13. Откуда берутся вихри?

Южный ураган

Я — тайна большая:

Храню, разрушая.

Козьма Прутков. Сродство мировых сил

Наблюдения показывают, что циклоны имеют отношение к проблеме солнечно-атмосферных связей. Как мы видели, изучение циклонов, о которых велась дискуссия между Робертсом, Вилкоксом, Хайнсом и другими, принесло гелиогеофизике первый серьезный успех. Засухи и избыточное количество осадков тоже можно связать с поведением циклонов, так как именно с приходом циклонов, как обычно говорят, устанавливается плохая погода.

Давно выявлены те районы нашей планеты, где циклоны зарождаются чаще всего. Оттуда они начинают свое движение и проходят порой огромные расстояния. Так, штормовые циклоны Западной Европы нередко приходят из тропиков. Сначала они идут вдоль берегов Северной Америки, потом пересекают Атлантический океан.

Часть из них движется потом по Европе. Русло Невы расположено вдоль обычного пути следования циклонов, и ленинградские наводнения связаны с их приходом. Так, в конце 1982 года мощный циклон зародился над Северной Америкой, прошел через южную часть Гренландии, Исландию, Скандинавию и обрушился на Балтику. У входа в Финский залив ураганный ветер поднял длинную нагонную волну, которая, разрастаясь и взламывая ледяной покров, двинулась на город. Вода поднялась на 215 сантиметров выше ординара. Приступ стихии завершился зимней грозой. Под раскаты грома ослепительные вспышки молний пронзали белую пелену густого снегопада. Это наводнение по счету 251-е за историю города на Неве. Между прочим, основатель города Петр Первый специальным указом запретил строить мосты через Неву (первые мосты появились только после его смерти): он хотел, чтобы россияне привыкали к морскому делу! Можно представить себе, что за условия для судоходства на Неве, когда циклоны гонят воду вспять…

Пройдя Финский залив и Неву, некоторые циклоны идут еще дальше и добираются до Сибири. И вот оказалось, что пути следования зимних циклонов в северо-восточной Атлантике и Европе в годы минимума солнечной активности и в годы ее максимума отличаются друг от друга. Возможно, это наблюдение дает ключ к пониманию региональности солнечно-атмосферных связей. В самом деле, отклонение циклона от преимущественного среднего пути приводит к недостатку влаги вдоль этого пути и отражается на состоянии живой природы, которая приспособилась к средним, обычным условиям. Но циклон не пропал: он ушел и унес влагу в другое место — там выпадет избыточное количество осадков.

Таким образом, одно и то же изменение солнечной активности приведет к уменьшению количества осадков в одном месте, его увеличению в другом, и никак не скажется в остальных районах планеты. Очевидно, такой же мозаичный характер должна иметь и реакция растительности на изменение солнечной активности. В работах основоположника гелиобиологии А. Л. Чижевского встречается утверждение, что более широкие годовые кольца на срезе дерева соответствуют периодам максимальной солнечной активности. Более поздние исследования показали и прямо противоположное, на основе этого иногда подвергалась критике гелиобиология вообще. Последние исследования говорят о том, что эти результаты не являются взаимно противоречивыми, просто каждый занимает свое место в общей картине. Сотрудники Воронежского лесотехнического института нашли, что здесь мы имеем дело с гелиобиологической связью через погоду: деревья просто-напросто реагируют на избыток или недостаток влаги. Поэтому в разных географических районах эта закономерность выглядит по-разному. Более того, она даже разная для различных пород деревьев.

Что же представляет собой циклон? Отдельный наблюдатель воспринимает его как ветер, зачастую очень сильный. Воистину страшным бывает он в циклонах, зарождающихся вблизи экватора, — в так называемых тропических циклонах (они же ураганы или тайфуны). Флоридский ураган 1935 года нес, например, песок с такой скоростью, что с людей на пляже сдиралась вся одежда и кожа, на трупах оставались только кожаные пояса и ботинки.

Циклон — это гигантский атмосферный вихрь, воздух в нем вращается. Представление о том, что сильный ветер есть вихрь, по-видимому, бытовало у многих народов; об этом говорят спирали, украшающие различных богов бурь.

