В главах I и II мы соорудили во времени и в пространстве подмостки, на которых развертываются все события в нашем мире. Теперь посмотрим, что же это за события. Мы видим несметное множество объектов, претерпевающих непрерывное изменение и движение на небе и на Земле и обладающих различными свойствами и качествами; среди этих объектов мы находим любые: от самых простых — газов, жидкостей и твердых тел — и до таких сложных, как растения, животные и человек. Поведение всех этих форм материи очень сложно и запутано. И все же мы можем отметить некое подобие порядка в природе. Несмотря на постоянное изменение и движение, мы замечаем сходство между различными объектами, мы разбиваем их на классы и называем их. Материалы, из которых состоят эти объекты, можно разделить по типам, таким, как горные породы, металлы, жидкости, органические вещества и т. д. Эти вещества сильно отличаются по своим свойствам, но мы везде видим одни и те же металлы, горные породы, органические вещества и т. п. Кусок золота остается таким же, где бы на Земле его ни нашли. В мире живого мы тоже находим сходства и тождества. Они поразительным образом коренятся в том, что мы называем видами; мы находим бактерии, деревья, цветы, животных, в пределах каждой такой группы мы видим общие свойства и безошибочно относим всех представителей любой группы к определенному виду. Такие закономерности мы и хотим понять. Мы хотим знать, почему в природе существуют специфические формы, почему эти формы именно таковы, почему они ведут себя именно так, как мы это видим. Для начала, однако, надо изучить некоторые простые свойства природы, которые не носят специфического характера и одинаковы для всех объектов. Настоящая глава посвящена двум таким вопросам — вопросу о тяготении и вопросу о свете.
Тяготение — хорошо известная на Земле сила. Все предметы вокруг нас, большие и малые, притягиваются Землей: они падают вниз, если только их что-либо не поддерживает. Притяжение каждой частицы вещества Землей есть наиболее известный пример действующей в природе силы. Однако понадобились колоссальные усилия и целые столетия работы мысли прежде, чем человечество поняло, что движение Луны вокруг Земли и планет вокруг Солнца основано на той же силе. Ученые долго считали, что законы, управляющие движением небесных тел, весьма отличны от законов, действующих на Земле. Универсальность законов природы, их справедливость для всей Вселенной были поняты только после Исаака Ньютона.
Луна и планеты не падают ни на Землю, ни на Солнце; как же их движением может управлять сила тяготения? Существует большой разрыв между нашим земным опытом, согласно которому тела падают на Землю, и картиной движения тел по орбитам вокруг какого-то центра в небе (Луна обращается вокруг Земли, планеты — вокруг Солнца). Перекинуть мост от одного к другому — означало сделать решающий шаг в понимании Вселенной. Посмотрим, как это делается.
Предположим, что мы находимся на верхушке очень высокой башни и горизонтально бросаем в пространство камень (рис. 12).
Рис. 12. Траектории камня, брошенного с башни. Траектории а, б и в отвечают бросанию с возрастающей силой. Траектория в никогда не достигнет Земли.
Путь камня изогнется к Земле из-за силы тяжести, и камень упадет на некотором расстоянии от башни. Чем сильнее мы бросим камень, тем более плавно изогнется его путь. Представим себе бросок такой силы, что изгиб траектории будет как раз равняться кривизне земной поверхности, которая, как известно, сферична. В этом случае камень никогда не достигнет Земли, потому что, насколько искривится траектория, настолько же искривляется и поверхность Земли. Мы забросили камень за горизонт. Если бы воздух не замедлял полета, камень кружился бы вокруг Земли как спутник. На этом, конечно, и основан принцип запуска спутников ракетами. В типичном случае первая ступень ракеты поднимает спутник над атмосферой, а вторая — сообщает ему толчок в горизонтальном направлении. Горизонтальная скорость, необходимая для облета Земли по круговой орбите, примерно равна 8 км/сек. Итак, мы видим, каким образом падение может перейти в горизонтальный полет объекта по орбите вокруг Земли, если этот объект получит достаточно сильный горизонтальный толчок.
Посмотрим теперь на орбиту тела вокруг центра притяжения несколько иначе. Когда планета вращается вокруг Солнца, сила тяготения сохраняет орбиту круговой, точно так же, как груз на веревке движется по кругу, если вы вращаете его, держа веревку за другой конец. Сила притяжения уравновешивается центробежной силой, которая при круговом движении стремится столкнуть тело с орбиты наружу.
