Приложение Для тех, кто хочет узнать больше и выполнить некоторые вычисления

Глава 1. Преобразование координат и треугольник «полюс-зенит-звезда»

Преобразование азимутальных и экваториальных координат производится по правилам сферической тригонометрии. В современной математике эти преобразования координат описываются матрицами преобразований.



На иллюстрации положение звезды А определяется вектором, три составляющие которого определяются проекциями звезды на плоскость горизонта (плоскость ху) и ось зенит — надир (ось z). Таким образом, положение звезды задается тремя координатами: х, у, z. Следовательно, в горизонтальных координатах положение звезды А можно определить как вектор (r ∙ cos(h) ∙ cos(a), r ∙ cos(h) ∙ sin(a), r ∙ sin(h)).

Аналогично определяется положение звезды относительно небесного экватора (плоскости х’у’) и оси мира (оси z’), то есть осей экваториальных координат х’ у’ z’: (r ∙ cos(D) cos(H), r ∙ cos(D) ∙ sin(H), r ∙ sin(D)). Как показано на предыдущем рисунке, мы можем перейти от координат х, у, z к координатам х’ у’ z’ всего лишь выполнив поворот относительно оси у у которая совпадает с осью у’ на угол (90° — ф), где ф — широта. В результате х перейдет в ось х’ ось z — в ось z. Матрица преобразований относительно второй оси (оси у = у’) для угла (90° — ф) записывается так:


Имеем:


Следовательно, формулы преобразования координат записываются так:


Те же соотношения, что выводятся с помощью матрицы преобразований, можно получить по формулам сферической тригонометрии Бесселя, рассмотрев треугольник «полюс-зенит-звезда», изображенный на иллюстрации на следующей странице.

На протяжении многих лет астрономы использовали этот треугольник для вычисления положения звезд. Так как ранее в их распоряжении не было ни компьютеров, ни других вычислительных машин, инструментами служили логарифмы и логарифмические таблицы. В этих таблицах приводились значения логарифмов для тригонометрических функций, аргументы которых выражались в градусах, минутах и секундах. Сферический треугольник «полюс-зенит-звезда» по-прежнему широко используется в сферической, или позиционной, астрономии, так как он содержит всю информацию, представленную на иллюстрации на предыдущей странице. Следует учитывать, что сторонами этого треугольника являются дуги большого круга небесной сферы. Следовательно, их длина измеряется в градусах, однако, по традиции, часовой угол и прямое восхождение отсчитываются в часах, минутах и секундах. Перейти от часов к градусам очень просто — достаточно учесть, что 360° эквивалентны 24 часам, или, что аналогично, 15° эквивалентны 1 часу.


Треугольник полюс — зенит — звезда.

Глава 2. Вычисления расстояний в системе «Земля — Луна — Солнце», выполненные Аристархом Самосским

Аристарх Самосский (310 год до и. э. — 230 год до н. э.) определил отношения между расстояниями и радиусами небесных тел в системе «Земля — Луна — Солнце». Он вычислил отношение между радиусом Солнца и радиусом Луны, между расстоянием от Земли до Солнца и расстоянием от Земли до Луны, а также определил отношение радиуса Земли ко всем этим расстояниям. К сожалению, исследователь не смог рассчитать значение радиуса нашей планеты и вычислить абсолютные значения всех остальных радиусов и расстояний. Радиус Земли определил Эратосфен несколько лет спустя. Применив современную нотацию (и современные значения), мы покажем, как действовал Аристарх Самосский, и предложим читателю повторить его эксперимент. Вы убедитесь, что, проведя необходимые наблюдения, нетрудно получить те же результаты, что и древний мыслитель.

Отношение расстояний между Землей и Луной и Землей и Солнцем Аристарх Самосский определил, что угол, под которым с Земли виден отрезок, соединяющий Солнце и Луну, когда Луна находится в первой четверти, равен 87°.

