РОБОТЫ ПЕРВОГО ПОКОЛЕНИЯ ОБУЧАЕМЫЕ МАНИПУЛЯТОРЫ

ЖИЗНЬ — ЭТО ДВИЖЕНИЕ

Роботы первого поколения с успехом воспроизводят двигательные функции человека. Они берут и кладут, поднимают и опускают, вынимают и вставляют, переворачивают и встряхивают, достают и опрокидывают.

Все это разнообразие движений, умноженное на современный промышленный инструментарий, позволяет роботу не только перемещать детали и заготовки, но и красить, шлифовать, сваривать и резать, упаковывать и маркировать, сортировать и отбраковывать и даже стричь, рисовать, играть на пианино и резать по мрамору.

Чудо человеческого движения: плавные па балерины, точные движения рук хирурга, творящие пассы скульптора, микроскопические движения ювелира… какая бездна тончайшей координации, какая свобода движения!

Любое тело, находясь в свободном состоянии, имеет шесть «степеней свободы», оно может перемещаться вдоль трех координатных осей и вращаться вокруг них.

Рука человека имеет 27 степеней свободы, из них 20 приходится на кисть руки и пальцы. Человеческое тело в целом имеет несколько сотен степеней свободы.

Эта подвижность обеспечивается многочисленными мышцами: 52 пары мышц на руки, 62 пары на ноги, 112 мышц спины, 52 мышцы грудной клетки, 15 шейных мышц и т. д. Естественно, что моделирование движения такой сложной системы привело бы к механизмам чрезвычайной сложности, огромных размеров и слабой надежности в работе. Нужно ли такое богатство двигательной активности роботу?

Разумеется, нет! Как раз важно обеспечить оптимальный минимум движений для выполнения поставленной задачи, не упустив при этом важных свойств необходимой универсальности робота. Поэтому современные механические руки имеют всего шесть-восемь степеней свободы.

Пусть нам поручено создать манипулятор промышленного робота — аналог руки человека. Что нам понадобилось бы для этого, кроме необходимого упорства и терпения? Во-первых, наша механическая рука не будет висеть в воздухе, она должна к чему-то прикрепляться, необходимо основание, или тело робота. Затем нужна сама рука, то есть некоторый аналог костей скелета. Чтобы рука могла двигаться самостоятельно, поднимать тяжести и манипулировать ими, ей нужны мускулы. Все? Ничего не забыли? Нет, не все. Мы забыли самое главное, без чего рука безжизненно повиснет плетью или согнется в «три погибели». Это мозг, то, что управляет всем многообразием ее движений. Теперь все, можно приступать.

Примерно так же, только гораздо квалифицированней, рассуждали первые роботостроители. Они без зазрения совести пользовались незапатентованными идеями природы, создавая конструкции «по своему образу и подобию».

Каждый промышленный робот состоит из двух основных частей: манипулятора и программатора. Первый осуществляет все необходимые движения, второй все необходимое управление.

Описывая конструктивную компоновку промышленного робота, невозможно удержаться от естественной аналогии с человеческим или животным «механизмом».

Каждый промышленный робот имеет «мозг» — устройство управления и механическую часть, включающую «тело» и «руку». Тело робота, как правило, массивное основание, или, как его называют, станина, а рука — многозвенный рычажный механизм — манипулятор. Чтобы рука могла совершать положенное ей многообразие движений, она имеет мышцы — привод.

Задача мышц — преобразование сигналов мозга в механические перемещения руки. Венчает механическую руку, кисть или захватное устройство — схват.

Большинство промышленных роботов имеет одну руку, но существуют и роботы, обладающие двумя, тремя и более руками.

По конструкции механические руки робота могут либо повторять схему конечности животного и человека, либо иметь другую природу. Как правило, они устроены в соответствии с тремя принципами.

Первый принцип — механическое моделирование конструкции руки человека. Здесь рука робота имеет суставы: предплечье, локоть, кисть, построенные по принципу осевого или шарового соединения. Гидравлические или электромеханические мышцы роботов обеспечивают подвижность этих суставов почти так же, как и в живом организме.

Второй принцип базируется на совокупности линейных перемещений специальных штанг: горизонтальном, вертикальном, угловом, которые обеспечивают необходимую подвижность руки робота.

Третий принцип основан на комбинации двух предыдущих.

Большинство промышленных роботов (назовем их ПР) обладают устройствами руки, имеющими три-пять степеней свободы. Захватное устройство — кисть имеет еще две степени свободы. Иногда и сама станина имеет возможность перемещаться на одну-две степени свободы (например, вращательное и вертикальное перемещения).

Замечено, что роботы с вращательными соединениями по сравнению со скользящими поступательными обладают при прочих равных условиях большим объемом обслуживаемого пространства.

Как же устроены мышцы роботов, какая сила заставляет эти железные руки поднимать тяжести и исполнять сложные движения? Путей развития таких исполнительных элементов несколько. Для достижения большой грузоподъемности, свыше ста килограммов, используется гидравлический привод; для выстраивания в технологические линии на заводах точного машиностроения — электрический; а при работе с химическими веществами более безопасны пневмосиловые устройства.

Кроме того, возможны разнообразные комбинации приводов, например пневмогидравлические. Здесь в качестве основного привода используется пневматический, а гидравлический служит для повышения силовых возможностей, для улучшения динамических характеристик, в частности для стабилизации скорости и торможения. Известно применение электроприводов в качестве задающих устройств для более мощных гидравлических мышц.

По зарубежным данным, около половины используемых в настоящее время роботов имеют пневматические мышцы, приблизительно 40 процентов гидравлические, остальные — электромеханические и прочие.

При конструировании рук робота приходится решать массу необычных проблем. При этом, естественно, не обязательно копирование возможностей человеческой руки. Как раз наоборот, зачастую приходится думать, как научить робота делать то, что человеку не под силу. Нельзя, например, обработать заготовку с точностью до одного микрона вручную, робот же справляется с этой непростой задачей весьма успешно. Используемые в настоящее время промышленные роботы имеют грузоподъемность от нескольких десятков граммов до трех и более тонн, число степеней свободы от двух до шести и более, точность позиционирования 0,05 — 5 миллиметров, объем обслуживаемого пространства — 0,01–10 кубических метров. Однако эти характеристики взяты в среднем. В Англии, например, выпущен робот для установки на шлифовальный станок валов массой двенадцать тонн. Как показало специально проведенное обследование, 80 процентов промышленных роботов применяются для манипулирования деталями и изделиями массой менее одного килограмма, чаще всего цилиндрической формы, диаметром до 50 миллиметров.

Пневматические «мышцы» робота построены с помощью набора пневмоцилиндров для создания поступательного движения, пневмодвигателей для вращательного. Они используют специальные пневмоклапаны для управления и регулировки скорости перемещения и остановки поршня. Управление таким приводом весьма просто. Усилие, развиваемое на штоке пневмоцилиндра, зависит от давления сжатого воздуха и легко регулируется с помощью специальных клапанов. К преимуществам пневматических мышц относятся безотказность в работе, сокращение необходимой рабочей плоскости, так как приводы располагаются обычно прямо на механических узлах, низкая стоимость, простота обслуживания и ремонта. И хотя пневматический сигнал передается несколько дольше электрического, время переключения пневматического вентиля меньше. Пневмопривод работает от автономной установки или от общей воздушной магистрали.

