Часть четвертая Частицы, из которых построен мир

О природе вещей

Задавать всяческие вопросы, умные и глупые, глубокие и поверхностные, неожиданные и тривиальные, – неотъемлемое качество ума человеческого.

Никаких недоразумений не бывает, если ответы требуют не столько слов, сколько действия. Легко удовлетворить любопытство человека, желающего знать, «из чего построено» или «как устроено». Если речь идет о приборе, машине, кукле или о бабочке, лежащей на предметном стеклышке, то можно не рассказывать о структуре словами, а просто разобрать на глазах у спрашивающего таинственный предмет на части.

Нет сомнения, что подобные «анатомические» вопросы человек начал задавать на самой заре цивилизации. Но любознательность, конечно, не угасала и в тех случаях, когда получить ответ экспериментальным путем было невозможно. «Эксперимент» кончался на десятых долях миллиметра. Дальше наши предки могли пускать в ход лишь свою фантазию.

Первые ответы на вопрос, «из чего построен мир», дошедшие до нас, родились в Древней Греции более 25 веков назад. Нам эти ответы кажутся донельзя странными. Логику Фалеса, утверждавшего, что все состоит из воды, понять, скажем прямо, трудно. Нелегко поверить Анаксимену, утверждавшему, что все состоит из воздуха, или Гераклиту, который полагал, что мир состоит из огня.

Более поздние любители мудрости (так переводится слово «философ») не поддержали эти слишком элементарные теории и увеличили число первооснов или элементов. Эмпедокл утверждал, что элементов четыре: земля, вода, воздух и огонь. В это учение внес окончательные (на очень долгие времена) поправки Аристотель.

Согласно Аристотелю, все тела состоят из одного и того же вещества, но это вещество может принимать различные свойства. Невещественных «элементов-свойств» четыре: холод, тепло, влажность и сухость. Соединяясь по два и будучи приданными веществу, «элементы-свойства» Аристотеля образуют элементы Эмпедокла. Так, сухое и холодное вещество дает землю, сухое и горячее – огонь, влажное и холодное – воду и, наконец, влажное и горячее – воздух.

Ввиду трудности ответа на ряд вопросов философы древности добавили к четырем «элементам-свойствам» еще «божественную квинтэссенцию: что-то вроде бога-повара, готовящего суп из разнородных «элементов-свойств». После этого дела пошли лучше, ибо ссылкой на бога нетрудно было разъяснить любое недоумение.

На книжных полках многих библиотек стоит превосходный перевод поэмы Лукреция Кара «О природе вещей». Впрочем, скорее всего на месте этой книги нет, она на руках, так как интерес к поэме Лукреция не увядает. Что же это за поэма? Это эпическое произведение, но воспеваются в нем не подвиги героев-воинов, а гипотезы древнего грека Демокрита о строении мира из атомов.

Тела только кажутся сплошными, говорится в поэме. Не только газы и жидкости, но и твердые тела состоят из мельчайших неделимых частиц – атомов. Каждое тело имеет своего мельчайшего представителя – атом. У разных тел атомы различны, поэтому разные тела и обладают различными свойствами.

Я не так уж твердо уверен, что Демокрит и его ранние последователи представляли себе отчетливо коренные различия между своими рассуждениями, таившими в себе элементы научной теории, и рассуждениями, скажем, Фалеса, которые были не чем иным, как лишь игрой слов, ни на йоту не продвигавшую к познанию мира и в лучшем случае обладавшую поэтическим содержанием. Теперь это отличие нам ясно и потому наука с уверенностью прослеживает свои корни до Демокрита.

В чем же это отличие? Основным признаком научной теории является то, что слова и фразы, излагающие ее содержание, проверяются опытом, проверяются практикой.

Действительно, отнеситесь серьезно к тому, что элементы влажности и холода создают воду. Ну и что? Как это проверить? Как опровергнуть, если это неверно, и как подтвердить, если справедливо? Не видно никакой логической линии, которая вела бы нас от не имеющего смысла набора слов: «влажное и холодное дают воду» к каким-либо фактам, которые следовали бы или не следовали из этого детского лепета.

Иначе обстоит дело с атомной гипотезой. Если тело состоит из частичек, то вещества должны легко перемешиваться. Становится понятным, почему запах цветка мы слышим на расстоянии: это «атомы розы» (или лилии) отрываются от цветка и разносятся во все стороны ветром. Вода превращается в пар – это событие также легко объясняется наличием атомов: при нагревании невидимые частички отрываются от поверхности.

Мы предсказали ряд явлений. Протянули логическую ниточку от гипотезы к следствиям. Но… остроумная гипотеза, качественно объясняющая факты, еще не теория.

Много веков должно было пройти, чтобы блестящая мысль превратилась в научную теорию. В этой части книги мы расскажем о рождении атомной теории и ее важнейших следствиях. Разговор об этом совершенно необходим: дело в том, что современная теория атомно-молекулярного строения вещества есть гибрид экспериментальной физики и теории вероятностей.

Рождение теории

При изложении истории науки, да и вообще истории человеческой мысли, приходится всегда делать прыжок этак в столетий пятнадцать. Нас всегда поражает это странное обстоятельство. Длительный пятнадцативековой застой кажется удивительно нелогичным (несмотря на все объяснения о засилье церкви). Так что, прослеживая путь развития идей о строении вещества, мы сразу от Демокрита переходим к французскому мыслителю Пьеру Гассенди. В 1647 году он издал книгу, в которой отрицалось учение Аристотеля и утверждалось, что все вещества в мире состоят из неделимых частиц – атомов. Атомы отличаются друг от друга формой, величиной и весом. Гассенди объяснил, как возникает все богатое разнообразие тел и веществ в природе. Для этого, утверждал он, не нужно думать, что в мире имеется бесчисленное множество сортов атомов. Ведь атомы для веществ – все равно что строительный материал в домах. Как из трех различных видов стройматериалов – кирпичей, досок и бревен – можно построить самые разнообразные здания, из нескольких десятков различных атомов природа создает тысячи разнообразнейших тел. При этом атомы соединяются в небольшие группы, типичные для каждого вида вещества, которые Гассенди назвал «молекулами», то есть «массочками» (от латинского слова «молес» – масса).

Молекулы одних тел отличаются от молекул других видом (сортом) входящих в них атомов и числом их. А если так, то из нескольких десятков сортов атомов можно создать огромное количество различных комбинаций – молекул, определяющих такое великое разнообразие окружающих нас тел. Однако еще многое во взглядах Гассенди было ошибочно. Так, он считал, что имеются особые атомы для тепла и холода, для вкуса и запаха. Как и другие ученые того времени, он в большой степени находился под влиянием Аристотеля и признавал его невещественные элементы.

Позже появился М. В. Ломоносов. В сочинениях этого великого просветителя и основателя науки в России содержатся великолепные мысли, получившие потом подтверждение на опыте. Михайло Ломоносов пишет, что молекула может быть однородной и разнородной. В первом случае в ней группируются однородные атомы. Во втором – она состоит из атомов, отличных один от другого. Если какое-либо тело составлено из однородных молекул, то его надо считать простым. Наоборот, если тело состоит из молекул, построенных из различных атомов, оно называется смешанным.

Теперь мы хорошо знаем, что различные тела имеют именно такое строение. В самом деле, возьмем, например, газ кислород; в каждой его молекуле содержится по два одинаковых атома кислорода, и вещество это называется простым. Если же атомы, составляющие молекулы, различны, скажем, в молекулу входит один атом кислорода и два атома водорода, то вещество зовется «смешанным», или сложным, химическим соединением (вода). Молекулы его состоят из атомов тех химических элементов, которые входят в состав этого соединения.

Можно сказать и иначе – каждое простое вещество построено из атомов одного химического элемента: сложное включает в себя атомы двух и более элементов.

Разумеется, и эти фундаментальные идеи, в общем-то справедливые, не могли быть в то время проверены. И любой мыслитель имел право верить или не верить красивым словам Гассенди и Ломоносова.

В 1738 году петербургский академик Даниил Бернулли вывел уравнение, которое показывало, от каких причин зависит давление газа. Газ при этом рассматривался как система беспорядочно движущихся молекул – шариков.

Если не обращать внимания на форму изложения работы Бернулли, на ее стиль, то она окажется вполне современной, современной по манере мышления. Посудите сами. Вот принята некая модель, то есть допускается, что газ – это множество шариков, которые беспорядочно мечутся с какой-то скоростью в сосуде. Молекулы-шарики сталкиваются со стенками, ударяются о них и создают тем самым давление газа. Несложные алгебраические расчеты приводят к уравнению, из которого следует, что давление неизменного количества газа обратно пропорционально объему. (Я уверен, что вы, дорогие читатели, вспомнили эту фразу. Ну конечно же, это закон Бойля–Мариотта – одно из простейших правил, с которым вы познакомились еще в школе при изучении физики.) Как видите, чтобы сделать этот вывод, Бернулли обошелся без теории вероятностей. Но он ясно понимал, что в основе молекулярной физики лежат случайные события. (Может быть, в явной или неявной форме эту идею подсказал ему старший Бернулли.) И, по существу, доказал закон Бойля–Мариотта, пользуясь представлением о беспорядочном движении молекул, подчиняющемся законам случая.

Однако до конца XIX века подобным соображениям не придавали серьезного значения.

Движение, обнаруженное Броуном

Решающее значение для становления молекулярной теории имели количественные исследования так называемого броуновского движения, проведенные французским исследователем Жаном Перреном. Эти замечательные работы, положившие конец спору «атомников» и их противников, показали, что для понимания молекулярных явлений надо впустить в физику теорию вероятностей. В явлении, исследованном Перреном, как ни в каком другом, наиболее отчетливо проявляются законы случая в мире молекул. Здесь особенно ярко видна аналогия между движением молекулы и броском игральной кости. Познакомимся с открытием шотландского ботаника Броуна, сделанным им в 1827 году.

Джон Броун исследовал поведение в воде пыльцы некоего растения. Так как к этому времени микроскопы были достаточно хороши, то он без труда увидел, как маленькая частичка совершает танцующие движения. Она движется то в одну сторону, то в другую, то останавливается. Одни ее движения резкие, а отрезки пути длинные, другие кажутся плавными, так как обрисовывают зигзагообразную последовательность малых отрезков. (Путем пьяницы называют иногда в английской литературе совершенно беспорядочную траекторию броуновского движения частицы.) Броун сначала решил было, что такое поведение свойственно лишь мужским клеткам растения, которые, возможно, соблазняют женские своим танцем. Но он был внимательным исследователем и, прежде чем сделать такое заключение, решил проверить, как ведут себя в воде неживые органические вещества – кусочки дерева, смолы и пр. Убедившись что и они способны к танцу, он изучил поведение крошек стекла и гранита. В результате терпеливых наблюдений Броуну стал ясен общий характер открытого им явления.

В течение тридцати лет естествоиспытатели не интересовались открытием Броуна. Предполагали, что ничего нового и занятного в работе ботаника нет. Думали что он наблюдал обычный танец частиц, колеблющихся под влиянием слабых течений. В затененной комнате вы, наверное, не раз видели такой танец пылинок в узком солнечном луче, пробивающемся в комнату сквозь щель или дыру в ставне или портьере.

Кстати, о тридцати годах. Это средний временной интервал между появлением новой идеи и признанием ее. Такую закономерность не так давно подметил американский физик Дайсон, анализируя очень большое число открытий прошлых и нынешнего веков.

Итак, прошло тридцать лет. За этот период было доказано, что объяснение броуновского движения концентрационными или тепловыми потоками не годится, так как приводит к бездне противоречий. Прежде всего если бы дело было в потоках, то соседние частички двигались бы в одном направлении. А наблюдения показывают, что две соседние частички ведут себя совершенно независимо – каждая исполняет сольный танец под свою музыку. И далее, о каких потоках может идти речь, если явление не зависит от освещенности и атмосферных условий и – это, пожалуй, самое важное – никогда не прекращается!

Французские исследователи показали, что броуновское движение продолжается ночью и днем, происходит в подвалах и на высоких этажах дома, совершается в деревенском домике так же энергично, как и в городском доме, расположенном на улице с интенсивным движением, наконец, частички могут быть любыми, состоять из самых различных веществ.

Все эти особенности броуновского движения, коренным образом противоречащие «теории потоков», указывали на молекулярную природу наблюдаемых явлений и должны рассматриваться как важное доказательство молекулярной гипотезы.

Существовавшие в то время представления о движении молекул (так называемая молекулярно-кинетическая теория) привели Джоуля, Клаузиуса и других замечательных физиков к мысли, что температура вещества прямо пропорциональна средней энергии движения молекул.

Следовательно, чем выше температура тела, тем быстрее движутся молекулы. Броуновское движение тоже убыстряется с температурой. И нам хочется, чтобы между теорией вероятностей и этим фактом была связь. Но связь эта не так уж элементарна. Во всяком случае, не может быть и речи, о том, что броуновская частичка сдвигается будто от того, что получила щелчок от одной из молекул.

Вероятность – дирижер движения

Теория броуновского движения была создана Альбертом Эйнштейном в том же году, в котором была опубликована его первая статья по теории относительности.