Сегодня мы знаем, что он допустил ошибку — возможно, потому, что определить точный момент, когда Луна находится в первой четверти, очень сложно. Реальное значение этого угла равно 89°51’, в остальном же метод Аристарха Самосского полностью корректен. Обозначим через TS расстояние от Земли до Солнца, через TL — расстояние от Земли до Луны. Так как sin (9’) = TL/TS, имеем:


Аристарх Самосский вычислил, что TS = 19 TL.



Расположение Луны в первой четверти относительно Земли и Солнца.


Отношение между радиусом Луны и Солнца

Отношение между радиусом Луны и Солнца должно рассчитываться по формуле, похожей на указанную выше, так как при наблюдении с Земли диаметры Луны и Солнца равны 0,5°. Следовательно, выполняется соотношение:

Rs = 400Rl.


Отношение между расстоянием от Земли до Луны и радиусом Луны или между расстоянием от Земли до Солнца и радиусом Солнца

Так как диаметр Луны при наблюдении с Земли равен 0,5°, отложив его 720 раз, можно полностью покрыть орбиту Луны (предполагается, что она имеет форму окружности). Длина ее орбиты в 2π раз больше расстояния от Земли до Луны, то есть 2RL ∙ 720 = 2πTL. Выразив из этой формулы TL, имеем:


Проведя аналогичные рассуждения и предположив, что Земля вращается вокруг Солнца по окружности радиуса TS,


Отношение между расстояниями до Земли и радиусами Луны, Солнца и Земли

Во время лунного затмения Аристарх Самосский заметил, что Луна находится в конусообразной тени Земли в два раза дольше, чем необходимо, чтобы поверхность Луны была полностью покрыта тенью. Он сделал вывод: диаметр конусообразной тени Земли в два раза больше диаметра Луны, таким образом, отношение между этими диаметрами (а следовательно, и радиусами) равно 2:1. Сегодня известно, что отношение радиуса Земли к радиусу Луны равно 2,6:1. Во время лунного затмения с помощью хронометра можно определить отношения интервала между первым и последним соприкосновением границы Луны с конусообразной тенью Земли (этот интервал укажет диаметр конусообразной тени Земли) и интервала, в течение которого поверхность Луны окажется полностью покрыта тенью. Проведя расчеты, нетрудно получить значение, близкое к 2,6:1.



Конусообразная тень Земли и относительное расположение Земли, Луны и Солнца.


Используя обозначения, указанные на иллюстрации, установим следующие соотношения (х — вспомогательная переменная, которая используется для упрощения расчетов):


Подставив в эту систему уравнений соотношения Ts = 400TL и Rs = 400RL, исключим вспомогательную переменную х. Упростив выражения, получим:


Эта формула позволяет выразить все приведенные выше расстояния через радиус Земли:



Сюда нужно подставить радиус нашей планеты, чтобы определить все расстояния и радиусы небесных тел в системе «Земля — Луна — Солнце». Аристарху Самосскому не удалось вычислить радиус Земли, следовательно, он получил лишь ряд соотношений, но не расстояния и радиусы в явном виде. Сегодня радиус Земли до экватора известен: он равен 6645 км. Подставив это значение в приведенные выше выражения, получим следующие результаты: RL = 1850 км (реальное значение 1738 км), расстояние TL = 424000 км (реальное значение — 384000 км), Rs = 740000 км (реальное значение — 696000 км), расстояние TS = 169600000 км (реальное значение — 149680000 км).

Мы привели эти результаты не для того, чтобы сравнить их с фактическими значениями, а для того чтобы показать, насколько умело действовал грек, получивший настолько точные значения примитивными методами.




Зная точный момент первого и последнего касания границы Луны и конусообразной тени, можно определить диаметр сечения конуса (слева). Зная время, за которое тень покроет поверхность Луны, можно измерить диаметр Луны (справа).