Центробежная сила (натяжение веревки) тем больше, чем больше оборотов в секунду совершает тело. Она увеличивается также и с удлинением радиуса и, разумеется, пропорциональна массе тела. Легко вычислить центробежную силу, действующую на каждую планету, так как нам известно ее расстояние от Солнца и время обращения.
Центробежная сила точно уравновешивается силой тяготения; поэтому, если мы вычислим центробежную силу на орбите, то тем самым найдем и силу тяготения. Таким способом Ньютон определил силу притяжения планет к Солнцу и спутников планет к самим планетам. Он нашел, что сила тяготения следует очень простому закону: притяжение двух тел прямо пропорционально произведению их масс и обратно пропорционально квадрату расстояния между ними. Например, расстояние между Венерой и Солнцем составляет 0,7 расстояния от Земли до Солнца. Для того чтобы удержать Венеру на орбите при заданном известном времени ее обращения, сила притяжения Венеры к Солнцу должна быть примерно вдвое больше, чем сила притяжения к нему Земли[20]. Это отвечает обратной пропорциональности квадрату расстояния, так как (0,7)2 = 1/2. Так человек вычисляет силу, действующую далеко вне пределов его опыта, силу на небесах.
Чтобы увериться во всеобщности силы притяжения между Солнцем и планетами и доказать, что такая сила действует между любыми двумя массами, надо показать, что таким же способом притягиваются два свинцовых слитка или любые два объекта и что сила их взаимодействия уменьшается, как квадрат расстояния между ними, и прямо пропорциональна произведению масс. Конечно, сила притяжения двух слитков свинца друг к другу чрезвычайно мала, так как их массы очень малы по сравнению с массами небесных тел. Если каждый слиток весит 45 кГ, то действующая между ними сила на расстоянии 30 см так же мала, как и сила притяжения к Земле массы в 0,004 г. Однако эта сила была измерена, и результаты подобных измерений подтвердили справедливость и универсальность закона тяготения.
Открытый Ньютоном закон тяготения объяснил движение планет по орбитам. Он положил конец древней любимой мечте многих философов. Они мечтали найти чрезвычайно важный смысл в действительных размерах орбит и в длительности периодов обращения планет. Можно было ожидать, что радиусы планетных орбит находятся в простых соотношениях, например, что при переходе от одной планеты к другой радиус каждый раз удваивается или что между ними существует какая-либо иная числовая закономерность. Философы-пифагорейцы, например, придавали особое значение численным отношениям между параметрами небесных орбит и видели в них смысл своей системы. В этих отношениях заключалась «гармония сфер»; предполагалось, что она отражает присущую небесному миру симметрию, в противоположность земному миру, полному беспорядка и начисто лишенному симметрии. Предполагалось, что гармоническая смена небесных движений производит музыку, слышимую духовным ухом и служащую проявлением божественного порядка Вселенной. Даже Кеплер, чей анализ планетных движений привел к открытию закона тяготения, настойчиво пытался объяснить наблюдаемые размеры орбит и для этой цели предложил гипотезу о Вселенной, построенной по модели правильных твердых тел — сферы, куба, тетраэдра и т. д.; одно вписывалось в другое и задавало одну из орбит на основе какого-то глубокого, фундаментального, всеобъемлющего принципа (рис. 13).
Рис. 13. Устройство Кеплера. Модель Вселенной Кеплера, показывающая положение планет по отношению к различным геометрическим образам.
Ньютон показал всю несостоятельность этих представлений. Основным принципом, управляющим движением планет, служит закон тяготения. Он определяет орбиты планет лишь постольку, поскольку требует, чтобы они были окружностями или эллипсами с Солнцем в центре или в фокусе, и устанавливает специальное соотношение между радиусом (или большой осью эллипса) и периодом обращения. Однако этот принцип не предписывает какого-либо специального размера или радиуса орбиты. Действительно, истинный ее размер зависит от условий в начальный период, т. е. в период образования солнечной системы, и от последующих взаимных возмущений орбит. Если бы, например, Земля получила вначале иную скорость, то она вращалась бы по большей орбите. Мало того, если бы вблизи нашей солнечной системы прошла другая звезда, все планетные орбиты изменились бы, и после встречи соотношения между их размерами и периодами стали бы совсем иными.