Для науки вихревой характер урагана был открыт ученым-любителем У. Редфилдом, содержателем небольшого магазина в штате Коннектикут (США). Энтузиаст науки, он с детства интересовался морем и штормами. В 1821 году, объезжая после шторма штат, он обратил внимание на поваленные ветром деревья, В одном месте деревья лежали верхушками к северо-западу, тогда как на некотором расстоянии верхушки указывали противоположное направление. Отсюда Редфилд сделал вывод, что шторм представляет собой вращательную систему ветров. Затем на протяжении нескольких десятилетий он анализирует судовые журналы, беседует с капитанами и владельцами кораблей, собирает и обобщает все доступные ему сведения. Редфилд установил, что все ураганы движутся вперед с переменной скоростью, их траектории имеют много общих черт, что направление вращения ураганов одинаковое (теперь мы знаем, это относится к одному полушарию Земли, по другую сторону экватора направление вращения противоположное). Под влиянием работ Редфилда в исследование ураганов включились многие его современники. Часто это были люди, по первоначальной профессии очень далекие от метеорологии — военный инженер, военный хирург и т. д., но имевшие случай наблюдать лично ураганы или их последствия. Превращение привычного неощутимого воздуха в грозную разрушительную силу, сосредоточенную на сравнительно небольшой территории, производило такое впечатление на этих исследователей и так мобилизовало их творческие силы, что им удалось привести в систему массу сведений и создать книги, не потерявшие своей ценности и до наших дней. Один из них и окрестил закрученный ветер циклоном (от греческого слова, означающего "колесо, круг, кольца змеи").

Для всех приземных циклонов характерен один и тот же "джентльменский набор" свойств. Давление в них понижается от периферии к центру, к центру же по спирали течет воздушный поток (рис. 10), в центральной части развивающегося циклона образуется мощная облачность и выпадают осадки. Вращение Циклонов Северного полушария идет против часовой стрелки, Южного — по часовой. Кроме того, тропический циклон, ураган, имеет так называемый "глаз", зону относительного затишья в центре. У внетропических циклонов "глаза" нет.

Рис. 10. Схема тропического циклона (урагана)

Если принять некоторые из этих свойств за определяющие, то остальные можно пояснить через них. Посмотрим, например, как благодаря восходящему потоку воздуха в центре циклона появляется облачность и выпадают осадки. Выделив мысленно какой-нибудь объем воздуха, проследим за его движением. Поднимаясь в более разреженные слои атмосферы, этот объем расширяется и остывает (явление, обратное нагреванию воздуха при его быстром сжатии в велосипедном насосе). При этом содержащийся в объеме водяной пар будет конденсироваться, создавая облачность и осадки; кроме того, превращение пара в воду происходит с выделением тепла. Это тепло приводит к дополнительному расширению газа и помогает ему подниматься. Больше всего пара содержит воздух над прогретым океаном вблизи экватора, поэтому восходящие потоки должны быть особенно сильными в тропических циклонах. Именно поэтому тропический циклон мощнее внетропического.

Через понижение давления к центру циклона можно объяснить спиральность потока в нем и направление вращения циклонов в разных полушариях. Для этого достаточно лишь припомнить сообщенный нам в школе факт, что благодаря вращению Земли реки Северного полушария подмывают правые свои берега, а Южного — левые. Другими словами, речной поток отклоняется от своего основного направления и набегает на берег. У воздушных течений берегов нет, и ничто не мешает им закручиваться. Такой поток будет втекать в область пониженного давления по спирали. Это и означает, что циклон Северного полушария вращается против часовой стрелки (если смотреть сверху на движение воздуха у поверхности Земли), а циклон Южного полушария — по часовой стрелке.

Таким образом, в облике циклона многое понятно. Неясно лишь, почему он возникает. Особенно эта неясность чувствуется при сравнении циклона с другими атмосферными вихрами. Мы только что вывели ряд свойств развивающегося циклона из одного лишь факта, что в центре его существуют восходящие потоки воздуха. Но факт этот нельзя считать принципиально важным для существования самого вихря. В самом деле, у другого гигантского атмосферного вихря — антициклона — воздушные потоки в его центральной части направлены вниз. Правда, из-за такого направления потоков этот вихрь остается невидимкой: поскольку для него не характерны осадки, воздух в нем прозрачен. Но это не меняет существа дела: он очень похож на циклон. Только в центре антициклона давление повышено и вращается он всегда в сторону, противоположную направлению вращения циклона. Почему, читатель поймет, повторив наши рассуждения для растекающихся потоков.

