героем которого был я, естественно, происходило у меня дома. Когда все уселись, я начал свой рассказ без всякого предисловия.
— Представьте себе, что сейчас 1923 год. Москва, Замоскворечье. У крыльца одноэтажного домика стоит юноша и гадает нажать кнопку звонка или вернуться подобру-поздорову домой? Этот юноша — я.
А в старом одноэтажном особнячке живёт кудесник — заслуженный профессор математики Александр Васильевич Васильев. Боже мой, какие замечательные книжки написал этот человек! Вот только что вышла его последняя работа. «Целое число». Эту книгу можно читать не отрываясь, забыв обо всём на свете, словно то не сухая математика, а по крайней мере…
— …«Три Мушкетёра»! — подсказал Нулик.
Таня сделала ему страшные глаза, и он смущённо умолк.
— Подумать только, числа, которые ты всегда забывал и путал, потому что они все на одно лицо, — эти числа, оказывается, имеют самые различные характеры, привязанности, капризы. Потому и названия у них такие необыкновенные совершенные, дружественные, мнимые. А вот числа, которые называются простыми, на самом деле не так просты. Хотя Эвклид доказал, что числам этим несть числа, а всё-таки до сих пор никто не может докопаться, по какому закону они распределяются среди других натуральных чисел. Да, числа — народ загадочный. Но Александр Васильевич Васильев с ними на короткой ноге. Из его-то книги и узнал я впервые о великой теореме Ферма. На первый взгляд теорема кажется совершенно простой. Но доказательство её так и не найдено. И это несмотря на то, что искали его многие замечательные математики последних трёх столетий. Достаточно упомянуть хотя бы петербургского академика Леонарда Эйлера, соратника великого Ломоносова. Правда, поиски Эйлера всё-таки увенчались некоторым успехом — он доказал справедливость теоремы Ферма для частного случая.
— Что ж это за неуловимая теорема такая? — снова не удержался президент.
— Сейчас объясню. Вы ведь уже, кажется, знаете, что всегда можно подобрать целые числа так, чтобы сумма квадратов двух из них была равна квадрату третьего.
— Да, да, — встрепенулся Сева, — например, 32 + 42 = 52.
— Или 52 + 122 = 132, — добавила Таня.
— Совершенно верно, — подтвердил я. — Таких числовых троек бесконечно много. Между прочим, равенство а2 + b2 = с2 связывается обычно с теоремой Пифагора. Что же касается Севиного примера — 3, 4 и 5, то эта тройка чисел была известна ещё в Древнем Египте, более 4000 лет назад.
Но вот, оказывается, нельзя подобрать три целых числа, чтобы сумма кубов двух из них равнялась кубу третьего. Подобрать их нельзя также и для четвёртой, и для пятой, и вообще для любой другой степени. Иначе говоря, равенство an + bn = cn невозможно, если п больше двух. Это и есть великая теорема Ферма, возникшая в первой половине семнадцатого века. Французский юрист и математик Пьер Ферма изложил её на полях книги «Арифметика», написанной древнегреческим математиком Диофантом, который жил более чем за 1000 лет до Ферма.
— А сам-то Ферма доказал свою теорему? — спросил Нулик.
— По его собственным уверениям, доказал. Мало того, он утверждал, что доказательство необычайно интересное. Но никаких следов этого доказательства не осталось. Во всяком случае, на полях Диофантовой книги его нет. То ли потому, что, по словам самого Ферма, там не хватило места для подробных рассуждений, то ли сам Ферма впоследствии усомнился в правильности своего доказательства… Так пли иначе, тайна теоремы Ферма остаётся тайной по сей день.
— А может быть, теорема неверна? — робко заикнулся Сева.
— Опровергнуть её пока что тоже никому не удалось И едва ли удастся. Надо полагать, теорема всё-таки справедлива. Но речь не об этом, а о том, что обманчивая простота теоремы Ферма привлекла к ней внимание множества людей. Доказательства сыпались, как из рога изобилия. Особенно усилился их наплыв после того, как дармштадтский математик Вольфскель завещал 100 000 марок Геттингенскому обществу наук с тем, чтобы деньги эти были вручены счастливцу, доказавшему теорему Ферма.
— А что, может, и мне попытать счастья? — воодушевился Нулик.
— Дело хозяйское, но скажу сразу надежды мало. Погорели на этом многие, и курьёзов было тьма! Вот, например, в одном журнале условие теоремы было записано неправильно: вместо того чтобы написать, что показатель степени должен быть больше двух, там было написано так:
an + bn = cn (n+2).
И нашёлся-таки чудак, который на основании этой опечатки опроверг теорему и потребовал немедленного денежного вознаграждения.