Отсюда мы видим, что наблюдаемые в настоящее время размеры орбит не имеют большого значения. Они могли бы оказаться и совсем другими, но это не повлекло бы за собой нарушения законов физики. Фундаментальный закон тяготения определяет только общий характер явления. Он допускает непрерывное множество воплощения орбит. Параметры истинных орбит зависят от влияний, которые действовали раньше их установления и без всякого вмешательства извне. Размеры наблюдаемых сегодня орбит, быть может, обусловливаются какими-либо специальными причинами, например какими-либо особыми условиями, преобладавшими при образовании солнечной системы, или влиянием проходивших звезд, но в этих размерах нет никакого особого фундаментального значения. Мы полагаем, что планеты другой звезды движутся по совсем другим орбитам, даже если эта звезда близка к Солнцу по своему строению и размерам.
Благодаря своей всеобщности сила тяготения действует за пределами солнечной системы и даже за пределами нашей Галактики. Звезды каждой галактики влияют друг на друга вследствие действия сил притяжения, и каждая галактика притягивает другие галактики. Поэтому движением звезд и галактик управляет их взаимное притяжение. Мы пока еще мало знаем об этих движениях, так как их очень трудно наблюдать, и пришлось бы решать очень трудную задачу математического анализа, чтобы найти, как должны двигаться 50 миллиардов звезд под влиянием сил взаимного притяжения. Однако существуют очень веские данные, указывающие на то, что тот же общий принцип управляет движением всех звезд. Звезды, по-видимому, обращаются вокруг общего центра своей галактики таким же образом, как и планеты вокруг Солнца.
Определяются ли движения галактик тоже силами тяготения? Здесь мы приходим к еще не решенной проблеме астрономии. Мы мало знаем об этом, нам известен лишь поразительный факт разбегания галактик — расширения Вселенной. Это движение, очевидно, не может обусловливаться тяготением; должно существовать какое-то другое, еще неизвестное объяснение[21].
Есть ли что-нибудь, обладающее такой же всеобщностью, как свет? Свет, приходящий от Солнца к Земле, — основа нашего существования. Он приносит тепло и снабжает нашу планету почти всей получаемой ею энергией. Он заставляет расти растения, а ведь мы применяем их как топливо, в виде угля или нефти, или как пищу животных и людей. Единственным источником энергии, не приходящей в виде солнечного света, служат «темные» силы радиоактивности и деление урана. И наконец, — чем тоже нельзя пренебречь — в ярком свете Солнца природа встает перед нами во всей своей красе.
Как сказал Галилей, свет — единственный посланец звезд; он должен рассказать нам почти все, что мы когда-либо узнаем о Вселенной. Кроме скудных сведений, получаемых нами при изучении космических лучей и метеоритов, и того, что нам предстоит еще узнать из космических путешествий, мы не имеем иных сообщений из внеземного мира, кроме сообщений, даваемых светом.
Что такое свет? Ответ на этот вопрос был дан в одном из самых интересных построений физики прошлого века. Световые сигналы идут в пустом пространстве по прямым линиям с определенной постоянной скоростью, равной 3·105 км/сек. За то время, которое требуется, чтобы согнуть палец (0,1 сек), свет успевает пройти расстояние, равное окружности Земли. Как мы говорили в гл. II, свету требуются минуты, чтобы в нашей солнечной системе пройти от планет до Солнца.
Что же происходит между источником и приемником при посылке светового сигнала из одной точки в другую? Сначала полагали, что источник испускает какие-то световые единицы, импульсы или частички, разного рода для разных цветов. Даже великий Ньютон считал, что свет состоит из частичек (хотя он старательно уклонялся от прямых утверждений). В XVII веке Христиан Гюйгенс (Голландия) предположил, что свет — это волновое движение, а Томас Юнг и Огюстен Френель в начале XIX века с несомненностью установили, что световой луч— это волна, распространяющаяся в пространстве.
Что же такое волна? Наиболее известный пример — это волны на воде, но ими не очень удобно пользоваться при рассмотрении световых волн, так как они распространяются по поверхности воды, а световые волны — в трехмерном пространстве. Однако изучение волн на воде помогает понять природу волн вообще.
Волна движется в каком-то носителе. Поверхность воды служит носителем волн на воде. В носителе происходят периодические колебательные изменения: например, поверхность воды движется вверх и вниз. Эти изменения таковы, что они распространяются и образуют характерную картину бегущих волн. Следует ясно понимать, что при распространении волны не происходит никакого перемещения материальной среды. Вместе с волной перемещаются только изменения картины на поверхности воды. Сама вода фактически не переносится. Однако волна может передавать действие от точки к точке. Если в одном месте сосуда сообщить толчок водной поверхности в известном направлении, то результирующая волна передаст этот толчок в другом его месте. Волны на воде могут передавать большие мощности, как мы это иногда видим по их действию на берег моря. Но масса воды не перемещается вместе с волной. Она только движется вверх и вниз, вперед и назад.
