления в участках размножения вируса (SPI-2, G3R, растворимых аналогов рецепторов фактора некроза опухолей — TNF и гамма-интерферона — гаммаlFN) и предотвращающих развитие системных реакций (растворимый рецептор интерлейкина-1бета — IL-1 бета). Как правило, все эти белки обладают одновременно несколькими активностями. Например, TNF-связывающий белок необходим еще и для развития генерализованной инфекции, столь характерной для ВНО. Поэтому эти белки считаются факторами вирулентности ВНО [Маренникова С.С., Щелкунов С.Н., 1998].

Система блокирования интерферона у ВНО также мультигенна (не менее 5 белков), поэтому он очень устойчив к его действию. Синтезируемые вирусом аналоги растворимых рецепторов IFN обоих типов, интерферируют с IFN, связывая его клеточные рецепторы. Это приводит к блокированию антивирусного состояния клетки и предотвращает лейкоцитарную инфильтрацию в участки вирусной репликации [Alcami A., Smith G., 1996].

Для облегчения распространения ВНО по тканям организма хозяина, в его геноме содержится ген C11R VAC–COP, кодирующий белок VGF, отнесенный к семейству эпидермального фактора роста. Он стимулирует рост и/или метаболическую активность неинфицированных клеток, обеспечивая тем самым распространение ВНО по организму. На эффективность диссеминации ВНО в организме человека также влияют белки оболочки внеклеточных вирионов (прежде всего, гемагглютинин) и анкиринподобные белки (определяют круг хозяев вируса). Пока не идентифицированы вирусные белки, подавляющие созревание гликопротеидов главного комплекса гастосовместимости класса I и тем самым снижающих эффективность представления на поверхности инфицированной клетки вирусных антигенов специфическим цитотоксическим Т-лимфоцитам [Маренникова С.С., Щелкунов С.Н., 1998].

Однако большое количество синтезируемых ВНО белковых структур неизбежно обнаруживаются иммунной системой хозяина, Поэтому патогенез ВНО построен на компромиссе между скоростью развития иммунного ответа хозяина (индуцируется полный спектр клеточно-опосредованных и гуморальных иммунных ответных реакций) и скоростью размножения вируса до количеств, достаточных для его передачи другому реципиенту. Например, ранее всех появляющиеся антигемагглютинины (2–3 день болезни), достигают своего максимума между 12 и 15 днями, а максимальные титры вируса в зеве определяются на 3-й и 4-й дни и держатся до 8-го дня у 95–100 % больных. Затем они начинают снижаться [Маренникова С.С., Щелкунов С.Н., 1998]. У переболевших оспа оставляет длительный, стойкий и стерильный иммунитет, что исключает возможность повторного использования вирусом для своего размножения того же хозяина. Эта та цена, которую вирус платит за сложность своего генома иммунной системе человека. Однако заболевший успевает инфицировать от 5 (в среднем) до 38 человек, из них не менее трети погибнет — это уже цена, которую платим мы за тоже самое (рис. 30).

Рис. 30. Внешний вид больного натуральной оспой. Оспенные папулы. Возбудитель максимально накапливается на ранней стадии инфекции, стремясь успеть сменить хозяина до развития у него иммунитета. Используемый ВНО воздушно-капельный механизм передачи позволяет одному больному инфицировать десятки людей. Но эта цепочка рано или поздно прервется либо из-за гибели инфицированных либо из-за приобретения иммунитета чувствительной популяцией. Рисунок из книги Е.П. Шуваловой (1974)


Патогенез ВИЧ определяется его стратегией, заключающейся, прежде всего, в необычайной длительности персистирования в организме человека, не сопровождаемое специфическими клиническими, проявлениями. Но длительность этого состояния, это ничто иное, как наше субъективное восприятие процесса, протекающего в иных временных измерениях. Патогенность для ВИЧ означает «захват власти» над геномом хозяина [Лем С., 1989], где он становится одним из его оперонов и наследуется в цикле деления клеток. Однако для того, что бы быть не узнанным иммунной системой человека, ВИЧ должен хорошо укрыться.

Укрытие ВИЧ осуществляется, по меньшей мере, на двух уровнях — генетическом и клеточном. Генетическая маскировка вируса заключается в том, что его ДНК-форма (провирус), встроенная в геном хозяина, не имеет антигенов и для иммуноглобулинов недоступна [Медников Б.М., 1990].

На клеточном уровне ВИЧ не распознается иммунной системой благодаря тому, что:

1) зрелый вирион ВИЧ покрыт мембраной и гликопротеидной оболочкой из организма хозяина (на собственную оболочку у него не хватает «средств», т. е. генов), а поэтому они не могут быть антигенами;

2) те немногие участки аминокислотных последовательностей гликопротеидов ВИЧ — gp120 и gp 41, которые не экранированы и могут быть антигенами, сильно вариабельны (петлеобразный участок gp120);

3) кроме Т-хэлперов ВИЧ проникает и в другие клетки — как содержащие на своей поверхности рецепторы CD4 (глиальные клетки мозга), так и способные к фагоцитозу, в первую очередь моноциты в макрофаги. Именно последние захватывают комплексы ВИЧ — антитело. Поэтому иммуноглобулины, в конечном итоге, не подавляют инфекцию, а способствуют ей [Медников Б.М., 1990].

Если для существования ВИЧ в хозяине ему достаточно интегрироваться с его геномом, то для смены хозяина он должен воспроизвести свое потомство и найти наиболее эффективный для своей стратегии паразитизма механизм передачи. Т. е. он неизбежно должен воспользоваться ресурсами своего хозяина, а, следовательно, повредить его, не обладая теми мощными арсеналами генов, которыми располагают возбудители быстрых инфекций. Клинически повреждения при СПИДе проявляется столь большим количеством патологических симптомов, что объяснить их только действием малочисленных продуктов генов ВИЧ (как это мы делали в отношений ВНО), не удается. Также трудно свести всю обнаруживаемую патологию к последствиям паразитизма многочисленных возбудители сопутствующих инфекций.

Наиболее ярким показателем патогенного воздействия вируса является прогрессивное уменьшение числа CD4+ Т-лимфоцитов крови — основная причина постепенного угнетения иммунной системы [Лысенко А.Я. и др., 1996]. ВИЧ разрушает Т-клетки непосредственно, когда размножается в них, и когда размножившиеся частицы вируса покидают клетку, разрушая клеточную мембрану. Нo ВИЧ может уничтожать CD4+ Т-лимфоциты и опосредовано. На поверхности зараженной клетки располагается вирусный белок gр120, обладающий высоким сродством к рецепторному белку поверхности CD4+ Т-лимфоцитов (CD4). Из-за этого нормальные CD4+ Т-лимфоциты присоединяются к инфицированным клетками и сливаются с ними, образуя нежизнеспособную многоклеточную структуру — синтиций. Вместе с пораженными Т-лимфоцитами гибнут все здоровые, включившиеся в синтиций. Также ВИЧ вызывает нормальный клеточный иммунный ответ. При этом цитотоксические клетки (с помощью антител или сами по себе) уничтожаютинфицированные CD4+ Т-лимфоциты, на поверхности которых имеются вирусные белки. При ВИЧ-инфекции в крови может циркулировать свободный белок gp120. Он способен связываться с молекулами CD4 нормальных клеток, в результате иммунная система принимает их за инфицированные клетки и атакует [Редфитд Р., Берке Д., 1988]. Кроме того, gp120 сходен со многими другими рецепторами человека (гормонов, регуляторов роста тканей и др.). Поэтому, антитела к нему атакуют большое количество тканей, подавляя биосинтез самых различных веществ, и, в результате, вызывают полное истощение организма больного (рис. 31).