В качестве образа модели явления, которую обсчитал (прошу прощения – это научный жаргон) Эйнштейн, можно предложить футбольный мяч, залетевший в часы «пик» на центральный рынок страны Лилипутии. «Огромный» мяч мешает базарной сутолоке. Спешащие лилипутяне беспорядочно толкают его во все стороны.

Наглядно представив себе эту фантастическую картину, вы, конечно, согласитесь с тем, что уравновешивание молекулярных щелчков, которые получает броуновская частичка, будет несовершенным. Для того чтобы частичка пришла в движение, надо, чтобы перевес ударов, нанесенных с какой-нибудь стороны, превосходил удары, пришедшиеся на противоположную ее сторону. Если частичка очень большая (доли миллиметра – это много в мире молекул), то колебания (физики предпочитают термин «флуктуации») давления на нее «слева» и «справа» будут незначительными и броуновское движение не обнаружит себя. Если же размер частички «подходящий», то случайности в распределении толчков слева и справа, сверху и снизу приведут к легко наблюдаемому ее движению.

Если верить в существование молекул, то приведенное истолкование броуновского движения достаточно легко приходит в голову. Качественное объяснение, которое мы привели, в той или иной форме высказывалось рядом исследователей до Эйнштейна.

Но самые умные разговоры о явлении еще не составляют теории. От теории требуются количественные предсказания.

Что же может и должно быть подсчитано?

За отдельными скачками броуновской частицы следить трудно. Поэтому Эйнштейн поставил перед собой вопрос: какова вероятность найти частичку через одну секунду (или десять секунд или сто секунд) на том или ином расстоянии от исходной точки.

Представьте себе, что имеется лишь одна броуновская частица и она светится. За частичкой наблюдает фотоаппарат, затвор которого открывается на мгновение через каждую секунду. Съемка ведется все время на одну и ту же пластинку. Через какое-то время пластинка проявляется. На что будет похожа картина, которую мы увидим? Согласно теории Эйнштейна фотография должна совпадать с результатом стрельбы по мишени. Посмотрите на приведенный рисунок. Это не итог стрелковых испытаний, а отчет об опытном исследовании броуновского движения. Точки показывают места, где находилась частица в моменты наблюдения.

Трудно придумать более яркое доказательство общности математического основания, на котором покоятся случайности столь разного происхождения. Математик скажет – разве это не доказывает, что молекулярная физика есть глава теории вероятностей. Физик согласится с тем, что пригодились рассуждения об игральных костях.

Можно обработать результаты наблюдений и таким образом, что появится наша хорошая знакомая гауссова кривая.

Наложим на снимок сетку параллельных линий. Одна из линий должна проходить через начальную точку. Теперь сосчитаем число точек, попавших между нулевой и плюс первой линией (плюс – значит вправо), плюс первой и плюс второй и т.д. Такой же подсчет проведем для левой части снимка. Получили таким способом числа, пропорциональные вероятности отклонения броуновской частицы на разные расстояния вправо и влево от начальной точки.

Можно убедиться в том, что результат подсчета не зависит от того, как ориентирована сетка, наложенная на снимок, поскольку в танце броуновской частицы (так же, как в ошибках стрелка) все направления отклонения равновероятны.

Остается построить график: по горизонтальной оси отложим величины отклонения, а по вертикали – число точек.

Полученная кривая ничем не отличается от гауссовой кривой, на которую ложатся отклонения от среднего роста призывников, отклонения от средней оценки качества фильма «Великолепная семерка».

Еще раз повторим: когда речь идет о поведении случайной величины, математика не нуждается в том, чтобы мы ей сказали, чем интересуемся: физикой, биологией, эстетикой или игрой в карты.

Итак, Эйнштейн получил гауссову кривую для вероятности найти частичку на том или ином расстоянии от начального положения. Центр кривой лежит в исходной точке, то есть вероятнее всего найти частичку там, где она была. Если построить гауссовы кривые для разных промежутков времени, прошедших с начала наблюдения, то мы увидим, что с возрастанием промежутка времени между последовательными снимками положения броуновской частицы кривые будут все более расплывчатыми: через тысячу секунд частичку можно найти почти где угодно. Однако для времени порядка одной секунды кривая будет достаточно узкой.

Главным количественным результатом теории является полученная Эйнштейном формула полуширины кривой. Для данного промежутка времени она однозначно связана с температурой, коэффициентом вязкости и числом Авогадро. (Число Авогадро – это обратная величина массы атома водорода, которая равняется 1,6·10-24 грамма. Число Авогадро, равное 6·1023, имеет, очевидно, смысл числа атомов водорода в одном грамме.) Вид кривой (а значит, и ее полуширину) нам дает опыт; коэффициент вязкости всегда легко измерить; температура опыта известна. Таким образом возникает возможность определить число Авогадро. Если проделать опыты для разных жидкостей, разных температур, разных частиц и показать, что всегда получается одно и то же число, то, конечно, не останется ни одного скептика, который бы упрямо твердил: «Не верю в молекулы».

Нокаутировал скептиков Жан Перрен. Произошло это в 1909 году. Семнадцать лет спустя (большой перерыв, наверное, связан с войной) Перрен получил за эти замечательные исследования высшую награду ученого – Нобелевскую премию.

Прежде чем перейти к подробному описанию экспериментов Перрена, я хочу закончить рассказ об этом частном вопросе забавной деталью: Эйнштейн не знал о существовании броуновского движения. Обдумывая молекулярно-кинетические представления, он сообразил, что взвешенная в жидкости частичка должна быть индикатором теплового движения молекул.

Век нынешний и век минувший

Теперь мне хочется рассказать о том, как трудился Перрен. Готовясь писать эти строки, я отыскал работу Перрена, опубликованную в 1908 году во французских «Анналах физики и химии», и прочитал ее с огромным удовольствием и завистью. Хотел бы я заниматься научными исследованиями в то время или, вернее, не в то время, а в той творческой атмосфере. Очень мне нравится стиль рабочей жизни физика конца XIX и начала XX века.

Статья Перрена занимает 98 страниц. Она написана в спокойной, неторопливой манере. Попробуйте написать сейчас статью размером более 10–12 страниц, и вы увидите недоумение на лице секретаря редакции любого научного журнала. «Вы что, – вскинется он, – открыли еще одну теорию относительности?.. Все равно укладывайтесь в нормы».

Вот небольшой отрывок из статьи Перрена, характерный для научных журналов того времени:

«Явление броуновского движения можно показать целой аудитории, но эта проекция несколько затруднительна, и я считаю небесполезным подробно остановиться на тех условиях, которые дали мне удовлетворительный результат. Получают изображение электрической дуги (а лучше солнечное изображение), задерживая посредством сосуда с водой большую часть тепловых лучей. Отраженные взвешенными частицами лучи, как и при прямом наблюдении, проходят через объектив иммерсионной системы и окуляр сильного увеличения, горизонтально отклоняются призмой полного внутреннего отражения и дают изображения зернышек на экране находящегося перед аудиторией матового стекла (предпочтительнее с расчерченными для большей ясности квадратиками). Таким образом свет лучше используется, чем при обычном экране, рассеивающем большую часть лучей в направлениях, где нет ни одного наблюдателя. Полезное увеличение (линейное) можно довести до 8–10 тысяч.

Особенно тщательным нужно быть с приготовлением эмульсии. В том небольшом числе опытов проектирования картины на экран, которые были до сих пор проделаны, величина диаметра зернышек была порядка микрона. Уже на расстоянии трех метров становилось трудным видеть их изображение (по крайней мере это так при освещении электрической дугой), каково бы ни было освещение. С дальнейшим уменьшением размера зернышек они становятся менее видными, и мы приходим к парадоксальному на первый взгляд заключению, что лучше проектировать большие, чем малые, зернышки. Действительно, броуновское движение крупных зернышек менее значительно, но оно остается вполне достаточным, чтобы можно было проследить за всеми существенными особенностями явления.

Нужно, следовательно, уметь приготовить частички, размер которых был бы равен нескольким микронам. Мы увидим в дальнейшем, что это было желательным не только для получения проекций, но и для выяснения некоторых пунктов в процессе экспериментального исследования. Я укажу дальше, как мне удалось получить большие совершенно сферические зернышки мастики, или гуммигут. С такими зернышками при совершенной темноте в зале можно наблюдать броуновское движение на расстоянии 8–10 метров от экрана».

Как член редколлегии научных журналов, могу уверить читателя, что абзац такого рода был бы безжалостно сокращен. Более того, редактор наверняка сказал бы секретарю что-нибудь вроде: «Вы передайте, пожалуйста, этому, как ему, Перрену, чтобы в другой раз он не включал в свои статьи всякие излишние подробности. В конце концов, надо беречь бумагу и время редактора».

Такая реакция имеет простую причину. Редакции давно уже отвыкли от мысли, что научные статьи пишутся авторами для того, чтобы читатель мог бы внимательно проследить за всеми шагами работы автора и повторить ее. Они считают, что задача статей – сообщить научному миру, что «это автор уже сделал, а вы делайте что-нибудь другое»; и он, автор, не обязан объяснять в деталях, каким образом получены те или иные результаты. Помощь другим исследователям не входит в задачу современных научных статей. В них должны быть: постановка вопроса, пути решения задачи в общих чертах и более или менее подробно полученные результаты.

Нужно сказать, что в 99 случаях из 100 рассказывать читателям, каким именно способом были добыты результаты современного научного исследования, пожалуй, и правда не стоит. Получаются они стандартными методами и на аппаратуре стоимостью в сотни тысяч рублей, в устройстве которой далеко не всякий автор разбирается. И стоит ли в таком случае описывать и этот стандартный метод, и эту аппаратуру, на которой уже были получены тысячи подобных результатов? Вот почему право на 98 страниц в журнале не получит сейчас ни один автор. Что же касается вполне оригинальных исследований, то они, увы, могут и потонуть в потоке стандартных статей.

Разный стиль статей 1908-го и нынешних годов отражает совершенно разный стиль работы.

Полистаем статью Перрена. На семи страницах с полным уважением к истории вопроса дается качественное объяснение броуновского движения на основе молекулярно-кинетической гипотезы. На следующих шестнадцати страницах изложены имевшиеся к тому времени доказательства молекулярно-кинетической гипотезы. В конце этого введения автор рассказывает, почему ему кажется, что исследование броуновского движения может дать серьезное, если не решающее, подтверждение молекулярно-кинетической гипотезы. Какова, собственно говоря, цель исследования? – спрашивает Перрен. Она состоит в том, чтобы измерить какую-то величину, характеризующую движение молекул.

Но молекулы движутся очень быстро. Промежуток времени, малый с нашей житейской точки зрения, огромен для молекулы. За доли секунды она успеет столкнуться с миллиардами соседей и миллионы раз изменить свою скорость от малой до большой. Но непредставимо большое число перемен равносильно постоянству. Средняя скорость, а вместе с ней и средняя энергия молекулы в данную секунду, в следующую секунду и в любую другую, будет одной и той же. Средняя энергия! Вот она, величина, характеризующая движение молекулы. Но какая-то одна молекула не «лучше» и не «хуже» других, все они в любом веществе находятся в одинаковых условиях, и, значит, неизменны во времени скорость и энергия не только какой-то одной молекулы, но равны между собой и средние кинетические энергии всех молекул. При этом совершенно безразлично, идет ли речь о чистом веществе, или о смеси, или о жидкости, в которой взвешены частицы эмульсии. Так как крупная частица находится среди молекул, то она «подравнивает» свою среднюю кинетическую энергию к энергии молекул.

Но масса броуновской частицы во много раз превосходит массу молекулы, и потому скорость ее много меньше скорости молекул. А как известно, кинетическая энергия любой частицы равна половине произведения массы ее на квадрат скорости. Следовательно, если броуновская частица в миллион раз тяжелее молекулы, то ее средняя скорость в тысячу раз меньше скорости молекул. Предположив равенство средней кинетической энергии зернышка эмульсии и средней кинетической энергии молекулы («Можно не спешить с утверждением этого положения, но гипотеза достаточно вероятна», – говорит Перрен), приходим к заключению, что «измерение движения броуновской частицы равносильно измерению движения молекулы».

Однако точно измерить среднюю энергию движения броуновской частицы тоже не так просто. Скорость взвешенной пылинки практически прямому измерению не поддается.

Что же делать?

Образцовое исследование

Если бы прямые измерения движения молекул были возможны, то не нужна была бы молекулярно-кинетическая теория. Это, кстати, относится и к любой области знания: как только появляется нужда во введении в науку каких-то параметров, не поддающихся непосредственной оценке, обязательно нужна теория. Сумей мы измерить этот параметр непосредственно, можно было бы обойтись без теории и жить совершенно спокойно. К этому стремлению – обойтись без теории – мы еще вернемся. Сейчас же заметим, что именно по поводу молекулярно-кинетических представлений яростно звенели шпаги представителей двух крайних точек зрения: феноменологистов, требовавших, чтобы из наук было решительно изгнано все, что не поддается непосредственному измерению, в том числе и молекулы, и механицистов, полагавших, что можно сформулировать законы движения невидимых частичек и из этих законов вывести все сущее.

Будем следовать тем, кто «верит» в молекулы. Задумаемся над тем, как поставить косвенный опыт, с помощью которого можно доказать «действительность» молекул.

