Они стали говорить на разных языках. Они познали скорбь и полюбили скорбь Они жаждали мучения и говорили, что истина достигается лишь мучением.
Тогда у них явилась наука.
Об открытиях мы слышим и читаем почти каждый день. Наука заставляет мир развиваться. В самом деле, что было бы с нами сегодня, не будь среди нас пытливых ученых и любознательных энтузиастов, стремящихся раскрыть тайны мироздания и понять суть вещей? Но многие ли представляют, как делаются открытия, какой путь проходит ученый, прежде чем объявить: «Я открыл то-то и то-то»? Путь этот труден и тернист, и исследователю требуется затратить много сил и времени, прежде чем он сможет произнести долгожданное «Эврика!»
Ответы на вопрос, как же происходит чудо открытия, обычно сводятся к известному афоризму: «Главное в профессии ученого — это сесть и задуматься». Но однажды на вопрос, как он открыл периодическую систему, Менделеев ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Или Исаак Ньютон — ведь он со своей идеей о тяготении не расставался ни на минуту. Отдыхал ли он, был ли он одиноким, председательствовал ли на заседании Королевского общества, он все время думал об одном и том же. Ясно, что эта идея преследовала его всюду, каждую минуту.
Великий Гельмгольц в одной из своих речей ставит вопрос, чем он отличается от других людей. И отвечает, что разницы нет никакой, кроме одной только черты. Ему казалось, что никто другой так, как он, не впивается в предмет. Он говорит, что когда ставил перед собою какую-нибудь задачу, то не мог уже от нее отделаться, она преследовала его постоянно, пока он ее не решал. Вот это упорство, эта сосредоточенность мысли есть общая черта большинства ученых, открывших многие законы природы. А еще любопытство и увлеченность. Рассказывают, как однажды к Майкельсону, отрабатывавшему на железной дороге свой знаменитый опыт по определению скорости света, подошли рабочие. Они поинтересовались, что он делает. «Определяю скорость света», — ответил Майкельсон. «А зачем?» — спросил один из них. «Интересно», — ответил Майкельсон.
Любопытно поведение ученых в момент озарения, когда после долгих мучительных размышлений перед ними начинает проясняться решение мучившей их задачи. Всем известна история с Архимедом, обнаружившим в ванне решение вопроса и выбежавшим нагишом, забыв от радости все на свете, а Гей-Люссак и Дэви после сделанного ими открытая пустились в пляс по кабинету…
Наблюдения и размышления над диковинными явлениями — удел немногих, но такие люди были даже тогда, когда слова «наука» не было и в помине. В древности, когда науки о природе еще не существовало, одни и те же открытия делали, вероятно, много раз, в разных местах и в разное время, пока наконец они стали общим достоянием человечества. Любознательность и стремление накапливать знания были свойственны людям с самых давних времен. Достойно восхищения, например, то, как люди, не обладая практически никакими приборами, смогли узнать размер Земли, расстояние до Луны и многое другое. И все это происходило более двух тысячелетий тому назад.
Две тысячи лет назад древние греки знали и умели делать многое из того, что — пусть в измененном, усовершенствованном виде — служит и сегодня. Но физики, как науки в современном понимании, в античном мире еще не существовало, то есть экспериментальной физики как таковой в Древней Греции не было. А ученые того времени называли физикой любое исследование окружающего мира и явлений природы. И такое понимание термина «физика» сохранилось до конца XVII века. Многие взгляды того времени кажутся весьма наивными. «Настанет время, когда потомки наши будут удивляться, что мы не знали таких очевидных вещей», — писал Луций Анней Сенека. Но то, что узнали, просуществовало почти две тысячи лет. Можно утверждать, что европейская цивилизация уходит своими корнями в период Античности. А физика как наука оформилась лишь к началу семнадцатого века. Трудно найти столетие, которое бы дало столь крупное созвездие блестящих имен во всех областях человеческой культуры, как XVII век. То было время великих открытий Галилея, Кеплера, Ньютона, Лейбница, Гюйгенса в математике, астрономии и различных областях физики — замечательных достижений научной мысли, заложивших основы для последующего развития этих отраслей знания. Мы изучаем эти открытия в учебниках, но мало знаем о людях, совершивших эти открытия, и еще меньше об условиях, в которых они работали.
Как же работали физики, сделавшие удивительные открытия, в это время?
Ничего похожего на современные лаборатории в то время не было. В прошлом физик работал в одиночку. Приборы обычно покупались на собственные деньги или изготовлялись самими учеными. Нередко лабораториями служили частные комнаты. Опыты по разложению белого света Ньютон проделал в своей квартире в Кембридже. Физическим прибором ему служила призма, купленная на собственные деньги. И через сто пятьдесят лет в той же обстановке проводил свои оптические исследования Дж. Стокс.
Франклин для исследования атмосферного электричества соорудил в своем доме в Филадельфии железный изолированный стержень. Джоуль свои эксперименты по определению механического эквивалента теплоты проводил дома в Манчестере. Лабораторией Гей-Люссаку служило сырое полуподвальное помещение. Ученый, предохраняясь от сырости, работал в деревянных башмаках. Френель в селе Матье близ Канна, в доме матери, проводил исследования по дифракции с примитивными приборами и приспособлениями, сделанными для него сельским слесарем. Фуко экспериментировал в своем доме. Лаборатория, где работали Дэви, Фарадей и Тиндаль, открытая в 1803 году, как вспоминал Тиндаль, «плохо вентилировалась, плохо освещалась и была совершенно неподходящей для ежедневной многочасовой работы. Это, вероятно, наихудшая лаборатория во всем Лондоне». И эта лаборатория оставалась почти семьдесят лет в первоначальном состоянии.
