Вольный пересказ цитаты из статьи Andrew C. Revkin «NASA Chief Backs Agency Openness» (New York Times. 2006. 4 febr. ). Оригинальный текст: «In October, for example, George Deutsch, a presidential appointee in NASA headquarters, told a Web designer working for the agency to add the word “theory” after every mention of the Big Bang, according to an e-mail message from Mr. Deutsch that another NASA employee forwarded to The Times».
The Church and Astronomy / Ed. by St. Sulpice // New York Times. 1999. October 26.
Старкман, Гленн, Шварц, Доминик. Хорошо ли настроена Вселенная. Космология // В мире науки. 2005. № 11. Ноябрь.
Космическая загадка // В мире науки. 2004. №12.
The Fourth Harvard-Smithsonian Conference on Theoretical Astrophysics “The History of Nuclear Black Holes in Galaxies” Sponsored by Raymond and Beverly Sackler Monday, May 15 through Thursday, May 18, 2006 Harvard University, Gutman Library, 6 Appian Way, Cambridge, MA. Scientific Organizing Committee: Avi Loeb (chair), Andrea Ghez, Lars Hernquist, Rashid Sunyaev, and Scott Tremaine Local Organizing Committee: D. Adams, A. Loeb, N. Rathle, L. R.
Lewis Harry R. Excellence Without A Soul. How a Great University Forgot Education (Успех без души. Как великий университет забыл образование). Public Affairs, 2006 P. 22.
Ibid. P. 253.
Primack J.l R.,Abrams N. E. The View from the Center of the Universe: Discovering Our Extraordinary Place in the Cosmos // Riverhead Hardcover. 2006. April 6.
Недавно полученные данные действительно свидетельствуют в пользу наиболее популярной среди астрономов теории, согласно которой Вселенная заполнена холодным темным веществом («cold dark matter»), т. е. медленно двигающимися частицами, однако до сих пор неизвестной природы. С помощью цифровой камеры на 100 млн пикселей и мощного канадско-французско-гавайского телескопа на Гавайях за два года (начиная с 1999-го) были изучены формы свыше полутора миллионов отдаленных галактик, искаженные гравитационным воздействием на проходящие лучи со стороны 120 тыс. более близких галактик. Еще два года ушло на обработку данных. В результате был сделан вывод, что невидимые ореолы темного вещества, возможно, действительно существуют.
Second International Workshop on Gravitation and Cosmology, Las Villas Central University, Santa Clara, Cuba.
Закон Хаббла устанавливает зависимость между расстоянием до галактики D и ее лучевой скоростью Vr, оп–еделяемой с помощью эффекта Доплера: D = Vr / H, где H постоянная Хаббла. Ее значение известно лишь приблизительно (60-80 км/с/Мпк). Этот закон был эмпирически открыт американским астрономом Э. Хабблом в 1929 г. и отражает происходящее расширение Вселенной. Использование этого закона позволяет оценить расстояние до галактик или их систем, измерив их красное смещение, или лучевую скорость.
Эффект Комптона (Комптон-эффект) – явление изменения длины волны рентгеновского излучения вследствие рассеяния его электронами вещества. Длина волны фотона при рассеянии всегда увеличивается, что могло бы отчасти объяснить красное смещение в спектрах удаленных галактик.
Квазар (англ. quasar – сокр. от Quasi stellar radio source – «похожий на звезду радиоисточник») – класс внегалактических объектов, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от точечных источников – «звезд». Впервые квазары обнаружили в 1960 г. как радиоисточники, совпадающие в оптическом диапазоне со слабыми звездообразными объектами. В 1963 г. М. Шмидт (США) доказал, что линии в их спектрах сильно смещены в красную сторону. Принимая, что это красное смещение вызвано эффектом Доплера, возникшего в результате удаления квазаров, до них определили расстояние по закону Хаббла. Обнаружено уже более 5000 квазаров. Ближайший из них и наиболее яркий (3С 273) имеет блеск около 13m и красное смещение z = 0,158 (что соответствует расстоянию около 2 млрд световых лет). Самые далекие квазары, благодаря своей гигантской светимости, превосходящей в сотни раз светимость нормальных галактик, видны на расстоянии более 10 млрд световых лет. Нерегулярная переменность блеска квазаров указывает, что область генерации их излучения имеет малый размер, сравнимый с размером Солнечной системы. Последние наблюдения показали, что большинство квазаров находятся вблизи центров огромных эллиптических галактик, даже для тех квазаров, у которых ранее не были найдены родительские галактики. Считается, что квазары представляют собой сверхмассивные черные дыры, на которые падает вещество.