Нельзя сказать, что циклон обязан своим существованием центральной области пониженного давления, хотя, как мы только что видели, спиральность воздушных потоков и направление вращения циклона связаны с наличием такой области. Действительно, многие образующиеся по тем или другим причинам области пониженного давления быстро "заполняются" устремляющимися в них (по спирали, конечно) потоками воздуха, и давление выравнивается. Но такого выравнивания не происходит и давление в области продолжает падать, когда на ней "заводится" циклон со всем комплексом его признаков (восходящими потоками и пр.). Что тут есть следствие чего, неясно.

Наконец, нельзя считать, что вращение Земли, определяющее направление вращения циклона и антициклона, так уж принципиально важно для развития атмосферного вихря. У циклона есть родственник — вихревое образование, гораздо меньшее по размерам, зато с гораздо большими скоростями ветра: смерч, или торнадо. В его центральной части имеются восходящие потоки, и, самое главное, зона пониженного давления в его центре выражена намного резче, чем у циклона (люди, над которыми прошел смерч, говорят, что изнутри он выглядит, как внутренность высокой стопки автомобильных шин). И вот, несмотря на это, встречаются смерчи, которые вращаются не в ту же сторону, что циклоны того же полушария, а в противоположную. Ясно, что вращение этих вихрей не предопределяется вращением Земли.

Не удивительно, что происхождение циклонов и антициклонов (циклогенез) считается одним из труднейших вопросов метеорологии.

Еще менее изученными оказываются смерчи, хотя вниманием людей они не обделены. Они часто случаются в Соединенных Штатах Америки: лишь в течение одного месяца — мая 1982 года — над разными районами США промчалось в общей сложности 365 смерчей. В этой стране смерчи считаются подлинным национальным бедствием, настолько велика их разрушительная сила. В сельскохозяйственном штате Канзас, например, фермерские семьи имеют специальные убежища, чтобы прятаться при приближении смерча.

Смерч появляется внезапно, на своем пути он перемалывает почти все (в том числе и приборы, которые могли бы замерить его физические характеристики). Правда, некоторые предметы, встретившиеся ему на пути, он оставляет совершенно неповрежденными. Известен случай, когда в налетевшем смерче исчезли коровник и корова, но женщина, доившая ее в коровнике, осталась сидеть на месте; возле нее, как и прежде, стояло ведро с молоком. Разнообразием своего поведения смерч похож на живое существо, действующее по своей воле и всячески не желающее, чтобы его изучали.

На эту тему написал один из своих рассказов известный писатель-фантаст Рей Брэдбери. В нем утверждается, что смерч непостижим для современной науки потому, что обладает способностью усваивать интеллекты погибших в нем исследователей-метеорологов. Больше того чувствуя, что кто-то о нем слишком много знает, смерч начинает гоняться за этим человеком и в конце концов настигает его. Тем самым смерч спасается от разоблачения и заодно умнеет еще больше. При нашем уровне знаний о смерчах нетрудно поверить и фантасту.

Собственно природа вихрей — это предмет исследования уже не столько метеорологии, сколько другой науки — механики жидкости и газа. В самом деле, метеоролог, например, изучает условия, при каких возникают тропические циклоны, а при каких — смерчи. Он выясняет, что тропические циклоны, как правило, появляются над морем, а смерчи — над сушей, над теми ее областями, где сталкиваются разные по температуре, плотности, влажности воздушные массы и холодные потоки движутся ниже слоев теплого влажного воздуха. Но, хотя условия возникновения ураганов и смерчей разные, сами вихри оказываются похожими. Значит, свойства их определяются самой средой — воздухом.