Работа в таких условиях была сопряжена с опасностью для жизни и сказывалась на здоровье исследователей. Рихман и Ломоносов исследовали атмосферное электричество с «громовыми машинами», построенными каждым у себя на квартире. При попытке количественно оценить явление электризации при разряде молнии Рихман слишком близко наклонился к стержню своей «громовой машины». Он был поражен молнией в голову и упал мертвый, а находившийся тут же гравер Соколов был повален на пол.
Однажды во время опытов Дэви с неизвестными металлами произошло несчастье: расплавленный калий попал в воду, произошел взрыв, в результате которого Дэви жестоко пострадал. Неосторожность обернулась для него потерей правого глаза и глубокими шрамами на лице.
Сам Фарадей в своих исследованиях обходился мотками проволоки, кусками железа, магнитными стрелками. Он никогда не щадил себя, занимаясь наукой. Серьезно укоротили его жизнь химические опыты, где широко использовалась ртуть, беспрерывно проливавшаяся на пол, а затем испарявшаяся. Оборудование его лаборатории было абсолютно негодным с точки зрения самой элементарной техники безопасности. Вот письмо самого Фарадея: «В прошлую субботу у меня случился еще один взрыв, который опять поранил мне глаза. Одна из моих трубок разлетелась вдребезги с такой силой, что осколком пробило оконное стекло, точно ружейной пулей. Мне теперь лучше, и я надеюсь, что через несколько дней буду видеть так же хорошо, как и раньше. Но в первое мгновение после взрыва глаза мои были прямо-таки набиты кусочками стекла. Из них вынули тринадцать осколков…»[4] Конечно, такие лаборатории не служили целям обучения экспериментальному искусству, а могли лишь использоваться исследователями-одиночками. Упомянутые ученые, а также и такие, как Максвелл или Кельвин, не проходили какого-либо курса обучения практической физике. Его просто еще не было. В тогдашних университетах преподавание велось в классическом духе, основное внимание уделялось гуманитарным и математическим наукам, физике отводилось мало места.
Положение изменилось к середине XIX столетия, когда бурное развитие промышленности, машиностроения, химической промышленности, металлургии и горного дела, электротехники, теплотехники, строительство железных дорог, возникновение пароходства и воздухоплавания стимулировали развитие науки, новых форм ее организации. Все более усиливалась связь науки и техники. К этому времени значительно усложнилась физическая теория. Новые задачи, стоявшие перед физической наукой, требовали для своего решения все большего числа физиков. И с сороковых годов XIX столетия начинают создаваться физические лаборатории как новая форма организации коллективных методов исследования в физике. Первая физическая лаборатория была создана в Геттингенском университете В. Вебером. Вебер привлек студентов к подготовке лекционных опытов. Наиболее способным он предложил небольшие физические исследования. Позднее он ввел практические занятия для желающих. В лаборатории Вебера работали ученые из различных стран мира, в том числе и из России.
В новом Страсбургском университете, основанном в 1872 году, уже заранее было предусмотрено строительство физического института. Его директор, немецкий физик Кундт, создал очень удобный для обучения и исследования институт, который долго служил прототипом для многих институтов, аудиторий, лабораторий различных стран. Здесь под руководством Кундта была подготовлена плеяда тонких экспериментаторов, таких, как Рентген, Лебедев, Пашен, Рубенс, Винер, Голицын и др. Вслед за Страсбургским институтом в 1875 году создаются физические институты в Лейпциге, Мюнхене, Бонне, Бреслау, Фрайбурге и других городах. Вскоре каждый немецкий университет обзавелся хорошо оборудованной физической лабораторией. Создание лабораторий повлекло за собой развитие старых и основание новых мастерских физических приборов.
В 1846 году 22-летний Томсон занял пост профессора натурфилософии в университете Глазго. До 1870 года лабораторией Томсону и его студентам служили старые лекционные комнаты и заброшенный винный подвал, а после переезда университета в новое здание в 1870 году Томсону были предоставлены просторные помещения для экспериментальной работы.
В Оксфорде в 1867 году в небольшой комнате, выделенной университетом, профессор Клифтон начал обучение экспериментальной физике. В 1872 году вступила в строй спланированная Клифтоном Кларендонская лаборатория. Она послужила прототипом для многих лабораторий мира. Д. К. Максвелл посетил ее, когда планировал Кавендишскую лабораторию в Кембридже. В Кембридже обучение экспериментальному искусству начало проводиться с 1874 года в здании знаменитой Кавендишской лаборатории. Каведишская лаборатория была выстроена на частные средства и сыграла огромную роль в развитии физики. В 1868 году профессор Жамен открыл лабораторию в Сорбонне. Под руководством Жамена в лаборатории работало несколько русских и румынских физиков.
Экономическая отсталость России сказалась и на отставании ее в деле создания физических лабораторий. Для русских физиков местом деятельности служили физические кабинеты. Здесь хранилась аппаратура, которую применяли на лекционных демонстрациях, и проводились единичные экспериментальные исследования. Но и в таких условиях был выполнен ряд замечательных работ такими физиками, как А. Г. Столетов или П. Н. Лебедев, обогатившими классическую физику[5].