Гидравлический привод по принципу действия аналогичен пневматическому. Только вместо сжатого воздуха здесь используется жидкость. Он обладает большей мощностью и используется для самых могучих рук роботов (до нескольких тонн). Однако гидроприводы требуют более квалифицированного обслуживания и в случае утечки жидкости могут загрязнять окружающую среду.

Еще совсем недавно число роботов, основанных на электрических приводах, было сравнительно невелико.

Однако в последнее время электродвигательные мышцы роботов завоевывают все большую популярность. Это прежде всего связано с такими принципиальными преимуществами электромеханических приводов, как легкость и удобство монтажа и наладки, простота эксплуатации, наконец, отсутствие шума при работе и грязи от утечки жидкости.

До недавнего времени развитие такой простой и удобной мускулатуры сдерживалось отсутствием специальных электродвигателей, ведь роботу требуется двигатель с лучшей, чем обычно, перегрузочной способностью и малым моментом инерции ротора. Появление специальных электродвигателей с печатным цилиндрическим или дисковым ротором, с гладким ротором, с линейным движением быстро ликвидировало эту прореху. Электрический привод обеспечивает хорошие динамические характеристики разгона, остановки, поворота, повышенную точность позиционирования (меньше 1 мм) и широкую маневренность. Электроприводы применяются и для большинства образцов очувствленных роботов второго поколения. Это связано не только с удобством эксплуатации и отсутствием шума, но и с большей гибкостью электроприводов в отношении реализации необходимых алгоритмов адаптивного управления.

Знаменитый Шерлок Холмс отличался поразительной наблюдательностью. По мельчайшим признакам он опознавал профессиональную принадлежность своею очередного клиента. Внимательно рассмотрев руки человека, он делал вывод о том, чем он занимается, каковы его профессиональные обязанности. Как же сказывается профессия робота на внешнем виде его рук, смог бы проницательный Холмс и здесь применить свой знаменитый дедуктивный метод?

Роботы применяются на самых разнообразных операциях и работах с деталями, которые резко отличаются по прочности, массе, габаритам, конфигурации, расположению центра масс, шероховатости. Детали могут быть керамическими и стеклянными, пластмассовыми и металлическими. Массивные поковки и крупногабаритная тара, стальные листы и кирпичи, листы из стекла и стеклянные трубки. Робот может манипулировать с собранными узлами или с тарой с насыпанными легкими деталями, емкостями с жидкостью и, кроме того, работать различными инструментами: распылителем, гайковертом, пневмоотверткой, паяльником или сварочными аппаратами.

Взглянув на «руки» промышленного робота, почти любой человек, даже не обладающий проницательностью Холмса, сможет, немного подумав, определить сферу «профессиональных интересов» робота. Вот клешни из трех крюков для круглых поковок, вот присоски, как у осьминога, для стеклянных листов. Вот ковш для сыпучих материалов и т. д. и т. п. Еще проще разобраться в обязанностях робота, если «руки» его снабжены специализированным инструментом: сверлом, краскораспылителем, гайковертом и т. п. Инструмент закреплен прямо на руке, а не в схвате, теперь уже ненужном.

Поразительная универсальность руки человека — продукт длительной эволюции. Нужна ли такая универсальность роботу, оправдана ли она технически и экономически? Навряд ли, по крайней мере, на данном этапе эволюции робота. Вспомним, как разнообразны и специализированы конечности и «руки» животных.

Плавники и когти, присоски и клешни, хобот слона, хвост обезьяны, щупальца осьминога… Примерно так же разнообразны оконечные устройства «рук» робота.

Здесь человек «похитил» у природы не один десяток технических идей.

Наиболее распространена «двупалая лапа» наподобие клюва птицы или клешни краба. Она отлично выполняет функции взятия и переноса большинства типов деталей механообработки. Если же требуется более надежное удержание детали, особенно круглой формы, применяется трехпалая кисть — почти точное подобие птичьей лапы. Заметим, что птица легко удерживается на круглой ветке дерева при весьма высоком относительно ветки центре тяжести.

Если деталь крупная, длинная, применяются многоместные захваты несколько двупалых или трехпалых рук хватают длинную трубу во многих местах.

Для транспортировки жидкости используется ковш, для взятия сыпучего материала — трехпалый ковшик, чем-то напоминающий хитиновые надкрылья жука или складывающиеся лепестки тюльпана.

Если деталь имеет достаточно большую поверхность, применяются присоски по типу осьминожьих.

Особая форма или мягкость присосок позволяет брать не только гладкие стальные, пластмассовые, стеклянные листы, но даже гофрированные детали или фигурные штампованные изделия.

Есть в арсенале робота и «собственные патенты» — схваты магнитные, они надежно удерживают стальную или жестяную деталь, когда подобрать мало-мальски подходящий механический «хвататель» не представляется возможным. Здесь используются как электромагниты, так и постоянные магниты, иногда с механически изменяемым силовым полем.

Для захвата деталей типа труб и полых цилиндров изнутри используются раздвигающиеся пальцы, специальные надувные груши, а то и просто палочка штырь, продеваемый в цилиндр.

На выставке НТТМ-82 демонстрировались роботы, искусно манипулирующие с электролампами. Кроме прочих, весьма привлекательных достоинств, один из роботов имел хитроумный захват в виде резиновых гофрированных хоботков. Когда воздух подавался в кисть, хоботки, раздуваясь, изгибались и захватывали лампочку за тонкостенную стеклянную колбу с деликатной осторожностью, но прочно. Масса нежных присосок-пальчиков используется для манипуляции с мягкими изделиями, например шоколадными конфетами или диетическими яйцами.

Различаются «руки» роботов и по размерам: есть экземпляры лапищ для многотонных валов, а есть миниатюрнейшие щипчики-пинцетики для изделий микроэлектроники или часовых шестеренок. Некоторые пальчики-усики манипулируют с детальками, различимыми лишь в микроскоп. Существуют и пятипалые «руки», подобные кисти человека, однако такие образцы в силу сложности конструкции, и особенно управления, — пока прерогатива лишь лабораторных моделей.

Окружающая нас природа — неиссякаемый источник радости, жизни и здоровья. Человек, ушедший от природы в города, квартиры, отгородившийся от нее стеной, окном и асфальтом, тянется к ней, даже не осознавая, зачем ему это.

Писать о красоте с утилитарных позиций — несомненное интеллектуальное варварство, но психология современного прагматика зачастую невосприимчива к эфемерным категориям прекрасного. Поэтому мы скажем о природе с точки зрения нашей проблемы — промышленной роботехники.