Ellis George F R. Issues in the Philosophy of Cosmology // Mathematics Department and Applied Mathematics. University of Cape Town, e-print. 2006. May 15.
Гравитация (сила тяготения) – одна из четырех известных фундаментальных взаимодействий в природе. Три другие включают в себя электромагнитные силы (electromagnetic force), силы слабого (weak nuclear force) и сильного (strong nuclear force) ядерного взаимодействия. Гравитация – самый слабый вид этих взаимодействий, однако она действует на огромных расстояниях и всегда в качестве притягивающей силы. Ньютоновские законы тяготения утверждают, что каждое тело во Вселенной притягивает другое тело с силой, прямо пропорциональной произведению их масс, и обратно пропорциональной квадрату расстояния между ними.
Галактический кластер – суперструктура, состоящая из нескольких галактик, гравитационно связанных между собой.
В физике модифицированная ньютоновская динамика – Modified Newtonian Dynamics (MOND) – теория, делающая попытку объяснить проблему скорости ротации галактических дисков без допущения существования скрытого вещества (dark matter). MOND был предложен Мордехаем Мильгромом (Mordehai Milgrom) в 1981 г. Теория моделирует наблюдаемую униформность скорости вращения звезд в галактических дисках. Наиболее успешной релятивистской версией теории MOND является разработка под названием «TeVeS» (Tensor-Vector-Scalar), представленная в 2004 г. (Bekenstein, Jacob D. Modified Gravity vs Dark Matter: Relativistc theory for MOND, JHEP Conference Proceedings, 2005)
Lambda CDM – эта теория представляет собой основу современной модели «космологии Большого взрыва». Она призвана дать объяснение реликтовому микроволновому излучению (microwave background observations), а также наблюдаемым структурам кластеров галактик и теории «ускорения» расширения Вселенной (accelerating expansion), основанной на наблюдении сверхновых звезд определенного стандартного типа в удаленных галактиках – of the universe.
Термоядерный синтез – процесс, происходящий внутри звезд. Облака газа под действием гравитации коллапсируют и образуют звезды. В их ядрах возникают исключительно высокие температура и давление, что создает условия для термоядерных реакций, в результате которых ядра атомов сливаются. Именно этот процесс отвечает за разнообразие элементов во Вселенной, которые входят в состав периодической системы Менделеева. Огромная энергия, выделяемая в результате термоядерной реакции, заставляет светиться звезды, в том числе и наше Солнце.
Кварки – фундаментальные частицы, из которых состоят адроны, в частности протон и нейтрон. Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 г. Cлово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Mister Mark!» (обычно переводится как «Три кварка для мистера Марка!»), само слово «quark» в этой фразе предположительно является звукоподражанием крику морских птиц.
Два квантовых объекта, разделенных многометровым расстоянием и никак между собой не связанных, тем не менее «чувствуют» присутствие друг друга. Их поведение поразительным образом скоррелировано, так что измерения, выполненные с одним из них, мгновенно влияют на результаты измерений, выполняемых с другим.
Спектральный анализ – совокупность методов определения состава (например, химического) объекта, основанный на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, радиации, акустических волн, распределения по массам и энергиям элементарных частиц и др. Традиционно различают атомный и молекулярный спектральный анализ, «эмиссионный» по спектрам испускания и «абсорбционный» по спектрам поглощения, а также «масс-спектрометрический» по спектрам масс атомарных или молекулярных ионов. Спектральный анализ по оптическим спектрам атомов был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Атомы каждого химического элемента имеют строго определенные резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (темные или светлые) в определенных местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.