После промышленной революции наука из способа удовлетворения любопытства и источника знаний для системы образования постепенно превратилась в один из источников новых технологий и извлечения доходов, связанных с их применением. В этот период среди видных ученых еще было много любителей, но со временем все большее их число превратилось в профессионалов, то есть людей, для которых занятие наукой стало профессией, способом извлечения дохода для личных и профессиональных нужд. И хотя в начале двадцатого века еще были ученые-теоретики, такие, как Альберт Эйнштейн, которые еще могли работать в одиночку, или такие, как Мария Кюри и Эрнест Резерфорд, которые обходились немногочисленными помощниками, в дальнейшем в науке возобладал коллективный способ исследования. Такие проекты, как, например, создание атомной бомбы, требовали участия тысяч людей, организации сложной системы их взаимодействия и разветвленной иерархической структуры. И физики переходят на качественно новый характер работы, изменяются взаимоотношения ученых. Но об этом дальше.
Современная наука развивается по разумному плану, поэтому многие открытия можно предвидеть. Многие, но не все. Существовали и существуют открытия непредугаданные, неожиданные. История показывает, что некоторые научные открытия, в том числе те, которые перевернули мир, были сделаны совершенно случайно. Достаточно вспомнить Архимеда, который, опустившись в ванну, открыл закон, впоследствии названный его именем, или Ньютона, на которого упало знаменитое яблоко. К этому можно добавить открытие рентгеновских лучей, радиоактивности… Именно чистой случайностью объясняют некоторые исследователи все творческие удачи и открытия. «Всякая новая идея есть дар случая», — писал Гельвеций. Действительно, иногда везение способно сыграть не меньшую роль, чем знания или гениальное озарение. Быть может, кое-что здесь является преувеличением, однако есть вполне конкретные примеры, показывающие, что и в науке многое зависит от случая.
Однажды судьба стучится в дверь к каждому человеку, но чаще всего в это время мы сидим в соседнем кабачке и не слышим ее стука.
В восемнадцатом веке английский писатель и известный коллекционер фарфора Горацио Уолпол написал основанную на древнеперсидском эпосе сказку «Три принца из Серендипа», в которой герои, путешествуя, неожиданно делают различные открытия. Впервые в английском языке слово «Серендипити» всплыло 28 января 1754 года в частном письме Уолпола. Он определил его как «очень выразительное, характеризующее открытие, совершенное без предварительных действий». В дальнейшем это слово стало часто употребляться для обозначения случайных творческих находок. Один из проектов поиска разумной жизни во Вселенной так и называется «SERENDIP». А какими бывают серендипические открытия не в сказке, а в жизни?
Можно утверждать, что до появления экспериментального метода открытия делались случайным образом. Известно, что к середине XIV века довольно широкое распространение получили очки. Однако линзы, скорее всего, были случайным открытием средневековых ремесленников. В XVI веке появилась подзорная труба, но ее случайно создали мастера-ремесленники по изготовлению очков, а не ученые, так как оптические теории того времени не только не приводили к открытию трубы, а даже уводили от него. Удача посещает ученых очень по-разному, и нечаянное наблюдение может обернуться замечательным открытием. Впервые дефект цветового зрения описал английский химик Джон Дальтон после того, как случайно обнаружил, что сам страдает им, — однажды он надел вместо черной академической мантии малиновую. С тех пор цветовая слепота стала называться дальтонизмом.
Наверное, каждый ученый в своей жизни хоть раз сталкивался со «случайным» открытием. Причем, не только наблюдатели, но и теоретики. Вспомним, например, предсказание позитрона Дираком, который вовсе не думал о целом мире античастиц, выписывая свое знаменитое уравнение. Такое нередко бывает, когда при численных расчетах часто обнаруживается что-то, что в них не закладывалось.
А всегда ли мы способны замечать случайные, побочные результаты исследований, фиксировать их? Посмотрим, что дает нам история открытий.
Преданье старинное знает весь свет,
Как, тешась горячею ванной,
Открыл свой великий закон Архимед,
Связав его с выходкой странной.
Хрестоматийной стала легенда об открытии закона Архимеда. Это открытие, кажется, было совершенно случайным. Великий сиракузец изучал силы, действующие на тела, и среди них — силу тяжести. Согласно открытому им закону, на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости. Это открытие связано с легендой, передаваемой многими историками. Архимед родился в 287 году до н. э. в Сиракузах, на острове Сицилия. Сицилия в те времена была дальним западным форпостом греческой культуры. В годы детства Архимеда эпирский царь Пирр вел здесь войну с римлянами и карфагенянами, пытаясь создать новое греческое государство. В этой войне отличился один из родственников Архимеда — Гиерон, ставший в 270 году до н. э. правителем Сиракуз. Согласно легенде, Гиерон поручил Архимеду выяснить, сделана ли его корона целиком из золота, или же в нее подмешано серебро. Эта задача занимала Архимеда довольно долго, пока не помог случай в бане. Произошло то, что бывает всякий раз, когда любой человек, даже не ученый, садится в любую ванну, — вода в ней поднимается. Но то, на что обычно Архимед не обращал никакого внимания, вдруг заинтересовало его. И еще Архимед констатировал с удивлением, что в воде нога стала легче. Он понял, что эти явления дадут ему ключ к разгадке задачи. С криком «Эврика!» (нашел!) он выскочил из ванны, позабыв обо всем на свете. Настолько поразила его пришедшая в голову мысль. Анекдот занятный, но, переданный таким образом, он не совсем точен.