Глава 3. Как определить массу центральной звезды планетной системы

Рассмотрим движение экзопланет вокруг центральной звезды по круговой орбите радиуса а. Приравняем силы, действующие на планету:


Упростив, получим значение скорости v:


Период Р обращения планеты вокруг звезды по круговой орбите равен:

Подставив в это выражение приведенное выше значение скорости v, имеем:

Для каждой экзопланеты можно выразить постоянную, которая приводится в третьем законе Кеплера:


Записав указанное выше соотношение для Земли, период обращения которой вокруг Солнца равен Р = 1 год, а радиус орбиты, которую мы будем считать окружностью, равен а = 1 а. е., получим следующее уравнение:

Разделив друг на друга два последних равенства и приняв массу Солнца Ms = 1, получим:

Мы знаем, что а — радиус орбиты (в а. е.), Р — период обращения (в годах), таким образом, мы можем определить массу центральной звезды МE (точнее, отношение ее массы и массы Солнца). Масса центральной звезды в планетной системе МE (относительно массы Солнца) рассчитывается по формуле:


где а — радиус орбиты экзопланеты (в км), Р — период обращения вокруг звезды (в днях). По этой формуле можно вычислить массу звезд Ипсилон Андромеды и Глизе 581 относительно массы Солнца. Полученные значения будут соответствовать приведенным в таблице на странице 60.

Глава 4. Упрощенные расчеты расстояния от Земли до Солнца во время транзита Венеры в 1769 году

Отчасти пожертвовав точностью вычислений, мы попытались упростить математические выкладки и представить достаточно простой и доступный для неспециалистов метод, основанный на гипотезах Галлея и Делиля. Возьмем за основу две гипотезы: будем предполагать, что орбиты Венеры и Земли — это окружности, в центре которых находится Солнце; Венера, центр Солнца и точка, в которой находится наблюдатель на поверхности Земли, лежат в одной плоскости. Будем использовать данные, полученные во время прохождения Венеры по диску Солнца 3 июня 1769 года наблюдателями, расположенными в удаленных друг от друга точках одного и того же меридиана: в норвежском городе Вардё и в Папеэте (Таити) — это две наиболее удаленные друг от друга точки, для которых известны результаты наблюдений. Используем некоторые результаты наблюдений и рассчитаем расстояние от Земли до Солнца.

Экспедиции в Вардё и Папеэте были организованы английскими учеными. Участники первой экспедиции отправились в Тихий океан, чтобы наблюдать прохождение Венеры по диску Солнца с острова Таити. Наблюдения провел Чарльз Грин и его заместитель, в то время никому не известный Джеймс Кук. Участниками второй экспедиции были глава Венской обсерватории святой отец Максимилиан Хелл, датский астроном Педер Хорребоу и юный англичанин Боргрюинг. Они направились в Вардё, на северо-западную оконечность Норвегии, где смогли наблюдать прохождение Венеры по диску Солнца во время полярного дня. Таким образом, ученые получили результаты наблюдений из двух точек одного меридиана, удаленных друг от друга на огромное расстояние.



Результаты наблюдений прохождения Венеры по диску Солнца 3 июня 1769 года, опубликованные в «Истории астрономии» Антона Паннекука.


Как мы уже объясняли, с помощью параллакса можно вычислить расстояния между планетами, зная величины углов и референсное расстояние. При наблюдении прохождения Венеры по диску Солнца можно определить параллакс Венеры и Солнца и вычислить расстояние между Солнцем и Землей. Для этого проще всего наблюдать прохождение Венеры из двух достаточно далеких друг от друга точек земной поверхности. Измерив время прохождения в обоих случаях, можно рассчитать требуемые параллаксы и расстояние от Земли до Солнца.



β — параллакс Солнца, или угол, под которым виден радиус Земли при наблюдении с Солнца.


Параллакс Солнца — это угол (β, изображенный на предыдущем рисунке.