Нейтрино – частицы, участвующие только в слабом и гравитационном взаимодействиях. Чрезвычайно слабо взаимодействуют с веществом: нейтрино с энергией 1 МэВ может свободно пролететь через кусок свинца толщиной в сто световых лет! Также известно, что без видимых последствий каждую секунду через тело каждого человека на Земле проходит 100 000 000 000 000 нейтрино, испущенных Солнцем.
Цефеиды – класс пульсирующих переменных звезд с довольно точной зависимостью период – светимость, названный в честь звезды дельта Цефея.
«Новые звезды» – звезды, светимость которых внезапно увеличивается во много раз. Новые имеют неплохие шансы быть использованными в качестве стандартных свеч. Абсолютная звездная величина новой остается приблизительно одинаковой (-5,5) около 15 дней после взрыва. Определение расстояний галактик и скоплений галактик при помощи новых дают такую же точность, как и при использовании цефеид.
Космологическое красное смещение – наблюдаемое для всех далеких источников (галактики, квазары) понижение частот излучения, как считается, свидетельствующее о динамическом удалении этих источников друг от друга и, в частности, от нашей галактики, т. е. о расширении Вселенной. Красное смещение для галактик было обнаружено американским астрономом В. Слайфером в 1912-1914 гг.; в 1929 г. Э. Хаббл открыл, что красное смещение для далеких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон красного смещения, или закон Хаббла).
Нуклеосинтез в астрофизике – процесс синтеза ядер химических элементов тяжелее водорода. В процессе первичного нуклеосинтеза образуются элементы не тяжелее лития, стандартная модель Большого Взрыва предсказывает следующее соотношение элементов: водород – 75%, гелий – 25%, что хорошо согласуется с экспериментальными данными. Синтез более тяжелых ядер происходит в звездах. Легкие ядра (до углерода включительно) могут синтезироваться в недрах относительно немассивных звезд. Ядра до железа синтезируются путем слияния более легких ядер в недрах массивных звезд, синтез тяжелых и сверхтяжелых ядер идет путем нейтронного захвата в предсверхновых звездах и при взрывах сверхновых. Экспериментальным подтверждением этого факта служит низкое содержание тяжелых элементов в старых звездах, образовавшихся на ранних стадиях эволюции Вселенной из материи, образовавшейся в ходе первичного нуклеосинтеза.
Крупномасштабная структура Вселенной в космологии – структура распределения материи на самых больших наблюдаемых масштабах. По современным представлениям, вселенная представляет собой совокупность довольно плоских «листов», разделенных областями, в которых практически нет светящейся материи. Эти области (пустоты, англ. voids) имеют размер порядка сотни мегапарсек. Первым наблюдаемым листом стала Великая Стена, находящаяся в 200 млн световых лет и имеющая размер около 500 млн световых лет и толщину всего 15 млн световых лет.
Модель Фридмана – Леметра – Робертсона – Уокера – одна из космологических моделей, удовлетворяющих полевым уравнениям общей теории относительности, первая из нестационарных моделей Вселенной. Предложена Александром Фридманом в 1922 г. Модель Фридмана описывает однородную изотропную вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. Независимо от Фридмана описываемую модель позднее разрабатывали Леметр (1927), Робертсон и Уокер (1935), поэтому решение полевых уравнений Эйнштейна, описывающее однородную изотропную вселенную с постоянной кривизной, называют моделью Фридмана – Леметра – Робертсона – Уокера.
Реликтовое излучение (или космическое микроволновое фоновое излучение от англ. cosmic microwave background radiation) – космическое электромагнитное излучение с высокой степенью изотропности и со спектром, характерным для абсолютно черного тела с температурой 2,725 К. Считается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно ее заполняет. Экспериментально его существование было подтверждено в 1965 г. Наряду с космологическим красным смещением реликтовое излучение рассматривается как одно из главных подтверждений теории Большого взрыва.