Другим примером, более близким к световым волнам, служит звуковая волна в воздухе. Колебательные изменения, которые претерпевает носитель, суть изменения давления воздуха. Если звук производит, скажем, громкоговоритель, то его поверхность движется взад и вперед, вызывая тем самым периодические увеличения и уменьшения давления в слое прилегающего к нему воздуха. Эти изменения бегут во все стороны, точно так же, как волны на поверхности воды, образующиеся при движении вперед и назад вашей руки в воде. Но в воде волны распространяются только на поверхности, а в воздухе — по всем направлениям в пространстве. Такое распространение периодических сгущений и разрежений воздуха и есть звуковая волна. Когда это колебание достигает уха, оно передает давление барабанной перепонке, заставляя ее колебаться так же, как и источник звука. Колебания барабанной перепонки мы и воспринимаем как звук. Чем меньше расстояние между гребнями и впадинами волны, или (что то же самое), чем чаще сменяются сгущения и разрежения, когда волна достигает уха, тем выше воспринимаемый нами звук. Расстояние между двумя последовательными гребнями (или впадинами) называется длиной волны, а число гребней, приходящих за 1 сек к уху (или проходящих мимо любой точки), называется частотой волны. Чем короче волна, тем больше ее частота.
Хотя Гюйгенс и не располагал большим количеством фактов, он еще в 1680 г. предположил, что свет есть волновое движение. Окончательное подтверждение того, что свет есть волна, принадлежит английскому ученому Томасу Юнгу, родившемуся в 1773 г. и первоначально изучавшему медицину. Он занимался проблемами света с 1800 г. и первый нашел решающие факты, показавшие, что свет есть волновое движение.
Колебания, происходящие в световой волне, не воспринимаются непосредственно именно как колебания; в волновой природе света нас убеждают лишь косвенные данные, И по сей день наилучшее ее доказательство принадлежит Юнгу. Его доводы основаны на явлении «интерференции». Этот эффект заключается в том, что при некоторых определенных условиях свет, складываясь со светом, дает темноту. Интерференция показывает, что свет есть волна, потому что этот эффект наблюдается тогда, когда гребень одной волны совпадает с впадиной другой. Погрузите по одному пальцу на каждой руке в воду и подвигайте ими, внимательно следя за двумя возникшими волнами, идущими навстречу друг другу. Вы увидите, что волны гасятся во всех местах, в которых гребень одной волны налагается на впадину другой.
Есть много способов демонстрации этого эффекта со световыми волнами. Один из хорошо известных эффектов — появление окрашенных полос или колец, наблюдаемых при растекании тонкого слоя нефти по поверхности воды. Такая же окраска часто видна и на краях масляных пятен на мостовой, В этих случаях свет от неба или от уличных фонарей отражается сначала от верхней поверхности пленки, а затем от нижней. Колебания в световом луче, отраженном от нижней поверхности масляной пленки, отстают от колебаний в луче, отраженном от верхней ее поверхности, на расстояние, равное удвоенной толщине пленки. Оба отраженных луча «интерферируют» следующим образом: если толщина пленки составляет четверть длины волны, второй луч отстает от первого на полволны[22]. Гребень волны, отраженной от одной поверхности, налагается на впадину в отраженной другой поверхностью волне, и получается темнота. В результате интерференции белый дневной свет становится после отражения окрашенным; ведь белый цвет есть комбинация всех цветов. Некоторым цветам соответствуют как раз такие длины волн, которые гасятся при отражении. Тогда окраска отраженного цвета будет определяться остающимися цветами[23].
Вы можете наблюдать интерференционные эффекты в простом опыте. Возьмите патефонную пластинку и, держа ее на уровне глаза, осветите ее лампой так, чтобы свет лампы падал на плоскость пластинки под весьма малым углом. Вы увидите цветной узор на краю пластинки около глаза. Световые лучи, отраженные от различных бороздок, интерферируют друг с другом, давая темные и яркие окрашенные полосы.
Другой пример того же явления показан на рис. 14.
Рис. 14. Свет, падающий на экран, дает интерференционную картину.