По определению тангенса, имеем


Так как величина угла очень мала, его тангенс примерно равен самому углу, выраженному в радианах. Выразив расстояние от Земли до Солнца, r, получим:


Для наблюдения этого параллакса мы должны находиться на Солнце, что невозможно. Наблюдатели располагаются в разных точках земной поверхности и смотрят на Солнце с Земли. Они видят прохождение Венеры по диску Солнца по-разному — точно так же мы видим один и тот же предмет немного по-разному, когда смотрим на него отдельно правым и левым глазом.

Рассмотрим двух наблюдателей, которые располагаются в точках A и В одного меридиана (с целью упрощения расчетов) на разных широтах. Они видят Венеру как точку (или маленький круг) на диске Солнца в двух разных положениях, А’ и В’. Сравнив результаты этих двух наблюдений (см. следующий рисунок), мы сможем измерить смещение: расстояние А’В’ соответствует расстоянию между видимыми положениями Венеры при одновременном наблюдении из точек А и В.



По результатам наблюдений за движением Венеры в течение транзита можно изобразить на диске Солнца ее траекторию. Если мы ведем наблюдения из точек А и В, получим две параллельные линии. Расстояние между ними будет параллаксным смещением Δβ, которое в любой момент времени будет соответствовать расстоянию А’В’. Чтобы упростить расчеты, будем считать, что центры Земли (О), Венеры (V) и Солнца (С), а также точки земной поверхности А и В, из которых ведется наблюдение, расположены в одной плоскости. Углы при вершине Р в треугольниках APV и ВРС равны как вертикальные. Так как сумма углов любого треугольника равна 180°, выполняется следующее соотношение:

βv + β1 = βs + β2

Введем угол Δβ, которым обозначим расстояние между различными положениями Венеры на диске Солнца (оно будет равно расстоянию А’В’ в любой момент времени). Изменив порядок слагаемых, получим:

По определению, параллакс Венеры равен:


параллакс Солнца равен


Подставив эти выражения в приведенное выше уравнение, получим:


В частности, параллакс Солнца βs будет рассчитываться так:


где Δβ — расстояние между двумя траекториями Венеры, видимыми из различных точек земной поверхности, а отношение rt/rv можно рассчитать по третьему закону Кеплера. Куб этого отношения должен быть пропорционален квадрату отношения периодов обращения планет вокруг Солнца. Периоды обращения Венеры и Земли известны и равны 224,7 дня и 365,25 дня соответственно. Таким образом, параллакс Солнца βs удовлетворяет соотношению:

βs = 0,38248 Δβ.

Δβ определяется на основе результатов наблюдений из точек А и В, находящихся на одном меридиане. Мы используем рисунок XVIII века, на котором изображена траектория Венеры, видимая из разных точек одного меридиана при транзите.

Рассчитать Δβ можно разными способами:

1. Простейший способ — непосредственное измерение по рисунку, приведенному на странице 159: достаточно рассмотреть отношение диаметра Солнца D на рисунке и угловой размер Солнца. Угловой размер Солнца равен 30 минутам дуги, выраженным в радианах. Имеем:


2. Также можно измерить хорды окружности на рисунке. Этот способ точнее, так как измерить длины хорд A1A2 и В1В2 всегда можно с большей точностью, чем расстояние между этими хордами А’В’.



Рисунок позволяет связать длины хорд A1A2 и В1В2 с расстоянием между ними, А’В’.


По теореме Пифагора для треугольников SB’В1 и SA’X1 получим


3. Вместо расстояний можно отсчитывать время. Достаточно рассмотреть соотношение


где tA и tB — время прохождения A1A2 и В1В2. Обозначив через t0 гипотетическое время транзита по всему диску Солнца, через t’ — время, соответствующее Δβ, установим соотношение:


Использовать временные интервалы вместо расстояний следует с осторожностью. Как показано на следующем рисунке, следует различать время внешнего касания (C1 и С4) и внутреннего касания (С2 и С3) Венеры с диском Солнца. Внутренние касания всегда можно определить точнее, несмотря на искажения, вносимые эффектом черной капли. По этой причине в расчетах учитываются только моменты внутреннего касания.