Допустим, нам нужны сведения о средней скорости молекул. Но молекулы не видны. Обращаемся тогда с надеждой на успех к теории. Она же, как мы только видели, предполагает, что средняя энергия броуновской частицы должна равняться средней энергии молекулы. А броуновская частица видна в микроскоп. Значит, достаточно измерить…

И все же нас ждут опять огорчения – прямой опыт по измерению скорости броуновской частицы так же невозможен, как и молекулы. Что делать? Необходимо еще раз обратиться к теории и посмотреть, нет ли в ней таких соотношений, в которых с одной части знака равенства ( = ) фигурировала бы нужная нам средняя кинетическая энергия частицы, а с другой – величины, которые достаточно легко измерить непосредственно. Величайший дар хорошего экспериментатора – уметь находить такие соотношения. Отсюда, кстати, следует, что хороший экспериментатор должен хорошо знать и теорию.

Перрен блестяще использовал все возможности, которые представляет броуновское движение частиц эмульсии для нахождения параметров молекулярного движения и для проверки законов молекулярно-кинетической теории.

Рассматривая свою эмульсию в микроскоп с увеличением в 8–10 тысяч раз так, как это описано в длинной цитате, которую мы приводили, Перрен увидел, что плотность зернышек убывает с высотой. «Мне пришла в голову мысль, – пишет он, – что зернышки эмульсии под влиянием веса должны распределиться как молекулы воздуха в зависимости от высоты». Исследователь описывает, и довольно подробно, что на вершине горы воздух разрежен, а вблизи земной поверхности плотность его максимальна. Такая подробность в изложении этого обстоятельства сначала раздражает, а потом вспоминаешь, что самолетов тогда ведь не было, и читатель Перрена не видел ни разу, как при подъеме вверх движется стрелка альтиметра; эти читатели не были пассажирами Аэрофлота и не ощущали боли в ушах, которая весьма материально свидетельствует о законе изменения давления, а значит, и плотности воздуха с высотой.

Истинно, жизнь полна противоречий. Одни и те же факты могут огорчать и радовать. Только что я завидовал тысяча девятьсот восьмому году, а теперь выражаю полное удовлетворение тем, что приходится иметь дело с современными образованными и квалифицированными читателями: для объяснения им какого-либо явления совсем не приходится тратить много слов и времени.

Польстив читателю, перехожу к факту, который был использован Перреном для измерения средней энергии молекул и числа Авогадро.

Если бы не было теплового движения, то весь воздух лег бы на поверхность земли, а частички эмульсии в каком-либо сосуде осели бы на дно. При наличии же теплового движения, возникает борьба двух сил: сила тяжести прижимает частицы к земле, а тепловое движение бросает их во все стороны, в том числе и вверх. Несмотря на полную беспорядочность движения, шансов у любой молекулы быть наверху все же меньше, чем быть внизу. Действительно, ударов от боковых, верхних и нижних соседок она получает одинаковое число, а сила тяжести действует только вниз. Поэтому частиц внизу должно быть больше, чем вверху.

Несложными и очень красивыми математическими выкладками можно доказать, что плотность частиц, будь то молекулы воздуха или частицы эмульсии, будет плавно убывать с высотой. При этом проявятся следующие довольно очевидные вещи: чем тяжелее частицы, тем больше их будет прижато к земле. Так в случае молекул воздуха падение плотности прослеживается до десятков километров; что же касается частиц эмульсии, то для них кривая плотности спадает так быстро, что на высоте всего лишь нескольких миллиметров, а то и нескольких микронов, шансы встретить заблудившиеся частицы практически равны нулю. Другое следствие – чем выше температура, тем медленнее спадает плотность – играло для Перрена меньшую роль.

Итак, первая идея опытов Перрена заключалась в следующем: изготовить эмульсию и, рассматривая ее при большом увеличении, провести подсчет зернышек, расположенных на разных высотах от дна сосуда. Если все это будет проделано, то станет возможной проверка гипотез, ибо теория имела достаточно простую формулу, которая позволяла вычислить среднюю энергию молекулы из результатов таких измерений, а именно, из отношения концентраций зерен на двух высотах.

Говорить об этом легко и очень трудно сделать. С непреходящим удовольствием продолжал я читать статью Перрена. Описание того, как приготовлялись эмульсии для исследования, воспринимается как художественное произведение с захватывающим сюжетом. Какой огромный объем работы надо было проделать Перрену исключительно своими руками! Для образования взвешенных частичек было перепробовано множество веществ. Особенно подходящим оказался гуммигут, широко используемый художниками для акварели. Но и после отбора нужных веществ было не легче. Надо отделить однородную чистую фракцию от других. На центробежной машине выделить зернышки одной массы (а надо помнить, как капризны были в те годы эти машины). Или какого труда стоили аккуратнейшие измерения веса зернышек, проделываемые с помощью закона Архимеда; ведь нужно было подбирать такие жидкости, в которых зернышки не тонули бы и не всплывали, то есть чтобы плотность жидкости равнялась плотности зернышек.

Не менее интересны страницы, посвященные измерению радиусов зернышек. Их значения нужно знать для вычисления энергии молекул, и Перрен для надежности проделывает эти измерения тремя способами. Совпадение результатов измерений у него было совершенно изумительным: например, одним способом он получил значение, равное 0,212 микрона, другим способом – 0,213 микрона и третьим – 0,211 микрона. Перрен ничего не пишет о времени, которое он тратил на эти работы, но ясно, что только подготовительный этап занял много месяцев.

Как поступил бы исследователь наших дней, вознамерившийся провести опыты по определению числа Авогадро описываемым методом? Наверное, он заказал бы одной фирме приготовление нужной эмульсии, другому учреждению – отбор нужных зернышек, третьему – конструкцию микроскопа. Затем приспособил бы электронно-вычислительную машину для подсчета зернышек, а научную статью написал бы в содружестве с пятью-шестью соавторами.

Перрен собрал свою установку сам и приступил (без чьей-либо помощи) к подсчету зернышек. Делать это ему было также не легко.

Приготовив эмульсию, надо было ждать несколько часов, а то и дней, чтобы в эмульсии установилось равновесие и, кроме того, погибли все микробы. (В эмульсию довольно часто попадают протозории – очень активные существа, которые, двигаясь, взбалтывают зернышки. Приходится терпеливо ждать, когда они из-за недостатка пищи погибнут и выпадут на дно.) Только тогда можно начать измерения.

Просчитано было им очень много самых разных зернышек в самых разных жидкостях и по разной методике. Так, например, зернышки гуммигута радиуса 0,212 микрона помещались в ванночку высотой 100 микрон. Измерения делались в четырех горизонтальных слоях, располагавшихся в ванночке на высотах 5 микрон, 35 микрон, 65 микрон и 95 микрон от дна.

Через отверстия, просверленные в стенке ванночки иглой, было сосчитано до 13 тысяч зернышек. В относительных числах (если принято за 100 число зерен на нижнем уровне) результаты выглядели так: в нижнем слое 100, в следующем – 47, еще в следующем – 22,6 и, наконец, в верхнем – 12. Если из этих чисел определить среднюю энергию молекулы, а затем обратным расчетом вычислить числа зерен на высотах, которые указаны, то получатся числа: 100, 48, 23 и 11,1.

Вряд ли кому-либо сегодня (даже используя современную технику) удастся получить лучшее совпадение теории и опыта. Такое совпадение – а оно было получено в большом числе серий измерений – настолько убедительно, что сомнения в справедливости теории после этого представляются по меньшей мере смешными.

Из этих же данных удалось в превосходном согласии с измерениями другими методами определить и число Авогадро.

Как мы уже говорили выше, в 1906 году вышла в свет работа Эйнштейна, следуя которой можно было провести проверку молекулярно-кинетических воззрений и вычисления числа Авогадро совсем другим путем.

В той же статье Перрен проводит непосредственную проверку формул Эйнштейна. Эта его работа была особенно высоко оценена при присуждении ему Нобелевской премии. Кроме того, им проведено наблюдение за отдельным зернышком. На клетчатой бумаге фиксировалось положение этого зернышка через равные промежутки времени, сначала через каждые 30 секунд, потом через каждые 60, затем еще через каждые 120 секунд. Точки, фиксировавшие мгновенные положения броуновской частицы, соединялись прямыми линиями. Характер зигзага был совершенно случайным. Но – так предсказывает теория Эйнштейна – для каждого из опытов, проведенных в одинаковых условиях, будет неизменной средняя длина отрезка, соединяющего два последовательных мгновенных положения. Эта средняя длина прочно связана с интересующими нас параметрами молекулярно-кинетической теории. Когда, используя формулу Эйнштейна, вычислили число Авогадро, то оно оказалось тем же, то есть 6·1023.

Предпоследний параграф статьи Перрена назван утверждающе: «Действительность молекул». Первая фраза его звучит так: «Я считаю невозможным, чтобы на ум, освобожденный от предвзятости, крайнее разнообразие явлений, приводящих к одному результату, не оставило сильного впечатления, и я думаю, что отныне трудно было бы разумными доводами отстаивать гипотезы, враждебные признанию молекул».

Вот так работы Перрена, которые мы описали, явились окончательным и бесповоротным приговором противникам молекул.

Броуновское движение при этом сыграло свою коронную роль. Однако значение этого интересного явления, а также теории Эйнштейна не исчерпывается его служебной ролью прокурора в суде над феноменологистами.

Оно понадобилось математикам и физикам-теоретикам еще и как образец идеально беспорядочного движения. Зигзагообразные последовательности прямых отрезков – следы реальной траектории броуновской частицы – могут быть не только зафиксированы на клеточной бумаге, но и засняты на фотопленку. Но беспорядок в движении молекул (частиц) столь идеален (я надеюсь, что читатель уже без противления воспримет утверждение, что идеальным может быть не только порядок, но и беспорядок), что совершенно аналогичный зигзаг можно получить с помощью электронно-вычислительной машины, а если не быть придирчивым, то подбрасыванием монетки. Достаточно условиться, что «герб» будет означать поворот вправо, а «цифра» – влево, и мы можем построить картину случайных отклонений от прямого пути.

Итак, повторим еще раз: топтание на месте частицы эмульсии сравнивается с чередованием проигрышей и выигрышей игрока в «чет и нечет». В теории вероятностей такие сопоставления – самый обычный прием. Почти любая задача физики, биологии, техники и т.д., требующая применения теории вероятностей, всегда может быть сформулирована на языке карточной или рулеточной игры либо игры в кости или монету.

Но роль теории вероятностей в молекулярной физике далеко выходит за рамки доказательства движения молекул и нахождения средней скорости молекул. Теория позволяет получить отчетливое представление о характере распределения молекул по скоростям.

О скоростях автомобилей и молекул

Лет шестьдесят назад последний естествоиспытатель отбросил сомнения и поверил в существование молекул. Но зародилась молекулярно-кинетическая теория значительно раньше. Некоторые даже считают, что она старше 2000 лет и ведет отсчет от Демокрита. Если же, как говорилось выше, за теорию считать собрание постулатов, следствия которых могут быть количественно проверены на опыте, то началом эры молекулярно-кинетической теории является XIX век. Именно тогда Клаузиус и Джоуль показали, что огромная совокупность явлений становится предсказуемой, если принять, что законы теории вероятностей применимы к частицам, из которых построен мир, и что средняя кинетическая энергия беспорядочного движения молекул пропорциональна температуре.

К моменту, когда Перрен опубликовал свою работу, общие черты теории, представлявшей собой сплав теории вероятностей с молекулярными представлениями (этот сплав и получил название молекулярно-кинетической теории), уже были обрисованы в различных статьях и книгах. И почти все, что писалось в них по этому поводу, оказалось, как мы сейчас покажем, вполне справедливым.

Газ есть скопище молекул – крошечных телец, размером в десятимиллионные доли сантиметра. Молекулы движутся беспорядочно, сталкиваясь друг с другом и со стенками сосуда. Эти удары и, как уже говорилось, создают давление газа.

Газ – весьма разреженное состояние вещества. Среднее расстояние между молекулами газа при обычных температуре и давлении раз в 20 больше линейного размера молекулы. Движутся молекулы очень быстро – средние скорости их примерно равны километру в секунду.

Одной из первых задач, которую решила теория вероятностей для молекулярной физики, была задача о распределении молекул по скоростям. Сделал это замечательный английский физик Клерк Максвелл.

Распределение молекул по скоростям может быть представлено (описано) таблицей или кривой. Оно даст нам сведения о том, какая доля молекул обладает той или иной скоростью.

Чтобы изобразить распределение скоростей графически, мы откладываем по горизонтальной оси значения скоростей, а по вертикальной – количество (в процентах) движущихся с этой скоростью молекул. Полученная кривая характеризует, разумеется, мгновенное состояние газа.

Кривая распределения скоростей принадлежит к типу статистических кривых, с которыми мы уже неоднократно сталкивались. Тем не менее у нее есть особенности, заслуживающие внимания.