Природа не патентует своих изобретений, она наладила массовое производство огромного множества естественных механизмов, наделенных тонкими конструктивными решениями и блестящим физическим воплощением. Мы используем лишь малую толику этого богатства, варварски уничтожая остальное. За последние сто лет полностью исчезли с лица земли десятки видов животных и растений, еще сотни находятся на грани уничтожения. Мы уже никогда не сможем воспользоваться ни их техническими новинками, ни просто красотой и грацией. Красная книга экологов — это не что иное, как собрание патентов природы, которые человек пытается защитить от забвения.

ОДА ПЕШЕМУ ХОДУ

И. Артоболевский и А. Кобринский, основываясь на плодотворной аналогии между роботом и человеком, условно разделили совершаемые ими производственные движения на три типа: локальные, региональные и глобальные. Локальные движения — это все то многообразие манипуляций, которое мы совершаем посредством кистей рук: взять, положить, перевернуть, вставить, вынуть. Региональные движения совершаются с использованием механических возможностей всей руки: перенос детали с одного места в другое при неподвижном основании робота. Наконец, глобальные движения это перемещение самого робота.

Специфику локальных и региональных движений мы интенсивно обсуждали выше, в то время как глобальные перемещения робота остались в тени. Это и понятно, глобальные движения — прерогатива транспортных систем: автомобилей, электрокаров, вездеходов и луноходов. Здесь используется весь инструментарий многовековой истории транспорта: колесо, рельс, монорельс, гусеница и т. п. Однако существуют и специфические, только роботу присущие средства передвижения. Это ближайшие родственники манипуляторов — педипуляторы, или, попросту говоря, ноги (manus по-гречески — рука, pedis — нога). Ну уж это ненужная экзотика, скажет читатель, неужели им мало колеса, не слишком ли далеко заходят эти роботехники в своем ненасытном желании внедрить природные патенты? Разумеется, читатель вправе так рассуждать.

Имея перед глазами многовековую историю колесных транспортных средств от телеги до современного лунохода, мы склонны считать шаговый принцип передвижения более примитивным и недостойным нашего технического века. С первого взгляда нам кажется, что колесо, несомненно, эффективнее ног. К примеру говоря, человек на велосипеде тратит лишь половину энергии пешехода. Почему же тогда природа избегает колес? Почему колесо эффективное средство передвижения, изобретенное человеком, — никогда не использовалось природой в процессе эволюции животного мира? Почему, скажем, нет крыс на колесах или рыб, использующих гребной винт? Ответ, возможно, состоит в том, что они имеют нечто лучшее…

Рыбы перемещаются в воде с помощью движений хвоста, при этом КПД оказывается равным 95 процентам, в то время как гребной винт обеспечивает максимум 60 процентов. Загадка скорее состоит в том, почему технические специалисты не обращают внимания на способ передвижения рыб.

Но ведь колеса точно эффективней ног. Однако и здесь разгадка может крыться в том, что колеса хороши лишь на гладкой и твердой поверхности. А в природе она встречается редко. Поэтому естественный отбор не благоприятствовал появлению животных на колесах в процессе эволюции. Известно, что колеса беспомощны на мягкой почве — вспомним автомобиль, засевший в грязи, — не приспособлены для перемещений по вертикали, стесняют повороты на ограниченной площади. Такие соображения кажутся более убедительными, чем теория о плохой сочетаемости кровеносных сосудов и нервов с вращающимися соединениями или гипотеза о том, что эволюция просто случайно не «наткнулась» на принцип колеса.

А как же вездеход? Он ходит «везде» без всякой дороги? Ну, во-первых, не везде, а во-вторых, его колесо покоится на жесткой мостовой — гусенице, которую вездеход сначала прокладывает «перед собой», а затем сам по ней передвигается. Шагоход же эффективно перемещается по любой поверхности. Он может легко менять походку: подниматься на «цыпочки», чтобы не зацепить днищем за стоящий поперек дороги станок, присесть, чтобы пролезть под низко расположенный трубопровод, повернуться, переступая ногами почти на пятачке. Всюду здесь ноги удобней, чем колеса, поскольку современное промышленное предприятие порол так же «непроходимо», как «коварные джунгли Амазонки».

Прежде всего у конструкторов возник вопрос: каково оптимальное количество ног? Почему у сороконожки сорок ног, у жука — шесть, у животного — четыре, а у человека — две? Много ног — это высокая устойчивость машины, но и необычайно сложная задача координации их движения. Не стоит ли в прямой зависимости от количества ног развитие двигательного мозгового центра? В природе сороконожка не задумывается над своей походкой. Однако инженер, конструирующий сороканожный механизм, обязан растолковать машине все тонкости ее перемещений, и если в известной притче сороконожка, пытающаяся понять, как же она ходит, немедленно запутывалась, то конструктор шагохода работает «без права на ошибку», исключая многосложные варианты конструкции, стараясь найти минимальную конфигурацию.

Специалисты пришли к заключению, что для надежной устойчивости движения машине достаточно шести ног, так как три точки опоры в состоянии покоя самое устойчивое положение. Не случайно штатив фотоаппарата или теодолита — это популярный треножник.

История создания ноги робота начинается с середины XIX века. Русский математик П. Чебышев стал родоначальником целого направления в конструировании шагоходов. Он сконструировал знаменитую «стопоходящую машину», представляющую собой комбинацию четырех лямбдаобразных механизмов в виде греческой буквы Я. Пока башмак ноги опирается на грунт, корпус машины горизонтально перемещается вперед. Оторвавшись от земли, башмак описывает в воздухе кривую, напоминающую траекторию стопы пешехода. Последователи П. Чебышева работают в направлении, при котором «лапы» машины копируют движение ног человека или животного — так называемый «траекторный синтез» походки.

И. Артоболевский работал также и над проблемой шагающих механизмов. В докладе, подготовленном им с соавторами и прочитанном на четвертом совещании по проблемам теории механизмов и машин в Ленинграде, были определены требования к шагающему механизму и решены важнейшие динамические задачи, связанные с этой проблемой. Одними из первых в нашей стране шагающую машину создали специалисты Ленинградского института приборостроения. Ее шесть ног усеяны датчиками, так что в электронный мозг машины непрерывно поступают данные и о положении ног в пространстве, и о поверхности, на которую они ступают.

Примерно по тому же принципу работает и шагающий агрегат, созданный совместными усилиями специалистов Института механики МГУ и Института проблем передачи информации АН СССР. В Институте машиноведения создан прообраз машины, объединяющий в себе достоинства многих предыдущих конструкций.

В фильме «Человек и робот» мы видели знаменитую «шестиножку», над которой работал коллектив ученых Института проблем управления — целое содружество математиков, медиков и механиков. «Шестиножка» ходит, преодолевая препятствия из коробок и кубиков, выбирая при этом наиболее удобный маршрут. У нее есть органы зрения и осязания, есть электронный мозг, расположенный, правда, на расстоянии. Машина соединена с ним электрическим кабелем (ведь для этих «простых» шагов нужна целая современная ЭВМ). Однако шесть ног порождают все еще большое число вариантов походок. Переставляя поочередно по одной ноге и варьируя при этом очередность, мы имеем возможность выбрать один из 120 вариантов походок. Перемещая по две ноги, имеем еще девять вариантов. Наконец, можно переставлять по три ноги сразу: две левых — одну правую, две правых — одну левую.

