Глава 12. Мюонное нейтрино

Распад пиона

Если мюон действительно просто тяжелый электрон, при взаимодействии частиц он должен в точности копировать поведение электрона Например, отрицательный пион распадается, образуя отрицательный мюон, а положительный пион — положительный мюон, причем образование этих мюонов походит на рождение электронов. А поскольку электрон (или позитрон) рождается вместе с антинейтрино (или нейтрино), не будут ли возникать эти частицы и при образовании мюонов? Оказывается, нейтрино и антинейтрино действительно появляются при распаде мюонов, и мы можем записать:

-→ μ-+ 'ν

π+→'μ++ ν.

В обоих случаях суммарное лептонное число продуктов распада равно нулю. Закон сохранения лептонного числа требует, чтобы лептонное число частиц перед распадом также было равно нулю. До распада существовали только отрицательный и положительный пионы, которым по этим соображениям следует приписать нулевые лептонные числа. По-видимому, из взаимодействия следует, что «закон сохранения мезонного числа» не существует, так как при распаде пиона мюон исчезает бесследно. Но физики и не стремятся приспособить свои теории к закону сохранения мезонов. В этом смысле их вполне устраивает естественное положение вещей.

Однако возникает законный вопрос: почему пион распадается только на мюон, если мюон является просто тяжелым электроном? Почему при распаде не образуется электрон? Оказывается, такой распад иногда имеет место.

В 1958 году было обнаружено, что один пион из 7000 распадается на электрон, а не на мюон:

-→ e-+ 'ν,

π+→'e++ ν.

Почему мюоны и электроны образуются не в одинаковом количестве? Прежде всего, из-за разницы в массах. Мюон во много раз тяжелее электрона, поэтому почти вся энергия, освобождающаяся при распаде пиона, идет на образование массы, и только незначительная ее часть превращается в кинетическую энергию. В результате возникший мюон имеет скорость порядка 40 000 км/сек. При образовании электрона только очень незначительная часть энергии распада превращается в массу и электрон вылетает со скоростью более 290 000 км/сек, что очень близко к скорости света.

При создании теории слабых взаимодействий Ферми показал, что вероятность рождения мюона, а не электрона при распаде пиона зависит, в частности, от скорости образующейся частицы. Чем ближе скорость частицы к скорости света, тем меньше вероятность ее рождения. Именно поэтому медленный мюон образуется чаще, чем быстрый электрон.

Если не учитывать разности масс, можно сказать, что для любого известного взаимодействия частиц с участием электронов (или позитронов) имеются аналогичные взаимодействия, в которых участвуют отрицательные (или положительные) мюоны.

А одинаковы ли нейтрино и антинейтрино, образующиеся вместе с электронами и мюонами?

Вначале, когда сходство между электронами и мюонами не принимали во внимание и мюон считали особой частицей, не похожей на электрон, не было оснований думать, что легкие нейтральные частицы, образующиеся при рождении мюона, должны быть обязательно нейтрино. Было известно, что мюон намного тяжелее электрона, и поэтому казалось разумным предположить, что легкая нейтральная частица, возникающая вместе с ним, тяжелее невесомого нейтрино, но, несомненно, легче нейтрона. Поэтому некоторое время частицу с промежуточной массой физики называли «нейтретто». Подозревали даже, что она тяжелее электрона.

При более внимательном изучении «нейтретто» было обнаружено, что величину ее массы следует уменьшать и уменьшать. Все больше начинало казаться, что эта частица, подобно нейтрино, не имеет массы. Поэтому, когда было установлено сходство мюона и электрона, ничего не стоило предположить, что рождение мюона и электрона сопровождается нейтрино, одинаковыми в обоих случаях.

Сохранение электронного и мюонного чисел

Однако, если нейтрино, сопровождающее возникновение электрона, идентично нейтрино, сопровождающему рождение мюона, появляется новый вопрос в связи с распадом мюона. При распаде отрицательного мюона образуется электрон, а при распаде положительного — позитрон. Кроме того, в первом случае должно было бы возникнуть антинейтрино, а во втором — нейтрино:

μ-→ e-+ 'ν, 'μ+→'e++ ν.