Положим, речь идет не о молекулах, а об автомобилях на улице Горького в Москве. Ровно в 12.00 зафиксированы скорости всех автомобилей. Часть их стоит, часть медленно движется со скоростью 10 километров в час, проклиная пассажиров, которые сгрудились на проезжей части дороги и мешают проезду через перекресток. Какие-то машины перемещаются со скоростями 20, 30… 60 километров в час. Процент водителей, нарушающих правила уличного движения и едущих со скоростями 70, 80 и даже 100 километров в час, окажется немалым, особенно подальше от автоинспекторов. Если посмотреть на этом автодорожном материале график распределения автомобилей по скоростям, то мы увидели бы наверняка, что получилась кривая с максимумом около 40 километров в час, (кстати, с большей средней скоростью днем по Москве и не проехать).

При построении графика скоростей обратите внимание на то, как понимать скорость, равную, скажем, 50 километрам в час. Под ней можно подразумевать все скорости от 45 до 55, если же требуется описать движение поточнее, тогда берут меньший интервал, например от 49 до 51. Точность не может быть беспредельной, и интервал «от – до» всегда молчаливо подразумевается, говорим ли мы о проценте людей, имеющих такой-то рост, о проценте доменных печей такой-то производительности или о таком-то проценте молекул или автомобилей, имеющих такую-то скорость. Впрочем, об этом мы уже говорили.

Без сомнения, распределение скоростей автомобилей подчиняется каким-то закономерностям. Закономерности эти очень сложные, и кривые будут разными для разных улиц, разной погоды, разного времени дня и года.

Что же касается кривой распределения молекул по скоростям, то она обладает тем выдающимся свойством, что зависит только от температуры и от массы молекул. Как выглядит кривая распределения скоростей для молекул заданной массы при данной температуре и что делается с кривой распределения, когда меняется температура, показал Клерк Максвелл.

Очень хотелось бы рассказать, как Максвелл произвел соответствующее вычисление, показать, что кривая Максвелла сродни гауссовой кривой, и продемонстрировать умение его просто объяснять сложные вещи. Однако воздержимся. Во-первых, это увело бы нас в сторону от темы нашей беседы и исказило бы гармонические пропорции книги, которые мы стремимся ей придать. Во-вторых, педагогический опыт подсказывает, что лишь небольшой процент читателей любит долго и упорно следовать за разматыванием логической нити научного открытия.

Но о результатах этого вычисления поговорить надо. Как должна выглядеть кривая, достаточно очевидно. Как и в случае с автомобилями, имеется небольшой процент молекул, движущихся очень быстро (они подверглись случайно серии попутных ударов); есть небольшой процент почти покоящихся молекул (они замедлились лобовыми ударами соседей); и больше всего будет молекул, имеющих скорость, близкую к средней. Почему близкую, а не равную? Здесь есть одна интересная тонкость.

Максимум кривой распределения попадает на то значение, которое встречается наиболее часто. Совпадает ли среднее значение с наиболее часто встречающимся, то есть с наиболее вероятным значением? Да, но только в тех случаях, когда отклонения «влево» и «вправо» одинаково вероятны. А это, конечно, будет не всегда.

Случай кривой распределения молекул по скоростям в этом отношении вполне ясен. От вершины кривой «влево» мы можем двигаться лишь до нуля. В сторону же больших скоростей (вправо) можно двигаться неограниченно далеко, по крайней мере в принципе. Кривая Максвелла получается несимметричной, и точные подсчеты показывают, что средняя скорость больше наиболее вероятной именно по той причине, что хвост кривой «вправо» тянется дальше, чем «влево».

Самым замечательным обстоятельством во всем этом деле является то, что кривая распределения молекул по скоростям при определенной температуре для данного газа остается все время неизменной. Сказанное вовсе не самоочевидно. Что значит неизменность кривой? Это означает то, что доля молекул, обладающих определенной скоростью, все время остается неизменной. А почему, собственно говоря, так должно быть? Ведь мы же говорим о полном хаосе, о полном беспорядке в движении молекул. Почему нельзя представить себе, что случайно в какое-то мгновение все молекулы замедлились, или случайно остановились, в другой момент все убыстрились и движутся со скоростями, лежащими между одним и двумя километрами в секунду?

Представить можно. Но дело в том, что все события такого рода обладают настолько ничтожной вероятностью, что мы вправе считать их абсолютно невозможными.

В работе Максвелла рассчитывается, конечно, среднее число молекул, обладающих какой-либо одной скоростью. Колебания около средних цифр – в науке это называется флуктуацией, – разумеется, существуют. Однако они настолько малы, что в обычном опыте обнаружить их невозможно.

Почему же, несмотря на беспорядочность движения, доля молекул, обладающих какой-либо одной скоростью (например, от 500 до 501 метра в секунду) практически неизменна? Отвечает на этот вопрос закон больших чисел. Все дело в том, что для газа, находящегося в нормальных условиях, среднее число этих молекул (то есть обладающих скоростью от 500 до 501 м/сек) огромно и в одном кубическом сантиметре их число измеряется единицей с шестнадцатью нулями (1016). Согласно же закону больших чисел отклонения от среднего будут обратно пропорциональны корню квадратному (1/sqrt(1016)=10-8) из числа молекул. Так что флуктуации измеряются стомиллионными долями даже для такого узкого интервала скоростей, как один метр в секунду (501–500). Это и значит, что кривая Максвелла остается неизменной.

Огромное число молекул, содержащееся в крошечном по сравнению с размерами физических приборов объеме, приводит к тому, что все физические свойства вещества имеют практически неизменные значения при постоянных условиях.

Роль этого обстоятельства фундаментальна. Жизнедеятельность любого существа возможна лишь при условии, что размеры его органов восприятия внешнего мира в колоссальное число раз превосходят размеры молекул. Так что огромное число молекул, образующих тела, есть непременное условие жизни. Предположите существование организма, всего лишь в сто раз превосходящего по своим размерам молекулу газа. Сразу же ясно, что такое предположение абсурдно. Действительно, для выдуманной нами «микроамебы» были бы существенными флуктуации плотности, температуры, давления в объеме, занятом сотней молекул. Флуктуации в этом случае равны 10 процентам (1/sqrt(100)=1/10) . А как мы знаем (сравните, пожалуйста, стр. 74 [ссылка]), отдельные отклонения могут достигать величины в три-четыре раза большей. Значит, «микроамебе» пришлось бы приспосабливаться к жизни в условиях, соответствующих беспрерывному случайному колебанию температуры и давления в пределах ±30–40 процентов. Попробуйте существовать, если температура скачет каждую секунду примерно от -100 градусов до +100! А наша «микроамеба» так же воспринимала бы удары всего лишь нескольких быстрых молекул.

Мы с вами живем в мире, где в одном кубическом сантиметре воздуха находится свыше 1019 молекул. Поэтому не только наши органы чувств, но и отдельные клетки, из которых они построены, состоят из миллиардов атомов.

Восприятия мира живым организмом обязаны сумме огромного числа случайных событий. И посему для нас с вами окружающая среда кажется неизменной: флуктуаций мы не замечаем. Так закон больших чисел превращает случайное в необходимое.

Новые подходы

Теория и опыт дружно шли рука об руку. Большие успехи были достигнуты благодаря новому подходу, главная идея которого такова: нет смысла обсуждать характер движения отдельной молекулы иначе как на языке теории вероятностей.

Первоначально казалось, что вероятностный подход к молекулярным явлениям – это вынужденная и непринципиальная уступка практическим обстоятельствам.

– Конечно, – рассуждали математики и физики, – если бы мы знали в какое-то мгновение координаты всех молекул и их скорости, то могли бы предсказать судьбу мира.

– Каким образом?

– В принципе очень просто. Надо составить для каждой молекулы дифференциальное уравнение движения и затем решить эту систему.

– Простите. А сколько будет таких уравнений?

– Миллиард миллиардов или что-нибудь в этом роде.

– Но сколько потребуется?..

– Да, да, конечно, это невозможно, очень много времени потребуется. Но важно знать, что в принципе такая задача выполнима.

В XX веке подобная позиция кажется крайне наивной. Почему надо бояться признания случайности индивидуальных событий, из которых складывается наблюдаемое явление? Скорее всего это боязнь предоставить, так сказать, природе волю: вдруг она перестанет слушаться законов. Но страхи эти совершенно пустые.

Наличие в природе случайных событий ни в коей мере не означает, что у нее есть какая-то возможность выйти из подчинения законам.

Прогресс молекулярной физики приносил все время подтверждение этому принципу и в то же время ставил под сомнение строгий механический детерминизм. Действительно, что толку в возможности предсказать поведение мира в «принципе», если это практически неосуществимо. Представьте, что из миллиарда миллиардов молекул вы не знаете координаты лишь одной из них. Этого мизерного незнания достаточно, чтобы вся предопределенность в поведении системы полетела бы вверх тормашками.

Таким образом, вероятностный подход – это не подсвечник, которым забивают гвоздь в отсутствие молотка, а новый великолепный инструмент, позволяющий выполнять главную задачу науки – предсказывать факты и при этом не требующий невозможной детализации молекулярного явления. Такой подход – не паллиативная мера, а единственно правильный выход из положения.

Непонимание неизбежности вероятностного описания сложных событий лежит в основе множества заблуждений. Приняв необходимость такой перестройки во взглядах, любой неформально мыслящий человек мог бы найти выход из «парадокса свободы воли», мучившего философов многие века.

Разумеется, утверждение, что все предопределено внешними условиями, вашими знаниями и разумом, справедливо. Однако мозг человека и его нервная система – машины исключительной сложности. И практически невозможно перечислить все факторы, из которых должно выкристаллизоваться его решение о том или ином действии. Достаточно упустить пустяк, чтобы воля оказалась практически свободной, а человек – ответственным за свои поступки.

Есть классы явлений, где наука отказывается (считает бессмысленным) делать предсказание единичного события. Я не могу сказать, под каким углом отправится путешествовать электрон, прошедший через отверстие пушки кинескопа. Я не могу сказать, куда отклонится (вправо или влево) в данный момент под ударами молекул дрожащее легкое крылышко, подвешенное в сосуде с сильно разреженным газом. Я не могу сказать, в какую точку земной поверхности упадет листок, сорванный ветром с дерева. Я не могу сказать, сработает ли сейчас условный рефлекс, выработанный у собаки. Я не могу сказать, как среагирует на оскорбление именно этот юноша. Я не могу сказать, понравится ли картина Пикассо вот этой девушке… Однако это совсем не значит, что речь идет о незакономерных явлениях.

Про один электрон я ничего не могу сказать заранее. Но про миллиарды миллиардов могу. Я сумею предсказать, какая доля электронов под каким углом отклонится при выходе из отверстия. Я могу предложить формулу, которая предскажет среднюю амплитуду колебания крылышка в газе. На основании экспериментальных исследований воздушных потоков я вычислю, как уляжется лиственный покров. На основе наблюдений за собакой я сумею предсказать долю положительных ее реакций на раздражитель. Этические и эстетические ценности у каждого человека свои и зависят от его характера и воспитания. Но если я опрошу тысячи юношей и девушек, исследую их вкусы и поведение как функцию воспитания, то достаточно смело предскажу процент юношей, которые не стерпят оскорбления, и долю девушек, которым будут нравиться картины Пикассо.

Цель нашей книги – мы не раз это подчеркивали – показать всеобъемлющее значение метода исследования, использующего теорию вероятностей. Но в мире молекул вероятностный подход приобретает исключительное значение из-за того, что в обычных условиях отклонения от средних величин (флуктуации) ничтожно малы.

«Но флуктуации все же есть! – вправе возразить читатель. – Пусть они малы, но почему нельзя допустить взрыв парового котла из-за флуктуации плотности? В какой-то момент двинулись все молекулы в одну сторону, и готово. Вот вам и чудесный случай, сводящий на нет все предсказания науки».

Но не взлетают котлы на воздух без вполне реальной причины. И случайности в поведении молекул не приводят к непредсказуемому поведению вещей. Колебания давления, плотности, температуры, энергии и любых других величин, которые происходят из-за хаотичности движения молекул или, как говорят, благодаря флуктуациям, слишком ничтожны, чтобы породить чудо.

Оценим вероятность совершенно пустяковой флуктуации плотности газообразного вещества. Мысленно разделим сосуд с газом на миллиард ячеек. Теперь посчитаем, какова вероятность такого события, как удаление всех молекул из одной из этих ячеек.

Вероятность отклонения от равномерного распределения плотности подсчитывается без труда. Вероятность того, что одна молекула находится там, где нам хочется, равна 0,999999999. А вероятность нахождения во всех ячейках, кроме одной, всех N молекул будет равна 0,999999999N. На первый взгляд может показаться, что это число близкое к единице. Но не надо забывать, что речь идет об огромном числе молекул. Пусть их в сосуде всего лишь 1019. Простая арифметика показывает, что искомая вероятность будет равна 10 в степени (–4·1010), то есть единице, поделенной на единицу с сорока миллиардами нулей (P =1/(4·1010)).

Комментарии, как говорится, излишни.

Именно благодаря тому, что вещи, с которыми мы имеем дело в жизни, построены из невообразимо большого числа молекул, они не могут преподнести нам никаких вероятностных сюрпризов.

Новый подход привел к созданию важнейшего раздела физики: родилась статистическая физика, переписавшая на языке молекул и вероятностей всю термодинамику (учение о тепле) и проложившая неожиданные мостики между явлениями, которые, как казалось ранее, не имели между собой ничего общего.

