Расчет отношения сигнал/шум на входе приемника



Отношение с/ш обычно обозначается , и вычисляется по формуле:



где Рс – мощность сигнала на входе приемника;

Рп – мощность шума (помехи) на входе приемника.

Зная напряженность поля сигнала в точке приема Ес и параметры приемной антенны, по формулам, приведенным в [2], можно определить напряжение сигнала Uс на входе приемника:




(1)

где F(φ) – функция направленности антенны в вертикальной плоскости;

Ra – волновое сопротивление антенны;

Rf – волновое сопротивление фидера;



– действующая длина антенны,

где Fmax – максимальное значение функции направленности.

Соответственно мощность сигнала будет определяться по формуле:



Напряжение помехи рассчитывается по формулам, приведенным в [3] для симметричного полуволнового вибратора в свободном пространстве, то есть, без учета влияния земли. Поскольку в качестве приемной антенны у нас используется симметричный вибратор с характеристиками от полуволнового до волнового и высотой подвеса h=λ/2, диаграмма направленности которого отличается от диаграммы направленности полуволнового вибратора в свободном пространстве, нужно определить коэффициент для пересчета напряжения шума. Для этого сравним диаграммы направленности полуволнового и волнового симметричных вибраторов.

Функция направленности симметричного вибратора, находящегося в свободном пространстве в плоскости, проходящей через ось вибратора записывается в виде [2]:




(2)

где k=2π/λ – волновое число;

– длина плеча вибратора в частях длины волны λ;

α – угол в радианах, отсчитываемый от оси вибратора.

Поскольку для полуволнового симметричного вибратора =λ/4, то для него функция направленности запишется:




(3)

Максимальное значение F(α)λ/2max=1 при α=π/2.

Функцию направленности в плоскости, перпендикулярной оси вибратора можно записать:




(4)

Для волнового симметричного вибратора =λ/2 и функция направленности будет иметь вид:



(5)

Максимальное значение F(α)λmax=2 при α=π/2.

Функцию направленности в плоскости, перпендикулярной оси вибратора можно записать:




(6)

Влияние земли на диаграмму направленности антенны учитывают с помощью формулы [2]:



(7)

где ko – коэффициент отражения от земли, примем ko=1;

h=λ/2 – высота подвеса антенны;

β – сдвиг фаз между антенной и ее зеркальным отражением, для горизонтальных антенн β=180о;

φ1 – угол, отсчитываемый от вертикали.

Тогда



(8)

После перехода к дополнительному углу φ=90о1, отсчитываемому от поверхности земли, будем иметь:




(9)

Тогда функции направленности полуволнового и волнового вибраторов в вертикальной плоскости можно записать:



(10)

(11)

Максимальные значения этих функций будут F(φ)λ/2max=2 и F(φ)λmax=4, при двух значениях углов φ=30о и φ=150о.



Максимальные значения функций направленности в плоскости вибратора и в плоскости перпендикулярной оси вибратора должны быть равны. Если максимальное значение функции направленности в плоскости перпендикулярной оси вибратора увеличилось в

раз, то и в плоскости проходящей через ось вибратора и расположенной под углом к горизонту, соответствующему максимальному значению функции направленности в плоскости перпендикулярной оси вибратора, максимальное значение

увеличилось в

раз. Поэтому, функции направленности в плоскости проходящей через ось вибратора и расположенной под углом

φ

=30

о

к горизонту, то есть плоскости, проходящей через середину одного из двух лепестков диаграммы направленности, нужно пересчитать по формулам:



(12)

(13)

В дальнейшем приведенные выше функции направленности (12) и (13) будем считать функциями диаграммы направленности в горизонтальной плоскости.

Мощность помехи, приходящей с некоторого направления под углами α и φ будет определяться по формуле:



(14)

где Uп – напряжение помехи на входе приемника;




– действующая длина антенны;


Ra – волновое сопротивление антенны;

Rf – волновое сопротивление фидера;

Eп – напряженность поля помехи в точке приема;




– коэффициент пропорциональности;




– функция направленности антенны;



– нормированная функция направленности антенны;

Fmax – максимальное значение функции направленности антенны.

Будем считать, что помеха принимается антенной со всех направлений верхней полусферы с одинаковой интенсивностью, фазы случайны и равновероятны. Тогда мощность принимаемых помех будет суммой элементарных мощностей ΔРп, то есть интегралом по полусфере:



(15)

где




(16)

где



– нормированная функция направленности в горизонтальной плоскости;



– нормированная функция направленности в вертикальной плоскости.

Мощность помех, принимаемых из верхней полусферы эквивалентной антенной (симметричным полуволновым вибратором в свободном пространстве), для которого Fн(φ)=1 и Fmax=1, будет вычисляться по формуле:



(17)

Чтобы перейти от мощности помех в эквивалентной антенне к мощности помех в реальной антенне, введем коэффициент пересчета, определяемый как:




(18)

Тогда мощность помехи в реальной антенне будет вычисляться по формуле:




(19)

Подставив в формулу (18) значения Рп и Рпэ из (15) и (17), получим выражение для вычисления коэффициента пересчета:



(20)

Вычислим значения коэффициентов пересчета для двух реальных антенн с высотой подвеса над землей h=λ/2, полуволнового симметричного вибратора и волнового симметричного вибратора.





Загрузка...