Шестиногий «жук» может идти и быстро и медленно, находясь все время в устойчивом положении.

Для четвероногих машин проблема поддержания устойчивости становится уже более актуальной, хотя здесь у нас перед глазами все еще есть природный прообраз.

Четырехногий «конь» американского инженера М. Листона, снабженный манипулятором, может оказаться полезным в металлургическом производстве, например для транспортировки массивных и горячих заготовок из цехов термической обработки на участки ковки или штамповки. Первый весьма маневренный вариант такого агрегата обладает грузоподъемностью 300 килограммов. Хотя в нем предусмотрено место для оператора, оно используется лишь при обучении робота.

В движение ноги этого робота приводятся электрическими сервомоторами. Логика перемещения ног фиксируется и воспроизводится с помощью современной мини-ЭВМ.

Национальное управление по космическим исследованиям США ведет активные разработки транспортных восьминогих и шестиногих машин для разведки лунной поверхности. В этих вариантах функции распределяются так: четыре или три ноги служат для сохранения равновесия, а остальные четыре или три — для передвижения. Внешне эти машины напоминают два соединенных между собой стоящих чемодана. Каждый чемодан скрывает в себе двигатель и шарнирные механизмы четырех ног, одна пара ног шагает коленями вперед, а другая пара — коленями назад в полном соответствии с кинематикой животного.

В Японии доктор А. Мори с сотрудниками в Токийском технологическом институте занимается созданием опытной шестиногой машины.

Из четырехногих машин известны следующие: транспортная машина, созданная фирмой «Дженерал электрик», и конструкция Маг Ги, имитирующая движение лошади.

Из двуногих машин известна транспортная модель фирмы «Дженерал электрик», а доктор Като из университета Васэда в Японии успешно занимается созданием шагающего на двух ногах устройства, имитирующего походку человека. В этом антропоморфном шагоходе используются специально разработанные искусственные мускулы. Они представляют собой гибкие резиновые шланги, соединенные в небольшие грозди по три секции.

В обычном, расслабленном состоянии мышцы пассивно провисают. Для того чтобы привести мышцу в напряжение, в нее подается с помощью тонкого шланга сжатый воздух, и три секции мышцы раздуваются в круглые шарики, в результате чего мышца укорачивается, и соответствующая ей часть скелета ноги поднимается и передвигается.

На сегодняшний день во всех странах мира созданы самые разнообразные шагающие механизмы. Но все они «ходят» совсем не так, как мы. Человек при ходьбе или беге находится в неустойчивом состоянии — если прервать движение, он упадет. Все созданные же до сих пор шагающие механизмы, напротив, постоянно пребывают в состоянии не только динамического, но и статического равновесия, и это сильно ограничивает их подвижность. Чтобы двуногий робот стал полноценным «ходоком», нужно научить его преодолевать неустойчивость.

Над этой проблемой работает группа ученых из Массачусетского технологического института. Они разработали автономную прыгающую кибернетическую ногу, оснащенную микрокомпьютером и источником питания.

Единственный ее «сустав» — колено, «ступней» служит поперечина, не позволяющая ноге падать набок. Полутораметровая конечность способна стоять, выпрямляться, падать вперед и вновь подниматься. Цель ученых заставить ее перемещаться прыжками в произвольном направлении. В настоящее время робот-одноножка проходит процесс обучения. Его компьютер программирует себя сам, вырабатывая методом проб и ошибок оптимальный способ прыгания. Ошибаясь и «запоминая» свои ошибки, нога по мере приобретения опыта перемещается все более уверенно. «Иногда ее усилия просто трогательны», — заявил помощник руководителя группы.

В исходном положении она лежит на полу. Затем поднимается, медленно падает вперед и достигает позиции готовности к прыжку. Затем подпрыгивает, оттолкнувшись «ступней». После приземления нога попадает в неустойчивое состояние, ее увлекает инерция, и она опять падает вперед. Теперь одноножка готова к новому прыжку.

«Мы бы хотели создать в будущем робота, обладающего силой бульдозера, грацией балерины и ловкостью кошки», — говорят авторы проекта. Возможно, где-то в XXI веке в одной из сказок можно будет прочесть примерно следующее: «Стоит в цеху коттеджик на птичьих педипуляторах, а в коттеджике живет Баба Яга — с микрокомпьютером нога».

ЛЕГКО ЛИ ПОДНЯТЬ БУМАЖНЫЙ СТАКАНЧИК?

Легко ли поднять бумажный стаканчик? А что здесь трудного, взял и поднял! Но не будем торопиться, вдумаемся в ту бездну тончайших «глобальных», «локальных» и «региональных» движений, сложных идеомоторных актов, которые для этого необходимы.

В буфете столовой МВТУ имени Н. Э. Баумана у прилавка толпилась очередь. «Кофе и булочку», — произносил очередной покупатель и, прихватив левой рукой сдачу, правой брал небольшой бумажный стаканчик с горячим напитком, накрытый румяной булкой. Нести его было недалеко — к соседнему столику, расположившемуся в нескольких метрах; за ним покупатель мог вдоволь насладиться горячим напитком со свежей булкой.

Казалось бы, тривиальная задача — перенести бумажный стаканчик с булочкой на расстояние нескольких метров. Но в этом движении такое разнообразие проявлений вестибулярной активности, перед которым с благоговением снимает шляпу современный конструктор механических манипуляторов. Как взять стаканчик так, чтобы не сплющить его и не пролить ни капли из налитого до краев горячего напитка? Как взять его так, чтобы не слишком обжечь пальцы горячим кофе? Как, передвигаясь к столику, не расплескать кофе и не потерять булочку, свободно лежащую на стакане? Как не столкнуться с теми, кто в хаотическом порядке движется по миниатюрному пространству буфета? Как не слишком активно поставить стакан на столик и именно туда, откуда его удобнее всего потом взять, чтобы испить вожделенного напитка? Как не попасть каплей на брюки, не подмочить булочку, чтобы потом не испачкать пальцев при еде? Вот сколько проблем! Но покупатель выполнил все задачи отлично, при этом успев обсудить со своим коллегой итоги только что сданного экзамена по робототехнике.

Разумеется, цех современного предприятия не буфет со столиками, и промышленному роботу вряд ли придется манипулировать бумажным стаканчиком и булочкой. Однако тонкостенные электролампы или миниатюрные изделия микроэлектроники не менее чувствительны к рукопожатию механической руки, а современный цех устроен не проще вузовского буфета.