Можно заметить, что с лептонным числом творится что-то неладное. Отрицательный мюон имеет лептонное число +1, а лептонные числа электрона и антинейтрино + 1 и -1 соответственно, т. е. их суммарная величина равна нулю. С другой стороны, положительный пион имеет лептонное число -1, а позитрон и нейтрино — лептонные числа -1 и +1 соответственно, следовательно, их суммарное значение тоже равно нулю.

Нарушается ли закон сохранения лептонного числа? Или следует мюону приписать нулевое лептонное число? Ни одна из этих возможностей неприемлема для физиков, ибо вызвала бы больше вопросов, чем решила. Проще всего выйти из положения, если предположить, что при распаде мюона возникает еще третья частица.

Допустим, при распаде отрицательного мюона рождается не только электрон и антинейтрино, но еще и нейтрино, а при распаде положительного мюона — позитрон, нейтрино и антинейтрино, т. е.

μ-→ e-+ 'ν + ν,

+→'e++ ν + 'ν.

Таким образом, если вначале был отрицательный мюон с лептонным числом +1, после распада будут три частицы с лептонными числами +1, -1 и +1 и их сумма равна +1. Если вначале был положительный мюон с лептонным числом -1, после распада возникнут три частицы с лептонными числами -1, +1 и -1, и их сумма равна -1. Так, не лишая мюона принадлежности к лептонам, мы одновременно спасли закон сохранения лептонного числа.

Но не все еще ясно. Присутствие нейтрино и антинейтрино среди продуктов распада мюона приводит к новой проблеме.

Обычно частица и античастица при достаточном сближении, аннигилируют, излучая фотоны соответствующей энергии. Возможно, нейтрино и антинейтрино аннигилируют с меньшей вероятностью, чем обычные частицы и античастицы, но такая аннигиляция должна происходить, даже если это редкое явление. Тогда время от времени отрицательный мюон распадался бы на электрон и фотоны, а положительный мюон — на позитрон и фотоны, а фотоны легко было бы зарегистрировать. Однако их нет. Почему?

Одна теория, предложенная для объяснения отсутствия фотонов, заставляла отказаться от существования w-частицы. Если w-частица не существует, распад мюонов на электроны и фотоны должен был происходить так редко, что его нельзя было бы обнаружить. Однако w-частица часто используется в теории, и физики начали искать другое объяснение.

Объяснение появилось в 1957 году и сводилось к предположению, что нейтрино и антинейтрино, возникающие при распаде мюона, на самом деле не являются настоящими частицей и античастицей. Иными словами, электрон при распаде образует один сорт нейтрино, которое можно назвать электронным нейтрино νe (ему соответствует электронное антинейтрино 'νe), а мюон образует нейтрино другого сорта — мюонное нейтрино νμ, (которому соответствует мюонное антинейтрино 'νμ).

Рассмотрим теперь распад мюона в новом свете. Отрицательный мюон распадается на электрон и электронное антинейтрино. Следовательно, третья частица, образующаяся при распаде отрицательного мюона, должна быть мюонным нейтрино. Поэтому электронное антинейтрино и мюонное нейтрино не аннигилируют, так как они не являются комбинацией частица — античастица. По тем же соображениям положительный мюон распадается на позитрон, электронное нейтрино [20] и мюонное антинейтрино. Запишем распады мюонов в следующем виде:

μ-→ e-+ 'νe+ νμ,

+→'e++ νe+ 'νμ.

Нетрудно заметить, что при такой записи лептонное число сохраняется, а кроме того, возникает возможность сформулировать два более узких закона сохранения. Разделим все лептоны на электронное и мюонное семейства. Семейство электронов включает электрон, позитрон, электронное нейтрино и электронное антинейтрино. Электрон и электронное нейтрино имеют электронное число +1 каждый, а позитрон и электронное антинейтрино — соответственно -1 каждый. К семейству мюонов относят ся отрицательный мюон, положительный мюон, мюонное нейтрино и мюонное антинейтрино. Отрицательный мюон и мюонное нейтрино должны иметь мюонное число +1, а положительный мюон и мюонное антинейтрино — мюонное число -1. (Фотон, оставшийся лептон, не принадлежит ни к одной из этих групп, и его электронное и мюонное числа равны нулю. Точно так же будет обстоять дело с мезонами и барионами. Более того, частицы из семейства электронов будут иметь нулевые мюонные числа, и наоборот.)