Рис. 31. Внешний вид больного СПИДом. Вирусный gp120 сходен со многими рецепторами человека (гормонов, регуляторов роста тканей и др.). Поэтому антитела к нему атакуют большое количество тканей, подавляя биосинтез самых различных веществ, и, в конце концов, вызывают полное истощение организма больного [Кульберг А.Я., 1988], Для смены хозяина вирус использует половой путь передачи, одновременно необходимый для сохранения вида хозяина — разорвать такую эпидемическую цепочку невозможно. Рисунок книги В.И. Покровского и В.В. Покровского (1988)


Любопытно проявление феномена апоптоза при взаимодействии клетки и паразита II типа. Оно полностью противоположно тому, которое демонстрирует ВНО и другие возбудители, использующие первую стратегию паразитизма. ВИЧ не располагает собственными генами, кодирующими белки, которые бы каким-либо образом участвовали в этом процессе. Однако инфицированные им CD4+ Т-лимфоциты при контакте способны быстро уничтожать такие же, но не инфицированные соседние клетки. Причем в условиях in vitro, этот процесс наблюдается до образования синтициев. Интересно, что цитолизу при явлениях апоптоза, подвергались как активированные, так и покоящиеся CD4+ Т-лимфоциты [Nardelli В. et al., 1995].

У ВИЧ совершенно противоположное, чем у ВНО взаимодействие с цитокиновым комплексом. Он не подавляет их, синтезируя растворимые рецепторы, а наоборот, индуцирует в ЦНС человека синтез самих цитокинов (TNF, интерлейкины) инфицированными макрофагами, клетками микроглии и астроцитами, тем самым, вызывая сильное нейротоксическое действие [Levy J.A., 1989]. В норме цитокины действуют в основном в месте локализации антигена. Их действие на уровне центральных органов иммунитета является быстротечным и импульсным. При ВИЧ-инфекции они продуцируются непрерывно, постоянно оказывая токсическое действие на организм человека [Лысенко А.Я. и др., 1996].

И уж почти мистически выглядит обоснованное предположение А.Я. Лысенко (1990) о преимущественной элиминации ВИЧ тех клонов Т-клеток, которые до инфицирования вирусом длительно накапливались в большом количестве как противодействие патогенному потенциалу популяций микроорганизмов-оппортунистов. Первоочередная селективная деструкция ВИЧ именно таких клонов Т-клеток, создает необходимые благоприятные условия для проявления оппортунистами своих патогенных потенций.

Эти примеры наглядно показывают, что «захват власти над геномом хозяина» позволяет паразитическому микроорганизму изощренно и разнообразно противодействовать хозяину.

Элиминация же CD4+ Т-лимфоцитов ведет к потере контроля над проникающими в организм возбудителями грибковых, протозойных и других инфекций, а также за трансформированными вирусом злокачественными клетками. По мере исчерпания резерва CD4+ Т-лимфоцитов и снижения концентрации вируснейтрализующих антител, у всех ВИЧ-инфицированных лиц формируется манифестная, четко диагностируемая по наличию характерных оппортунистических заболеваний, стадия — собственно СПИД (рис. 32).

Рис. 32. Исход контакта с ВИЧ.

Схема течения ВИЧ-инфекции: ± — стадия, развивающаяся не у всех инфицированных; ПГЛП — прогрессирующая генерализованная лимфаденопатия [Лысенко А.Я. и др., 1996]


У кого же способ смены хозяина эффективнее — у ВНО или ВИЧ? Выше мы отметили, что используемый ВНО воздушно-капельный механизм передачи позволяет одному больному инфицировать десятки людей. Но эта цепочка либо из-за гибели инфицированных, либо из-за приобретения чувствительной популяцией иммунитета, рано или поздно прервется. Однако наиболее распространенный механизм передачи ВИЧ — половой, одновременно необходим для сохранения вида-хозяина. Поэтому, если в природе отсутствует механизм ограничения численности ВИЧ-инфицированных людей, то один больной способен инфицировать все человечество. Растянутость этого процесса во времени не имеет значения за пределами человеческих ощущений.

Эволюционная цена, уплаченная обоими паразитами демону Дарвина. Выше мы уже отметили, что осповирусы по ряду свойств аналогичны бактериям. Если рассматривать их в ряду бактерий, то, по мнению В.М. Жданова (1988), последовательность эволюционных событий будет выглядеть следующим образом: риккетсии — хламидии — вирусы оспы, т. е. налицо дегенеративная эволюция, когда большая адаптация к конкретному хозяину сопровождается упрощением строения паразита. Для большинства риккетсии внутриклеточный паразитизм обязателен, у хламидий он неизбежен, поскольку они не имеют митохондрий и потому являются энергетическими паразитами. Вирусы оспы с их сложной структурой и автономной репликацией ДНК (практически ничем не отличающейся от бактериальной), можно представить как дальнейший этап дегенеративной эволюции, сопровождающейся потерей синтезирующего белок аппарата.

Далее это упрощение происходит уже на межвидовом и межштаммовом уровне. Особенно наглядно дегенеративная эволюция наблюдается при сравнении геномов ВНО с геномами других осповирусов, имеющих более широкий круг хозяев. И здесь для исследователя, привыкшего считать, что патогенность микроорганизмов случайна, временна и обусловлена наличием каких-то дополнительных факторов патогенности, может возникнуть необходимость преодоления психологического барьера. Оказывается, совсем не обязательно, что геномы более вирулентных видов организованы более сложно и имеют больше генов, ответственных за синтез и регуляцию «факторов патогенности», чем менее патогенные виды этого семейства.

Например, у ВНО разрушена открытая рамка считывания (ОРТ) гена белка, обладающего IL-1бета-связывающей активностью. Однако вирус вакцины синтезирует этот белок, считающийся фактором патогенности. Тогда почему ВНО вирулентней для человека? С.С. Маренникова и С.Н. Щелкунов (1998) считают, что из-за блокирования у ВНО IL-1бета-связывающего белка не ингибируются системные реакции организма, в то время как снижение местных воспалительных реакций белком SPI-2, приводит к более активному размножению вируса. Неконтролируемое же развитие системных реакций ослабляет общую устойчивость организма, и патогенное действие вируса усиливается. У ВНО утратил свое значение и ген Збета-гидро-ксистероиддегидрогеназы (Збета-HSD), играющий важную роль в биосинтезе стероидных гормонов. Зачем? Стероидные гормоны так же обуславливают столь необходимые ВНО имуносупрессию и противовоспалительное действие! Оказывается, это вызвано различиями гормонального регулирования у грызунов и человека. Поэтому рассматриваемый ген утратил свое значение у такого строго антропоноза, каким является ВНО [Маренникова С.С., Щелкунов С.Н., 1998]. В отличие от вируса вакцины и вируса оспы коров, у ВНО разрушены ОРТ всех белков межклеточных каналов (всего семейства!). С.С. Маренникова и С.Н. Щелкунов (1998) обратили внимание и на то, что по сравнению с вирусом вакцины, у ВНО за счет мутационных изменений разрушено значительное число других ОРТ.