Римский архитектор Витрувий, сообщая о поразивших его открытиях разных ученых, приводит следующую историю: «Что касается Архимеда, то изо всех его многочисленных и разнообразных открытий то открытие, о котором я расскажу, представляется мне сделанным с безграничным остроумием. Во время своего царствования в Сиракузах Гиерон после благополучного окончания всех своих мероприятий дал обет пожертвовать в какой-то храм золотую корону бессмертным богам. Он условился с мастером о большой цене за работу и дал ему нужное по весу количество золота. В назначенный день мастер принес свою работу царю, который нашел ее отлично исполненной; после взвешивания корона оказалась соответствующей выданному весу золота. После этого был сделан донос, что из короны была взята часть золота и вместо него примешано такое же количество серебра. Гиерон разгневался на то, что его провели, и, не находя способа уличить это воровство, попросил Архимеда хорошенько подумать об этом. Тот, погруженный в думы по этому вопросу, как-то случайно пришел в баню и там, опустившись в ванну, заметил, что из нее вытекает такое количество воды, каков объем его тела, погруженного в ванну. Выяснив себе ценность этого факта, он, не долго думая, выскочил с радостью из ванны, пошел домой голым и громким голосом сообщал всем, что он нашел то, что искал. Он бежал и кричал одно и то же по-гречески: „Эврика, эврика!“ Затем, исходя из своего открытия, он, говорят, сделал два слитка, каждый такого же веса, какого была корона, один из золота, другой из серебра. Сделав это, он наполнил сосуд до самых краев и опустил в него серебряный слиток, и… соответственное ему количество воды вытекло. Вынув слиток, он долил в сосуд такое же количество воды… отмеряя вливаемую воду секстарием (0,547 л), чтобы, как прежде, сосуд был наполнен водой до самых краев. Так он нашел, какой вес серебра соответствует какому определенному объему воды. Произведя такое исследование, он таким же образом опустил золотой слиток и, добавив той же меркой вылившееся количество воды, нашел на основании меньшего количества секстантов воды, насколько меньший объем занимает слиток». Потом тем же методом был определен объем короны[6]. Она вытеснила воды больше, чем золотой слиток, и кража была доказана. Часто этот рассказ связывают с открытием закона Архимеда, хотя он касается способа определения объема тел неправильной формы.
Вообще, согласно описанию Витрувия, Архимед сделал больше того, что требовалось. Чтобы обнаружить примесь, достаточно было сравнить объем короны с объемом равного ей веса золота. Ныне задача, которую решал Архимед, по плечу даже школьнику. Удельный вес каждого из металлов есть в любом справочнике, определить удельный вес сплава совсем не трудно: взял образец, взвесил его, потом опустил в воду и определил объем вытесненной им жидкости, поделил первое число на второе и по соотношению удельных весов нашел долю каждого металла. Вот и вся премудрость. Но 2200 лет назад Архимед, выйдя после царской аудиенции, даже не знал, что такое удельный вес. Задача перед ним стояла в самом общем виде, и никаких конкретных путей ее решения он найти не мог. Но искал их. Так что случай пришелся как раз на то время, когда Архимед искал решение поставленной задачи, искал постоянно, не переставая думать об этом, когда занимался другими делами. И нашел решение!
Открытие Гальвани произошло довольно случайно. Он пишет: «Я разрезал и препарировал лягушку… и, имея в виду совершенно другое, поместил ее на стол, на котором находилась электрическая машина… при полном разобщении от кондуктора последней и на довольно большом расстоянии от него. Когда один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки, то немедленно все мышцы конечностей начали так сокращаться, что казались впавшими в сильнейшие тонические судороги. Другой же из них, который помогал нам в опытах по электричеству, заметил, как ему казалось, что это удается тогда, когда из кондуктора машины извлекается искра… Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями. Тогда я зажегся невероятным усердием и страстным желанием исследовать это явление и вынести на свет то, что было в нем скрытого». Однако, согласно мнению большинства историков науки, случай явился в лице молодой жены Гальвани — Лючии Галеацци, дочери учителя Гальвани, которая крутила ручку электрофорной машины, в то время как ассистент препарировал лягушку. Лапка билась под скальпелем, и наблюдательная женщина заметила, что судороги случаются тогда, когда между шарами машины проскакивает искра. Она обратила внимание мужа на это совпадение, и революция в физике началась. Галантные болонцы всегда с удовольствием подчеркивают: не Гальвани, а его жена открыла «животное электричество».
Ей был даже посвящен сонет, написанный пятьдесят лет спустя Дюбуа-Реймоном:
…Ведь ей, а не тебе,
В разрезанной лягушке
Заметить удалось
Остатки уходящей жизни.
Описываемые события произошли в 1780 году, а трактат Гальвани вышел только в 1791-м, и за эти одиннадцать лет было поставлено огромное число экспериментов, в ходе которых ярко проявился удивительнейший талант Гальвани обращать внимание на детали и выносить на свет сокрытое.
Вильгельм Оствальд в своей «Истории электрохимии» комментирует эту историю следующим образом: «Перед нами здесь типичная история случайного открытия. Исследователь занят совсем другими вещами, но среди условий его работы оказываются налицо, между прочим, такие условия, которые вызывают новые явления. Случайности этого рода встречаются гораздо чаще, чем об этом может поведать нам история, ибо в большинстве случаев такие явления или вовсе не замечаются, или если и замечаются, то не подвергаются научному исследованию. Поэтому, кроме случайности здесь существенно важно еще „до невероятности страстное желание“ исследовать новый факт. Вот такое-то желание очень часто отсутствует; потому ли, что первоначальная задача, поставленная себе исследователем, поглощает весь его интерес, так что все новое служит лишь помехой, с устранением коей все дело и кончается, или потому, что исследователь создает себе временное „объяснение“, удовлетворяющее до известной степени его пытливость».