Манипуляционные свойства руки робота многогранны и динамичны. Робот берет детали или тяжелые собранные узлы на разном удалении и неодинаковой высоте, переносит их по сложным траекториям в обход препятствий, продвигая через узкие отверстия, закрепляя в нужном положении на станке, держателе, поддоне. Перемещение происходит с высокими скоростями, в обстановке постоянно меняющейся производственной среды. «Ну и что, — скажет читатель, — на это и даны роботу мощные мускулы, подвижные суставы железного скелета». Это, разумеется, верное замечание, которое свидетельствует о том, что читатель уже неплохо разбирается в «физиологии» робота, однако настало время поговорить и о его «психологии».

Кроме известных силовых свойств, мускулы робота должны быть идеально управляемыми, они должны мгновенно и точно выполнять команды «мозга» расслабляться и напрягаться, производя ровно то усилие, которое необходимо, чтобы поднять, но не раздавить хрупкую лампу, кинескоп, микромодуль. Итак, силовой привод робота- это прежде всего универсальная управляемость.

Как же происходит управление роботом, откуда берется его «ум», дающий такую бездну манипуляционных возможностей? «Ум» робота берется от его создателя — человека, а человек берет этот манипуляционный ум, наблюдая за самим собой.

«Работая над созданием роботов, я внимательно присматривался ко всему, что мне приходилось делать руками, и пытался представить себе, как мог бы сделать то же самое робот с электронным мозгом. Способность человека к тончайшей координации движений и к оценке возникающих в процессе работы обстоятельств настолько меня потрясла, что я решил серьезно заняться телеуправляемыми механизмами…» — пишет известный изобретатель М. Тринг в книге «Как изобретать?».

Промышленные роботы появились в производстве как машины, способные выполнять некоторые функции человека. Прежде всего в их задачу входит перемещение деталей и заготовок либо по заданным заранее траекториям, либо от одной заданной пространственной точки к другой. При рассмотрении аналогичных движений человека, стремящегося попасть рукой в определенное место, можно выделить две основные фазы: динамическую и стабилизирующую. Первая — динамическая — фаза характеризуется высокой скоростью и приближенным направлением движения. Вторая — стабилизирующая — резким снижением скорости и более точным координированием направления, как правило, сопровождающимся колебательными движениями малой амплитуды. Направленное движение происходит при непрерывном зрительном и кинематическом контроле, а конечный результат проверяется осязанием и слухом.

Движение исполнительного механизма современного промышленного робота первого поколения характеризуется теми же фазами, но в стабилизирующей фазе отсутствуют поисковые колебательные движения вблизи конечной точки. Координаты этого положения должны задаваться и воспроизводиться жестко, объекты манипулирования должны располагаться точно в предусмотренном программой месте и точно в таком положении, в котором робот сможет их взять. Ведь робот первого поколения — это «слепой», не имеющий обратной связи механизм.

Человек порой не осознает, как он выполняет то или иное сложное движение: завязывает ботинки, застегивает пуговицы, ставит свою подпись и т. п. Мы выполняем многое рефлекторно, как результат длительной тренировки координации движений, моторики и ориентации.

Вы замечали, как малыш тянется ручками к игрушке, которую он не в состоянии достать? Это он учится координировать зрительные образы с длиной своих рук.

В то же время человеку так и не удается достичь в этом «робототехнического совершенства». Такой элементарный для робота двигательный приказ, как «передвинь руку на пятнадцать сантиметров вверх», с закрытыми глазами человеку практически выполнить невозможно.

Чтобы понять хотя бы приближенно масштаб проблемы, проведем следующий опыт. Оторвитесь на мгновение от книги и посмотрите вокруг. Зафиксируйте расположение предметов в комнате, на столе, на диване.

Теперь закройте глаза, встаньте со стула или кресла и, не открывая глаз, пройдитесь по комнате, возьмите какой-нибудь предмет, скажем, вазу с цветами и переставьте ее на несколько метров в сторону, на другой стол или тумбочку. Ну как, получилось? Независимо от успеха вашего «манипуляционного акта» вы можете себе представить, какие трудности подстерегают движущуюся руку робота и сколько проблем приходится решать его системе управления.

Попробуйте мысленно проговорить про себя все, что вы проделывали: встать, сделать шаг правой ногой, сделать шаг левой ногой, поднять руку, раздвинуть пальцы, подвести пальцы к вазе, сомкнуть пальцы до соприкосновения с вазой, сдвинуть пальцы так, чтобы сила трения между поверхностью пальцев и вазы была больше, чем вес вазы (иначе ваза выскользнет из пальцев), поднять руку с вазой, повернуться на нужный угол и т. д. и т. п. Это и будет своеобразная программа для робота, правда, очень укрупненная. Такие команды, как «встать», «сомкнуть до соприкосновения» или «сделать шаг правой», сами представляют собой целую программу, или, точнее говоря, на языке программистов, стандартную подпрограмму. Затем эти команды нужно преобразовать в пневматические или электрические импульсы соответствующим мышцам, те, в свою очередь, в соответствующие перемещения, углы и моменты и все это проделать с поистине ювелирной точностью. Современный промышленный робот первого поколения обеспечивает точность позиционирования до 0,1 миллиметра. Чтобы представить себе нечто подобное, попробуйте с закрытыми глазами с расстояния хотя бы сантиметров 30 попасть иголкой в точку в конце данной фразы. Не получилось? Ну что ж, попробуйте еще раз. Опять не получилось? Не отчаивайтесь, попробуйте представить, как «тяжко» промышленному роботу, который должен сделать то же самое с расстояния около двух метров, со скоростью несколько метров в секунду при весе иглы несколько килограммов или даже десятков килограммов.

Это тем более трудно сделать, ибо для промышленного робота первого поколения обучающий его оператор является единственным источником внешней информации о требуемых действиях. Это поводырь нашего механического слепого. Информация вводится в виде программы работы в память робота, и он выполняет поставленную задачу в автоматическом режиме, не получая уже никакой дополнительной информации извне.

Существует несколько основных способов составления и ввода программы в память робота.

Во-первых, можно рассчитать программу движения в виде отдельных команд и кадров и затем ввести ее в память робота. Во-вторых, можно осуществить обучение робота путем однократного «образцового» выполнения задачи в режиме ручного управления манипулятором с пульта путем нажатия кнопок и рычагов. В-третьих, можно обучить робота нужным движениям, взяв его механическую руку и проведя по всем необходимым точкам траектории.

Программирование по первому принципу очень похоже на программирование ЭВМ, только вместо адресов данных и команд арифметических и логических операций ЭВМ используются «адреса» точек пространства и команды «манипуляционных операций»: поворот рук вправо (влево), выдвижение втягивание, поднятие — опускание, размыкание — смыкание схвата, вращение кисти вправо — влево и т. п. Программа представляет собой набор таких команд и выполняется циклически необходимое количество раз.

Обучение по второму принципу представляет собой «программирование в реальном времени». Оператор с помощью рычагов и кнопок, расположенных на пульте управления робота, принуждает его к выполнению тех или иных движений. Эта совокупность движений записывается в память робота и воспроизводится нужное количество раз.