У ВНО существует механизм, ограничивающий возможность его генетической рекомбинационной изменчивости по сравнению с другими видами ортопоксвирусов, характеризующимися относительно высоким уровнем перестроек геномов. У него необычайно маленького размера инвертированные терминальные повторы (TIR) — от 518 до 1051 пн, у вируса вакцины на порядок больше: 10–12 тпн. Кроме того, у штаммов вируса вакцины они содержат различающиеся наборы генов. У ВНО TIR — это минимальный теломерный элемент, необходимый для репликации поксвирусной ДНК. С.С. Маренникова и С.Н. Щелкунов (1998) считают, что столь малый размер TIR существенно ограничивает возможность генетической рекомбинации ВНО. Такая консервативность свидетельствует о необычайно глубокой адаптации ВНО к организму человека. Разрушение же рамок считывания ряда генов, это такой же процесс, как и утрата внутренними паразитами органов чувств, упрощение до предела нервной системы и исчезновение пищеварительной у ленточных червей — они им больше не нужны, т. е. отбор перестал следить за формированием структуры, и этого оказалось достаточно, что бы она исчезла.

Определить цену, заплаченную ВИЧ демону Дарвина за столь совершенный механизм паразитизма, гораздо труднее, так как мы вообще еще плохо знаем, что такое ретровирусы в эволюционном аспекте.

Есть основания полагать, что РНК, как более просто построенная и менее устойчивая полимерная структура, предшествовала ДНК и белкам в эволюции. В любой клетке существует самостоятельный «мир РНК», который занимает центральное положение в процессах жизнедеятельности, а остальные структуры клетки оказываются как бы эволюционной надстройкой [Гладилин К.Л., Суворов А. Н., 1995]. Позже образовавшаяся обратная транскриптаза, видимо, стала одним из тех инструментов, которым демон Дарвина пользовался на ранних этапах биологической эволюции. Три уникальные ферментативные активности обратной транскриптазы (результат влияния трех генов, образовавшихся в разные геологические эпохи белков), позволили ей сыграть важную роль при переходе из царства РНК к царству ДНК:

1) ДНК-полимеразная — синтезирует одноцепочечную ДНК, комплементарную РНК;

2) рибонуклеазная — расщепляет исходную РНК;

3) интегразная — позволяет интегрироваться синтезированной на матрице РНК новой ДНК, с ДНК, уже закрепленной естественным отбором.

Своим появлением живые системы обязаны ретроэлементам, составляющим значительную часть геномов позвоночных [Leilb M.C., Seilarth W., 1996]. Следы древних процессов, в которых участвовали ретроэлементы и ретровирусы, запечатлены и в нашем геноме (табл. 7). В ДНК 19-й хромосомы человека содержится около 700 nef-подобных элементов (nef — это ген негативного регуляторного фактора ВИЧ, определяющего его способность прекращать размножение и переходить в состояние покоя), а также 16 участков, где с nef соседствует область, гомологичная env ВИЧ [Несмеянов Х.М. и Тарантул В.З., 1997]. По данным L. Roswitha и соавт. (1996), на долю последовательностей эндогенных ретровирусов HERV приходится около 1 % генома человека и они необходимы для поддержания его пластичности. Ретропозиция считается главным регулятором темпа эволюции, включая видообразование [Jurgen В., Henri Т., 1996]. Поэтому, можно предположить, что ретровирусы являются древнейшими паразитами, появившимися одновременно с геномами, имеющими интрон-экзонную структуру (древнейшие из известных — архебактерии: 3,8 млрд. лет). Что они потеряли, а что приобрели за этот период, судить трудно. Эти древние формы жизни, хотя и являются облигатными паразитами, более адаптированы к существованию на планете чем человек и, даже, позвоночные. Но для частного случая — механизма передачи, определить уплаченную ими цену, видимо, можно. Это касается различных предположений о том, что бы было, если бы ретровирусы передавались воздушно-капельным путем [Лем С., 1989].

Таблица 7
Количество копий ретроэлементов в геноме человека

Типы ретроэлементов | Ретроэлементы | Количество копий | % от генома

С-тип-связанные HERV | HERV-ERI суперсемейство | — | 0,07 %

— " — | HERV-E (4–1, ERVA, NP-2) | 35–50

— " — | HERV-E LTR | 500–600

— " — | 51-1 | 35–50 |

— " — | ERV1 | 10–15 |

— " — | HERV-R (ERV3) | 10

— " — | RRHERV–I | 20 |

— " — | S71 | 15–20 | i

— " — | S71 LTR | 50–100 | ERV-FRD | 5–7 | i

— " — | ERV9 | 30–40 | 0,2 %

— " — | ERV9 LTR | 3000–4000 |

— " — | HERV-P (HuERS-P1, HuERS-P2, HuERS-P3/HuRRS-P) | 50–90 | 0,01 %

— " — | HERV–I (RTVL–I) | 25–50 | 001 %

— " — | ERV-FTD | 5–7 |

С-тип и HTLV-связанные HERV | HERV-H (RTVL-H, RGH) | 900–1000 | 0,2 %

— " — | HERV-H-LTR | 1000 |

— " — | HRES1 | 2 | i

A-,B- и D-типо-связанные HERV | HML семейства 1–6 | 50 | 0,5 %

— " — | HERV-K (HM, HLM, HML-1 | — |

— " — | HERV-K LTR | 10,000–25,000

— " — | ERV-MLN (HML-4) | 20–25

THE-1 элементы | THE 1 | 10,000 | 1%

— " — | THE-1 LTR | 30,000 |

Невирусные ретротранспозоны | LINE-1 | 100,000 | 5%

— " — | Alu | 500000 | 5%

— " — | SINE-R | 5000 | 0:1%

i — невозможен подсчет из-за небольшого количества копий [Leib-Mosch С., Seifarth W., 1996].


Действительно, ретровирусы в лабораторных условиях легко инфицируют модельных животных через дыхательные пути. В естественных условиях этот путь передачи не только им не нужен, но и противоречит их стратегии паразитизма. Для воздушно-капельной передачи необходимо бурное накопление вируса в верхних дыхательных путях, которое бы еще сопровождалось разрушением этого эпителия. Однако для этого ретровирус должен иметь гены, дополнительные к имеющимся (например, кодирующие белки, участвующие в лизисе клетки). Но этими белками он обозначит свое присутствие иммунной системе. Интенсивное размножение и деструкция тканей уже сами по себе являются мощными раздражителями местных неспецифических и специфических иммунных реакций. Для их подавления ВИЧ так же должен иметь гены, продукты которых будут блокировать эти реакции. Т. е. для того, чтобы ВИЧ смог «научиться передаваться по воздуху», он должен стать совершенно другим вирусом и изменить стратегию паразитизма.