Когда был мальчишкой сэр Ньютон, о сэр,
На яблоню вздумал взобраться он, сэр,
Но, сверзясь, набил себе шишки он, сэр,
Вот это и есть гравитация, сэр!
В канун Рождества 1664 года на лондонских домах стали появляться красные кресты — первые метки Великой эпидемии чумы. К лету смертоносная эпидемия значительно расширилась. 8 августа 1665 года занятия в Тринити-колледже были прекращены, и персонал распустили до окончания эпидемии. Двадцатидвухлетний Ньютон уехал на долгие вынужденные каникулы в свою родную деревню Вулсторп близ города Грантема, графство Линкольн, в дом, который сохранился до наших дней, правда перестроенным. Ньютон уехал домой в Вулсторп, захватив с собой основные книги, тетради и инструменты. Именно тогда в деревенском уединении и были совершены грандиозные открытия, предопределившие все дальнейшие многолетние Ньютоновы труды. Полвека спустя свою автобиографическую записку он закончит фразой: «Все это было в те два чумных года… в те дни, когда я находился на вершине возраста открытий и был поглощен математикой и философией больше, чем когда-либо потом». Именно там, в саду при старом вулсторпском доме, в один из летних дней ему пришло в голову, что падающий с дерева плод и Луна, кружащаяся вокруг Земли, подчиняются действию одной и той же силы.
Сказочка о яблоне, обронившей на великую голову потрясающую идею, известна миру из уст Вольтера, который услышал ее из уст миссис Кондуитт, племянницы гения. Для физиков это самая важная легенда. Увидел Исаак Ньютон яблоко и «впал в глубокое раздумье о причине того, почему все тела притягиваются вдоль линии, которая, будучи продолжена, прошла бы почти точно через центр Земли». Цитата взята из вольтеровской «Elements de la philosophic de Newton», опубликованной в 1738 году и содержащей самое первое из известных изложений истории с яблоком. В ранних биографиях Ньютона она не встречается; не упоминает о ней и он сам, рассказывая о том, как размышлял о всемирном тяготении. Скорее всего, это легенда. Но вот что рассказал доктор Уильям Стьюкли, приставленный в начале 1770-х годов Королевским обществом к Ньютону, в своих мемуарах, обнаруженных в 1936 году: «После обеда, а день был теплый, мы перешли в сад и уселись пить чай в тени под яблонями: вдвоем — лишь он да я. В беседе среди прочего он и рассказал мне, что точно в такой вот обстановке у него и сложилась мысль о тяготении. Толчком послужило падение яблока — он сидел задумавшись…»
Право, умные яблоки знают, когда на какую голову падать! «…Почему яблоко падает всегда строго отвесно, — записывал Стьюкли, — почему не в сторону, не вверх, а непременно к центру Земли? Бесспорно, суть в том, что Земля его притягивает. И должно быть вещество наделено притягивающей силой, и эта притягивающая сила сосредоточена не где-то на боку Земли, а именно в ее центре, отчего яблоко и падает перпендикулярно, сиречь — к центру. Если же вещество таким вот образом притягивает другое вещество, то происходит это не иначе как пропорционально его количеству. Поэтому яблоко притягивает Землю так же, как и Земля притягивает яблоко. Так что есть сила, каковую мы здесь называем тяготением и которая простирается по всей Вселенной»[7]. Справедливости ради надо сказать, что Ньютона расспрашивали о рождении теории гравитации еще два биографа — врач Генри Пембертон и математик Вильям Уистон. Ни один из них яблока не упоминает. Да и вообще, стоит обратить внимание на то, сколь редко можно увидеть само падение яблока с дерева.
Но вот новый поворот в истории с яблоком. В журнале «Современная физика» (англ. «Contemporary Physics») за 1998 год англичанин Кизинг, преподаватель Йоркского университета, увлекающийся историей и философией науки, опубликовал статью «История Ньютоновой яблони». Кизинг придерживается мнения, что легендарная яблоня была единственной в садике Ньютона, и приводит рассказы и рисунки с ее изображениями. Легендарное дерево пережило Ньютона почти на сто лет и погибло в 1820 году во время сильной грозы. Кресло, сделанное из него, хранится в Англии, в частной коллекции. Возможно, самые старые из деревьев, которые сейчас растут в саду перед усадьбой, выросли из отростков той знаменитой яблони.
«Хочу сообщить вам новый и страшный опыт, который советую самим никак не повторять», — писал голландский физик ван Мушенбрук парижскому физику Реомюру и сообщал далее, что, когда он взял в левую руку стеклянную банку с наэлектризованной водой, а правой рукой коснулся медного прута, опущенного в воду и соединенного с железным, висящим на двух нитях из голубого шелка, — «вдруг моя правая рука была поражена с такой силой, что все тело содрогнулось, как от удара молнии… одним словом, я думал, что мне пришел конец…». Так Мушенбрук стал знаменит открытием свойств прибора, получившего название «лейденской банки».