Изотропия (изотропность) (от греч. isos – равный и tropos – направление) – одинаковость во всех направлениях, инвариантность, симметрия по отношению к выбору направления (в противоположность анизотропии).
Гомогенная система – система, состав и свойства которой во всех частях одинаковы.
В теории относительности доплеровское красное смещение рассматривается как совместный результат движения источника относительно приемника (обычный эффект Доплера) и замедления течения времени в движущейся системе отсчета (поперечный эффект Доплера, эффект специальной теории относительности). Следует отметить, что в космологии красное смещение интерпретируется не как результат действительного существования скорости удаленной галактики относительно наблюдателя (галактики в среднем неподвижны в сопутствующей системе отсчета, если не считать случайных, так называемых пекулярных скоростей), но как результат космологического расширения Вселенной.
Инфляционная модель Вселенной – гипотеза о физическом состоянии и законе расширения Вселенной на ранней стадии Большого взрыва (при температуре выше 10 в 28 степени градусов K), предполагающая период ускоренного по сравнению со стандартной моделью горячей Вселенной расширения. Предложена в 1981 г. Аланом Гутом и Андреем Линде.
Темная энергия – в космологии гипотетическая форма энергии, имеющая отрицательное давление и равномерно заполняющая всё пространство Вселенной. Согласно общей теории относительности, гравитация зависит не только от массы, но и от давления, причем отрицательное давление должно порождать отталкивание, антигравитацию. Согласно последним данным, обнаружившим ускоренное расширение Вселенной, такая сила должна действовать в космологических масштабах. Темная энергия также должна составлять значительную часть так называемой скрытой массы Вселенной. Существует два варианта объяснения сущности темной энергии: темная энергия есть космологическая константа – неизменная энергетическая плотность, равномерно заполняющая пространство; темная энергия есть некая квинтэссенция – динамическое поле, энергетическая плотность которого может меняться в пространстве и времени. Окончательный выбор между двумя вариантами требует высокоточных измерений скорости расширения Вселенной, чтобы понять, как эта скорость изменяется со временем. Темпы расширения Вселенной описываются космологическим уравнением состояния. Разрешение уравнения состояния для темной энергии является одной из самых насущных задач современной наблюдательной космологии.
Barbour, Julian. The End of Time: The Next Revolution in Physics. Oxford University Press, 2001.
Рыжов В.К Звездный нуклеосинтез – источник происхождения химических элементов // Соросовский образовательный журнал. 2000. Т. 6. № 8. С. 81. См. также: Спэрроу Ж. Вселенная. М. 2002. С. 92; ВибеД.З., Тутуков A.B., Шустов Б.М. Спиральные галактики и химическое обогащение межгалактической среды. Астрофизика на рубеже веков.
Шама Д. Вступление // Силк Дж. Большой взрыв. Рождение и эволюция Вселенной. М., 1982. С. 7.
Новиков И. Д. Эволюция Вселенной. 3-е изд., перераб. и доп. М, 1990. С. 23.
Эйнштейн А. О специальной и общей теории относительности (Общедоступное изложение) // Эйнштейн А. Собр. науч. трудов. Т. I. M., 1965. С. 530-600.
Ellis George F R. Issues in the Philosophy of Cosmology // Mathematics Department and Applied Mathematics. University of Cape Town, e-print. 2006. May 15.
Ellis G. F. R., Nel S. D., Stoeger W., Maartens R. Whitman A. P. Ideal Observational Cosmology // Phys Reports. 1985. Vol. 124. P. 315-417.
Barrow J., Tipler F. The Cosmological Anthropic Principle. Oxford, 1984.
McCrea W. A philosophy for big bang cosmology// Nature. 1970. Vol. 228. P. 21.
Isham C. J. Lectures on Quantum Theory: Mathematical and Structural Foundations. London; Singapore, 1997.