По существу, вихри отличаются друг от друга лишь размерами и, если можно так выразиться, развитостью вихревых свойств. Чем меньше вихрь по размерам, тем ярче выражены его вихревые свойства. Сопоставим, например, те вихри, в которых вращение идет вокруг области пониженного давления в центре. Самый большой из этой группы — внетропический циклон. Он достигает нескольких тысяч километров в поперечнике, высота его колеблется между 2–4 и 15–20 километрами, скорость ветра в нем не превышает 40–70 километров в час Давление в его центре процента на два меньше, чем на периферии. Его средний собрат, ураган, имеет горизонтальные размеры в несколько сот километров, высота его- 12–15 километров, скорость ветра в нем достигает уже 400–600 километров в час, давление в центре падает на 10 процентов, ураган имеет характерную полость внутри — "глаз". Меньший брат, смерч, имеет в поперечнике от нескольких метров до 2–3 километров, высоту — от нескольких десятков метров до 1500–2000 метров. А скорость ветра в нем иногда превышает звуковую (1200 километров в час!). Давление в его центре падает на 20 процентов. "Глаз" очень четкий, имеет вид пустого черного цилиндра.

Заметим, что перепады давления в смерче фантастически резкие. Однажды там, где прошел смерч, была найдена курица, ощипанная с одной стороны. Вообще-то много раз бывало, что смерч оставлял после себя ощипанные тушки кур, попавшихся ему на пути: давление в нем гораздо меньше, чем в воздушных пузырьках, находящихся у основания куриных перьев, и воздух этих пузырьков попросту выталкивал перья наружу. Полу-ощипанная курица — свидетельство того, что на расстоянии всего нескольких сантиметров давление менялось от "ощипывающего" до обыкновенного.

Удивительная концентрированность вихря, резкость перепадов скорости образующих его потоков наводят на размышления с философским оттенком. В самом деле, отчего объект может так сильно выделиться из среды, его породившей? Где обычное унылое противодействие внутреннего трения (вязкости) и теплопроводности? Они ведь все сглаживают и выравнивают, стремясь уничтожить возникшие неоднородности. Почему, вместо того чтобы терять очертания, расплываться, возникшая неоднородность развивается и "обостряется"? Авторы множества работ рассматривают, как именно "сходит на нет" та или другая неоднородность (вспомним идею "тепловой смерти Вселенной" и т. п.), но очень немногие — возникновение и "самоорганизацию" этих неоднородностей. Оказывается, не только создавать труднее, чем разрушать, но и понять возникновение труднее, чем разрушение.

Как устроен "изнутри" такой вихрь? О чем говорит его странная избирательность — оставлять некоторые предметы нетронутыми посреди разрушений? Козьма Прутков правильно понял: "…Храню, разрушая". Откуда удивительное умение смерчей и ураганов вгонять продолговатые предметы во что угодно: соломинки — в твердые комья глины, палки — в толстые стволы деревьев и т. д. Очень своеобразны эти атмосферные вихри…

Вообще в природе вихри возникают во множестве. Они появляются в той части потоков, где скорость быстро меняется в поперечном к потоку направлении; каждому приходилось видеть вихри в быстрой реке на переходе от быстрины к замедленному течению у берега.

Целая цепочка вихрей может тянуться за движущимся предметом, скажем автомобилем. Их особенно удобно наблюдать на шоссе в метельные дни, когда машина обдувается крепким встречным ветром, а хлопья снега "проявляют" движение прозрачного воздуха. Такие же вихри появляются при обтекании препятствий. Часто вихри дробятся и множатся и, став маленькими, теряют свою скорость из-за действия сил вязкости и исчезают:

От крупных вихрей — малые,

Что кормятся их скоростью,

От маленьких — мельчайшие,

И далее — до вязкости, —

писал об этом процессе математик Л. Ф. Ричардсон (1881–1953), переиначив строки рапсодии Джонатана Свифта (1667–1745) "О поэзии":

Натуралисты знают,

Что маленькие блохи крупных блох кусают,

А их терзают меньшие,

И так до бесконечности.

Но бывает, что вихри сливаются друг с другом. Можно создать одиночные вихри, обладающие поразительной целостностью, устойчивостью, живучестью. Например, вихревые кольца, которые умеют выпускать некоторые курильщики, летят высоко под потолок, тогда как просто дым от папиросы, едва поднявшись, разбивается на струйки, перемешивается с воздухом и расплывается. Американский физик, виртуоз-экспериментатор Р. Вуд показывал своим студентам опыты, при которых большие вихревые кольца пересекали просторную аудиторию и со стуком ударялись об ее стену.