Третий принцип обучения больше всего походит на обучение ребенка. Как часто, исчерпав терпение, мы говорим малышу: «Да не так, а вот так…» — и проводим его ручкой с ложкой от тарелки ко рту, мелом на доске или пальцем по клавишам пианино. Точно так же можно научить и робота. Опытный сварщик проводит сварочным аппаратом, закрепленным на руке робота, по оптимальной траектории шва. Движение записывается в память робота, и работа закипела. Обученный робот функционирует автономно под управлением мозга, в память которого заложена программа движений.

В простейших роботах используется цикловая система управления, движения осуществляются «от упора до упора». Программоносителем такой системы управления является специальный барабан, усеянный штырьками.

При воспроизведении барабан поворачивается, штырьки включают приводы, приводы «приводят в движение» всю систему. Такие системы управления называют позиционными.

Непрерывная система управления базируется на принципе магнитофона, записывающего на магнитную ленту совокупность электромагнитных импульсов. Эти импульсы посылают приводы, когда рука робота проводится по заданной траектории.

Наиболее «прогрессивным» способом программирования робота является первый из описанных выше, когда программа робота составляется подобно программе для ЭВМ. Дело в том, что составление такой программы для робота можно поручить… другой ЭВМ. А при «массовом производстве» программ это дает немалый эффект. Вот пример подобного программирования.

Рассмотрим технологический цикл нанесения многослойного покрытия на деталь сложной формы «воронка». Воронка имеет «хвост» — удлиненную часть детали и основание — полый конус. В цеху имеется длинная ванна со специальным составом, над которой расположен «мост» для просушивания очередного слоя покрытия. Технология покрытия заключается в следующем. Подойдя к очередной воронке, рабочий берет ее за «хвост» и опускает в ванну, затем переходит к следующей детали. Следующая деталь находится в ванне. Взяв деталь за «хвост», рабочий вынимает ее из ванны и помещает на «мост», где деталь проходит сушку, затем переходит к следующей детали. Дойдя до конца ванны, рабочий возвращается обратно и, смотря по тому, где находится первая деталь, помещает ее либо в ванну, либо на мост для сушки. После десяти таких окунаний деталь готова. Она помещается на транспортер для движения на склад. Укрупненная программа такой операции будет выглядеть примерно следующим образом:

1. Двигаясь далее вдоль ванны, дойти до позиции «мост».

2. Взяв деталь за «хвост», поместить ее в ванну для мокрой обработки.

3. Ждать 10 секунд.

4. Двигаясь далее, дойти до позиции «мост».

5. Взять деталь под «мостом» за «хвост», поместить ее на «мост» для просушки.

6. Повторить 10 раз.

7. Поместить деталь в тару для транспортировки на склад.

8. Взять следующую группу деталей.

9. Вернуться к пункту 1.

Получается примерно так, как в известной детской считалочке:

Еду дальше, вижу мост.

Под мостом ворона мокнет.

Взял ворону я за хвост,

Положил ее на мост

Пусть ворона сохнет.

Еду дальше, вижу мост,

На мосту ворона сохнет,

Взял ворону я за хвост,

Положил ее под мост

Пусть ворона мокнет.

И т. д.

РАБОТА ЗАКИПЕЛА!

Присматриваясь к стремительным и своеобразным движениям промышленного робота, мы еще и еще раз убеждаемся в известной истине: движение не только функционально, оно и эмоционально. То чудится нам в этом движении скрытая угроза, то видится неведомая птица, важно попивающая водицу из металлической лужицы, то паукообразное насекомое, строящее свое гнездо, то вдруг предстает перед нами странный, таинственный шаманский танец, подчиненный идеальному ритму.

Эти танцевальные «па» роботов подсказали специалистам по рекламе отличный фокус: женский танцевальный ансамбль ритмично воспроизводил производственные движения роботов. Причем девушки с особой грацией копировали вроде бы монотонные движения своих стальных «партнеров». И получился в сочетании с ритмичной музыкой очень неожиданный номер.

Короткий этот «фильм-концерт» показывала своим гостям на международной выставке «Автоматизация-83» финская фирма «Розенлев» — давний торговый партнер нашей страны.

«Мы избрали средства кино, чтобы представить модульную систему роботов, — говорит один из руководителей компании, Матти Ламми. — Модули — это узлы, в совершенстве освоившие те или иные виды движения — прямолинейные, вертикальные, вращательные… Они легко упаковывают в тару и телевизоры, и хлебные изделия, и бревна, распиленные по лучу лазера. Как в детском конструкторе, из модулей можно создавать поистине универсальные роботосистемы…»

Область возможных и экономически выгодных применений роботов первого поколения весьма широка.

Они успешно применяются для обслуживания станков, печей, прессов, технологических линий, сварочных аппаратов, литейных машин и т. п. Они эффективно осуществляют установку, транспортировку, упаковку изделий, простейшие сборочные операции, сварку, литье под давлением, термическую и механическую обработку. Особенно широко они применяются в машиностроении и металлургии.

Сейчас нет, пожалуй, такой области промышленного производства, где бы робот не попробовал свои силы, а попробовав, не завоевал бы престижного положения.

Наибольшее число роботов первого поколения работает в автомобильной промышленности. Волжский автомобильный завод, завод имени Лихачева, автомобильный завод имени Ленинского комсомола не только применяют, но и сами разрабатывают и строят промышленные роботы и автоматизированные комплексы.

Среди автомобильных фирм Европы лидирующее положение по применению роботов занимает давний партнер СССР — компания «Фиат». С 1973 года компания работает над проблемой использования роботов в сварочных операциях — сварка автомобильных корпусов модели 132. В связи с подтверждением экономической эффективности такого применения в 1975 году была создана сварочная линия, на которой обрабатывались корпуса модели 131. В результате полученного опыта инженеры пришли к заключению, что сварка с использованием роботов дает значительно меньший процент брака, чем при сварке обычными универсальными сварочными аппаратами. Однако применение роботов требует большой точности работ на предварительных стадиях сборки.

Сразу после осуществления «прихватки» кузов проходит через автоматический контрольно-проверочный пункт, показывающий наличие отклонений по размерам.

На участке завершения изготовления кузовов модели 131 размещается 23 робота-сварщика модели «Юнимейт», которые в час выполняют 620 сварочных соединений на 50 автокузовах, то есть каждый робот в час выполняет работу одного сварщика за смену. Сборка кузовов с четырьмя и двумя дверями выполняется на одной конвейерной линии. Это является единственным изменением программы, хотя «Юнимейт» способен действовать в соответствии с большим количеством программ, что необходимо, если на одной конвейерной линии изготавливается две или три модели автомобилей с различной формой корпусов. Но пока на этой линии «Фиат» данное качество робота «Юнимейт» не используется.

Первоначально два из двадцати трех роботов на этой линии сварки были оставлены в качестве резерва на случай выхода из строя одного из действующих роботов. Они были запрограммированы на работу по любой из используемых программ. Однако практика подтвердила высокую надежность, и два указанных робота были перепрограммированы на регулярную работу.

В составе линии пятнадцать роботов типа «Юнимейт-2000» и шесть «Юнимейт-4000».