На нем мы видим, что происходит, когда острый край бросает тень на какую-либо поверхность. Световые лучи рассеиваются на краю экрана, как показано на рис. 14.
Часть рассеянного света попадает в область тени, и поэтому близ ее края она оказывается несколько менее темной. Однако часть рассеянного света попадает в освещенную область, интерферируя там с прямым светом. Например, если рассеянный свет на своем пути к точке А проходит в обход путь, превышающий путь прямого луча на 1/2 волны (или на 3/2, или на 5/2 волны и т. д.), то оба луча дадут темноту (рис. 15).
Рис. 15. Интерференция света. Если прямой луч на 1/2, 8/2, 5/2 и т. д. длины волны короче рассеянного луча (источник — край препятствия — точка А), то в точке А будет темнота. Это рис. 14, видимый сверху.
Поэтому около края тени мы получим темные полосы. Чем меньше длина волны, тем уже полосы. Обычно эти полосы не видны невооруженным глазом, но, как показано на фото II, их можно увидеть при помощи оптических инструментов.
Эти явления, а также многие другие явления того же характера убедительно доказывают волновую природу света. Они позволяют также измерять длину световой волны. Например, зная толщину такой нефтяной пленки, которая не отражает красного света, мы можем сказать, какова длина волны этого света. Подобные измерения показали, что длины волн видимого света лежат между 4·10-5 и 8·10-5 см, причем красный свет имеет наибольшую, а фиолетовый — наименьшую длину волны. Мы знаем скорость света и поэтому можем сказать, сколько раз в секунду проходят гребни или впадины волн мимо некоторой точки. Это число называется частотой света. Оно указывает число колебаний в секунду в световой волне. Красный свет имеет частоту 4·1014/сек, фиолетовый — около 8·1014/сек. Эти колебания происходят чрезвычайно быстро, и поэтому их нельзя наблюдать непосредственно.
После того, как мы установили волновую природу света, нам приходится рассмотреть важный вопрос: каким типом волн являются световые волны? что служит их носителем и каковы те колебательные изменения, которые образуют волну? Ответ на этот существенный вопрос был получен в конце XIX века Джемсом Кларком Максвеллом и Генрихом Герцем. Совокупность идей и открытий, приведших к этому ответу, составляет одну из самых захватывающих глав в истории науки. Но прежде чем мы дадим ответ на поставленные выше вопросы, нам нужно познакомиться с двумя фундаментальными понятиями: электричеством и магнетизмом.
Поверхностное рассмотрение явлений природы не раскрывает важнейшей роли электричества. Единственные два безусловно электрических явления в природе — это молния и электризация трением. Если первое подавляет нас своей величественностью и разрушительной силой, то второе вообще не производит на нас никакого впечатления. Электризацию трением можно иногда увидеть: при трении предметов о какое-либо вещество они притягивают кусочки бумаги и частицы пыли, а прикосновение этих предметов к металлу приводит к появлению слабеньких электрических разрядов. Эти явления не кажутся столь же важными, как тяготение и свет, и поэтому до конца XVIII века их считали менее существенными, побочными. В наше время, конечно, роль электричества особенно подчеркивается его техническими приложениями; однако истинное значение электричества в природе вышло на передний план только в последнее время, в связи с развитием атомной физики, когда оказалось, что почти все явления, которые мы видим вокруг нас в природе, основаны на электрических силах и их действиях.
В первую очередь здесь следует отметить существование двух родов электричества. Предмет может быть заряжен электричеством как одного, так и другого рода. Они называются положительным и отрицательным электричеством, но в этих названиях не отражено качественное различие между ними. Положительное электричество ничем не «лучше» отрицательного. Ученые, которые дали им эти названия, с тем же успехом могли назвать положительное электричество отрицательным и наоборот. Заряженные объекты воздействуют друг на друга. Если они заряжены разноименным электричеством, то они притягиваются, если одноименным — отталкиваются.
Электрические заряды противоположного знака могут взаимно уничтожаться. Положительно заряженное тело можно сделать электрически нейтральным, если сообщить ему равное количество отрицательного электричества. Следовательно, если какое-либо тело не заряжено, то оно может либо совсем не нести электрического заряда, либо нести равные количества положительного и отрицательного заряда. Одно из великих открытий физики заключалось в обнаружении того, что незаряженное вещество действительно состоит из положительных и отрицательных электрических зарядов.