Понять все эти вихри нелегко. Современная математика не может пока описать зарождение одиночного вихря даже в более простой, чем воздух, среде — несжимаемой жидкости. До сих пор не решена задача о возникновении водоворота, который получается при сливе жидкости через отверстие в дне сосуда: слишком сложными оказываются уравнения и слишком мною величин в них "завязано". Наши знания этих вихрей основаны в основном на наблюдениях. Главное в вихре — то, что он вращается. Почему же и в какую сторону вращается водоворот?

Популярную литературу обошло утверждение, что появление водоворота обусловлено вращением Земли. Но тогда он должен вести себя, как циклон, и вращаться в Северном полушарии против часовой стрелки, а в Южном по часовой. Водоворот, который всегда вращался в "циклоническую" сторону, наблюдали сотрудники полярной станции, дрейфовавшей на льдине в Арктике. Весной им приходилось регулярно сверлить дырку в своей льдине, чтобы слить воду, мешавшую садиться самолетам на их ледовый аэродром. Стекаясь в одну точку с большой площади, вода создавала мощный, ревущий водоворот. это зрелище было развлечением всех сотрудников станции. Другое дело на экваторе. Его можно отнести как к Северному, так и к Южному полушарию. Водоворот доложен здесь вращаться одновременно и против, и по часовой стрелке. Единственный способ, каким можно выйти из этого положения, — это не вращаться вообще. Ведь известно, что мощные атмосферные вихри не возникают в узкой полосе широт по обе стороны от экватора! Выходит, по той же самой причине на экваторе не должен возникать водоворот. Однако в умывальниках и ваннах Экваториальной Африки вода закручивается в стоке не хуже, чем на средних широтах. Это говорит о том, что вращение Земли в данном случае ни при чем.

По-видимому, дело здесь в том, что с самого начала вода случайно оказывается чуть-чуть закрученной и что отверстие в дне сосуда не строго симметрично. Когда в опытах использовали очень симметричный сосуд и давали воде в нем как следует отстояться (успокоиться), прежде чем ее начинали спускать, водоворот не появлялся. Заметим, кстати, что циклоны так же несимметричны. Всем известны фотографии циклонов, сделанные сверху — с борта спутника или со специальных укрепленных самолетов метеослужбы. На них видны облачные рукава циклона, которые делают его похожим на спиральную галактику. Не вполне ясно, обладает ли такой структурой антициклон. Его фотографии не так выразительны, как изображения циклонов: осадки в нем редки, поэтому антициклон прозрачен и труднее различим.

Вообще физически ясно, что вращение Земли должны "ощущать" лишь те вихри, в которых движение вещества в горизонтальной плоскости довольно медленное. Иначе, двигаясь к центру или от центра вихря, вещество просто "не успевает заметить", что Земля вращается, и направление вращения вихря будет определяться конкретными условиями в самом вихре. Что это за условия, мы пока не знаем. Недаром в своих популярных статьях известный советский специалист по физике элементарных частиц Я. А. Смородинский замечает, что частицы появляются и исчезают, подобно вихрям на воде. "Но кто знает, откуда берутся вихри?" — спрашивает он.

По-видимому, именно неизученность внутренних свойств вихря приводит к тому, что метеорологи знают, может ли в данной ситуации появиться циклон, но не знают, появится ли он. Так, лишь 10 процентов образовавшихся в тропиках областей пониженного давления развиваются в ураганы, остальные бесследно исчезают. Какие именно из них разовьются, предсказать пока нельзя.

Поэтому людям приходится сейчас рассчитывать только на службу предупреждения, которая оповещает о приближении уже сложившихся вихрей. Выгоды, которые она приносит, давая прогнозы для авиации, водного транспорта, сельского хозяйства, промышленности, несомненно велики, хотя и не всегда поддаются точному учету. Но самое главное, на ее счету тысячи и тысячи спасенных человеческих жизней.

Наблюдения из космоса помогают службе оповещения практически со времени появления первых спутников. Еще в 1962 году благодаря спутнику "Тайрос-3" было вовремя обнаружено зарождение урагана "Карла". 500 тысяч человек удалось заблаговременно эвакуировать из угрожаемых районов, и число жертв оказалось гораздо меньшим, чем могло бы быть. Как говорят метеорологи, погода не знает границ, и это заставляет ее исследователей всячески стремиться к международному сотрудничеству. Достижение на этому пути — создание телевизионной системы автоматической передачи изображений. Она дает возможность каждой стране с помощью довольно несложного оборудования получать телеснимки со спутников независимо от их государственной принадлежности, что сильно облегчает работу метеорологов. По всему миру действуют сейчас многие сотни тысяч таких станций.