По утверждению специалистов компании, средняя эффективность роботов достигает 94 процентов, тогда как у «многосварочных» автоматов около 80 процентов. И хотя многосварочный автомат выполнял большее количество операций в единицу времени, чем робот, однако при его повреждении вся поточная линия останавливалась. При выходе же из строя одного из роботов поточная линия может продолжать функционировать, так как функции вышедшего из строя берет на себя соседний робот.

Специалисты компании «Фиат» отмечают исключительно высокую надежность роботов марки «Юнимейт».

За весь пятилетний период эксплуатации не было произведено ни одной замены робота. Стоит, однако, сказать, что длительной службе роботов способствовал высокий уровень технического обслуживания: специалисты хорошо изучили наиболее слабые узлы, что позволило осуществлять техническое обслуживание роботов своевременно и в короткий срок. Изнашивающиеся части своевременно заменялись по мере обнаружения признаков износа.

Преимущества программируемости роботов дают возможность компании более быстро приспосабливать производство к меняющимся условиям рынка. Поистине применение промышленных роботов позволит преодолеть ужасающую тенденцию к единообразию промышленного производства, зародившуюся еще в недрах промышленной революции.

Накопленный опыт не прошел даром. К середине 1976 года на заводах «Фиат» использовалось уже 90 роботов — 23 на сварке и 67 в основном для механической транспортировки деталей (штампованных изделий, поковок, отливок, изделий машобработки). В целях расширения масштабов использования роботов осуществляются экспериментальные работы по парному применению роботов при сварке. Один из роботов совмещает свариваемые панели, а другой производит точечную сварку.

В настоящее время все ведущие автомобильные концерны Японии используют, и весьма широко, промышленные роботы. Американская фирма «Дженерал дайнемикс» применяет роботы при изготовлении фюзеляжей самолетов, а «Дженерал электрик» — в производстве холодильников. Устройства такого типа используются также в атомной промышленности, где они, манипулируя с радиоактивными материалами, избавляют людей от этой опасной работы.

Существуют и оригинальные профессии роботов, например роботы-пекари. В Москве на 10-м хлебозаводе впервые в стране включился в работу такой необычный пекарь-робот.

…В цехе, где берет начало несколько хлебных «рек»: «ржаная», рядом «бородинская», дальше «орловская», — собран автоматизированный комплекс, положивший начало еще одному потоку хлеба «новоукраинскому». Здесь нашел свою первую трудовую вахту робот, созданный, как и комплекс, коллективом ремонтно-механического комбината Управления хлебопекарной промышленности Мосгорисполкома в содружестве с новаторами завода.

Оператор проверяет температуру в печи. Приборы показывают: термоагрегат готов принять формы с тестом. Включен пускатель, и многочисленные узлы сложного комплекса пришли в движение. Форсунки спрыснули масляной эмульсией формы. Послышался щелчок реле, и конвейер с формами мгновенно остановился.

Этого момента, казалось, и ждал робот. За четырнадцать секунд он заполнил тестом двадцать форм и дал команду передвинуть конвейер. Снова положил в новые формы точно отмеренные куски теста, и снова — команда конвейеру.

Прошло два часа, из печи показались первые буханки хорошо выпеченного «роботического» хлеба. «Внедрение технических новинок даст заметный экономический эффект, — говорит директор комбината. — На тех же производственных площадях выпуск хлеба увеличится на десять тонн в сутки, сократится расход растительного масла, улучшатся условия труда».

Чем отличаются алмазы от бриллиантов? Ответ на этот вопрос знает робот, который трудится на смоленском производственном объединении «Кристалл». Именно этот коллектив одним из первых в стране начал пробовать на шлифовке алмазов механические приспособления, а теперь подключил к этому делу и роботы.

Нелегко, однако, было научить робота превращать алмазы в бриллианты. Ведь для того чтобы небольшой светлый камешек, как говорится, «заиграл», нужно придать ему определенную правильную форму, а затем нанести на камешек несколько десятков граней.

Но не просто нанести, а открыть в камне заложенную гармонию и красоту! Да доступно ли подобное роботу?

Пока нет! Для начала специалисты поставили себе задачу поскромнее использовать робот на черновых операциях, то есть на наиболее нетворческих, занимающих тем не менее от 80 до 90 процентов общей трудоемкости при превращении алмаза в бриллиант.

Остальные проценты — это уже в прямом и переносном смысле ювелирная работа, здесь без человека не обойтись.

«Занялись мы внедрением манипуляторов сначала на предварительной шлифовке, — рассказывает генеральный директор объединения И. Судовский. Правда, никто нам этой работы не планировал, а значит, и не финансировал. Такое уж воспитание у наших инженеров: не могут они равнодушно смотреть на ручной труд, пусть даже самый высококвалифицированный, да и дефицит рабочих рук заставил нас искать им замену».

С одним из мастеров своего дела — огранщиком бриллиантов с двадцатилетним стажем В. Карпачеповым — мы встретились на рабочем месте. О манипуляторах он самого высокого мнения. Да и как не быть ему довольным? Ведь еще не так давно и он, как и многие его товарищи, работающие пока без «механических рук», то и дело подносили к глазам ограночное приспособление, через лупу проверяли геометрию, сверяли размеры, теряли на это время, быстро уставали…

Совсем по-иному сейчас: вставил в руку роботу камешек, нажал кнопку — и пошла шлифовка. Рукам же остается чистая, приятная работа — доводка бриллианта до нужных кондиций.

Сейчас только в смоленских цехах «Кристалла» трудятся 380 электромеханических роботов третьего поколения.

Каждый день приносит нам все новые и новые сообщения об оригинальных профессиях робота: робот-пожарный, робот-сиделка, робот-музыкант, робот-сборщик. Любая газета, любой журнал может оказаться интересным продолжателем темы этих страниц. Нужно только присмотреться повнимательнее, и мы увидим, как неспешно, но уверенно роботы входят в нашу жизнь.

ЧЕГО НЕ МОГУТ ПРОМЫШЛЕННЫЕ РОБОТЫ?

Да, многое, очень многое могут и умеют роботы, одно только им не под силу. Не могут эти железные работяги сами собой внедряться на заводы и фабрики, на предприятия и объединения. Внедрение промышленных роботов забота человеческая.

«К сожалению, товарищи, как раз с внедрением в практику достижений науки и техники у нас, как вы знаете, дело обстоит еще плохо. Хозяйственник, который пошел „на риск“ и ввел на предприятии новую технологию, применил или произвел новое оборудование, нередко остается в проигрыше, а тот, кто чурается новшеств, ничего не теряет. Разработать такую систему организационных, экономических и моральных мер, которая заинтересовала бы в обновлении техники и руководителей, и рабочих, и, конечно, ученых и конструкторов, сделала бы невыгодной работу по старинке, — вот в чем задача», — сказал на июньском (1983 г.) Пленуме ЦК КПСС товарищ Ю. В. Андропов.