Поговорим подробнее об этих важнейших приложениях теории вероятностей.

Энергия сохраняется

Закон сохранения энергии вряд ли можно рассматривать как чисто опытное правило. В законе содержатся два утверждения: первое – энергию нельзя получить из ничего, и второе – энергия не может бесследно пропасть.

Первая половина этого утверждения известна как закон невозможности вечного двигателя (перпетуум-мобиле).

Уже давно человечество пришло к досадному заключению, что создание двигателя, который ничем не питается, вещь невозможная. Да и человеческой психологии представляется весьма естественным положение, что «без труда не выловишь и рыбку из пруда». Поэтому осуществление вечного двигателя представлялось научным деятелям средних веков задачей столь же божественной, как и изобретение философского камня или живой воды.

Однако многие наши научные предшественники не рассуждали согласно логике XX века. Признавая, что получение энергии из ничего противоречит всему, чему учит жизнь, они тем не менее отважно пускались на поиск вечного движения.

Об осуществлении перпетуум-мобиле мечтает Бертольд, герой «Сцен из рыцарских времен» Пушкина. «Что такое перпетуум-мобиле?» – спрашивает его собеседник. «Это вечное движение, – отвечает тот. – Если найду вечное движение, то я не вижу границ творчеству человека. Делать золото – задача заманчивая, открытие может быть любопытное, выгодное, но найти разрешение перпетуум-мобиле…»

Вечный двигатель – это машина, которая должна не только преодолевать неизбежно возникающие силы трения, но и вращать колеса или подымать грузы снизу вверх. Работа эта должна происходить вечно и непрерывно, а двигатель не должен требовать ни топлива, ни рук человеческих, ни энергии падающей воды – словом, ничего взятого извне.

Первый в истории, дошедший до наших дней, достоверный документ об «осуществлении» идеи вечного двигателя относится к XIII веку. Любопытно, что спустя шесть веков, в 1910 году, в одно из московских научных учреждений был представлен на «рассмотрение» «проект» буквально такого же двигателя. Мы помещаем его изображение на этой странице и думаем, что многие с ним знакомы. При вращении колеса грузы перекидываются вправо и поддерживают, по мысли изобретателя, тем самым движение, так как откинувшиеся грузы давят гораздо сильнее, действуя на более далеком от оси расстоянии (большее плечо). Построив эту отнюдь не сложную «машину», изобретатель убеждается, что, повернувшись по инерции на один или два оборота, колесо останавливается. Но это не приводит его в уныние. Он думает, что где-то допущена ошибка и достаточно удлинить рычаги или изменить форму выступов, как машина заработает. И бесплодная работа, которой многие доморощенные изобретатели посвящали всю свою жизнь, продолжается, но, разумеется, с тем же успехом.

Вариантов вечных двигателей предлагают в общем немного: разнообразные самодвижущиеся колеса, в принципе не отличающиеся от описанного; гидравлические двигатели, использующие сифоны, капиллярные трубки или потерю веса в воде; притяжение железных тел магнитами – вот, по сути дела, и все. Далеко не всегда, правда, можно было догадаться, за счет чего же должно происходить вечное движение.

Еще до установления закона сохранения энергии утверждение о невозможности перпетуум-мобиле мы находим в официальном заявлении Французской академии, сделанном в 1755 году. На своем заседании «бессмертные» решили не принимать больше для рассмотрения и испытания никакие проекты вечных двигателей.

Многие механики XVII–XVIII веков уже клали в основу своих рассуждений аксиому о невозможности перпетуум-мобиле, несмотря на то, что понятие энергии и закон сохранения энергии вошли в науку много позже.

Таким образом, можно сказать, что та часть закона сохранения энергии, которая относится к возникновению энергии, носит эмпирический характер.

Иначе обстоит дело со второй половиной закона, утверждающей, что энергия не пропадает… Откуда это видно? Совсем наоборот. Закрутили рукой колесо, руку отняли – остановится. Кием наподдали бильярдный шар – через две-три секунды его энергия исчезла. Вот вы сняли с плиты чайник. Весело подпрыгивающая крышка постепенно успокаивается, струя идущего из носика пара слабеет и прекращается вовсе, а еще через час даже нельзя сказать, что чайник недавно кипел. Куда делась энергия?

На все эти вопросы отвечают – энергия рассеялась. Но чем эта фраза лучше утверждения – энергия исчезла?

Понять, куда девается энергия, можно лишь в том случае, если допустить, что весь мир построен из мельчайших движущихся частичек – молекул и атомов. Только на этом пути надо искать опытные подтверждения сохранения энергии.

Тщательные наблюдения показывают, что потеря механической энергии сопровождается большей частью нагреванием окружающих предметов.

Переверните велосипед колесами кверху. Раскрутите педалями заднее колесо. Подшипники у велосипеда превосходные, и колесо будет вращаться долго. Но в конце концов оно остановится. Если я вам скажу, что в результате пропажи механической энергии колеса нагрелись воздух и подшипник, то вы можете мне не поверить (нагрев незначительный). Но попробуйте остановить колесо рукой. Осторожней, а то обожжете ладонь. Теперь вы в полном смысле снова «ощутили» переход механической энергии в тепло. Как же этот простой факт спасает закон сохранения? Очень просто. Чем выше температура тела, тем быстрее движутся частички. Следовательно, повышение температуры (руки, воздуха, подшипников) говорит об увеличении энергии движения молекул. Значит, видимая пропажа механической энергии, то есть энергии движения больших тел, сопровождающаяся нагревом, есть не что иное, как превращение энергии движения больших тел в энергию движения частичек.

Как проверить эту гипотезу?

Прежде всего надо найти общую меру механической энергии и внутренней тепловой энергии или, что то же самое, общую меру работы и тепла.

Первый опыт для установления количественного соотношения между теплом и работой был проделан известным физиком Румфордом (1768–1814 гг.). Он работал на орудийном заводе, где изготовляли пушки. Когда сверлили канал ствола орудия, то выделялось тепло. Как оценить его? Что принять за меру тепла? Румфорду пришло в голову поставить работу, производимую при сверлении, в связь с нагреванием того или иного количества воды, идущей на охлаждение ствола, на то или иное число градусов.

Для этого, конечно, надо проводить сверление в воде. Сопоставляя величину произведенной (пропавшей) работы с количеством возникшего тепла (произведение массы воды на прирост температуры), можно прийти к заключению, что исчезновение механической энергии сопровождается появлением пропорционального количества теплоты. Подобными опытами и была найдена общая мера тепла и работы.

Первоначальное определение так называемого механического эквивалента теплоты дал французский физик Сади Карно. Этот выдающийся исследователь скончался в 36-летнем возрасте в 1832 году и оставил после себя рукопись, которая была опубликована лишь спустя 50 лет. Открытие Карно оставалось неизвестным и не повлияло на развитие науки. А он весьма строго установил, что подъем одного кубического метра воды (1 тонна) на высоту одного метра требует такой же энергии, какая нужна для нагревания одного килограмма воды на 2,7 градуса (точнее, 2,3 градуса).

В 1842 году публикует свою первую работу гейльброннский врач Юлиус Роберт Майер. Хотя Майер называет знакомые нам физические понятия совсем по-другому, все же внимательное чтение его работы приводит к выводу, что в ней изложены существенные черты закона сохранения энергии. Майер различает внутреннюю энергию (тепловую), потенциальную энергию тяготения и энергию движения тепла. Он пытается чисто умозрительно вывести обязательность сохранения энергии при различных превращениях. Чтобы проверить это утверждение на опыте, надо иметь общую меру для измерения этих энергий. Майер вычисляет, что нагревание килограмма воды на один градус равноценно поднятию одного килограмма на 365 метров.

Во второй своей работе, опубликованной три года спустя, Майер отмечает универсальность закона сохранения энергии – возможность применения его в химии, биологии и космических явлениях. К различным формам энергии Майер добавляет магнитную, электрическую и химическую.

Большая заслуга в открытии закона сохранения энергии принадлежит замечательному английскому физику (пивовару из Сальфорда в Англии) Джемсу Прескотту Джоулю, работавшему независимо от Майера.

Если Майер полагает, что законы природы могут быть выведены путем одних рассуждений (гегелевский подход к миру, типичный для немецкой идеалистической философии того времени), то основной чертой Джоуля является строгий экспериментальный подход к явлениям. Джоуль задает природе вопрос и получает на него ответ путем глубоко продуманных, целеустремленных опытов. Нет сомнения, что при их проведении он одержим одной идеей – найти общую меру тепловых, химических, электрических и механических действий, показать, что во всех этих явлениях энергия сохраняется. Джоуль сформулировал свою мысль так: «В природе не происходит уничтожения силы, производящей работу, без соответствующего действия».

Первая работа Джоуля докладывалась им 24 января 1843 года, а 21 августа того же года Джоуль доложил свои результаты по установлению общей меры тепла и работы. Нагревание килограмма воды на один градус оказалось равноценным подъему одного килограмма на 460 метров.

В последующие годы Джоуль затрачивает много труда на то, чтобы уточнить значение и доказать полную универсальность теплового эквивалента. К концу 40-х годов становится ясно, что количество возникающей теплоты будет пропорционально количеству затраченной работы всегда – вне зависимости от способа перехода работы в тепло.

В том же XIX веке было установлено, что нельзя «бесплатно» расплавить кусок льда. Впервые был осуществлен опыт, ставший впоследствии классическим школьным и который можно повторить в любое мгновение. Попробуем его описать. Возьмите несколько кусочков льда из холодильника и бросьте их в стакан, вставьте в ледяное крошево термометр и всю эту «экспериментальную установку» водрузите на плиту. Результат опыта неизменен: пока лед не растает, градусник будет показывать все время ноль градусов. Итак, энергия потрачена (газ сгорел), но она не нагрела, не возбудила движение. Куда же она девалась?

До сих пор, говоря об энергии молекул, мы подразумевали только энергию их движения. Но механическая энергия тел бывает двух сортов: энергия движения (кинетическая) и энергия, определяющаяся взаимодействием этого тела с Землей или соседними телами, так называемая потенциальная энергия.

Камень на высокой горе обладает большей потенциальной энергией, чем тот же камень, лежащий на вершине холмика. Два шарика, сжатые мягкой пружиной, обладают меньшей энергией, чем два шарика, сжатые жесткой пружиной (если эти шарики освободить от связи, они разлетятся с большей скоростью). Вполне естественно распространить ту же идею на молекулы и предположить: чем сильнее связаны молекулы, тем больше внутренняя потенциальная энергия тела. Чтобы все стало понятно в опыте со льдом, надо лишь принять, что в твердом льде молекулы связаны друг с другом сильнее, чем в жидкой воде. Нагрев без повышения температуры означает, что энергия, затраченная на плавление, ушла на замену сильных связей более слабыми, Впрочем, если продолжать греть воду, нагревая, превратить ее в пар, то, подсчитав суммарные расходы, можно сказать, сколько энергии потребовалось на полное разрушение связей между молекулами.

Обоснование закона сохранения энергии на этом позвольте закончить. Мы утверждали, что видимые пропажи энергии – это на самом деле переходы ее во внутреннюю энергию тела. Если же рассматривать все молекулы в каком-нибудь замкнутом объеме (замкнутая система), то для него закон сохранения будет звучать так: суммарная механическая энергия молекул не меняется. Впервые закон сохранения в таком виде был сформулирован Германом Гельмгольцем на заседании Берлинского физического общества 23 июля 1847 года.

Переход механической энергии во внутреннюю энергию тела – типичный случайный процесс. Бессмысленно спрашивать, как изменились положение или скорость какой-то определенной молекулы в результате такого перехода. Грамотная постановка вопроса такова: чему равна вероятность того, что молекула сдвинется со своего места на такое-то расстояние, или изменит свою скорость на столько-то процентов, или разорвет свою связь с соседками.

Глубокое понимание превращения энергии невозможно без использования теории вероятностей.

Далеко не всегда закон сохранения можно проверить. Попробуй, например, докажи на опыте, что энергия остается неизменной во время замедленного движения катящегося по бильярдному сукну шара. Однако число случаев, когда в самых сложнейших явлениях баланс затрат и доходов сходится «до копейки», столь велико, что вера в универсальную справедливость закона является категорической у всех естествоиспытателей. Без сомнения, эта вера не подвергалась бы сомнениям, если бы не молекулярно-кинетическое обоснование закона. В свою очередь, молекулярно-кинетическая гипотеза перестала быть гипотезой, а стала фактом лишь после исследования броуновского движения. А что касается броуновского движения, то его анализ был бы невозможен без привлечения вероятностных соображений.

Так что же, дорога от игры в «орел» и «решку» ведет к закону сохранения энергии?

Без сомнения. И это не так уж удивительно. Мало найдется областей знания, к которым не тянутся нити, и не только нити, но и канаты, от идеи вероятности.

Самый трудный параграф

Человеку нужны машины, а чтобы они работали, надо уметь создавать движение – двигать поршни, вращать колеса, тянуть вагоны поезда. Движение машин требует работы. Как получить ее?

Казалось бы, вопрос ясен: работа происходит за счет энергии. Надо отнять у тела или системы тел энергию – тогда получится работа.