— Но ведь вы сами говорили, что доказательством теоремы Ферма занимались и крупные математики, — подцепил меня Сева.
— Не отрицаю, говорил. Теорему пытались доказать многие известные учёные. И некоторые из них, хоть и не доказали её полностью, внесли всё же существенный вклад в это дело. Начать с самого Ферма, который доказал свою теорему для частного случая n = 4. Кроме того, я уже говорил, что в середине восемнадцатого века справедливость теоремы для третьей степени доказал Леонард Эйлер. В середине следующего, девятнадцатого века геттингtнский математик Лежен Дирихле нашёл доказательство и для пятой степени. А в конце того же девятнадцатого века расширил доказательство для всех простых чисел первой сотни немецкий математик Эрнст Эдуард Куммер. Для этого ему пришлось придумать новый метод исследования, который получил название алгебраической теории чисел. В наши дни этот метод успешно развивают многие математики.
Но вернёмся всё-таки в 1923 год, к началу моего рассказа.
После всего, что я сейчас говорил, вам, конечно, ясно, как самонадеянно с моей стороны было явиться к профессору Васильеву с моим доморощенным «доказательством» теоремы Ферма. И всё-таки я позвонил.
Небольшой полутёмный кабинет с низким потолком был весь заставлен мебелью и книгами. В углу уютно поблёскивала изразцами голландская печь. За громоздким письменным столом сидел седой коренастый человек с пышной бородой и на редкость добрыми глазами. Помню, больше всего поразило меня то, что не было в нём никакой профессорской важности. Несмотря на мою молодость, он держался со мной на равной ноге.
Александр Васильевич взял протянутую мною рукопись и стал её быстро просматривать. В некоторых местах он задерживался и, вытянув губы, слегка покачивал головой. Затем очень мягко, почти виновато сказал, что я допустил ошибку в логическом построении доказательства. Ошибку совсем незначительную, но если её исправить, то доказательства уже не получится.
— До чего симпатичный старик! — умилился президент.
— Удивительно симпатичный! — согласился я. — Конечно, я расстроился, а он стал меня утешать, юворил, что огорчаться не стоит, что ход мыслей у меня очень интересный и мне следует продолжать заниматься. И добавил, опустив глаза. «Только не теоремой Ферма, а вообще числами». Прощаясь, он долго держал мою руку в своей и глядел на меня так ласково, будто хотел сказать: «Не отчаивайтесь! Бывают в жизни и большие неприятности».
Это была моя первая и, к сожалению, последняя встреча с Васильевым. Она заставила меня ещё сильнее влюбиться в числа. Но, вопреки советам профессора, работы над теоремой Ферма я не оставил и продолжал искать свою синюю птицу.
— Какую птицу? — переспросил Нулик.
— Синюю Из сказки Метерлинка.
— В первый раз слышу.
— Жаль. Это сказка о том, как дети искали синюю птицу — своё неуловимое счастье. Так вот, через три года в погоне за своей синей птицей я нашёл ещё одно, на мой взгляд, абсолютно безошибочное «доказательство» теоремы Ферма и пошёл с ним к профессору Московского университета Александру Яковлевичу Хинчину.
Хинчин, несмотря на молодость, считался крупным специалистом по теории чисел. К тому же он был автором великолепной книжки о теореме Ферма. Но знакомство с ним было совсем непохоже на знакомство с Васильевым. Молодой Хинчин был, что-называется, профессор с головы до пят — подтянутый, гладко выбритый, холодновато-корректный. Жил он в добротном московском доме, в добротной, хорошо обставленной квартире. В его большом светлом кабинете не было ничего лишнего. Там царили строгий порядок и тишина.
Александр Яковлевич предложил мне сесть и очень бегло (мне-то даже подумалось, быстрее, чем следует) просмотрел мою рукопись. И в этой быстроте тоже был какой-то особенный шик! Так, вероятно, пробегает дирижёр партитуру симфонии пусть в ней записаны партии многих инструментов — ему всё понятно с первого взгляда!
Через минуту Хинчин отложил рукопись, взглянул на меня и сказал: «Доказательство ваше совершенно правильное».
Ура! — завопил ни с того ни с сего президент.
— Вот и я тоже тогда чуть было не закричал «ура», — улыбнулся я, — да, к счастью, вовремя удержался. «Доказательство правильное, — повторил Хинчин, — но доказали вы не теорему Ферма, а нечто совершенно другое, давно, впрочем, известное».