Электрические заряды могут двигаться в веществе. Движение заряда особенно легко совершается в металлах. Металлическая проволока, соединяя два противоположно заряженных тела, немедленно разряжает их, так как противоположные заряды притягиваются. Отрицательное электричество в одном теле переходит к положительному в другом, и наоборот. Движения заряда в металлической проволоке мы называем электрическим током. В настоящее время мы имеем готовые «заряженные объекты» у себя дома. Два гнезда штепсельной розетки постоянно поддерживаются заряженными электричеством противоположного знака, так что в любой соединяющей их проволоке возникает ток, поддерживаемый электрической силой, действующей между гнездами.
Тщательное исследование того, что же именно движется в проволоке, показало, что движется отрицательное электричество; положительное остается в самом теле. Отрицательное электричество состоит из маленьких «атомов» электричества, электронов — частиц, с которыми мы часто будем иметь дело в этой книге. Все вещества как бы заполнены электронами.
Отрицательный заряд электронов в веществе обычно уравновешен равным количеством положительного. Положительный же заряд представляется связанным с веществом и, следовательно, неподвижным. Позже мы увидим, что положительный заряд находится в центре атомов и поэтому должен оставаться с ними. Электроны легко удалить из любого вещества или прибавить к нему. Если добавить к веществу некоторое количество электронов, то оно приобретает отрицательный заряд; если удалить часть электронов, то возникает избыток положительного электричества и вещество заряжается положительно.
Мы здесь впервые заглянули в электрическую природу материи. Поверхностному взгляду она не показывает своего электричества; оно маскируется тем, что отрицательные и положительные заряды в веществе обычно точно уравновешивают друг друга, и мы не можем обнаружить никакого избыточного заряда. Тем не менее результаты более глубоких исследований показывают, что вещество состоит из электрически заряженных частиц — подвижных отрицательных электронов и центров атомов, несущих положительные заряды.
Вернемся теперь к силе взаимодействия заряженных объектов. Она зависит от расстояния между зарядами. Например, взаимодействие противоположных зарядов в штепсельных гнездах обычной проводки слишком слабо, чтобы гнать электроны от одного гнезда к другому. Но если достаточно сблизить гнезда (примерно на 0,025 см), то это взаимодействие станет достаточно сильным, чтобы заставить электроны пройти зазор, и мы увидим искру.
Силу взаимодействия двух заряженных объектов легко измерить. Сила притяжения, действующая между частицами с положительным и отрицательным зарядами, убывает обратно пропорционально квадрату расстояния, т. е. по тому же закону, по которому убывает с расстоянием сила тяготения. Конечно, сила тяготения действует между любыми двумя массами, тогда как электрическое притяжение действует только между объектами, несущими противоположные заряды. Если оно действует между очень маленькими заряженными телами, то сила электрического притяжения обычно гораздо больше гравитационной силы (т. е. силы тяготения). Эта аналогия между силами приводит нас к чрезвычайно существенному выводу: отрицательные электроны в веществе притягиваются положительными центрами атомов примерно таким же образом, как и планеты притягиваются Солнцем. Поэтому мы полагаем, что электроны вращаются вокруг атомных центров так же, как планеты вокруг Солнца. Это заключение имеет очень большое значение в теории атома, что мы и увидим в следующей главе.
Мы реже замечаем магнитные явления в природе, чем электрические. Конечно, компасом пользуются везде и всегда, но это кажется чем-то столь естественным, что никто уже не задумывается над физической стороной дела. Магнитными свойствами обладает лишь небольшое число металлов, хотя некоторые из них распространены весьма широко, например железо. Тем не менее магнетизм — явление поразительное; когда мы держим в руке магнит и кусок железа, то замечаем силу особого рода — некую «силу природы», подобную силе тяжести (рис. 16).
Рис. 16. Магнитное поле, показанное железными опилками.
Весьма важным оказалось обнаружение тесной связи магнетизма с электричеством. На такую связь между ними впервые указал датчанин Ганс Христиан Эрстед в начале XIX века. Он установил, что электрический ток, текущий по круговой или спиральной проволоке, действует точно так же, как магнит, и создает магнитную силу. Это открытие привело француза Андре Ампера к предположению, что обычный стальной магнит должен действовать по тому же принципу, и он заключил, что в каждом атоме имеется слабый круговой ток; если большинство этих атомных токов ориентировано в одном направлении, то возникает магнитная сила. Гипотеза Ампера оказалась совершенно правильной.