Рецепт вполне правилен. Но как совершить такое превращение? Всегда ли возможно отобрать энергию у тела? Какие для этого нужны условия?

Мы сейчас увидим, что почти вся энергия, имеющаяся вокруг нас, совершенно бесполезна: она не может быть превращена в работу, и ее никак нельзя причислить к нашим энергетическим запасам. Разберемся в этом.

Отклоненный от положения равновесия маятник рано или поздно остановится; раскрученное рукой колесо перевернутого велосипеда сделает много оборотов, но в конце концов тоже прекратит движение. Нет никакого исключения из важного закона: все окружающие нас тела, приведенные в движение каким-либо толчком, в конце концов останавливаются.

Если имеется два тела, нагретое и холодное, то тепло будет передаваться от первого ко второму до тех пор, пока температура не уравняется. Тогда теплопередача прекратится, и состояния тел перестанут изменяться: установится тепловое равновесие.

Нет такого явления, при котором тела самопроизвольно выходили бы из состояния равновесия. Не может быть такого случая, чтобы колесо, сидящее на оси, начало бы вертеться само по себе. Не бывает и так, чтобы нагрелась сама по себе кастрюля с водой, поставленная на холодную, незажженную плиту.

Стремление к равновесию означает, что у событий имеется естественный ход: тепло переходит от горячего тела к холодному, но не может самопроизвольно перейти от холодного к горячему.

Механическая энергия колеблющегося маятника благодаря сопротивлению воздуха и трению в подвесе перейдет в тепло. Однако ни при каких условиях маятник не начнет раскачиваться за счет тепла, имеющегося в окружающей среде.

Тела приходят в состояние равновесия, но выйти из него не могут.

Этот важнейший закон природы (его называют вторым началом термодинамики) сразу же показывает, какая часть находящейся вокруг нас энергии совершенно бесполезна. Ею оказывается тепловое движение молекул тех тел, которые находятся в состоянии равновесия. Такие тела не способны превратить свою энергию в механическое движение.

«Мертвая» часть энергии огромна. Если понизить температуру килограмма земной породы на один градус, то он, имеющий теплоемкость 0,2 ккал/кг, потеряет 0,2 большой калории. Это относительно небольшая величина. Однако прикинем, какую энергию мы получили бы, если бы удалось охладить на тот же один градус весь земной шар, масса которого равна 6·1024 килограммов. Умножая, мы получим 1,2·1024 больших калорий. А это баснословная энергия: в настоящее время электроэнергия, вырабатываемая ежегодно электростанциями всего мира, равна 1015 – 1016 больших калорий, то есть в миллиард раз меньше.

Примирившись с тем, что нельзя предложить двигатель, создающий работу из ничего (так называемый вечный двигатель первого рода), и воодушевившись грандиозными числами, которые мы только что привели, горе-изобретатели взялись за конструирование двигателей, работающих за счет одного лишь охлаждения среды (так называемый вечный двигатель второго рода). Однако если водитель транспорта проехал на красный свет даже при минимальной скорости, ему не оправдаться тем, что он ехал с допустимой скоростью в 30 километров в час. Подчиняться надо обоим правилам.

То же относится и к конструкторам двигателей, которые попытались бы защитить свое создание ссылкой на то, что их идеи не противоречат закону сохранения энергии.

Этого мало! Утверждение, что система тел, находящихся при одной температуре, энергетически бесплодна, есть также закон природы.

Итак, для получения работы (то есть отнятия энергии) необходимо прежде всего нарушить тепловой покой. Для этого надо, в свою очередь, затратить энергию. Только тогда удастся осуществить процесс перехода тепла от одного тела к другому или превращения тепла в механическую энергию.

Создание потока энергии – вот необходимое условие получения работы. На «пути» этого потока возможно превращение энергии тел в работу.

Поэтому к энергетическим запасам, полезным для людей, относится энергия лишь «неуспокоившихся» тел.

Второе начало термодинамики, сущность которого мы изложили, фиксирует факты. Но каков внутренний смысл этого закона? Почему вся вселенная – это дорога к равновесному состоянию? Почему предоставленные самим себе тела неотвратимо приближаются к состоянию, когда механическое движение прекращается, а температуры тел уравниваются?

Вопрос этот очень важен и интересен. Кроме того, он труден, но мы подготовлены к ответу на него. Дело заключается в том, что равновесное состояние является наиболее вероятным.

Нам придется потратить одну-две странички на объяснение этой мысли. Прежде всего о самом слове «состояние». Оно употребляется в физике в двух смыслах. А чтобы между ними не путаться, введем два термина, которые несколько некрасивые и громоздкие, но, что поделаешь, зато научные и общепринятые. Итак, надо различать макросостояния тел и их микросостояния.

Термин «макросостояние» совпадает с житейским словом. Помните обычный утренний обмен фразами доктора и сестры в больнице?

– Каково состояние больного? – спрашивает врач.

– Без изменения, – отвечает сиделка, – температура та же, давление и пульс те же самые.

Макросостояние газа, жидкости или твердого тела характеризуются также в первую очередь температурой и давлением. Но, разумеется, теперь речь идет не о давлении крови, а о давлении, которое на тело оказывает окружение. Давление и температура – основные показатели, говорят – параметры, состояния. Если давление и температура не меняются, то с телом ничего не происходит, все свойства его сохраняются.

Другой подход необходим, если речь идет не о газе в баллоне, не о жидкости в сосуде и не о куске твердого тела, а о механической системе: машине, состоящей из множества рычагов и шестеренок, теперь макросостояние будет описано, если указать взаимное расположение частей механизма, а также скорости, с которыми эти части движутся.

Приходится, как видим, и в макросостояниях различать два вида состояний – термодинамическое и механическое. И описываются они разными параметрами.

До того как молекулы вышли на сцену, эти два варианта описания казались совершенно не связанными. Относились они к разным случаям: одно к покоящейся жидкости или газу, другое – к механическим устройствам и ничего общего друг с другом не имели. Параметры, употребительные в термодинамике, – это давление и температура, механические параметры – это координаты и скорости. И одно к другому никогда не сводилось.

Перевод термодинамики на молекулярный язык сразу же выявил наличие мостика между этими двумя описаниями. С точки зрения молекулярной гипотезы всякое тело есть система взаимодействующих молекул, то есть не что иное, как механическая система, нечто вроде рычагов и шестеренок. А состояние такой системы задается, как мы только что видели, взаимным расположением и скоростями ее частей – в нашем случае молекул. Что же, оказывается, дело обстоит не так уж сложно? Термодинамическое макросостояние есть не что иное, как механическое состояние системы молекул?

Осторожнее, повременим с таким заключением. Если немного подумать, то станет ясно, что дело обстоит не так уж просто.

В термостате стоит стакан с жидкостью. Ее температура и давление неизменны. Термодинамическое состояние ее в каждое мгновение одно и то же. Кажется, она – само постоянство и покой. Но ведь молекулы этой жидкости совершают свой вечный тепловой танец! Значит, механические состояния молекул, которые образуют эту самую жидкость, меняются каждое мгновение! Значит, постоянство и покой обманчивы и жидкость живет бурной жизнью?!

Раз уж механическое состояние системы молекул, составляющих жидкость, не отражает ее «макроскопического спокойствия», то назовем его иначе: термин – «микросостояние» будет подходящим по смыслу дела. Теперь мы скажем: каждое состояние (макросостояние) осуществляется беспрерывной сменой огромного числа микросостояний.

Представьте себе, что система состоит из трех перенумерованных молекул. Микросостояние системы будем описывать донельзя грубо, а именно, поделим сосуд, в котором носятся эти три молекулы, на три отсека, а что касается скорости, то разобьем их на две группы – до 1 км/сек (малая скорость) и больше 1 км/сек. Каково будет число микросостояний в этом смехотворно простом случае? Считайте, 8 вариантов распределения скоростей и 27 вариантов положений, то есть 27×8! = 216 микросостояний для модели газа, упрощенной до смешного!

Нетрудно понять, что в реальных случаях, когда для характеристики системы требуется задать точно месторасположение и скорости миллиарда миллиардов молекул, числа микросостояний, относящиеся к одному макросостоянию, становятся непредставимо большими.

В маленьком газовом баллончике модной зажигалки носятся молекулы газа, который зовется пропаном. Каждое мгновение расположение молекул и их скорости меняются, каждое мгновение – другое микросостояние.

Но хотя число микросостояний огромно, оно все же не бесконечно велико. Физики могут сосчитать число микросостояний в баллончике зажигалки. Так как мне неизвестны технические параметры этой зажигалки, то я могу сообщить лишь порядок интересующей нас величины. Число микросостояний в баллончике записывается 1017 цифрами!!! Число печатных знаков в книжке, которую вы читаете, меньше миллиона (106). Значит, чтобы записать интересующее нас число микросостояний, потребовалась бы книга в сто миллиардов раз (1011) более толстая, чем эта.

Надеюсь, что мне удалось поразить ваше воображение, но моя задача не в этом. Цель этого самого трудного параграфа – показать фундаментальную роль теории вероятностей в учении о равновесии тел. К этой цели мы приблизились вплотную, но, чтобы вы отдохнули, мне хочется разрешить себе немного пофилософствовать на тему о трудности популярного изложения научных истин.

В какой бы форме нам ни преподносилось научно-популярное сочинение, оно всегда будет представлять собой рассказ о научных фактах и идеях.

Разговор может идти в двух тональностях. Первая возникает тогда, когда автор ставит перед собой задачу дать ответ на вопросы «как?»; вторая – в тех случаях, когда предстоит ответить на вопросы «почему?».

Различие между этими двумя вариантами изложения научных истин велико. В первом – задача литератора состоит в том, чтобы вести неторопливый рассказ, не забыть важные детали, заботиться об образности изложения, прибегать к повторениям, заставляя этим читателя держать перед глазами всю картину события. Нет проблемы такой степени сложности, чтобы ее нельзя было осветить ответами на вопросы «как сделано?», «как построено?», «как работает?»… на любом уровне подготовки читателя.

Во втором случае задача совсем другая. Дать ответ на вопрос «почему?», значит показать, что некое событие или идея вытекают из других положений более общего характера. Но показать, что частное следует из общего, можно лишь методами логики, а еще лучше – методами математики.

Задача литератора, вступившего на тяжелый путь ответов на вопросы «почему?», неизмеримо сложнее трудностей, с которыми сталкивается автор, описывающий ледники Кавказских гор или устройство моторного катера с новыми обводами. Ему надо тщательно выделить аксиомы, лежащие в основе объяснения, уменьшить для облегчения восприятия высоту логических ступеней, ведущих от основания к вершине объяснения.

Чтобы объяснение «дошло», читатель должен держать в памяти одновременно все логические переходы, и каждый из них должен быть настолько ясным, чтобы казаться само собой разумеющимся.

Поэтому-то тяжело приходится и автору и читателю.

Подобные трудности возникают и при рассказе о применении теории вероятностей к исследованиям газов.

Напоминаем, что макросостояние тела реализуется беспрерывно меняющимися микросостояниями. Число различных микросостояний огромно, но вычислять его физики умеют. Как это нужно делать, показал Людвиг Больцман.

А зачем нужно знать эти числа, которые нельзя записать цифрами, даже истратив на это все мировые запасы бумаги? Какой смысл они имеют?

Если вы внимательно прочитали предыдущие части книги, то вы сами поспешите с ответом. То, что число способов осуществления того или иного результата события пропорционально вероятности результата, вы знаете, не правда ли? А теперь мы выяснили, что число микросостояний есть число способов реализации макросостояния.

По законам логики из этих двух позиций железно следует, что число микросостояний пропорционально вероятности макросостояния.

Вероятность состояния… Как понять сочетание этих двух слов? В самом прямом смысле. Как всегда, вероятности познаются в сравнении. Что вероятнее: стакан горячего чая с лежащим на дне куском сахара или стакан горячего чая с растворившимся в нем сахаром? Что вероятнее: раскаленный кусок железа, лежащий на земле, или кусок железа, принявший температуру почвы?

Слишком простые вопросы, скажет читатель. Согласен. Но сумели бы вы на них ответить без помощи теоремы Больцмана, которую мы сейчас разъясняем? Оказывается, переход к равновесию является дорогой к наиболее вероятному состоянию.

Мне остается убедить вас в том, что вероятность состояния (равная числу микросостояний, которыми она осуществляется) действительно достигает максимума при равновесии.

Попробуем прийти к этому выводу с помощью аналогии. Раскроем книгу на странице 68 [ссылка] и вспомним смысл чисел, образующих тридцатую строку чудесного треугольника Паскаля. Напоминаю, что каждое число показывает, сколькими комбинациями можно прийти к одному макроскопическому результату, к одному состоянию. Общее число бросков рулеточного шарика равно 30. Поэтому макросостояние в тридцать «красных» (начало строки) осуществляется 1 способом, двадцать девять «красных» и один «черный» (следующее число строки) – 30 способами, двадцать восемь «красных» и два «черных» (третье число строки) – 435 способами… 15 «красных» и 15 «черных» (середина строки) – 155 117 520 способами. Разные способы осуществления одного и того же результата (то есть одного и того же отношения «черного» и «красного»), но отличающиеся лишь разным порядком их выхода, – превосходные аналоги макросостояния.