Чтобы робот решительно шагнул в промышленность и сельское хозяйство, на транспорт и в сферу обслуживания, необходимо не только и не столько внедрять роботы как факт, но прежде всего обеспечить такую организационную стратегию роботизации, чтобы внедрение действительно было выгодно, действенно и эффективно. Хозяйственник, внедряющий новое, может оказаться в проигрыше не только потому, что роботы дороги, перестройка производства требует времени и существенных организационно-технических усилий, но и потому, что он, хозяйственник, не сообразовал это внедрение со стратегией роботизации.

Еще недавно при слове «робот» человек восклицал:

«А, фантастика!» — и поудобнее устраивался в мягком кресле, чтобы сладко «интеллектуально» дремать под завораживающую воображение сказку. Он еще и сегодня, проснувшись от дрема прогнозов, ждет от робота фантастического совершенства. Здесь постарались и писатели-фантасты, привив нам восторженный интерес к своим человекоподобным героям, наделенным сверхинтеллектом, сверхсилой, сверхвыносливостью, сверхбыстротой, антропоморфно романтизируя их «жизненный» путь, их служение людям, их «самопожертвование».

А затем выясняется, что современные роботы дороги, сложны, порой капризны в эксплуатации и даже небезопасны для человека. Они зачастую требуют перенастройки всей производственной системы «под себя». Более того, появление робота на производстве вскрывает целый ряд наших чисто человеческих несовершенств, с которыми робот не может мириться. Наше техническое детище — робот, подобно ребенку в семье, заставляет нас взглянуть на себя его глазами — критически.

На производстве действует неумолимый фактор: любая техника должна быть экономически эффективной.

Опытный образец нового манипулятора, как правило, решает задачу, не решаемую другим путем или вообще не решенную до него. Он работает точнее, быстрее, надежней, оправдывая тем самым свое появление на лестнице эволюции. Появление же робота в цехе подчиняется совсем другим законам экономическим. В цехе робот будет делать то, что делал до него человек, и если применение робота не приведет к существенному повышению производительности, к удешевление продукции, то такая, автоматизация, такой технический прогресс будет нам «не по карману».

Нецелесообразно, например, заменять роботом рабочего, так сказать, один к одному или держать сложного робота рядом со станком, когда деталь обрабатывается несколько часов. Здесь лучше в нужный момент «подкатить» механического помощника или же использовать простейший манипулятор с ручным управлением.

Для успешной эволюции роботов необходимо, чтобы они находили спрос на предприятиях, в объединениях, на транспортных системах и в научно-исследовательских лабораториях. Для этого нужно, чтобы они обеспечивали заметный, желательно невооруженным глазом, прирост эффективности, прежде всего экономической. Такая постановка проблемы учитывает важное, но не всегда близкое сердцу требование, предъявляемое ко всему новому: каждый из новых объектов, вводимых вместо старого, должен иметь перед ним и определенные преимущества. На промышленном предприятии внедрение роботов может увеличить объем продукции, повысить надежность и качество изделий, может снизить расход энергии и материалов, но может и не сделать этого. Сама по себе установка робота еще не свидетельствует об ускорении технического прогресса, если она не улучшает общих системных характеристик. Именно общих, а не отдельных участков цехов или станков.

Таким образом, внедрение робота следует оценивать с точки зрения его влияния на повышение эффективности предприятия в целом, а не отдельных операций и требует комплексного, системного подхода. С этой точки зрения недостаточно, например, просто выявить бракованную деталь, нужно устранить сам источник брака.

Допустим, что мы установили робота-контролера на предприятии, но технологический процесс не изменили.

Качество контроля, конечно, возрастет, доля выпущенных бракованных изделий резко уменьшится или совсем исчезнет, так как контроль робота строгий и точный; уменьшится и число рабочих ОТК, но труд робота окажется бесполезным, поскольку источники брака сохранились и эффективность предприятия осталась на прежнем уровне. Возрастет ли при этом общая эффективность производства?

Разумеется, нет, потому что контроль, по-видимому, не является «узким местом» на этом заводе, хотя на ряде других предприятий, где качество контроля недостаточно, применение роботов может оказаться главным фактором повышения эффективности всей системы.

Выделение «узких мест», препятствующих расширению производства или являющихся источником брака, — задача, доступная решению только квалифицированных специалистов, имеющих статус системных аналитиков.

Они должны не только досконально знать производство, не только обладать системным взглядом на объект, но и уметь просто считать деньги, то есть быть отчасти бухгалтерами.

Часто приходится слышать от представителей промышленности, что рабочих на производстве не хватает, поэтому они согласны вводить автоматизацию «любой ценой». Но такая точка зрения является наивной, ведь на изготовление робота тратятся труд, электроэнергия, металл, пластмассы, дорогостоящая электроника, что, естественно, отражается на стоимости. И если эти затраты не вернутся обществу с лихвой, то такая роботизация вместо восполнения дефицита рабочей силы будет только увеличивать его. Пусть на нашем заводе мы заменим роботами 50 рабочих и при этом вынуждены будем увеличить численность персонала на заводе, изготовляющем роботов, например, на 100 человек. Будет ли в этом случае такая замена оправданна?

Экспериментальные образцы НИИ и КБ должны быть и универсальными и интеллектуальными. Промышленные же роботы прежде всего экономически выгодными производству, даже если для этого им придется быть проще, глупее и уже ориентированными на то дело, для которого они предназначены.

«Сложилась такая ситуация, когда, как мне кажется, наука оказалась в большом долгу перед страной, — говорит А. Фишкис, лауреат Государственной премии СССР, главный сварщик ЗИЛа, — почти 10 лет идет работа по созданию и внедрению промышленных роботов, но еще и сегодня нет отработанной, надежной конструкции для условий массового производства. Далеко не все, что могли, сделали ученые и конструкторы. Представляется, что они должны были за эти годы отработать три-четыре конструкции типовых роботов и передать их в промышленность. А они увлеклись экзотикой, занялись говорящим роботом. Действительно, это очень интересно. Однако на сегодняшний день производству нужен обычный универсальный робот-манипулятор, но надежный. Увы, его нет!»

Вот один пример. Был создан робот-мойщик, которого предложили опробовать на мойке поршневых колец. Условия работы для человека почти невыносимые: содовый раствор, температура 70 °C, испарения. Робот же оказался здесь на своем месте, работая в полтора раза производительнее человека. Однако он не справился со своими обязанностями, как говорят, «не потянул». Почему? Оказалось, что на этом предприятии ни в первую, ни во вторую декады месяца колец просто не выпускали, зато в третьей «гнали» весь план. Робот не смог приспособиться к такому графику. Не выдержал «интенсификации» труда, сломался.

Таким образом, проблема внедрения роботов тесно связана с проблемой дисциплины производства. Не менее остро сейчас встает вопрос о переоснащении цеха, об изменении всего облика производства. А когда вы посмотрите, как двухметровая рука робота летает от станка к станку с колоссальной скоростью, то невольно подумаете и о новых нормах техники безопасности.

Загрузка...