Уравнения, описывающие распад мезона и образование двух разных нейтрино, иллюстрируют закон сохранения электронного числа и закон сохранения мюонного числа, которые утверждают соответственно, что суммарное значение электронного числа и суммарное значение мюонного числа замкнутой системы остаются постоянными.

Рассмотрим сначала распад отрицательного мюона, имеющего мюонное число +1 и нулевое электронное число. При распаде образуются три частицы: электрон, электронное антинейтрино и мюонное нейтрино, мюонные числа которых равны 0, 0 и +1 соответственно, а электронные числа равны +1, -1 и 0 соответственно. Таким образом, мюонное и электронное числа сохраняются. Аналогично можно показать, что мюонное и электронное числа сохраняются и в случае распада положительного мюона.

Эти законы справедливы для некоторых рассмотренных ранее взаимодействий с участием электронов и мюонов если при этом учесть различие двух типов нейтрино. Распад нейтрона происходит при участии электронного антинейтрино:

n→p++ e- + 'νe.

Нетрудно видеть, что электронное и мюонное числа равны нулю в начале и в конце распада.

Отрицательный пион распадается на отрицательный мюон и антинейтрино мюонного типа или на электрон и антинейтрино электронного типа:

-→ μ-+ 'νμ,

-→ e-+ 'νe .

Мюонное и электронное числа пиона равны нулю. В первом распаде пиона отрицательный мюон и антинейтрино мюонного типа имеют мюонные числа +1 и -1, т. е. их сумма равна нулю. Во втором — электрон и антинейтрино электронного типа имеют электронные числа +1 и -1 соответственно, т. е. их сумма также равна нулю. Те же самые соображения применимы и к распаду положительного пиона.

Физики установили, что в действительности при всех взаимодействиях частиц с участием мюонов или электронов или и тех и других вместе мюонное и электронные числа сохраняются. Конечно, их сумма (лептонное число) также сохраняется. Поскольку более важно сохранение этих чисел в отдельности, а не сохранение их суммы, законом сохранения лептонного числа перестали пользоваться, хотя он никогда не нарушался, и вместо него физики говорят о законах сохранения электронного и мюонного чисел.

Двухнейтринный эксперимент

Законы сохранения электронного и мюонного чисел имеют силу только в том случае, если электронное нейтрино и мюонное нейтрино на самом деле различны по своей природе. К сожалению, нет такого свойства, по которому можно было бы установить это различие. Оба типа нейтрино не имеют ни массы, ни заряда. Спины обоих равны +1/2 или -1/2, и оба имеют античастицы. В чем же тогда заключается их различие?

Физики не решались постулировать различие между электронным и мюонным нейтрино без дополнительного доказательства. Они искали взаимодействие, которое протекало бы по-разному в зависимости от того, одинаковы или различны эти нейтрино. Такой эксперимент был придуман и проведен в 1962 году в лаборатории Брукхейвена. Для проведения эксперимента требовался пучок нейтрино высоких энергий. Его получали при столкновении протонов большой энергии с бериллиевой мишенью, использовавшейся для получения интенсивного пучка положительно и отрицательно заряженных пионов (рис. 9).

Пучок пионов направляли на стену из стальной брони (от старого линкора) толщиной около 13,5 м. Не достигнув стены, приблизительно 10 % весьма нестабильных положительных пионов распадалось на положительные мюоны и мюонные нейтрино, такое же количество отрицательных пионов распадалось на отрицательные мюоны и мюонные антинейтрино. Кроме того, положительные пионы создавали позитроны и электронные нейтрино, а отрицательные пионы — электроны и электронные антинейтрино, но в таком незначительном количестве, что ими можно было свободно пренебречь.