Наиболее точно можно определить моменты внутреннего касания С2 и С3, поэтому именно они используются в расчетах.


На основании результатов наблюдений транзита Венеры 1769 года, полученных в Вардё и Папеэте, получим следующие значения (с учетом того, что расстояние АВ по прямой равно 11425 км).



Расстояние от Земли до Солнца, равное 1 астрономической единице, вычисленное тремя описанными выше методами.


Можно видеть, что точность результатов достаточно высока, если принять во внимание простоту использованных методов. Сегодня расстояние от Земли до Солнца, определяемое как 1 астрономическая единица, принимается равным 149,6∙106 км. Следует отметить, что точность второго результата, полученного методом измерения хорд, выше, так как измерить хорды можно с большей точностью, чем непосредственно Δβ. Последний метод, в котором учитывается время прохождения, представляет интерес, поскольку позволяет провести более четкую аналогию с современными методами. Однако погрешность при этом выше, так как метод требует использования вспомогательной гипотезы, согласно которой скорость движения Венеры во время прохождения по диску Солнца постоянна в течение всего транзита.

Расстояние от Земли до Солнца, вычисленное в XVIII веке, заключалось на интервале от 145 до 155 млн километров. По результатам наблюдений за прохождением Венеры в XIX веке этот результат был улучшен, а максимальная точность была достигнута в 2000 году с помощью радара. Сегодня расстояние от Земли до Солнца принимается равным 149,597870691∙106 км.

Глава 5. Определение часовых линий наклонных солнечных часов

Солнечные часы, как правило, устанавливаются на стенах зданий. Если стена здания не расположена точно вдоль линии восток — запад, часы обычно направлены в сторону горизонта, по которому движется Солнце в течение дня. Чтобы провести часовые линии на циферблате вертикальных неориентированных солнечных часов (они называются наклонными), нужно знать угол, под которым располагается стена. Далее мы объясним, как можно вычислить этот угол а — азимут стены. Пока что будем предполагать, что угол а известен.

Часовые линии в этом случае строятся так же, как и в других разновидностях солнечных часов, то есть путем проецирования часовых линий экваториальных, горизонтальных и вертикальных часов на плоскость циферблата наклонных часов, как показано на иллюстрации. Следует напомнить, что линия, указывающая полдень на циферблате любых вертикальных часов, совпадает с направлением отвеса, закрепленного в той же точке, что и гномон. Гномон наклонных часов, как и любых других солнечных часов, направлен вдоль оси вращения Земли.



Спроецировав часовые линии экваториальных солнечных часов на плоскость циферблата наклонных часов, получим, что ctg γ = sin a ctg Н sec фcos a tg ф. При Н =15°, следовательно, γ будет углом, под которым расположена часовая линия, указывающая 11 и 13 часов. При Н = 30° угол γ укажет расположение часовой линии 10 и 14 часов и так далее до линии 6 и 18 часов.


По теореме синусов для треугольника CFA имеем:


где sin(180 — (а — α)) = sin(a — α) с учетом того, что а и α отсчитываются в противоположных направлениях. По формуле sin(aα) = sina cosα — cosa sinα имеем:


Однако в треугольнике ABC, определяемом осью мира, tg ф = ВС/АС, а в треугольнике BFC на плоскости циферблата наклонных часов tg γ = CF/BC. Упростив эти выражения, получим tg γ tg ф = CF/AC, откуда следует:


Как мы уже указывали, для горизонтальных часов выполняется равенство tg α = tg Н sin ф, откуда следует:


Умножив на tg ф, получим формулу, определяющую положение часовых линий на циферблате наклонных часов:


где γ — угол между линией, указывающей 12 часов, и искомой часовой линией, Н = 15°, 30°, 45°… соответственно, как показано на рисунке выше.