Какая стратегия «лучше» для паразитов? Естественно, какая хуже для человечества? По отношению к природе очень трудно использовать категории добра и зла. Эти стратегии используются паразитами миллиарды лет. Вопрос больше заключается в том, почему они их изменяют в отношении нас. Т. е. когда преимущество имеют паразиты с одной стратегией, а когда с другой? Но об этом мы поговорим в другом разделе книги.

* * *

Вирусы являются облигатными паразитами, использующими генетические ресурсы хозяина в значительно большей степени, чем бактерии и микоплазмы. Внешним проявлением вирулентности вируса являются разрушение инфицированных вирусом клеток и возникающие в результате разрушения тканей физиологические изменения в организме хозяина. Вирусы способны использовать первую и вторую стратегию паразитизма. Первая стратегия создает преимущества вирусу в высокоплотных популяциях хозяев. Вторая, наоборот, оптимальна для паразитирования в редких, разбросанных на больших территориях, популяциях хозяев. В иммунодефицитных особях вирусы могут проявлять отдельные элементы обоих стратегий, однако это не является всеобщей закономерностью в их взаимоотношениях с хозяином. Наличие же в природе вирусов, использующих для увеличения численности своих популяций и расширения ареала двух взаимоисключающих и предельно эффективных стратегий паразитизма, позволяет сделать предположение о взаимной регуляции их численности в бесконечно больших панмиксных популяциях хозяев.

Глава 1.7. Инфекции у иммунодефицитных людей

Иммунодефицитные состояния. Составляющие иммунодефицитных популяций. Оппортунистические инфекции при СПИДе. Эволюционные процессы в иммунодефицитных популяциях.


Что бы понять, какие возможности для размножения и расширения ареала предоставляет паразитическим микроорганизмам иммунодефицитность человеческих популяций, вернемся к условиям, при которых возможна инфекционная болезнь. Среди них выделяют три: вирулентность микроорганизма, способ его передачи и чувствительность хозяина [Morris J.G., Morris P., 1997]. Если у иммунокомпетентных организмов для возникновения инфекционной болезни требуется сочетание всех трех условий, то для иммунодефицитных организмов последнее условие становится предопределяющим для действия первых двух.

Увеличение чувствительности организма к возбудителю инфекции можно выразить через понятие «инфицирующей дозы». Эта доза резко снижается для организмов, ранее неизвестных в качестве патогенов людей. Организм сталкивается с совершенно новыми для него факторами вирулентности паразитов, паразиты же приобретают совершенно новые для себя пути переноса в организм хозяина. Какой возбудитель вызовет инфекцию в конкретном случае, зависит от этиологии и патогенеза иммунодефицита.

Иммунодефицитные состояния. Иммунодефицитность — понижение функциональной активности основных компонентов иммунной системы, ведущее к нарушению защиты организма от микробов и проявляющееся в повышенной инфекционной заболеваемости [Хаитов P.M., Пинегин Б.В., 1999].

Все иммунодефицитные состояния делятся на две большие группы: врожденный (наследственно обусловленный иммунодефицит) и приобретенный иммунодефицит [Галактионов В.Г., 1998].

Нарушения в работе иммунной системы могут быть связаны либо с одной из клеточных популяций (Т-клетками, В-клетками, макрофагами), либо с комплексными нарушениями, затрагивающими многие звенья иммунитета [Галактионов В.Г., 1998]. При дефиците гуморального иммунитета преобладают бактериальные инфекции, при дефиците клеточного — вирусные, протозойные, грибковые [Лысенко А.Я. и др., 1996].

В основе наследственно обусловленного иммунодефицитного состояния лежат дефекты генов, контролирующих работу определенных звеньев иммунной системы. В настоящее время идентифицировано более 70 врожденных дефектов иммунной системы и, вероятно, с улучшением методов молекулярной диагностики, их число будет расти. Общей чертой всех видов приобретенных иммунодефицитов является наличие рецедивирующих, хронических инфекций, поражающих различные органы и ткани, и, как правило, вызываемые микроорганизмами с низким уровнем вирулентности [Хаитов Р.М., Пинегин Б.В., 1999]. Однако различные механизмы развития первичных иммунодефицитов приводят к развитию различной инфекционной патологии. В табл. 8 перечислены наследственно обусловленные состояния и наиболее характерные для них инфекционные болезни [Галактионов В.Г., 1998]. Как следует из приведенных данных, атипичное и упорно течение инфекций, вызываемых маловирулентными микроорганизмами, также латентные и персистентные инфекции, обычно вызываемые возбудителями, использующими первую стратегию паразитизма, могут быть следствием нераспознанных иммунодефицитных состояний. Среди них не только врожденные, но и приобретенные.

Таблица 8
Иммунодефицитные состояния человека и чувствительность к возбудителям инфекционных болезней

Название иммунодефицита | Основное нарушение | Повреждение в иммунной системе | Чувствительность к патогенам

Х-сцепленная агаммаглобулинемия | дефект синтеза btk-тирозинкиназы | Отсутствие В-клеток | внеклеточные бактерии, вирусы

Общий варьирующий иммунодефицит | неизвестно, сцеплено с Х-хромосомой | Дефект гуморального ответа на полисахариды | внеклеточные бактерии

Селективный дефицит IgA | Неизвестно, сцеплено с МНС | Отсутствие синтеза IgA | возбудители респираторных инфекций, вирусы

Селективный дефицит иммуноглобулинов | делеция С-генов иммуноглобулинов | Дефект образования одного или более изотипов иммуноглобулинов | инкапсулированные внеклеточные бактерии

Синдром Wiskott-Aldrich | неизвестно, сцеплено с Х-хромосомой | Дефект гуморального ответа на полисахариды | внеклеточные бактерии

Синдром Х-сцепленной гиперпродукции IgM | дефект в CD40-лиганде | Отсутствие переключения изотипов | общая

Синдром DiGeorge | аплазия тимуса | Отсутствие Т-клеток | общая

Синдром обнаженных лимфоцитов | резко сниженная экспрессия молекул II класса МНС | Отсутствие CD4-T-клеток | вирусы

Дефицит молекул I класса МНС | мутация ТАР-гена | Отсутствие CD8-T-клеток | вирусы

Тяжелые комбинированные иммунодефициты | Х-сцеплено, дефицит гамма-цепи рецептора для ИЛ-2 (IL-2гамма) | Отсутствие Т-клеток | общая

| аутосмальные дефекты репарации ДНК | Отсутствие Т- и/или В-клеток | общая

| дефицит аденозиндезаминазы | Отсутствие Т-клеток | общая

| дефицит пуриннуклеотидфосфорилазы | Отсутствие Т-клеток | общая

Дефицит фагоцитоза | многие повреждения | Отсутствие фагоцитарной активности | внеклеточные бактерии

Дефицит комплемента | многие повреждения | Отсутствие специфических компонентов комплемента | внеклеточные бактерии

Дефект натуральных киллеров | неизвестно | Отсутствие функции натуральных киллеров | вирусы герпеса

Дефицит белков, связывающих маннозу | Неизвестно | Низкий уровень связывания маннозы белками | внеклеточные бактерии


Приобретенный иммунодефицит является результатом воздействия факторов внешней среды на клетки иммунной системы. Из наиболее изученных факторов, следует отметить облучение, действие лекарственных препаратов, недоедание, СПИД, микоплазмы. Для приобретенных иммунодефицитов так же характерна ассоциируемость не со всеми, а с отдельными возбудителями инфекционных болезней. Ниже мы рассмотрим это явление на примере СПИД-ассоциируемых инфекций. Однако сначала рассмотрим структуру иммунодефицитных популяций населения.