Связь между электричеством и магнетизмом взаимна. Не только электричество создает магнетизм, нс и магнетизм создает электричество. Если какой-либо магнит движется вблизи электрической проволоки или проволока движется вблизи магнита, в ней возникает ток. Переменная магнитная сила индуцирует ток и, следовательно, действует точно так же, как и электрическая сила. На этом принципе основаны наши генераторы — устройства, производящие ток, применяемый в технике. В генераторах при вращении якоря намотанные на него витки проволоки движутся в магнитном поле, и в проволоке возникает электрический ток. В каких бы условиях ни изменялось магнитное поле, оно всегда создает электрическую силу, приводящую в движение электрические заряды.
Изучение связи между электрическими и магнитными явлениями привело к открытию нового явления природы — совокупного электрического и магнитного поля. Оно было сделано примерно в середине XIX века. Мы обязаны этим открытием главным образом Фарадею, Максвеллу и Герцу. Возникшие отсюда новые представления не только глубоко повлияли на наше понимание природы, но и изменили наш образ жизни, так как они стимулировали развитие энергетики и радиотехники. Понятие электромагнитного поля связано с тем удивительным обстоятельством, что электрические заряды или магниты оказывают действие на другие объекты (заряды или магниты), не находящиеся в непосредственной близости от них. Электрические и магнитные силы действуют в пространстве на расстоянии. Как это может быть? Что передает это действие от одного тела к другому?
Чтобы понять это действие на расстоянии, воспользуемся представлением о поле. Каждый электрический заряд служит центром, или источником, электрического поля. Это поле есть свойство самого пустого пространства. Пространство в окрестности заряда находится в состоянии натяжения. Последнее можно измерить, воспользовавшись пробным зарядом, на который при его помещении в поле будет действовать некая сила. Притяжение положительного заряда А и отрицательного В можно описать следующим образом (рис. 17).
Рис. 17. Электрическое поле вокруг положительного заряда А. В пространстве вокруг А создается натяжение. На отрицательный заряд В действует сила, направленная к А.
Заряд А создает электрическое поле в пространстве вокруг себя. Когда в это поле помещают заряд В, он начинает испытывать действие поля как силу, толкающую его в направлении А. Точно так же поле заряда В толкает заряд А.
Подобные же поля создают магниты в окружающем их пространстве. Они называются магнитными полями. Это — «натяжение» в пространстве другого типа. Оно действует на любой кусок железа, находящийся в данном участке пространства; «натяжение» принимает характер силы, толкающей железо к магниту.
До сих пор понятие поля служило только для сложного способа описания сил взаимодействия зарядов или магнитов. Однако связь электрических и магнитных явлений показывает, что эти поля существуют и сами по себе. Возьмем, к примеру, индуцирование тока в проволоке путем движения магнита вблизи нее. При движении магнита его магнитное поле в том месте, где находится проволока, меняется со временем: с приближением магнита поле растет, с удалением — убывает. В результате этих изменений в проволоке индуцируется ток: они приводят заряды в движение. Следовательно, переменное магнитное поле делает то, что по предположению делает электрическое поле, — переменное магнитное поле создает электрическое поле.
Рассмотрим теперь создание магнитного поля электрическими силами. В данном случае магнитное поле создает ток. Ток — это движение зарядов, каждый из которых несет электрическое поле. Итак, мы видим, что движущееся электрическое поле создает магнитное поле, точно так же, как движущееся магнитное поле создает электрическое.
Связь между электрическим и магнитным полями занимала умы физиков в течение всей первой половины XIX века. Наибольший вклад в решение этой проблемы внес великий английский физик-теоретик Джемс Кларк Максвелл, который, кроме того, смог математически описать полученные результаты. Математические соотношения, связывающие оба поля, являются основой наших знаний об электрических явлениях; эти соотношения называются уравнениями Максвелла. Содержащаяся в них концепция явилась поворотным пунктом в нашем понимании природы и породила бесчисленные направления в физике и технике, среди которых мы упомянем здесь лишь радио, радиолокацию и телевидение.