В последнее время выяснилось, что наблюдение за самим космосом также имеет прямое отношение к предсказанию погоды. Уже говорилось, что между разреженной плазмой магнитосферы и нейтральной атмосферой Земли находится проводящий слой — ионосфера. За ней ведутся наблюдения с помощью радиолокатора. Подобно тому как аэродромный радиолокатор "видит" самолет благодаря различию электропроводящих свойств металла и воздуха, локатор, следящий за ионосферой, отмечает всякое различие в количестве заряженных частиц, от которого зависит электрическое сопротивление ионосферы. Мы узнаем таким образом о неоднородности ионосферы. Сейчас, когда ученые добились известной ясности в понимании процессов на космических высотах, стало возможно отличать один тип неоднородностей от другого. Так, выделились неоднородности, связанные с распространением внутренних волн в атмосфере. В течение последних лет ведется сопоставление характеристик ионосферы с погодными аномалиями у поверхности Земли (с сильными штормами, ураганами, торнадо, грозами). Оказалось, предвестником появления неподалеку таких аномалий являются внутренние волны с периодами от 3 до 25 минут на ионосферных высотах. С практической точки зрения важнее всего то, что источник волн, предвещающий ураган, располагается в том месте, куда этот ураган придет через 3–4 часа. Наблюдая за космосом, можно, таким образом, предсказать, куда пойдет ураган.

Заметим, что традиционные наблюдения из космоса за ураганом дают лишь его положение непосредственно в тот момент, когда ведется наблюдение. Правда, как только ураган обнаружен, за ним устанавливают непрерывное наблюдение. По спутниковым фотографиям метеоролог может нанести на карту траекторию, по которой прошел ураган. Потом, продолжая ее естественно и плавно, он может судить о том, куда будет двигаться ураган. Но все же прогноз дальнейшего пути движения урагана этими методами — дело сложное, хлопотливое и при всей своей трудоемкости далеко не всегда успешное. И если приход в данное место урагана хоть как-то предсказывается ими, то появление смерча-торнадо застает всех врасплох. Новый метод слежения за ионосферой позволяет предсказывать и смерч за 2–4 часа.

Таким образом, по состоянию ионосферы можно судить о будущих изменениях в плотной нижней атмосфере. Исследователи, обнаружившие это, предполагают, что движения приземных слоев воздуха в том месте, куда придет вскоре атмосферный вихрь, заставляют колебаться атмосферу. Эти колебания, передаваясь в верхние слои атмосферы, раскачиваются (вспомним блюдо с желе: стоит тронуть тяжелое основание, как легкая масса наверху ответит размашистыми колебаниями). Они-то и влияют на состояние ионосферы.

Еще одна подробность об ураганах и смерчах стала известна людям лишь в последние годы. Метеоролог Фудзита открыл неизвестное раньше атмосферное явление. Он назвал его нисходящим взрывом. Это внезапно возникающий стремительный поток воздуха, который движется вниз, к Земле, со скоростью 80-100 километров в час, скорость его в горизонтальном направлении 30-100 километров в час. Продолжительность этого явления составляет в среднем 15 минут, горизонтальные размеры потока всего несколько километров. Такой взрыв бывает причиной авиационных катастроф. Это явление происходит как само по себе, так и в сочетании с торнадо, ураганом или грозой. Примерно половина всех торнадо связана с нисходящим атмосферным взрывом. Оказалось, что капризность торнадо, его прыжки и извивы объясняются воздействием атмосферных взрывов. Иногда атмосферный взрыв может даже погасить торнадо.

В последние годы атмосферу изучают во всей ее толще. Оказывается, несмотря на колоссальную разницу в плотности между ее более высокими и низкими слоями, она во многих отношениях ведет себя как единое целое вплоть до высоты 100 километров. Многие крупные образования в ней развиваются практически одновременно на всех уровнях. Один и тот же циклон, например, может прослеживаться и в стратосфере (слое воздуха между 8-16 и 45–55 километрами) и значительно выше — до 100 километров. Ось его может быть наклонена, но остается единой для всех уровней.


Загрузка...