Составляющие иммунодефицитных популяций. Еще несколько десятилетий назад иммунодефицитность населения не играла сколько-нибудь серьезной роли в возникновении и распространении возбудителей новых инфекций. При исследовании доноров примерно у 0,3 % из них находили врожденную дефицитность по иммуноглобулину А. У таких людей отмечали повышенную чувствительность к респираторным и диарейным болезням [Buckley R., 1996]. Однако серьезной проблемой для здравоохранения их инфекционная патология не представляла. Повышенной чувствительностью к возбудителям инфекций страдали люди, ослабленные из-за недостатка питания. Но и это не было проблемой развитых стран, потому изучению особенностей инфекционной заболеваемости в таких популяциях серьезно не занимались. Ситуация стала меняться после появления новых методов лечения ранее неизлечимых соматических болезней, распространения СПИДа (рис. 33) и увеличения средней продолжительности жизни людей.

Рис. 33 Причины смерти лиц от 25 до 44 лет в США. Величина смертности на 100000 человек [Morris J.G., Morris P., 1997]


Больные СПИДом и ВИЧ-инфицированные. В 1997 г. в мире насчитывалось более чем 30 млн. ВИЧ-инфицированных и больных СПИДом людей [Kaplan J. et al., 1998]. В 1996 г. в США насчитывалось более 223 тыс. человек больных СПИДом. ВИЧ стал причиной наибольшего числа смертей среди лиц от 25 до 44 лет [Morris J.G., Morris P., 1997]. Пути проникновения возбудителей инфекций в эту группу лиц будут рассмотрены ниже.

Увеличение использования иммуносупрессивных агентов. Вызвано, с одной стороны, успехами в лечении онкологических больных, с другой, увеличением абсолютного количества таких больных и органных трансплантаций. Например, в США количество случаев выявления рака у мужчин возросло с 364 в 1972 г. до 462 на 100000 человек в 1994 г. У женщин, с 292 случаев до 347 на 100000 человек за этот же период. Увеличилась и продолжительность жизни больных. Это было достигнуто за счет использования более токсичных, чем в прошлом лекарственных препаратов, вызывающих глубокую нейтропению. Одновременно резко увеличилось количество трансплантаций сложных органов (легких, сердца, печени и др.), что, в свою очередь, привело к увеличению случаев применения иммуносупрессивных препаратов длительное время (рис. 34).

Рис. 34. Количество трансплантаций органов в США. 1 — сердце-легкие; 2 — легкие; 3 — сердце; 4 — поджелудочная железа; 5 — печень; 6 — почки [Morris J.G., Morris P., 1997]


Многие, если не большинство из этих пациентов, были подвергнуты лечению антимикробными препаратами, которые одновременно оказывают сильный эффект на бактериальную флору кишечного тракта. Это привело к изменению микробной экологии, замещению нормальной микрофлоры патогенной и к повреждениям слизистой кишечника, облегчившим проникновение в кровь иммуносупрессированных лиц патогенов, обычно попадающих в организм с продуктами питания (сальмонеллы, листерии, токсоплазмы и др.) [Morris J.G., Morris P., 1997].

Увеличения средней продолжительности жизни людей. За последние четыре десятилетия в развитых странах резко возросло количество людей старше 74 лет. Например, в США их количество возросло с 3,8 млн. человек в 1950-м г. (2,6 % от всей популяции), о 14,7 млн. человек в 1995 г. (5,6 % популяции). Как результат старения, у таких людей резко уменьшена функциональная способность лимфоидной ткани кишечного тракта, снижены количества выделяемых в желудок пепсина и соляной кислоты. Это серьезно слабило барьерную функцию желудочно-кишечного тракта на пути проникновения патогенов в организм людей данной возрастной группы (рис. 35) [Bennett R., 1993].

Рис. 35. Снижение барьерной функции желудочно-кишечного тракта в зависимости от возраста. Соотношение изолятов Salmonella, полученных из крови пациентов к общему числу изолятов [Morris J.G., Morris P., 1997]


Недоедание. Постоянное недоедание увеличивает чувствительность человеческой популяции к возбудителям инфекций по различным механизмам. Прежде всего, недоедание ослабляет целостность эпителиальных тканей и оказывает глубокое действие на клеточно-опосредованный иммунитет. Белковая недостаточность приводит к функциональным дефицитам иммуноглобулинов и дефектам фагоцитоза. Недоедание способно приводить к образованию «порочного круга», когда развившаяся болезнь способствует дальнейшему ухудшению питания [Santos J., 1994].

Оппортунистические инфекции при СПИДе. Такие инфекции определяют исход СПИДа. Те из них, которые характерно сопровождают терминальную стадию ВИЧ-инфекции, представляют собой особую, четко очерченную группу оппортунистических инфекций, называемых «СПИД-индикаторными» или «СПИД-ассоциируемыми» [Лысенко А.Я., Лавадовская М.В., 1992]. Как следует из табл. 9, хотя возбудителями СПИД-ассоциируемых инфекций и выступают условно-патогенные паразиты, не все из них могут вызвать СПИД-индикаторные болезни. Иными словами, между условно-патогенными паразитами и СПИД-ассоциируемыми инфекциями нет обязательной обусловленности [Лысенко А.Я. и др., 1996].

Таблица 9
Классификация возбудителей СПИД-индикаторных инфекций

Простейшие | Грибы | Бактерии | Вирусы

Toxoplasma gondii | Candida albicans | Salmonella sp. | Herpes simplex

Isospora belli | Cryptococcus neoformans | Mycobacterium avium complex | Cytomegalovirus hominis

Cryptosporidium spp. | Histoplasma capsulatum | Mycobacterium tuberculosis |

Pneumocystis carinii | Coccidioides immitis | |

Примечание: по данным европейских специалистов, этот перечень должен быть дополнен возбудителями висцерального лейшманиоза, бластоцитоза, акантамебиаза, стронгилоидоза и норвежской чесотки (Лысенко А.Ф., 1995).


Пути и сроки проникновения в организм возбудителей «СПИД-ассоциированных инфекций». Более половины из них проникает в организм человека еще внутриутробно или интранатально (табл. 10), однако их манифестация ограничивается клеточным иммунитетом [Лысенко А.Я. и др., 1996]. По данным этих же авторов, возбудители «СПИД-ассоциированных» инфекций используют только фекально-оральный и аспирационный пути передачи. Набор таких инфекций варьирует в зависимости от региона, поскольку в разных местностях существуют свои микробы-эндемики [Милз Д., Мазур Г., 1990].