Рис. 9. Рождение нейтрино в двухнейтринном эксперименте.


Когда этот конгломерат частиц сталкивался со стальной стенкой, пионы и мюоны обоих знаков останавливались, а нейтрино мюонного и электронного типов продолжали двигаться в прежнем направлении, проходя 13,5 м стальной брони, как через вакуум. По другую сторону от стальной стены было огорожено место, в котором располагался 10-тонный детектор (искровая камера), очень чувствительный к определенным ядерным процессам. Через искровую камеру проходил непрерывный поток нейтрино и мюонное антинейтрино. Очень редко мюонное нейтрино должно было реагировать с нейтроном, образуя протон и отрицательный мюон (по крайней мере, этого следовало ожидать согласно теории):

νμ+ n→p+ + μ-.

Барионное число при такой реакции сохраняется, так как нейтрон превращается в протон и оба имеют барионное число +1. Кроме того, сохраняется и мюонное число, так как мюонное нейтрино превращается в отрицательный мюон и оба имеют мюонное число +1. Это как раз то, что следовало бы ожидать, если справедлив закон сохранения мюонного числа. Ну, а что было бы в противном случае? Что если мюонное нейтрино совпадает с электронным нейтрино и сохраняется только лептонное число, а не электронное и мюонные числа в отдельности? Тогда мы должны были бы говорить просто о нейтрино, которое при взаимодействии с нейтроном может образовать протон и отрицательный мюон или протон и электрон:

ν+ n→p+ + μ-,

ν+ n→p+ + e-.

Если бы существовал только один тип нейтрино, то, согласно теории, вероятность образования отрицательных мюонов и электронов должна была быть одинакова и оба типа частиц должны были возникать в одинаковых количествах. В этом случае следовало пользоваться только сохранением лептонного числа.

Если же существуют два типа нейтрино, то, поскольку в искровую камеру попадают только мюонные нейтрино, должны возникать только отрицательные мюоны, а образование электронов не имело бы место. Тогда были бы справедливы законы сохранения электронного и мюонного чисел.

К июню 1962 года через искровую камеру прошло примерно сто триллионов нейтрино и было зарегистрировано 51 «событие». (Кроме них были, конечно, события, вызванные космическими лучами и другими косвенными причинами, — всего 480. Все они были идентифицированы и отброшены.) Из 51 события, вызванного нейтрино, каждое приводило к образованию отрицательного мюона и ни одно из них не создавало электрона. (Треки, образованные мюонами и электронами в искровой камере, совершенно непохожи друг на друга и их легко различить.)

Вывод из этого «двухнейтринного эксперимента» сводился к тому, что действительно существуют две разновидности нейтрино и можно смело говорить о законах сохранения электронного и мюонного чисел [21].

Сохранение четности

До сих пор, рассказывая о нейтрино, мы использовали семь законов сохранения: 1) импульса, 2) момента количества движения, 3) энергии, 4) электрического заряда, 5) барионного числа, 6) электронного числа, 7) мюонного числа.

Это не все законы сохранения, используемые физиками-ядерщиками, но, за одним исключением, их вполне достаточно для рассказа о нейтрино. Исключение связано с величиной, называемой четностью и представляющей собой чисто математическое свойство, описать которое наглядно довольно трудно. Для нас вполне достаточно знать, что каждая частица может быть четной или нечетной.

Удобство введения таких терминов состоит в том, что четности складываются так же, как четные и нечетные числа в арифметике. Например, два нечетных числа в сумме всегда дают четное число, два четных числа при сложении тоже дают четное число:

нечетное + нечетное = четное;

четное + четное = четное;

нечетное + нечетное = четное + четное;

Кроме того, нечетное и четное числа при сложении дают нечетное число:

нечетное + четное = нечетное;

нечетное + четное = нечетное + четное.

По-видимому, при взаимодействии частиц независимо от сложности процесса действуют такие же правила. Если нечетная частица распадается на две частицы, то одна из них оказывается нечетной, а другая — четной. Если же четная частица распадается на две частицы, то обе они оказываются либо четными, либо нечетными.