Чтобы определить азимут стены, нужно вбить в нее гвоздь, подвесить на него веревку с грузом и использовать пузырьковый уровень, угольник и транспортир, расположив их так, как показано на следующей странице. Измерения нужно производить в солнечный полдень. Азимут стены а — это угол между линией, указывающей на юг, и перпендикуляром к стене. Следует напомнить, что при прохождении Солнца через меридиан места (направление север — юг) тень веревки должна падать строго вертикально.



Определение азимута стены а.

Глава 6. Определение кривой блеска переменной звезды

Чтобы построить кривую блеска переменной звезды, необходимо произвести множество наблюдений. Каждая точка кривой блеска имеет две координаты (р, m), где р — фаза, m — видимая величина.



Кривая блеска Дельты Цефея.


При каждом наблюдении нужно определить видимую величину переменной звезды путем сравнения с двумя другими звездами А и В. Этот метод называется методом Аргеландера. Очевидно, что звезды А и В, фигурирующие в сравнении, должны быть постоянными, а их величина должна быть известна. Желательно, чтобы эти звезды имели тот же цвет, что и рассматриваемая звезда. Обозначим видимые величины этих звезд через mА и mB, где mА > mB. Введем обозначения Аа и ЬВ, где значения а, Ь = 1, 2, 3, 4 и 5 и определяются по следующим правилам:

А1: имеются некоторые сомнения относительно блеска звезды А и переменной звезды (они почти одинаковы);

А2: имеются некоторые сомнения, однако звезда А ярче, чем переменная звезда;

АЗ: величины звезд сопоставимы, но звезда А очевидно ярче;

А4: сразу же видно, что звезда А ярче;

А5: звезда А, вне всяких сомнений, ярче;

— 1В: имеются некоторые сомнения относительно блеска звезды В и переменной звезды (они почти одинаковы);

: имеются некоторые сомнения, однако звезда В не столь яркая, как переменная звезда;

: величины звезд сопоставимы, но звезда В очевидно менее яркая;

: сразу же видно, что звезда В менее яркая;

: звезда В, вне всяких сомнений, менее яркая.

По этим правилам можно определить а и Ь для каждого наблюдения и вычислить видимую величину переменной звезды по формуле:


Так определяется величина звезды — первая координата точки (m, р) на кривой блеска.

Чтобы найти вторую координату, нужно определить фазу р переменной звезды в момент наблюдения. Она определяется с учетом дня, часа и минуты наблюдений, выраженных в юлианских днях D. Эфемерида Е позволяет определить момент, когда звезда блестит ярче всего (также указывается юлианский день). Нужно определить период изменения блеска звезды Р. Если мы вычислим


получим десятичную дробь. Ее целая часть укажет число максимумов, наблюдавшихся с эфемериды Е до момента наблюдения D. Для построения кривой это число не будет особенно полезным. Нас интересует дробная часть полученного результата, то есть фаза переменной звезды в момент наблюдения:


Юлианский день может соответствовать любой дате, однако, в отличие от нашего календаря, юлианские дни отсчитываются непрерывно. Ввиду множества реформ календаря и других особенностей, в частности отсутствия нулевого года и существования високосных годов, подсчитать число дней между двумя событиями непросто. К примеру, папа Григорий XIII исключил из календаря 10 дней: за 4 октября 1582 года последовало 15 октября того же года. Как видите, определение длительных временных интервалов по нашему календарю может оказаться очень сложным.

В 1582 году Жозеф Скалигер определил непрерывный календарь, который начинался 1 января 4713 года до н. э. в 12 часов дня (в то время сутки начинались в полдень, в момент прохождения Солнца через меридиан места, а не в полночь, как сейчас).

Дни в этом календаре отсчитывались без промежутков и назывались юлианскими. К примеру, полдень 1 января 2010 году — это юлианский день 2 455198.

Загрузка...