А созданием этого прибора мы обязаны случаю. Вот как это было. Однажды некий Кунеус, сынок богатого лейденского горожанина, желавший поразвлечься, решил наполнить электрической материей банку с водой. По воззрениям того времени — мысль вовсе не такая уж и абсурдная. Кунеус налил в банку воду, взял в руку и опустил туда металлический стержень, соединенный с кондуктором электрической машины, затем стал крутить ручку. Некоторое время спустя он решил стержень вынуть. Кунеус рассказывал позже, что, коснувшись стержня, испытал ни с чем не сравнимое потрясение. Надо отдать должное Мушенбруку, который тут же решил проверить открытие ученика на себе. Сильный электрический удар поверг и его в большое изумление. «Испытать его еще раз я не согласился бы даже ради французской короны», — именно так заявил он, рассказывая об эффекте. Одним из первых о лейденском эксперименте узнал аббат Нолле. Нолле не только усовершенствовал лейденскую банку, он составил из нескольких целую батарею и получил сильные, стреляющие искры. Новость о лейденской банке с большой скоростью распространилась по Европе. Мушенбрук, и до того известный, стал лейденской достопримечательностью. С ним, в частности, познакомился Петр Великий, когда работал на верфях в Голландии. Позже Петр приказал для новой Академии наук различные приборы именно Мушенбруку «сделать повелеть».
Интерес к новым явлениям до 1740 года был ограничен лишь научными кругами, а далее распространился среди широкой публики. Сеансы демонстрации электрических явлений проводились почти повсюду — на площадях и при королевских дворах учеными и фокусниками. Так, в Версале в присутствий короля и придворных Нолле выстраивает 180 мушкетеров кольцом. Велит им взяться за руки, а крайним предлагает прикоснуться к электродам лейденской банки, заряженной от электрической машины. «Было очень курьезно видеть, — пишет очевидец, — разнообразие жестов и слышать вскрик, исторгаемый неожиданностью у большей части получающих удар». Еще больший интерес появился в его глазах, когда почтенный аббат поставил рядом с невинной банкой клетку с беззаботно порхающим воробьем. Вот подсоединены контакты. Банка заряжена. Наступил момент, когда птичка слишком близко приблизилась к предательским контактам. Проскочила голубая искра, раздался треск, и несчастная пичуга упала на пол клетки бездыханной[8].
Благодаря популяризаторской деятельности Нолле опыты со столь простым и доступным прибором, как лейденская банка, получили широкое распространение. Их повторяли в аристократических салонах и в ярмарочных балаганах. Голубыми искрами, извлеченными из пальцев наэлектризованного добровольца, поджигали спирт и порох, убивали мышей и цыплят. В газетах писали о чудесных исцелениях паралича благодаря электрическим ударам. Опыты повторяли в Англии и Италии; в России это сделали Рихман и Ломоносов, в Америке — Франклин. Последний доказал, что «сила банки» и ее способность «давать потрясения… заключаются в самом стекле», а с помощью обкладок электричество «сообщается и уводится». Убедившись в том, что «сила банки» — в стекле, Франклин решил создать новый вид банки, состоящей из «больших оконных стекол». По сути, это был плоский конденсатор.
Почти анекдотическая история связана с именем академика Роберта Симмера. В 1759 году английский естествоиспытатель Р. Симмер сделал заключение о том, что в обычном состоянии любое тело содержит равное количество разноименных зарядов, взаимно нейтрализующих друг друга. При электризации происходит их перераспределение. Биографические сведения о Симмере крайне скудны. Родился предположительно в Шотландии около 1707 года, в 1753 году был избран членом Лондонского королевского общества, умер в Лондоне 10 июня 1763 года. Путь, которым пришел к своим открытиям Симмер, неординарен, что подчеркивается всеми историками физики и обычно вызывает улыбку. Речь идет о прилипающих к ногам мужских чулках.
Симмер носил на ногах две пары шелковых чулок, черную и белую, одну поверх другой. Почему? Может, причина в моде, а может, просто в рассеянности, например. Вот великий английский физик Гемфри Дэви, говорят, однажды явился на прием в пяти парах чулок.
Так это было с Симмером или нет, вряд ли прояснится, но достоверно известно, что, снимая чулок за чулком, он заметил, что они оказываются сильно наэлектризованными. Причем чулки одного и того же цвета взаимно отталкивались, а белый и черный взаимно слипались (притягивались). Когда же черный и белый чулки снимались одновременно парой, таких явлений не наблюдалось. Какой все же был наблюдательный! Вот что важно.
Симмер стал искать причины столь неординарного поведения этих предметов одежды. Для увеличения эффекта он натирал один чулок о другой. Они раздувались, словно надутые воздухом, а сближаясь, слипались, становились плоскими, и требовалось некоторое усилие, чтобы их разъединить. Для уменьшения влияния посторонних факторов он стирал чулки, перекрашивал и даже окуривал серой. Когда же Симмер умудрился вставить один заряженный чулок в другой, то для их разъединения потребовалось усилие в 10 фунтов. Результаты исследований Симмер издал в 1759 году в сборнике Королевского общества «Новые опыты и наблюдения, относящиеся к электричеству…».
Пытаясь разобраться в своих наблюдениях, Р. Симмер выдвинул гипотезу о существовании в порах природных тел двух типов невесомых электрических частиц, заряженных разноименно, но нейтрализующих одна другую. Наэлектризованным тело становится тогда, когда в нем имеется только один вид электрического флюида или по крайней мере избыток одного вида частиц. Гипотеза получила название дуалистической (от лат. dualis — двойственный), а ее автор — прозвище «разутого философа»[9].
В июне 1820 года малоизвестный датский физик Эрстед (1777–1851) печатает на латинском языке небольшую работу под заголовком: «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку». В ней ученый пишет: «Основной вывод из этих опытов состоит в том, что магнитная стрелка отклоняется от своего положения равновесия под действием вольтаического аппарата и что этот эффект проявляется, когда контур замкнут, и он не проявляется, когда контур разомкнут». Существуют два варианта истории открытия, сделанного Эрстедом в 1819–1820 годах. Вот наиболее распространенный.