Поскольку эти правила выполняются, говорят о законе сохранения четности, который утверждает, что четность замкнутой системы остается постоянной.

Неприятности появились после открытия K-мезонов (которые иногда называют каонами) в конце 40-х годов. Эти мезоны тяжелее пионов, их масса в 966 раз больше массы электрона, но они в два раза легче нейтрона и протона, K-мезоны распадаются по-разному. Иногда K-мезон распадается на два пиона, а иногда — на три. Два пиона образуют четную группу частиц, а три — нечетную (так как пион — нечетная частица). Чтобы не входить в противоречие с законом сохранения четности, предположили, что имеются два типа K-мезонов, один из которых нечетный и распадается на три пиона, а другой четный и распадается на два пиона. Типы мезонов стали различать с помощью греческих букв: нечетный K-мезон назвали τ-мезоном, а четный — θ-мезоном. Во всех отношениях, за исключением четности, два мезона были совершенно одинаковыми. Но достаточно ли одной четности, чтобы отличить одну частицу от другой? Может быть, существует только одна частица, а не две, и четность не обязательно сохраняется? В 1956 году китайские физики Цзун-дао Ли и Чжень нин Янг, работающие в США, выдвинули теоретические соображения о том, что, хотя четность сохраняется в сильных взаимодействиях, она не обязательно должна сохраняться в слабых взаимодействиях (а распад K-мезонов является, конечно, примером слабого взаимодействия).

Для проверки гипотезы Ли и Янга нужно было произвести эксперимент, результат которого зависел бы от того, сохраняется четность или нет (аналогично тому, как шестью годами позже возникла необходимость в связи с различием между электронными и мюонными нейтрино для проверки справедливости закона сохранения электронного и мюонного чисел).

Рис. 10. Отличие правого от левого.


Предложенный экспериментальный метод был основан на возможности отличить правое от левого (рис. 10), которая зависит от того, совпадает или не совпадает предмет со своим зеркальным изображением. Ваша левая рука, отраженная в зеркале, похожа на правую, а зеркальное изображение правой руки похоже на левую. Но ни одна из рук не похожа на свое зеркальное изображение из-за того, что большой палец находится только на одной стороне руки и делает ее несимметричной. Именно поэтому можно говорить о «левой» руке и о «правой» руке. Если бы на ваших руках большие пальцы были с обеих сторон, то каждая рука совпадала бы со своим зеркальным изображением и правое нельзя было бы отличить от левого.

Можно показать, что если пространственная четность сохраняется, в мире субатомных частиц нельзя отличить правое от левого, т. е. не существует ни «правых» ни «левых» частиц и все частицы ведут себя совершенно симметрично. Если бы они распадались и испускали частицы, последние разлетались бы во всех направлениях одинаково. Если же четность не сохраняется, должны существовать левые и правые частицы, причем первые при распаде должны были бы испускать частицы преимущественно в одном направлении, а вторые — в противоположном.

Необходимый эксперимент был проведен другим китайским физиком, работающим в США, мадам Цзянь сюн By. Атомы, излучающие β-частицы (посредством слабого взаимодействия), охлаждались до температуры, близкой к абсолютному нулю, и помещались в магнитное поле. Поле выстраивало все атомы в одном направлении, а из-за низкой температуры им не хватало энергии, чтобы изменить это направление. За сорок восемь часов эксперимент дал ответ: электроны испускаются асимметрично, в слабых взаимодействиях пространственная четность не сохраняется, а θ-мезон и τ-мезон — одна и та же частица, которая в одних случаях распадается на нечетную группу мезонов, а в других — на четную [22]. Вскоре и другие эксперименты подтвердили несохранение пространственной четности, по крайней мере в слабых взаимодействиях, а в 1959 году американский физик Морис Голдхабер доказал, что нейтрино и электроны — «левые» частицы, а антинейтрино и позитроны — «правые».

Но эксперименты не дали ответ на многие вопросы. Почему частицы такие? Почему нейтрино, которое участвует только в слабых взаимодействиях, бывает «правым» или «левым»? Что является причиной этой асимметрии и почему она существует в слабых взаимодействиях и не существует в сильных?