Максвелл тщательно изучил связи между обоими полями и пришел к следующему интересному вопросу: если электрическое и магнитное поля существуют сами по себе, то не могут ли они существовать независимо от зарядов и магнитов? Конечно, статические (постоянные) поля могут существовать только близ зарядов и магнитов, но как же обстоит дело с переменными полями? То обстоятельство, что переменное поле создает поле другого рода, наводит на мысль о возможности самоподдерживающегося процесса. Изменяющееся электрическое поле создает магнитное; создаваясь, последнее увеличивается и поэтому само создает электрическое поле и т. д. Анализируя эти соотношения количественно, Максвелл показал, что данный процесс распространяется в пространстве, т. е. что переменное электрическое поле в одной точке создает магнитное по соседству с ней, которое в свою очередь вызывает электрическое еще немного дальше, и так снова и снова. Таким образом возникает колеблющееся электромагнитное поле, непрерывно расширяющееся в пространстве. Каким бы способом ни возникало переменное электрическое или магнитное поле — например, в результате колебаний зарядов или появления магнитов, — поле будет распространяться во всех направлениях. Скорость его распространения можно вычислить по данным о наблюденном токе, индуцированном движущимися магнитами, или по данным о магнитном поле, создаваемом токами. В результате эти вычисления показали, что скорость распространения электромагнитного поля равна 3·108 м/сек, т. е. в точности равна скорости света.
Это был один из великих моментов. Тот день, когда Максвелл завершил свои расчеты, по праву считается одним из знаменательных дней в истории физики. Максвелл пользовался в своих вычислениях только измерениями электрических токов и магнитных полей, т. е. явлениями, которые, казалось бы, не имеют ничего общего со светом; однако он заключил из этих измерений, что колеблющееся электрическое поле распространяется в виде волн со скоростью, точно совпадающей со скоростью световых сигналов. Таким образом была открыта связь между двумя областями физики, которые казались совершенно несвязанными, между оптикой и электричеством.
От результатов Максвелла до заключения, что свет есть не что иное, как распространение электромагнитных волн, оставался лишь очень малый, но смелый шаг. После того, как он был сделан, множество разрозненных фактов стало на свое место. Например, нам сразу же становится ясно, почему нагретое до высокой температуры вещество испускает свет. Это вытекает из того, что вещество состоит из электрических зарядов. При высоких температурах заряженные частицы вещества, в частности электроны, совершают интенсивные и быстрые движения; в результате этого они создают быстро меняющиеся электрические поля, которые вызывают распространение полей в пространстве со скоростью света, т. е. испускается свет.
Если представление Максвелла об электромагнитной природе света верно, то должно быть возможным создание новых видов света. Любой электрический заряд или магнит, приведенный в колебание, породит поле, распространяющееся в пространстве, и будет служить источником света с частотой, равной частоте колебаний самого заряда или магнита.
Например, при пропускании по проволоке переменного электрического тока будут излучаться электромагнитные волны: их можно обнаружить на большом расстоянии, поместив на пути волн другую проволоку, в которой будут наблюдаться слабые наведенные токи. Этот опыт был впервые осуществлен в 1880 г. Герцем, который хотел проверить правильность идей Максвелла. Успех Герца открыл новую эру в технике. В настоящее время пространство полно таких радиоволн, испускаемых переменными токами в антеннах и отличающихся от световых волн только частотой, и длиной волны. Конечно, колебания, искусственно вызываемые в антеннах, происходят значительно медленнее колебаний электронов в накаленных проволочках ламп. Поэтому радиоволны имеют ту же природу, что и световые, но их частота гораздо меньше, или длина волны значительно больше (рис. 18).
Рис. 18. Спектр электромагнитных волн.
Теперь мы можем ответить на вопрос о природе световых волн: что же именно колеблется и что служит носителем? Колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство; это пространство находится в состоянии натяжения. Электрическое и магнитное натяжения распространяются в пространстве в виде световой волны, точно так же, как сгущения и разрежения распространяются в воздухе в виде звуковой волны. Электромагнитная волна носит двойственный характер. Электрические и магнитные натяжения распространяются вместе и тесно связаны друг с другом. Итак, свет имеет чисто электромагнитную природу. Световая волна — это волна электромагнитного поля, бегущая в пространстве и отделенная от испустивших ее зарядов.
Открытие Максвелла можно сравнить по важности с открытием закона тяготения Ньютоном. Ньютон связал движение планет с тяготением на Земле и открыл фундаментальные законы, управляющие механическим движением масс под действием сил. Максвелл связал оптику с электричеством и открыл фундаментальные законы (уравнения Максвелла), управляющие поведением электрических и магнитных полей и их взаимодействием с зарядами и магнитами. Труды Ньютона привели к введению понятия всеобщего поля тяготения, труды Максвелла — к введению понятия электромагнитного поля и к установлению законов его распространения.