Радость мою как ветром сдуло. Я был смущён и подавлен гораздо больше, чем тогда, у профессора Васильева. Однако Александр Яковлевич тут же добавил: «И всё же в вашей работе есть и нечто положительное. По-моему, вы избрали правильный путь. Есть основание предполагать, что сам Ферма использовал для доказательства так называемый метод спуска, понижения степени. У вас тоже есть нечто подобное. Что ж, — добавил он, вставая и давая этим понять, что приём окончен, — ищите дальше. Всего хорошего».
Я не знал, смеяться мне или плакать.
— Конечно, смеяться, — убеждённо сказал Сева. — Ведь вы приблизились к ходу мыслей самого Ферма!
— Ну, это уж ты хватил лишку, — возразил я. — В общем, особенно ликовать я не стал. Но и огорчаться не думал. Правда, биться над теоремой Ферма я далее не собирался, но занятий числами не оставил. Наоборот, увлёкся ими ещё больше. При этом у меня не было никакой цели. Я просто играл числами и подмечал всевозможные любопытные зависимости между ними. Но мы уже знаем, что игра может обернуться серьёзными находками. Многие замечательные открытия в самых различных областях знаний ведут начало от игры.
— Конечно же, вам посчастливилось открыть что-то интересное! — с надеждой воскликнул Олег.
— Да, кое-что раскопал. Вскоре после похода к Хинчину, задумавшись над методом спуска, то бишь понижения степени, я заметил прелюбопытную штуку. Оказывается, любую степень целого числа можно представить в виде суммы последовательных нечётных чисел. И количество слагаемых при этом равно основанию степени. Вот, например: 43 можно представить как сумму четырёх последовательных нечётных чисел: 43 = 13 + 15 + 17 + 19. Иначе говоря — 64. Другой пример 54 = 121 + 123 + 125 + 127 + 129. Итого 625.
Сева скептически покачал головой.
— Да, а как узнать, с какого нечётного числа начинать?
— Это я тоже обнаружил. Надо основание степени возвести в степень на единицу меньшую, затем вычесть отсюда основание и, наконец, прибавить единицу. Вот, скажем, чтобы возвести 5 в четвёртую степень, надо сперва возвести 5 в третью степень (то есть понизить четвёртую степень на единицу). 53 — это будет 125. Теперь вычтем отсюда основание, то есть 5, получим 120. Прибавим к 120 единицу, получим 121. Вот мы и нашли первое число, с которого надо начинать разложение степени.
— Я это правило знаю, — сказал Олег, — но только для квадратов чисел. Там всегда надо начинать с единицы. 52 = 1 + 3 + 5 + 7 + 9.
— Ну конечно, — подтвердила Таня, — ведь 5–5 + 1 = 1. Кроме того, это правило вытекает из формулы суммы арифметической прогрессии.
— Совершенно верно. И мне довелось обобщить это правило для любой степени, — сказал я. — Особенно любопытно получается разложение третьих степеней. Вот смотрите:
и так далее…
— Да ведь отсюда легко получить знаменитое восточное равенство! — обрадовался Олег:
13 + 23 + 33 + 43 +… = (1 + 2 + 3 + 4 +…)2
Не скрою, мне было очень приятно, что ребята сразу же с увлечением принялись блуждать в увлекательном лабиринте чисел
— Любопытных зависимостей в числах можно найти множество, — сказал я, — надо только внимательно в них всматриваться. Что до меня, то из своей теоремы я извлёк много разных разностей. Но говорить о них сейчас мне не хочется — покопайтесь-ка в этом сами! А в те, двадцатые годы я очень гордился своими изысканиями. Через несколько лет я показал свою теорему академику Николаю Николаевичу Лузину, интереснейшему, разностороннему учёному и человеку. Его увлекательные лекции по самым разнообразным проблемам математики привлекали огромную аудиторию. Их посещали не только студенты, но и преподаватели, профессора да и просто любители математики.
Лекции Лузина — отточенные, легко воспринимаемые — были не только глубоки по содержанию, но и блистательны по форме. Не случайно ученики Николая Николаевича (а он воспитал плеяду великолепных математиков!), как правило, превосходные лекторы.
Я подошёл к Николаю Николаевичу после одной из таких его блистательных лекций, которую побежал слушать, забросив все другие дела. Я задал ему какой-то вопрос, завязался разговор, и я, как бы случайно, свернул на интересующую меня тему. Я спросил, известна ли Николаю Николаевичу теорема о таком разложении степени натурального числа? Лузин сказал, что подобной теоремы не знает, и предложил мне прийти к нему домой — у него, мол, есть полный математический справочник Клейна на английском языке.