Эрстед на лекции в университете демонстрировал нагрев проволоки электричеством от «вольтова столба», для чего составил электрическую, или, как тогда говорили, гальваническую, цепь. На демонстрационном столе находился морской компас, поверх стеклянной крышки которого проходил один из проводов. Вдруг кто-то из студентов случайно заметил, что, когда Эрстед замкнул цепь, магнитная стрелка компаса отклонилась в сторону. Правда, существует мнение, что Эрстед заметил отклонение стрелки сам. Эрстед в своих позднейших работах писал: «Все присутствовавшие в аудитории свидетели того, что я заранее объявил о результате эксперимента. Открытие, таким образом, не было случайностью, как хотел бы заключить профессор Гильберт из тех выражений, которые я использовал при первом оповещении об открытии». Но почему же возникают сомнения? Почему вокруг обстоятельств этого события впоследствии разгорелось так много споров? Дело в том, что студенты, присутствовавшие на лекции, рассказывали потом совсем другое, чем поведал Эрстед. По их словам, Эрстед хотел продемонстрировать на лекции всего лишь интересное свойство электричества нагревать проволоку, а компас оказался на столе совершенно случайно. И именно случайностью объясняли они то, что компас лежал рядом с этой проволокой, и совсем случайно, по их мнению, один из зорких студентов обратил внимание на поворачивающуюся стрелку, что вызвало удивление и восторг.
Сразу же после публикации работы Эрстеда ею заинтересовались многие европейские естествоиспытатели. Так, известный французский ученый Д. Араго на заседании Академии наук заявил коллегам: «Господа, профессору в Копенгагене Эрстеду удалось сделать прекрасное открытие… которое чревато такими последствиями, которые сейчас еще не в состоянии предусмотреть пытливый, но ограниченный человеческий ум». Случайно ли то, что именно Эрстед сделал открытие? Ведь счастливое сочетание нужных приборов, их взаимного расположения и «режимов работы» могло получиться в любой лаборатории? Да, это так. Но в данном случае случайность закономерна — Эрстед был в числе тогда еще немногих исследователей, изучавших связи между явлениями. Говорят, что Эрстед не расставался с магнитом. Кусочек железа должен был непрерывно заставлять его думать в этом направлении.
Пример династии Беккерелей, когда на протяжении четырех поколений продолжалось «семейное» дело, уникален. Родоначальником династии был Антуан Сезар Беккерель (1788–1879). До 27 лет он служил в армии и был участником Испанской войны (1810–1812), развязанной Наполеоном, а затем всецело посвятил себя науке, возглавив кафедру физики в Парижском музее естественной истории. Антуан Сезар был членом Парижской академии наук (1829), а затем и ее президентом (1838).
Его сын Александр Эдмон Беккерель (1820–1891) продолжил дело вначале в качестве ассистента, а затем в должности директора Музея естественной истории. Он проводил исследования в тех же направлениях, что и отец, перед авторитетом которого глубоко преклонялся. Как и отец, он был членом Парижской академии наук (1863) и ее президентом (1880).
Но подлинный триумф династии пришелся на долю Антуана Анри Беккереля (1852–1908), который продолжил дело отца и деда в Музее естественной истории. Наряду с работами по магнитооптике и спектроскопии он также интересовался явлением фосфоресценции.
Антуан Анри Беккерель взялся за проверку высказанной А. Пуанкаре гипотезы, что Х-лучи, открытые в 1895 году В. К. Рентгеном, сопровождают любую фосфоресценцию. В Музее естественной истории были все условия для проверки этого предположения. Среди ряда фосфоресцирующих веществ он использовал гидратированный сульфат уранила и калия. При облучении этой соли солнечным светом А. А. Беккерель ожидал появления Х-лучей. Для их регистрации он размещал кристаллы урановой соли на фотопластинках, завернутых для защиты от света в плотную черную бумагу. Было установлено, что пластинки подвергались засвечиванию.
Казалось, что подтверждается гипотеза о том, что фосфоресценция, вызванная солнечным светом, сопровождается Х-излучением. Однако, проявив пластинки, на которых лежали кристаллы урановой соли, не подвергавшиеся действию света, он получил тот же самый результат. Он проверяет себя еще и еще раз. 26 февраля 1896 года настали пасмурные дни, и Беккерель с сожалением прячет приготовленную к эксперименту фотопластинку с солью в стол. Между лепешкой соли и фотопластинкой на этот раз он положил маленький медный крестик, чтобы проверить, пройдут ли сквозь него рентгеновские лучи. Вероятно, немногие открытия в науке обязаны своим происхождением плохой погоде. Если бы конец февраля 1896 года в Париже был солнечный, не было бы обнаружено одно из самых важных научных явлений, разгадка которого привела к перевороту в современной физике. 1 марта 1896 года Беккерель, так и не дождавшись появления солнца на небе, вынул из ящика ту самую фотопластинку, на которой несколько дней пролежали крестик и соль, и на всякий случай проявил ее. Каково же было его удивление, когда он увидел на проявленной фотопластинке четкое изображение и крестика, и лепешки с солью! Значит, солнце и флуоресценция здесь ни при чем? Как первоклассный исследователь, Беккерель не поколебался подвергнуть серьезному испытанию свою теорию и начал исследовать действие солей урана на пластинку в темноте. Так обнаружилось, и это Беккерель доказал последовательными опытами, что уран и его соединение непрерывно излучают без ослабления лучи, действующие на фотографическую пластинку и, как показал Беккерель, способные также разряжать электроскоп, то есть создавать ионизацию. Открытие это вызвало сенсацию. Особенно поражала способность урана излучать спонтанно, без всякого внешнего воздействия. Рамзай рассказывает, что когда осенью 1896 года он вместе с лордом Кельвином (Томсоном) и Стоксом посетил лабораторию Беккереля, то «эти знаменитые физики недоумевали, откуда мог бы взяться неисчерпаемый запас энергии в солях урана. Но именно Антуан Анри Беккерель после ряда сомнений и колебаний связал засвечивание фотоматериалов с самопроизвольно испускаемыми ураном лучами. Некоторое время они носили название „урановые лучи“ или „лучи Беккереля“».