Каковы признаки наиболее вероятного макросостояния? Примерно равное количество «красного» и «черного», отсутствие преимущества того или другого цвета, наибольший беспорядок. Действительно, можно сказать: наиболее беспорядочными являются те серии бросков, что в середине строки, то есть те случаи, когда «черное» и «красное» подравниваются. Упорядоченными сериями являются такие, в которых наблюдается большой перевес одного цвета. Полный порядок – это одноцветная серия. Треугольник Паскаля показывает, что беспорядочные серии встречаются много чаще упорядоченных. Нетрудно понять, распространив этот вывод на мир молекул, для изображения которого с помощью треугольника Паскаля потребовалось бы число его строк довести до миллиарда миллиардов, что вероятности беспорядочных серий будут в невообразимое число раз превосходить вероятность порядка.

Аналогия, конечно, не всегда совершенный способ доказательства, но все же я надеюсь, что эти выводы читатель примет без внутреннего протеста. Для системы молекул беспорядок означает отсутствие особенных направлений движения, отсутствие особых мест скопления молекул, отсутствие каких-либо часто встречающихся скоростей. На языке рулетки это и значит – примерно равное число «черного» и «красного».

Из нашей аналогии следует далее, что неравновесное состояние является менее вероятным. Раз оно неравновесно, то в нем нарушены устойчивые пропорции быстрых и медленных молекул, плотность неоднородна по объему, имеются преимущественные направления движения молекул… То есть «черного» много больше, чем «красного».

Несколько страниц назад я принялся разъяснять фразу: «равновесное состояние является наиболее вероятным». Надеюсь, что я справился с этой задачей. Мы увидели, что наблюдаемое состояние тела осуществляется огромным числом микросостояний; выяснили, что число микросостояний пропорционально вероятности макросостояний; методом аналогии показали, что вероятность состояния возрастает с беспорядком в расположении и движении частиц. Из всего этого по законам логики мы пришли к этой действительно емкой фразе, усвоение которой, я боюсь, потребовало от читателя некоторого напряжения.

В студенческие годы мне попала в руки толстая книга в ярко-синем переплете, изданная в Томске. Это был курс термодинамики. В предисловии автор писал:

«Хочу предупредить учащихся о том, что понятие энтропии усваивается с большим трудом. Я лично понял, что такое энтропия, примерно после двадцати лет педагогической деятельности».

Я помню, как изумила меня наивная и откровенная скромность автора.

Содержание только что прочитанного параграфа приведет нас, как вы сейчас увидите, к понятию энтропии. Так что, если вам было трудно, не удивляйтесь.

Обезьяна за пишущей машинкой

Второе начало термодинамики является железным законом природы. На предыдущих страницах мы попытались сформулировать его на языке вероятности. Мы увидели, что равновесное состояние систем наиболее вероятное, и поэтому вполне понятно стремление всех тел и систем перейти к покою или, вернее, к «мертвой жизни». И вот вопрос – раз речь идет «всего лишь» о вероятностном законе, то почему не допустить, что второе начало может нарушаться и тела самопроизвольно могут выходить из положения равновесия? Зафиксированы же в истории Монте-Карло серии из двадцати двух выпадений красного подряд?!

Строгое подчинение природы второму началу термодинамики есть, конечно, следствие закона больших чисел.

Вместо десятков и сотен тысяч событий, фигурирующих в отчете игорного дома, в мире молекул мы оперируем числами, выражающимися единицей с двадцатью нулями. Поэтому самые крошечные вероятности редчайших и драматических событий, случающихся в Монте-Карло, в миллиарды миллиардов раз превосходят вероятности самопроизвольного отклонения системы молекул от положения равновесия. Но если все те же законы больших чисел не запрещают абсолютно появления невероятных событий, то интересно узнать, какова вероятность «невероятного» события.

Посадим шимпанзе за пишущую машинку. Посмотрев, как бойко отстукивает страницу человек, обезьяна тоже начинает печатать. Буква за буквой, строка за строкой… Через полчаса, выкрутив обезьянью страницу из машинки, читаем:

Не мысля гордый свет забавить,

Вниманье дружбы возлюбя,

Хотел бы я тебе представить

Залог достойнее тебя…

Возможно? А почему нет? Шимпанзе колотит по клавишам как попало. Последовательность букв может быть любой, так как они равновероятны. А вычислить вероятность каждой из них и в том числе четырех строк, открывающих «Евгения Онегина», абсолютно просто. Букв в алфавите, будем считать, тридцать. Вероятность 1 «н» на первом месте – равна одной тридцатой 1/30; вероятность «не» – 1/900 = (1/30)2, вероятность «не м» – 1/2700 = (1/30)3 и так далее. Всего букв в четырех строках 86. Вероятность напечатать случайно эти четыре строки равна одной тридцатой в восемьдесят шестой степени (1/30)86. Это число равно 10-127, то есть единице, поделенной на единицу со 127 нулями.

Велика или мала вероятность обезьяньего гения? Число вроде бы совершенно мизерное, но сравним его с вероятностью отклонения тела от равновесия. Подберем пример нарушения равновесия, где была бы такая же вероятность.

Скажем так, если тело находится в тепловом покое, то, разумеется, все его точки имеют одинаковую температуру. Но имеется все же крошечная вероятность, что второе начало термодинамики нарушится. Так что в принципе возможно, что на одном конце булавки температура вдруг ни с того ни с сего станет выше, чем на другом. Чем больше отклонение, тем меньше его вероятность. На сколько же долей градуса нарушится второе начало с вероятностью в 10-127, то есть с той вероятностью, с которой обезьяна сочинила пушкинское четверостишие? Можно рассчитать – оказывается, на 10-16 градуса. А это очень и очень далеко за пределами измерительной техники. Даже вероятность создания всего «Евгения Онегина» методом случайного «тыка» в клавиши – а она равна что-то 10–150000 – в миллион раз больше вероятности флуктуации температуры, которую можно было бы обнаружить обычными приборами.

Пожалуй, приведенные данные достаточно красноречивы, и я надеюсь, что доказал читателям полную невозможность самопроизвольного выхода из равновесия окружающих нас тел. А этим, в свою очередь, доказал невозможность создания вечного двигателя второго рода. Неизмеримо вероятнее обезьяне написать собрание сочинений Пушкина, чем создать захудаленький вечный двигатель, выкачивающий тепло из окружающей среды.

Превосходной моделью, иллюстрирующей незыблемость вероятности равновесного состояния, служит ящик, в который засыпают черные и белые зерна. Если их перемешать лопаткой, то скоро они распределятся равномерно по всему ящику.

Зачерпнув наудачу горсть их, мы найдем в ней примерно одинаковое число белых и черных зерен. Сколько бы мы ни перемешивали, результат будет все время тем же – равномерность сохраняется. Но почему не происходит разделения зерен? Почему долгим перемешиванием не удастся черные зерна переместить вверх, а белые вниз?

Все дело в вероятности. Такое состояние, при котором зерна распределены беспорядочно, то есть черные и белые равномерно перемешаны, может быть осуществлено огромным множеством способов (любые два зернышка – черное и белое – можно поменять местами, а беспорядок останется беспорядком) и, следовательно, обладает самой большой вероятностью. Напротив, такое состояние, при котором все черные зерна окажутся вверху, а белые внизу, единственное (ни одного черного зернышка нельзя заменить на белое; как только это сделаешь полный порядок пропал). Поэтому вероятность его осуществления ничтожно мала.

Вечное тепловое движение непрерывно перетасовывает молекулы, перемешивает их так, как это делает лопатка с зернами в ящике.

Энтропия

Внесем небольшое терминологическое изменение в закон о максимальной вероятности равновесного состояния.

Очень часто в физике величины, которые меняются в больших пределах, заменяют их логарифмами.

Напомним, что такое логарифм. Когда я пишу о науке для так называемого массового читателя, для читателя вообще («дженерал ридер» – по-английски) и вынужден использовать какой-либо термин, который в науке имеет такое же самое распространение, как, ну скажем, поэма в литературе, то впадаю в смущение. Объяснять?! Можно обидеть читателя, который вправе сказать: «За кого ты меня принимаешь, неграмотный я, что ли?» Не объяснять? А вдруг он позабыл и не поймет того, о чем будет говориться дальше. Поэтому все же напомню: 102 = 100; 103 = 1000; 104 = 10000 и т.д. Числа 2, 3, 4 и т.д. представляют собой десятичные логарифмы 100, 1000, 10000 и т.д. Как видим, само число возросло в сто раз, а логарифм лишь вдвое.

Логарифмы оказываются полезными и в нашем случае. Вместо того чтобы пользоваться «вероятностью состояния», в обиход вводят «логарифм вероятности состояния». Этот логарифм и называется энтропией.

Закон природы, согласно которому тепло не переходит от холодного к горячему, маховик не раскручивается за счет охлаждения оси и прилегающего к нему воздуха и раствор медного купороса не делится на воду и купорос, кратко формулируется так: энтропия в естественных процессах всегда растет.

Закон возрастания энтропии – важнейший закон природы. Из него вытекает, в частности, и невозможность создания вечного двигателя второго рода, и, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию.

Закон возрастания энтропии иногда называют «вторым началом термодинамики» (термодинамика – учение о тепле). А что такое первое начало? Это закон сохранения энергии.

Название «начала термодинамики» для этих законов природы сложилось исторически. Нельзя сказать, что объединение «под одну шапку» обоих начал было делом удачным. Ведь закон сохранения энергии – это механический закон, которому подчиняются неукоснительно как большие тела, так и отдельные атомы и молекулы. Что же касается закона возрастания энтропии, то, как следует из сказанного выше, он применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.

Статистический (это и означает – относящийся к большому собранию частиц) характер второго начала термодинамики нисколько не принижает его значения. Закон возрастания энтропии предопределяет направление процессов. В этом смысле энтропию можно назвать директором-распорядителем природных богатств, а энергия служит у нее бухгалтером.

Кому же принадлежит честь открытия этого важного закона природы? Здесь нельзя ограничиться одним именем. У второго начала термодинамики есть своя история.

Как и в истории первого начала термодинамики, в первую очередь должно быть упомянуто имя француза Сади Карно. В 1824 году он издал на свои средства печатный труд под названием «Размышления о движущей силе огня». В этой работе впервые было указано, что тепло не может переходить от холодного тела к теплому само собой без затраты работы. Карно показал также, что максимальный коэффициент полезного действия тепловой машины определяется лишь разностью температур нагревателя и охлаждающей среды.

Только после смерти Карно, в 1832 году на эту работу обратили внимание другие физики. Однако она мало повлияла на дальнейшее развитие науки из-за того, что все сочинение Карно было построено на признании неразрушимого и несоздаваемого «вещества» – теплорода.

Лишь вслед за исследованиями и размышлениями Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, немецкий физик Рудольф Клаузиус (1822–1888 гг.) пришел ко второму началу термодинамики и математически сформулировал его. Клаузиус ввел в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.

Все, что мы сказали ранее по поводу истолкования естественного хода процессов, несомненно, очень остроумно и очень похоже на правду. Но тем не менее набросанную картину никак нельзя назвать завершенной. В таком виде наши молекулярно-кинетические рассуждения могут быть скептиками отнесены к разряду болтовни. Так оно, кстати, и было в конце XIX века. О наскоках противников молекул на статистическую теорию мы расскажем чуть ниже. Но уже сейчас можно утверждать, что выступления сторонников теории, заканчивающиеся чем-нибудь вроде: «Итак, мы показали, что второе начало термодинамики хорошо объясняется молекулярно-кинетической гипотезой», комментировались противниками примерно следующим образом: «Ну что же, гипотеза ваша выиграла, но наука от этого ничего не получила».

Дело заключается в том – об этом мы тоже уже говорили выше, – что теория становится теорией лишь тогда, когда с ее помощью можно что-то предсказать. Объяснения постфактум – это не наука; объяснения постфактум создают лишь ощущение умственного комфорта. Но, право же, ценность теории близка к нулю, если ее значение оказывается аналогичным значимости в нашей жизни удобного кресла.

Таким образом, перед сторонниками молекулярно-кинетической гипотезы встала задача перекинуть мост между молекулярными характеристиками и непосредственно измеряемыми физическими свойствами вещества. Мало того, надо было построить такую теорию, которая предсказывала бы, как те или иные свойства вещества будут изменяться с изменением состояния тела, то есть что будет делаться с тем или иным веществом, если растет температура, увеличивается давление…

На пути решения этой грандиозной задачи и возникла новая физика, получившая название статистической физики.

Статистическая физика

У нас, конечно, есть все основания говорить, что статистическая физика – это новая физика. Огромность числа частиц тела не позволяет описывать состояние каждой из них. Но в то же время эта огромность позволяет применить к изучению физических тел новые «статистические» методы. Основы статистической физики были заложены замечательным австрийским физиком Людвигом Больцманом (1844–1906 гг.). В серии работ Больцман показал, как осуществить для газов программу построения теории, связывающей средние характеристики молекулярного движения с физическими свойствами.

В 1877 году логическим завершением этих исследований явилось данное Больцманом статистическое истолкование второго начала термодинамики. Формула, связывающая энтропию и вероятность состояния системы, высечена на его памятнике.