Таблица 10
Вероятные сроки проникновения возбудителей СПИД-ассоциируемых инфекций в организм человека

Периоды

Антенатальный | Интранатальный | Постнатальный

Кандида | Кандида | Кандида

Цитомегаловирус | Цитомегаловирус | Цитомегаловирус

Вирус простого герпеса | Вирус простого герпеса | Вирус простого герпеса

Токсоплазма | — | Токсоплазма

Вирус герпеса зостер | — | Криптоспоридий

— | — | Пневмоциста

— | — | Изоспора

— | — | Античные микобактерии

— | — | Сальмонеллы

— | — | Криптококк


Установлено, что развитие определенных оппортунистических инфекций связано с количеством в крови CD4+ Т-лимфоцитов. У здоровых людей в 1 мм3 содержится около 1000 таких клеток. А у ВИЧ-инфицированных их число падает на 40–80 единиц ежегодно. Когда хелперных Т-лимфоцитов становится меньше 400–200 на 1 мм3, появляются первые инфекционные болезни — обычно не опасные, но беспокоящие больных инфекции кожных покровов и слизистых оболочек [Милз Д., Мазур Г., 1990]. Наиболее чувствительными к ослаблению иммунной защиты организма являются вирус герпеса зостер (опоясывающий лишай), кандида (молочница), вирус Эпштейна-Варра (волосатая лейкоплакия полости рта), туберкулезная палочка [Лысенко А.Я. и др., 1996]. Когда появляются такие симптомы, то это свидетельствует о наличие у человека связанного со СПИДом комплекса (стадия пре-СПИДа). То же относится к людям, которые страдают необъяснимыми лихорадками, диареей, ночными потами теряют в массе [Милз Д., Мазур Г., 1990]. На фоне прогрессирующего паралича иммунной системы (ранняя стадия СПИДа) активируются пневмоцисты, гистоплазмы, кокцидии, криптококки, токсоплазмы, вирус простого герпеса, криптоспоры. Поздняя стадия СПИДа (число Т4-лимфоцитов снижается до минимума) сопровождается активацией цитомегаловируса и атипичных микобактерий — предвестников фатального исхода [Лысенко А.Я. и др., 1996].

Особенности клинического течения. Иммунодефицитное состояние обостряет течение «СПИД-ассоциируемых» латентных инфекций. Однако своеобразие иммунодефицитного состояния при СПИДе, приводит к необычному течению таких инфекций, что особенно заметно при их сравнении у лиц с иммунологической дисфункцией (табл. 11). А.Я. Лысенко и соавт. (1996) выделяют следующие особенности течения инфекций у лиц с приобретенным иммунодефицитом:

1) инфекции имеют тенденцию протекать с опасной для жизни пациента остротой;

2) имеют тенденцию к диссеминации возбудителя с обнаружением его в эктопических органах и тканях;

3) слабую податливость специфической терапии с тенденцией к множественным рецедивам, что особенно характерно для пневмоцистоза, токсоплазмоза, криптоспоридоза, атипичных микобактериозови др;

4) слабый иммунный ответ на оппортунистического возбудителя.

Таблица 11
Характерные симптомы и признаки СПИД-ассоциируемых инфекций у людей различным иммунным статусом

Вид возбудителя | Здоровье | С иммунологической дисфункцией | С приобретенным иммунодефицитом, в том числе вызванным ВИЧ

Cryptosporidium spp. | В подавляющем большинстве случаев — бессимптомное носительство | Преходящая самокупирующая диарея | Персистирующая водянистая диарея, диссеминация (холангит: холецистит, реактивный панкреатит, пневмония)

Toxoplasma gondii | У 99 % — бессимптомное носительство, около 1 % лимфаденопатия | Лимфаденопатия, хроническая инфекция с органными поражениями, в том числе ЦНС | Менингеальные знаки, двигательные расстройства (очаговая дистония, гемибаллизм), пневмония, хориоретинит

Pneumocystis carinii | В подавляющем большинстве случаев — бессимптомное носительство | Интерстициальная пневмония | Рецидивирующая интерстициальная пневмония, кавернизация легких, диссеминация с эктопическими поражениями (кожи, костей, сетчатки, щитовидной железы, кишечника, гепатобилиарной сисемы, костного мозга)

Isospora belli | Носительство или кратковременная самокупирующаяся диарея | Хроническая диарея с признаками мальабсорбации | Хроническая рецидивирующая диарея с диссеминацией возбудителя в лимфатические узлы

Leishmania infantum | У взрослых — латентная инфекция | Лихорадка, гепато- и спленомегалия, панцитопения, иммуносупрессия | Диссеминация с эктопическими поражениями (легочные инфильтраты, плевральные выпоты, эзофагогастродуоденит, поражение гепатобилиарной системы, кожные поражения). Характерно: часто нет спленомегалии, отсутствуют специфические антитела в сыворотке

Acanthamoeba spp. | Носительство | Изъязвление роговицы, гранулематозный энцефалит | Энцефалит, некротическая пневмония, панникулиты

Blastocystis nominis | Носительство | Легкая самокупирующаяся диарея | Хроническая рецидивирующая диарея

Strongyloides stercoralis | В 50 % случаев бессимптомно, линейная крапивница, бронхообструктивный синдром, легкая диарея, эозинофилия | Гиперинвазивный и диссеминированный с присоединением бактериальной инфекции с септицемией, эозинофилия, парез кишечника | Чаще всего диссеминированный стронгулоидоз: истощение, хроническая диарея: асцит, пневмония, нефрит, менингит, хроническая линейная крапивница

Sarcoptes scabiei | Чесоточные ходы, зуд | Диссеминированная инвазия с тяжелыми кожными поражениями | Диссеминированная инвазия, может служить ко-фактором сепсиса с летальным исходом

Candida albicans | В подавляющем большинстве случаев носительство | Стоматит, эзофагит, хронический гранулематозный кандидоз кожи, диссеминированный (кандидемия, кандидоз ЦНС, гломерулонефрит, эндофтальмит, эндокардит, холецистит, гепатит) | Стоматит, эзофагит, вагинит, кандидоз кожи, пневмония, очень редко кандидоз ЦНС

Cryptococcus neoformans | Чаще всего — бессимптомно, реже — менингит, острый бронхит | Острый менингоэнцефалит, лихорадка, фунгемия, криптококкома кожи, остеомиелит, целлюлит, спондилит | Подострый менингоэнцефалит, диссеминированная инфекция (миокардит, медиастенит, плеврит, интерстициальная пневмония, тиреоидит, панкреатит, нефрит, эндофтальмит)

Histoplasma capsulatum | В большинстве случаев — бессимптомно, 1 % — острый диссеминированный | Хронический легочный или хронический прогрессирующий диссеминированный гистоплазмоз | Диссеминированный гистоплазмоз (истощение, лихорадка, гепатоспленомегалия, панцитопения, ДВС синдром, поражение кожи, менингит, хориоретинит)