Правда, Беккерелю пришлось «поплатиться» за свое открытие. Как-то для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и пробирку положил в жилетный карман. Прочтя лекцию, он вернул владельцам радиоактивный препарат, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказывает об этом Пьеру Кюри, тот ставит на себе опыт: в течение десяти часов носит привязанную к предплечью пробирку с радием. Через несколько дней у него тоже наблюдается покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.
Не явилось бы удивительным, если бы авторство открытия было признано не за Антуаном Анри, а за всей семьей Беккерель: дедом Антуаном Сезаром, отцом Александром Эдмоном и их внуком и сыном Антуаном Анри. Научные традиции семьи имели в этом открытии очень важное, если не решающее значение. Сам Антуан Анри сказал в этой связи следующее: «Было совершенно ясно, что открытие радиоактивности должно было быть сделано в нашей лаборатории, и, если бы мой отец был жив в 1896 году, он был бы тем, кто сделал бы это».
История создания теории струн началась с чисто случайного открытия в квантовой теории, сделанного в 1968 году Габриелем Венециано, физиком-теоретиком из CERN, и М. Судзуки. Перелистывая старые труды по математике, они случайно натолкнулись на бета-функцию, описанную в XVIII веке Леонардом Эйлером. К своему удивлению, они обнаружили, что, используя эту бета-функцию, можно замечательно описать рассеяние сталкивающихся на ускорителе частиц. В 1970–1971 годах Намбу и Гото поняли, что за матрицами рассеяния скрывается классическая (не квантовая) релятивистская струна, то есть некий микроскопический объект, отдаленно напоминающий тонкую, натянутую струну, — в теории струн каждому объекту физики частиц соответствует своя группа упругих и натянутых струн. Теория эта сама еще не доказана, но энтузиасты уже применяют ее для решения многих фундаментальных вопросов.
Так в процессе ее развития на свет появились очень сильные теоретические идеи, которые уже оказывают влияние на развитие других, более «приземленных» областей физики — например, при описании разнообразных явлений, происходящих в жидкостях и газах при низкой температуре. Не исключено, что эти работы — первые ласточки новой эры в теоретической физике конденсированных сред.
Сознание того, что чудесное было рядом с нами, приходит слишком поздно.
В истории физики есть много примеров, когда ученые упускали возможность совершить открытия. Почему же некоторые проходят мимо открытий? Мы этого никогда не узнаем. Каждому — свое. Как писал В. Вернадский, «корни всякого открытия лежат далеко в глубине, и, как волны, бьющиеся с разбега о берег, много раз плещется человеческая мысль около подготовляемого открытия, пока придет девятый вал». Какие черты нужны первооткрывателю? «Терпение, самоотверженность, упорство в достижении цели — отсюда и успех». Эти слова принадлежат Марии и Пьеру Кюри. А уж они точно знали, что говорили. Но не менее важна и интуиция. Интуиция — это искра, зажигающая разум, его оригинальность и изобретательность. Это вспышка, необходимая для соединения сознательной мысли с воображением. И еще часто случай. Но случай приходит лишь к тому, кто его ищет, иначе человек просто не обратит внимания на удачное стечение обстоятельств. «Случайные открытия делают только подготовленные люди», — говорил Б. Паскаль. Только обыватели считают, что ученого вдруг осеняют гениальные мысли или он случайно делает открытие. Яблоки падают на землю каждый год, но повод к открытию они дают немногим — только настоящим ученым, которые постоянно работают, ставят опыты, ищут и находят, пусть даже неожиданно. И хотя совершенно неопровержимо, что для успешной работы в науке нужен талант, точно так же верно, что этот талант должен подкрепляться ежедневным, систематическим трудом. Хорошо об этом написал поэт Марк Львовский:
Жил давно один ученый в Англии, Ньютон,
Он в науку, как в невесту, по уши влюблен,
Много сделал он открытий, в физике узнал,
Три закона знаменитых в книгах описал!
С ветки яблоко упало, и по голове,
И Ньютона осенило, плод нашел в траве,
Он достал свою тетрадку, записал закон,
Понял тайну всей Вселенной, гением был он!
И по этому закону движутся тела,
Чтоб Ньютон узнал об этом, яблоня цвела,
Много в Космосе секретов, мир другим не стал,
И летит к Земле комета, как он предсказал!
Если ты ленивый малый, не привык мечтать,
И тебе закон не снится, любишь сладко спать,
Даже пусть счастливый случай, груша упадет,
Никаких тебе открытий, шишку лишь набьет!
Или как писал Евгений Кащеев: «Открытие происходит не когда падает зрелое яблоко, а когда падает яблоко на зрелую голову».
Везение ученого — это итог максимального настроя всех душевных и творческих сил на исполнение своей мечты. Как говорит восточная пословица, все дело случая, но случай награждает лишь того, кто его достоин…