Как видите, успехи физиков приводят не только к решению проблем, но и задают им новые загадки. Почему протон в 1836,11 раз тяжелее электрона? Почему электронов гораздо больше, чем позитронов? Почему мюон в 207 раз тяжелее электрона, а во всем остальном похож на него?

Чем же различаются нейтрино мюонного типа и нейтрино электронного типа, если их масса, заряд и спин одинаковы?

Почему частицы симметричны в сильных взаимодействиях и асимметричны в слабых?

Ни на один из перечисленных вопросов до сих пор нет ответа. Но я не сожалею, что должен закончить рассказ о нейтрино вопросами. Что это была бы за наука без загадок, которые вдохновляют и возбуждают ученого? И откуда придут великие и волнующие открытия, если не из этих же самых загадок?

Загадки Вселенной существуют и, вероятно, будут существовать всегда. Полного и окончательного ответа мы, может, так никогда и не получим. Но с каждым поколением загадки становятся все более утонченными, а игра все более стоящей и восхитительной.

Гравитон

Хотя мой рассказ о нейтрино окончен, я должен добавить несколько слов, так сказать, постскриптум.

Вы наверное думаете, что нет ничего более призрачного, чем невесомое, незаряженное нейтрино, которое свободно проходит сквозь огромные толщи твердого вещества. Кажется, невозможно превзойти изобретательность ученых, которые предсказали существование такой частицы, а затем не просто обнаружили ее, а нашли четыре разновидности неуловимой частицы.

Однако существует в природе частица еще более призрачная, чем нейтрино. Физикам известны четыре типа полей: 1) сильные взаимодействия, 2) электромагнитные взаимодействия, 3) слабые взаимодействия и 4) гравитационные взаимодействия. Первые три взаимодействия связаны с обменными силами и обменными частицами. Для первого взаимодействия такой частицей является пион, для второго — фотон, а для третьего w-частица.

А что можно сказать о гравитационном взаимодействии? Если это поле, оно тоже должно обладать частицами, посредством которых его влияние распространяется от одного тела к другому, а поскольку гравитация, подобно электромагнетизму, представляет собой дальнодействующее взаимодействие, его обменные частицы в отличие от пиона и w-частицы должны иметь нулевую массу подобно фотону.

Гравитационная обменная частица, подобно фотону, должна быть лептоном, она электрически нейтральна и совпадает со своей античастицей. Единственное отличие этой частицы от фотона должно заключаться в спине. Из теоретических соображений физики предполагают, что ее спин равен +2 или -2, тогда как спин фотона +1 и -1 (другие лептоны и барионы большей частью имеют спины +1/2 или -1/2, а спин мезонов равен 0). Частице гравитационного поля физики дали имя гравитон. Видимые тела оказывают друг на друга гравитационное действие посредством непрерывного излучения и поглощения огромного количества гравитонов.

Однако гравитоны до сих пор не обнаружены. Прежде всего, если они вообще существуют, они обладают чрезвычайно малой энергией (если принять во внимание необычайную слабость гравитационного взаимодействия). Гравитоны большой энергии, которые можно было бы обнаружить, вероятно, возникают, например, при быстром колебательном движении звезды. Звездные катастрофы не редки, звезды взрываются и коллапсируют, огромные массы вещества извергаются наружу и устремляются внутрь звезды (или даже попеременно наружу и внутрь в случае пульсирующих звезд), но центр тяжести звезды остается неподвижным. Отдельные части звезды движутся быстро, но звезда как целое неподвижна, а без движения всего тела энергия гравитонов не возрастает.

Неужели, наконец, физики столкнулись с непреодолимым барьером, встретились с частицей, которую невозможно обнаружить?

Вряд ли кто-нибудь отважится предсказать подобное, принимая во внимание последние достижения науки. Вряд ли кто-нибудь отважится утверждать, что в науке невозможен и такой подвиг.

А пока будем надеяться, что ученые создадут методы регистрации гравитонов. Подождем и посмотрим.

Загрузка...