Долго ждать себя я не заставил — пришёл на другой же день! Обо мне было доложено, и я довольно-таки порядочно прождал в кабинете. Хозяин вышел в вельветовой куртке и домашних туфлях, извинился, потом подошёл к шкафу и вынул толстенный том «Энциклопедии математических наук» Клейна. «В этом томе, — сказал он с улыбкой, — есть всё, что касается чисел, от Ромула до наших дней. Если вы не найдёте вашей теоремы здесь, значит, она действительно ваша. Возьмите книгу с собой! Только, пожалуйста, не задерживайте долго».
Не помня себя от изумления, я попрощался и вышел с драгоценной ношей под мышкой. Отдать такой клад первому встречному? Непостижимо! Потом я понял, что этому большому человеку и в голову не приходило, что кто-то может его обмануть. Наука и злодейство для него — вещи несовместные.
— Ну и долго вы продержали книгу? — нетерпеливо понукал меня президент. — Ведь она была такая толстенная!
— Я листал энциклопедию несколько ночей, не отрываясь, — всё боялся найти там свою теорему…
— И не нашли! — сказала Таня.
— И не нашёл.
Сева в восторге хлопнул себя по коленке.
— Стало быть, теорема ваша!
— Так и я думал. И довольно долго. Но вот совсем недавно я нашёл эту «свою» теорему в сборнике задач, которые предлагались ученикам восьмых классов — участникам математической олимпиады.
— Какая жалость! — искренне огорчился Нулик.
— Скажи лучше, какая радость! Ведь это свидетельство громадного роста нашей школы. Далеко же она ушла вперёд! И в первую очередь это заслуга наших преподавателей. Ведь от учителя многое зависит.
— Ещё бы! — глубокомысленно поддакнул президент.
— Мне, например, — продолжал я, — на учителей очень повезло. Вот хоть мой первый учитель математики — Мартин Фёдорович Берг. Уверен: тот, кто учился у Берга, никогда его не забудет. Не забудет, как изящно, как тонко доказывал он сложнейшие теоремы.
Нулик недоверчиво шмыгнул носом.
— Да, да, — настаивал я, — именно изящно и тонко. Ведь доказывать теоремы, как и танцевать, можно по-разному. У одного это получается неуклюже, у другого — красиво. Берг доказывал теоремы красиво. И, видимо, это доставляло ему самому большое удовольствие. До сих пор помню любимый жест Мартина Фёдоровича. Закончив доказательство, он соединял кончики большого и указательного пальцев и высоко поднимал в воздух образованный ими круг, как бы говоря: «Доказательство абсолютно точное! Никаких сомнений быть не может!» При этом вслух добавлял по-латыни: «Квод демонстрандум эрат!» Иначе — что и требовалось доказать.
— Квод демонстрандум эрат! — с удовольствием, хоть и не без труда, повторил Нулик и поднял руку со сложенными нулём пальцами.
Я рассмеялся.
— Не сомневался, что ты-то уж это запомнишь. Недаром ты Нулик, да ещё будущий математик. А Мартин Фёдорович, между прочим, воспитал немало прекрасных математиков. Впрочем, его изящные уроки пригодились и тем его ученикам, которые посвятили себя весьма далёким от математики профессиям. Воспитанниками Берга были артист Анатолий Горюнов, радист-папанинец Эрнст Кренкель, артист и писатель Александр Глумов, известный филолог Борис Пуришев, дипломат Константин Уманский, артистка Софья Гаррель, пианист Лев Оборин… Всех и не перечислишь! Не сомневаюсь, что для каждого из них Мартин Фёдорович Берг был прежде всего примером увлечённости любимым делом.
— Вот вырасту и стану учителем! — неожиданно выпалил Нулик. — И никому-никому не буду ставить двоек. Потому что я не злопамятный.
— А пятёрок не будешь ставить потому, что не знаешь, как они выглядят, — съязвила Таня.
Ну вот, начались шуточки. Стало быть, пора мне идти на посадку…
— Давайте подведём итоги, — сказал я. — Какие сделаем для себя выводы?
— Я думаю, вывод такой, — резюмировал Сева. — Числа — наши верные друзья. С ними никогда не соскучишься.
— Ну, это об удовольствиях, — уточнил я. — А о пользе я, пожалуй, скажу сам. Однажды я увлёкся составлением числовых треугольников. Сперва это казалось мне всего лишь забавной умственной гимнастикой. Но потом… Потом вдруг оказалось, что один из придуманных мною треугольников пригодился для решения сложной задачи о колебаниях винта самолёта. Другой треугольник — тоже совершенно неожиданно — пришёлся кстати при решении некоторых уравнений из высшей математики. Стало быть, занятия числами не только личная забава, но и дело общеполезное. А теперь не пора ли нам вспомнить о нашем рассеянном математике? Сегодня от него как раз пришло шестое письмо.