Coccidioides immitis | В 50 % случаев — бессимптомно, в 0.2–10 % — абсцессы кожи, мягких тканей, л/узлов, костей, бронхопневмония | Пневмония, лихорадка, лимфаденопатия, менингит, кардиомиопатия, спондилит | Чаще всего кокцидиоидный “сепсис” — пневмония, абсцессы мозга, мягких тканей, кожи, почек, гепатит, панкреатит, поражение КМ, селезенки

Cytomegalovirus hominis | В подавляющем большинстве случаев — носительство | Пневмония, гепатит, стоматит, эзофагит: “мононуклеозоподобный” синдром, виремия, анемия, тромбоцитопения | Интерстициальная пневмония, стоматит, эзофагит, колит, проктит, менингоээнцефалит, полирадикуломиелит, адреналит хориоретинит, нефрит

Herpes simplex | Практически всегда — носительство, редко — гингивостоматит, локальные везикулярные высыпания на коже | Стоматит, эзофагит, гепатит, пневмония, распространенные везикулярные высыпания на коже, часто рецидивирующего характера | Стоматит, эзофагит, ретинит, менингоэнцефалит, пневмания, проктосигмоидит, перианатальный герпес, диссеминированное поражение кожи, гепатит, нечасто — генерализованная герпетическая инфекция

Mycobacterium avium complex | Носительство | Хронический легочный, вялотекущий процесс | Хроническая диарея, гепатоспленомегалия, лимфаденопатия, бактериемия, колит, поражение лимфоузлов (часто мезентериальных), редко — поражение легких

Mycobacterium tuberculosis | Чаще всего — носительство, реже — туберкулез бронхов, очаговый, инфильтративный процесс в легких, разрешающийся полностью после адекватной терапии | Очаговый, инфильтративный, склонность к развитию каверн, миллиарный туберкулез, довольно часто внелегочные формы (кости, ЦНС) | Неблагоприятно протекающий, ранее приобретенный туберкулез, торпидность к общепринятой терапии, отрицательная кожная проба с туберкулином, часто туберкулез легких протекает по типу диффузной интерстициальной пневмонии, нередко внелегочные формы (поражение селезенки, лимфоузлов, почек, костей, кишечника, менингоэнцефалит)

Salmonella spp. | Очень часто носительство, редко — диарея, рвота, лихорадка, обезвоживание | Пневмония, нефрит, гастроэнтероколит, септицемия, септикопиемия | Практически всегда генерализованная форма, редко — гастроэнтероколит


Причины «СПИД-ассоциируемости». Из приведенных выше данных следует, что только небольшая часть возбудителей оппортунистических инфекций способна генерализоваться на фоне иммунодефицита, индуцированного ВИЧ. Этому вопросу посвящено большое количество противоречивых публикаций, подробно проанализированных А.Я. Лысенко и соавт. (1996).

Исследователей поражает то обстоятельство, что нет никакой логики в «подборе» перечня «СПИД-ассоциируемых» инфекций. Возбудители крайне таксономически неоднородны, отсутствуют видимые признаки сходства в жизненных циклах и экологии (см. табл. 9). Между тем, данный перечень все же информативен. По нему, по крайней мере, можно судить о том, что таксономия, жизненный цикл экология этих возбудителей не являются предопределяющими в роли в развитии СПИДа, а причину «СПИД-ассоциируемости» надо искать среди каких-то эндогенных факторов инфицированного организма.

Выше мы отметили, что ВИЧ индуцирует синтез цитокинов (TNF, интерлейкины) инфицированными макрофагами, клетками микроглии и астроцитами. В последние годы появились доказательства того, что цитокины могут использоваться в качестве факторов роста для бактерий и паразитов [Denis M. et al., 1991]. Например, было показано, что IL2 и IL3 являются сильными факторами роста для Leismania major в условиях in vitro и in vivo [Mazingue et al., 1989]. Лейшмания относится к кандидатам на включение в перечень СПИД-индикаторных инфекций [Denis M. et al., 1991]. Также было показано, что сыворотки больных СПИДом, способные резко повышать чувствительность человеческих макрофагов к M. avium, содержат повышенные количества IL6 [Crowle et al., 1989]. Можно предположить, что не только концентрация Т4-лимфоцитов, но и разная специфичность взаимодействия с интерлейкинами, определяют спектр оппортунистических инфекций. Поэтому, во многом сходные с токсоплазмами по своим жизненным циклам и адаптированности к органам и тканям человеческого организма Entamoeba histolytica или Lamblia intestinalis versus, не стали возбудителями «СПИД-ассоциируемых» инфекций.

Другой, недавно открытый механизм «подбора» оппортунистических инфекций, предполагает участие различных структур самого ВИЧ. При сравнительном исследовании макрофагов бронхоальвеолярного лаважа ВИЧ-инфицированных и здоровых лиц, было выявлено, что присутствие gp120 ВИЧ усиливает размножение M. avium [Denis M., 1994]. Также было установлено присутствие в бронхоальвеолярных смывах лиц, инфицированных ВИЧ, сурфактантного белка A (SP-A) — фактора увеличивающего прикрепление М. tuberculosis к альвеолярным макрофагам. Причем повышение количества этого фактора в легких находится в обратной зависимости от количества CD4+ Т-лимфоцитов [Downing J.P. et al., 1995]. Учитывая, что микобактерии являются основной причиной гибели больных СПИДом людей, то такая «коэволюция» нам кажется не случайной и имеющей у приматов очень древнюю историю.

Эти данные позволяют предположить наличие и других эндогенных механизмов, регулирующих проникновение, рост и размножение различных паразитических организмов при СПИДе.

Эволюционные процессы в иммунодефицитных популяциях. Этот вопрос еще менее изучен, чем природа оппортунистических инфекций в таких популяциях. Однако постепенно накапливаются факты, свидетельствующие об очень опасных тенденциях в эволюции возбудителей инфекций, соприкоснувшихся со средой, где отсутствует давление со стороны иммунной системы (рис. 36).

Рис. 36. Развитие лекарственной устойчивости у М. tuberculosis в организме больного СПИДом.


Резистентность М. tuberculosis к изониазиду у иммунодефицитиых людей развивается не путем приобретения новых генов, а утратой имеющихся [Бердсли Т., 1993]. Это тот же механизм дегенеративной эволюции, что использует демон Дарвина для развития специализации к человеку у осповирусов (разрушение рамок считывания ряда генов ВНО) и у ленточных червей (упрощение до предела нервной системы и исчезновение пищеварительной). Отбор более специализированных дегенеративных вариантов осуществляется в организме больных СПИДом из большого количества мутантов неспециализированных микроорганизмов-оппортунистов, активно размножающихся в отсутствии селективного давления иммунной системы. Видимо это распространенный механизм эволюции паразитов в иммунодефицитных организмах. Согласно правилу «прогрессирующей специализации» Ш. Депре (1876), «группа, вступившая на путь специализации, в дальнейшем развитии будет идти по пути все более глубокой специализации». Для микроорганизмов это означает отбор из ранее не специализированных предков более вирулентных и контагиозных антропонозных вариантов, способных к воздушно-капельной передаче

Условия для эволюции. Такую возможность микроорганизмам-оппортунистам предоставляют высокий темп размножения и высокая плотность их популяций в иммунодефицитном хозяине. Эти же два фактора способствуют накоплению мутаций в популяциях микроорганизмов, колонизировавших эктопические органы и ткани. Так как практически все микроорганизмы, за исключением ретровирусов, гаплоидны, то новые признаки немедленно проявляются фенотипически и участвуют в естественном отборе.