Трудно переоценить научный подвиг Больцмана, нашедшего в теоретической физике совершенно новые пути. Исследования этого замечательного ученого подвергались при его жизни насмешкам со стороны консервативной немецкой профессуры: в то время атомные и молекулярные представления считались многими корифеями науки наивными и ненаучными. Больцман покончил жизнь самоубийством, и обстановка, несомненно, сыграла в этом далеко не последнюю роль.

Здание статистической физики было в значительной степени завершено трудами выдающегося американского физика Джошуа Вилларда Гиббса (1839–1903 гг.). Гиббс обобщил методы Больцмана и показал, каким образом можно распространить статистический подход на все тела. Последняя работа его вышла в свет уже в начале XX века. И прошло порядочное число лет, пока его замечательные исследования стали известны всем физикам. А все дело заключалось в скромности. Из-за нее Гиббс печатал свои труды в известиях небольшого провинциального университета.

Что же это за путь, по которому надо идти, чтобы найти связь между хаотическим молекулярным движением и свойствами тела? Как экспериментальным путем измерить вероятность состояния тела?

Одна из самых важных работ Людвига Больцмана показала следующее. Если телу сообщить небольшое количество энергии в форме тепла и разделить затраченное число калорий на температуру, при которой происходит эта передача энергии, то полученное частное будет равняться приросту энтропии. А прирост энтропии, как помнит тот читатель, который не позабыл свойства логарифмов, равен относительному приросту вероятности состояния (ибо разность логарифмов равна логарифму частного).

Доказывать эту теорему я не имею возможности. Но такова уж участь читателей литературы о науке – они должны иногда верить автору на слово. Правда, в наш недоверчивый век я стараюсь не злоупотреблять этой прерогативой, но сейчас прошу поверить: все сказанное верно, и энтропию, вычисляемую из вероятности состояния, можно (и не очень трудно) измерить на опыте.

Гиббсом были даны формулы, которые позволяли проводить вычисление любых физических свойств любых тел, если известна вероятность состояния.

На первый взгляд может показаться, что прогресс не очень-то велик и что молекулярно-кинетическая теория осталась «вещью в себе». Ну получили формулу для расчета свойств тела! Но ведь для того, чтобы произвести этот расчет, надо знать вероятность состояния, то есть число микросостояний! А откуда ее взять? Гиббс показал, что вместо числа микросостояний достаточно знать их распределение по энергии.

Долгое время казалось, что от этого легче не стало. И лишь относительно недавно мощь статистической физики проявилась. Лет пятьдесят назад физики научились измерять распределение микросостояний по энергии с помощью спектрального анализа. И тогда создалась возможность использовать статистическую физику так, как должно, то есть для предсказаний.

Вот пример схемы действий, которая приводит в восхищение физика и, кстати говоря, формирует его мировоззрение и психологию.

Вы, осветив какой-либо газ, ну, скажем, для определенности углекислый газ, подвергаете его спектральному исследованию и получаете красивую спектрограмму, состоящую из множества четких спектральных линий. Спектрограмма расшифровывается с помощью ЭВМ, и вы получаете список энергии микросостояний молекул в виде ряда чисел. Полученные числа подставляются в формулы статистической физики. Если лень считать самому, можете и эту задачу поручить ЭВМ. В результате расчета вы получите, например, зависимость теплоемкости углекислого газа от температуры. Теперь отправимся в другую лабораторию – калориметрическую. Здесь можно измерить, сколько тепла надо затратить, чтобы один грамм газа нагреть от 20 градусов до 21, от 21 градуса до 22 и т.д. Это и значит, что вы измеряете кривую теплоемкости. Вы отмечаете крестиками полученные на опыте данные на миллиметровой бумаге. Здесь же, в том же масштабе, изображена кривая теплоемкости, которую вы вычислили теоретически. И видите, что крестики строго ложатся на теоретическую кривую.

Вдумайтесь еще раз в смысл происшедшего. Что общего, казалось бы, между поглощением света углекислым газом и теплом, затрачиваемым на нагрев этого газа? Да ничего, решительно ничего.

И вот между этими двумя явлениями перекидывается мост – прозрачно ясная идея беспорядочно движущихся молекул, далее, поведение молекул уподобляется поведению шарика рулетки, вступает в строй математический аппарат теории вероятностей, и два события оказываются связанными железной цепью. Характер одного из них определяет особенности второго.

Вот это и есть настоящая физика, в этом главное, что принесла с собой наука. Она сделала мир единым, а не хаосом разрозненных, не имеющих между собой ничего общего явлений.

Взрыв страстей в городе Любеке

Как это ни кажется сейчас странным, защищать атомы и молекулы в конце XIX века было не простой задачей.

Под влиянием натурфилософов типа Эрнеста Маха из науки тщательно изгонялись всякого рода предположения, которые не могли быть проверены опытом. Прямых доказательств существования атомов в то время не было, поэтому атомные воззрения подравнивались к метафизике и рассматривались большинством естествоиспытателей-европейцев как разновидность веры в загробную жизнь и общение с духами. Напротив, большим уважением пользовались взгляды так называемых энергетиков, которые предлагали в основу физики положить понятие энергии и изгнать из науки всякого рода соображения о строении вещества.

Вполне понятно, что работы Людвига Больцмана, строившего статистическую физику с помощью простых и ясных представлений о мире частиц, взаимодействующих по законам механики, встречались этой группой ученых в штыки. Больцман не только оборонялся, но и переходил зачастую в атаку, нападая на энергетиков на их территории.

На страницах печати шли ожесточенные споры. Противники иногда встречались и публично.

Одну из таких дискуссий по поводу энергетики, происходившую в австрийском городе Любеке в 1895 году, известный физик Арнольд Зоммерфельд вспоминал такими словами: «Реферат об энергетике был прочитан доктором Хельмом. Его поддерживал Вильгельм Оствальд. За ними обоими стояла натурфилософия Эрнеста Маха, отсутствовавшего на этом заседании. Борьба между Оствальдом и Больцманом походила как внешне, так и внутренне на сражение тореро с быком. Но, несмотря на все искусство владения шпагой, тореро на этот раз был побежден быком. Аргументы Больцмана были неотразимыми. Мы, молодые теоретики, были все завоеваны Больцманом».

Стенограммы заседания не сохранилось, и, я думаю, историки науки не рассердятся на меня, если я, пользуясь опубликованными статьями спорящих сторон, по своему усмотрению распоряжусь некоторыми деталями обстановки и поведением действующих лиц.

Итак, город Любек. Ранний вечер. Оживленно разговаривая, к широким дверям большой аудитории направляются профессора, доценты, студенты. Дискуссия интересует всех. Аудитория заполняется не только физиками, но и химиками, математиками, биологами… Обсуждаются проблемы, интересные для любого естествоиспытателя.

Реферат Хельма – все это превосходно понимают – лишь скучная затравка. Самое интересное начнется позже. В первых рядах Больцман и Оствальд – оба великолепные, остроумные полемисты. Их борьба, без сомнения, будет захватывающей.

Хельм заканчивает свой реферат:

– Итак, дамы и господа, я думаю, сумел наглядно показать вам, что энергетика, примененная к любой области знания, никогда не будет разрушена дальнейшим развитием науки. Энергетика стабильна ничуть не меньше, чем геометрия.

Все, что может случиться с законами, касающимися энергии, это то, что эти законы могут быть расширены и уточнены. Здание, образованное этими законами, может быть украшено, но оно никогда не будет разрушено и реконструировано. Что же касается механических гипотез, то их судьба иная. Они без конца разрушаются и реконструируются. Достаточно вспомнить бесчисленные гипотезы и теории, которые были созданы для объяснения явления света.

Реально и содержательно лишь одно понятие – понятие энергии. Разрешите мне закончить мое выступление словами глубокоуважаемого профессора Вильгельма Оствальда. «Если бы поэт пожаловался, что он не находит больших идей, которые охватывают мир в едином объятии, то я посоветовал бы ему обратиться к понятию энергии, наиболее грандиозному из всех, которые волновали умы нашего века. Если бы поэт сумел воспеть энергию должным образом, то он создал бы эпическую поэму, которую можно было бы рассматривать как поэму человечества».

Последовали вежливые аплодисменты, и председательствующий предложил желающим поделиться со слушателями своими взглядами. Больцман сразу ринулся в атаку:

– Я с огромным интересом прослушал доклад многоуважаемого господина доктора. Я не могу не согласиться с ним, что законы, устанавливающие связь между непосредственно измеряемыми величинами, незыблемы и будущее развитие науки может лишь расширить их, но не изменить. Так же как господин Хельм, я ставлю весьма высоко все теоремы, касающиеся энергии, и уверен, что понятие энергии приносит науке большую пользу. Правда, я не стал бы восхвалять энергию в стихах, приберегая мой мизерный поэтический талант для лирических излияний. Но тем не менее я желаю господам Оствальду и Хельму найти нового Гёте, который бы вдохновился этой темой.

Короче говоря, позитивная программа господина Хельма не вызывает у меня возражений. Но мне трудно согласиться с докладчиком там, где он призывает нас отказаться от тех методов, без которых, по-моему, наука не может жить и развиваться. Я имею в виду атомную теорию, которая делает столь наглядными картины химических явлений, кристаллизации, тепловых явлений.

Оствальд. Атомы – наивная выдумка древнегреческих мудрецов. Почему мы выражаем уверенность, что все атомные и молекулярные гипотезы должны быть изгнаны? Почему мы убеждены, что через пятьдесят лет сведения об атомах и молекулах можно будет найти лишь в пыли библиотек? По простой причине – эти гипотезы не содержат ничего дополнительного по отношению к факту, который они призваны объяснить. Тело горячее – значит, атомы движутся быстрее. А почему атомы движутся быстрее? Вместо того чтобы облегчить задачу объяснения природы, я ее только осложняю, увеличивая число положений, которые надо истолковать.

Больцман. Если бы дело обстояло так, как вы говорите, то вы были бы правы. Но ведь атомная гипотеза охватывает самый различный круг явлений. Как можно не чувствовать, что, используя представление об атомах и молекулах, мы подводим общее основание под все естествознание? Факты, которые казались разрозненными, начинают складываться в единое целое.

Оствальд. Такое единство превосходно достигается составлением феноменологических уравнений.

Голос из публики. Господа, среди слушателей есть малограмотные люди. Пожалуйста, объясните, что значит феноменологическое уравнение.

Оствальд (снисходительно, с улыбкой). Пожалуйста. Это уравнение, которое связывает лишь непосредственно измеряемые величины. Например, уравнение Ньютона: сила равна произведению массы на ускорение. Все три величины могут быть непосредственно измерены. «Я гипотез не измышляю!» – сказал великий Ньютон. Энергетика следует этому завету: никаких гипотез, никаких наглядных картин!

Больцман. Чистейшая фикция. Когда мы размышляем о явлениях, мы всегда пользуемся теми или иными картинами. Мысленно нельзя себе представить только господа бога. Вы говорите, что надо ограничиться дифференциальными уравнениями, записанными для непосредственно измеряемых величин. Но возьмите такие уравнения, как уравнения теплопроводности, или вязкости, или теории упругости. В этих уравнениях обязательно фигурируют величины, отнесенные к малым областям. Тело мысленно разбивается на материальные точки. Все равно вам не удается избавиться от моделей явления.

Оствальд. Это не модели. Это просто вспомогательные представления, право на которые мы получаем по той причине, что записанные уравнения оправдываются на опыте. Что же касается атомных гипотез, то вы, господин Больцман, не указали нам пока что способ увидеть атомы.

Больцман. Не сомневаюсь, что это случится достаточно скоро!

Оствальд. Ну что же, мы согласны подождать. Но пока что на месте господина Больцмана я не прибегал бы на лекциях ко всяким игрушкам, изображающим атомы и молекулы. Насколько мне известно, когда господин профессор читает лекции по теории упругости, то он пользуется атомами, сделанными из папье-маше, к этим «атомам» прикреплены дюжины крючков, которыми атомы сцеплены. Учебная аудитория все-таки не детская комната.

Смех части аудитории.

Больцман. Да, я за наглядность. Большую часть своего жизненного опыта человек набирает глазами. Стремление наглядно представить себе физические явления законно, и там, где можно, надо прибегать к зримым моделям. Работа с такими моделями наталкивает на новые идеи, приводит нас к необходимости поставить те или иные новые эксперименты, позволяет прочувствовать совершенство или недостатки той или иной гипотезы. Господин Оствальд ошибается, если думает, что я ставлю знак равенства между моделями, изготовленными из бумаги и дерева, и атомным миром. Сторонники атомной гипотезы прекрасно понимают условность модели. Всякая модель призвана показать лишь какую-то группу явлений. Разумеется, атомы не то же самое, что деревянные шарики, но в каких-то отношениях атомы ведут себя как шарики. Разъяснение поведения атомов при помощи моделей – это совсем не детская забава!

Переругиваться таким образом в течение 10–15 лет – это совсем не весело. Слышать насмешки над собой и обвинения в ретроградстве, когда знаешь, что ты открываешь новые пути в науке, – это совсем не легко. Чтобы спокойно работать при всем при этом, надо иметь хорошую нервную систему. А у Людвига Больцмана она была скверная.

Загрузка...