Проникновение микроорганизма в новую для него экологическую нишу — организм человека и его проникновение в ранее недоступную для него среду организма, сопровождаются явлением, известным эволюционистам как популяционная волна или «волна жизни» [Яблоков А.В., Юсуфов А.Г., 1998]. Такие волны являются самостоятельными факторами эволюции микроорганизмов в иммунодефицитных хозяевах и касаются колебаний численности сразу многих их мутантных производных.

Поэтому, действие любых факторов, снижающих численность паразитов (действие лекарственных препаратов или сохранившихся звеньев иммунной системы, вытеснение другим паразитическим видом и др.), приводит к тому, что от многочисленной популяции могут остаться отдельные особи, имеющие уже измененный набор генов. Снятие такого давления, например, из-за прекращения введения лекарственного препарата после исчезновения клинических признаков болезни, дальнейшего нарастания иммунодефицита, либо прекращения колонизации органа (ткани) другим паразитом, приводит росту численности уже измененного возбудителя. Концентрация редких, ранее присутствующих в небольших количествах мутаций, может свестись к минимуму. Концентрация мутаций, способствующих закреплению адаптивного признака, резко возрасти. У факультативных микроорганизмов, вызывающих инфекционный процесс у иммунокомпетентного хозяина, обычно имеется возможность только для одной эволюционной волны, в результате которой должна произойти его передача новому хозяину, а затем либо наступит смерть хозяина, либо иммунная система очистит организм от возбудителя инфекции. Но поскольку иммунодефицитность — это не состояние, а процесс, то в иммунодефитных хозяевах такие волны будут повторяться многократно, каждый раз в различных условиях, периодически меняя генотипический состав одних и тех же возбудителей, и способствуя отбору более «удачных».

Для иммунодефицитных хозяев характерна не только борьба паразита с иммунной системой, но и борьба паразитов между собой. А поскольку пищевые ресурсы хозяина истощаются одновременно со снижением его способности противостоять паразитическим видам, то это приводит к дифференцированному размножению более адаптированных паразитов.

Важным элементом среды обитания формирующихся в иммунодефицитных популяция паразитов является градиент иммунодефицитности в эпидемических цепочках. Практически нельзя найти двух ВИЧ-инфицированных людей с одинаковой степенью иммунодефицитности. Это создает условия для последовательного пассирования вирулентных микроорганизмов через особи с большим иммунодефицитом, к ос обям с меньшим иммунодефицитом, а потом и через иммунокомпетентных хозяев.

Проявления эволюции. Кого же отбирает демон Дарвина в иммунодефицитных популяциях для распространения в иммунокомпетентных? Посмотрим отбор по фенотипам:

1) антибиотикоустойчивые штаммы возбудителей инфекций, распространенных среди иммунокомпетентных людей — сальмонеллеза, туберкулеза и др. [Morris J.G., Morris P., 1997]. Интересно, что резистентность к химиопрепаратам и антибиотикам у микроорганизмов, формируется в иммунодефицитных популяциях значительно быстрее, чем в иммунокомпетентных популяциях [Бердсли Т., 1993]. Видимо, это связано с большими возможностями по отбору вариантов и отсутствием давления на них со стороны иммунной системы;

2) устойчивые штаммы возбудителей «СПИД-ассоциируемых» инфекций, например, изолятов Candida, устойчивых к флюконазолу. Чем выраженнее иммунодефицитное состояние, тем более резистентные штаммы выделяют из этих больных [Ampel N., 1996];

3) более вирулентные штаммы возбудителей малоизвестных инфекций, не считавшихся ранее серьезной проблемой для иммунокомпетентных лиц. Например, было показано, штаммы грамположительной коккобациллы Rhodococcus eque, выделенные от больных СПИДом, почти в сто раз более вирулентны, чем штаммы этого же микроорганизма, полученные от иммунокомпетентных людей [Pakai S. et al., 1995]. Для эпидемиологов это давно известное явление — в более чувствительных популяциях отбираются более вирулентные штаммы, в иммунных популяциях — маловирулентные [Беляков В.Д. и др., 1987];

4) возбудителей инфекций, ранее не встречавшихся клиницистам. Например, широкое применение у ВИЧ-инфицированных с целью подавления инфекций, вызываемых грибковыми микроорганизмами нового препарата триазола флюконазола, привело к заметному увеличению количества больных, инфицированных более устойчивой к этому препарату Candida krusei. Раньше она считалась микроорганизмом, имеющим второстепенную клиническую значимость [Samaranayake Y., Samaranayake L., 1994];

5) возбудителей забытых инфекционных болезней при достижении иммунодефицитной популяцией определенной плотности. Например, рост случаев туберкулезной инфекции в США в начале 1990-х годов, был полной неожиданностью для здравоохранения этой страны. В США даже не оказалось производителей двух лекарств, прежде использовавшихся против туберкулеза, — стрептомицина и n-аминосалицилата натрия [Бердсли Т., 1993];

6) возбудителей инфекций, способных распространяться воздушно-капельным путем. Среди них возбудители пневмонии — P. carnii, менингита — C. neoformans, туберкулеза — М. tuberculosis;

7) не забыл он и распространенные возбудители инфекционных болезней. Эпидемиологами Лос-Анджелеса, обнаружен почти 35-кратный рост среди больных СПИДом числа лиц, инфицированных Campylobacter jejuni [Sorvillo F. et al., 1991]. В Сан-Франциско количество лиц инфицированных Listeria среди ВИЧ-инфицированных, превышало этот показатель для иммунокомпетентных людей в 280 раз [Schuchat A., 1992].

* * *

Роль иммунодефицитных популяций в проникновении в человеческое общество возбудителей новых инфекций, в последние десятилетия чрезвычайно возросла. Различные механизмы развития иммунодефицитной патологии способствуют конкуренции патогенов за новую для них среду обитания. В организме больных СПИДом и другими иммунодефицитами создаются условия для дегенеративной эволюции возбудителей инфекционных болезней. Отбор более специализированных дегенеративных вариантов осуществляется в организме больных СПИДом из большого количества мутантов неспециализированных микроорганизмов-оппортунистов, активно размножающихся в отсутствии селективного давления иммунной системы. Связь между отдельными паразитами и иммунодефицитными состояниями у приматов и людей имеет древнюю историю. Как следствия многочисленных циклов расширения и «схлопывания» Иммунодефицитных популяций среди людей, можно рассматривать циркуляцию среди них строгих и высокоспециализированных антропонозов, способных к передаче воздушно-капельным путем.

Загрузка...