День полета начался при счастливых предзнаменованиях…
Человечество нечасто придумывает новые профессии. А придумав, быстро делает их, если не массовыми, то распространенными, обычными. Исключение — профессия космонавта. 20 лет остается неизменным ее изначальное свойство — уникальность. За два десятка лет в космосе побывало немногим более ста человек.
— По-моему, Константин Петрович, так будет всегда. По крайней мере, долго еще участие в космическом полете будет считаться подвигом, требующим проявления личного мужества. И в этом нет никакого преувеличения. Особенно отчетливо ощущаем мы теперь, насколько высоким был этот подвиг в 60-е годы, когда техника пилотируемых кораблей только становилась на ноги, когда каждый виток полета таил в себе неизвестность. Взять «Восход». Три человека в небольшой кабине корабля, без космических скафандров должны были доказать своим полетом способность космической техники быть едва ли не абсолютно надежной. Но ведь абсолютно надежной техники не бывает…
— Космонавты не любят, когда их называют героями. Когда с этим сталкиваешься, ощущаешь неловкость, даже двусмысленность положения. Протестовать неудобно, выглядит вроде бы ханжески, не реагировать — значит соглашаться. Космонавты делают испытательную работу, это их профессия, за нее они получают деньги. Конечно, работа эта разная, требует разных условий и подготовки, разной степени выдержки и терпения. Я лично восхищаюсь первыми космонавтами, которые летали в одиночку. Огромное уважение вызывают у меня те, кто вдвоем способен прожить и проработать в замкнутом изолированном помещении станции многие месяцы.
— Я понимаю неловкость, о которой вы говорите. Это нормальная человеческая скромность, такая реакция свойственна каждому здравомыслящему человеку, когда о нем, о его делах говорят высокие слова. Но ведь эти слова — если они по делу, если не чрезмерны и умны — нужны всем другим людям. Так что, думаю, героям-космонавтам придется потерпеть. Но что такое вообще героизм? Иногда кажется, что это понятие настолько емкое и многогранное, что ему вообще нет определения. Как понятие «любовь». Увидеть, постичь суть героизма, мне кажется, совсем непросто.
— Я думаю, понятие «героизм» существует и оно вполне определенно. Но слово это действительно заметно девальвировано от частого употребления. Что вы, Игорь Николаевич, вкладываете в понятие «подвиг»?
— Поступок, действие, непременно сознательное, во имя какой-либо высокой цели, связанное (осознаваемо!) с принесением в жертву своей жизни или с риском для нее, с риском для здоровья или вообще больших утрат личного свойства.
— Вот именно — сознательное действие, осознаваемый риск. А иногда это понятие отождествляют либо с безрассудной решимостью, либо с такими качествами, как мужество и смелость или даже просто терпение.
— Мужество, мне кажется, великое качество, и проявить его тоже дано не каждому! И уж, во всяком случае, не в каждой требующей того ситуации.
— Раньше, в детстве, мне казалось, очевидно, под воздействием не самой лучшей литературы, что мужество — это особый дар человека, дар едва ли не от рождения: ничего не бояться, не оглядываясь на опасности, идти вперед к своей цели. Такие люди достойны восторга масс и гимнов в свою честь. И тогда же, в детстве, я обнаружил, что я к таким людям не отношусь. Более того, я себя и смелым-то не считал.
— Давайте — это очень кстати — поговорим о вашем детстве. Оно, вероятно, было непростым — вам пришлось лицом к лицу столкнуться с войной. Итак, Воронеж?
— Да. Жили мы на окраине города. Отец работал бухгалтером и читал лекции на бухгалтерских курсах. Помню, очень часто вечерами он засиживался дома за письменным столом, на счетах щелкал до полуночи. Уже потом как-то я у него поинтересовался, почему ему приходилось так много работать. Выяснилось, что сотрудники отдела, где он работал, были неспециалистами и допускали множество ошибок. И ему, как главному бухгалтеру, приходилось постоянно за них пересчитывать. Мама чаще не работала — слишком много забот доставляли ей мы, сыновья. Но, кроме домашнего хозяйства, занималась она все время какой-то общественной работой. Одно время даже депутатом горсовета была. К. родителям относился уважительно. Я был у них любимчик. Правда, делами моими и увлечениями никто особенно не интересовался — у всех была масса своих забот. Мой брат Борис был старше меня на четыре года, и учился он так себе, вечно где-то на улице пропадал. Я, наоборот, отметки приносил очень приличные, много читал, домоседом был. Мать меня иногда даже выгоняла на улицу погулять. С братом мы были большие друзья, хотя часто ссорились, дрались, но быстро мирились. Он был остроумен, и я ему в этом завидовал. Когда ему шестнадцатый год пошел, он стал от меня отдаляться, отношения наши начали на нет сходить. После 9-го класса они с приятелем ушли из школы и поступили в Сумское артиллерийское училище. Выпустили их, 19-летних, 11 июня 1941 года. Назначение получили в Западный военный округ. Все, больше о нем ничего не знаем. После войны уже получили мы извещение: Борис Петрович Феоктистов пропал без вести на фронте в сентябре 1941 года.
— Как для вас началась война?
— Мне тогда шел 16-й год. Помню, 22 июня слушал по радио речь Молотова и был совершенно спокоен — сотрем мы этого Гитлера в порошок в два счета. Хорошо бы на фронт как-нибудь попасть, пока война не кончилась. Война почему-то все не кончалась. Занятий в 9-м классе уже почти не было. В словах «наши отступают» был, казалось, весь смысл жизни тех дней. Объявили в городе запись в истребительные батальоны — ловить диверсантов. Мы с приятелем тоже пошли записываться. Но нас не взяли — не комсомольцы. Тогда я подал заявление в комсомол, меня приняли, потом записали в батальон и направили на дежурства.
В июне 42-го призвали отца (до этого у него была броня). Кстати, прошел он от Сталинграда до Берлина, всю войну сапером и — самое удивительное — ни разу всерьез ранен не был. Тогда же, летом, немцы начали Воронеж бомбить. Вот с этого момента, по-видимому, мое детство кончилось — стало понятно, что идет тяжелая война. Налеты — по нескольку раз в день, в городе начались пожары. Многие стали покидать город, и мать тоже решила, что надо нам уходить. Дом у нас был свой — забили мы окна и двери досками, взяли с собой корову и пошли вместе со всеми через Чернавский мост на левый берег, на восток. Собака наша за нами увязалась, а кот Билли-Боне не пошел, в доме остался. Хотя с собакой он очень дружил, даже спали они рядом. Потом, когда я уже в оккупированный город через линию фронта вернулся и зашел домой, кот наш откуда-то выскочил. Узнал меня, жалобно промяукал, погладился у ног и опять куда-то скрылся.
Прошли мы с мамой Придачу, Рождественскую Хаву и остановились в какой-то деревне на ночевку. Очень мне хотелось остаться в прифронтовой полосе. Но жалко было мать одну оставлять. И все же я решился — дойдем до безопасного места, и я уйду обратно. Двое суток мы шли так в потоке беженцев, и на третий день, когда мать ушла в соседнюю деревню что-то обменять на еду, я написал ей записку, что должен быть там, в Воронеже. И ушел.
Еще весной приятель мой Валька Выприцкий — мы сверстники были, но он был выше меня, покрупнее — под большим секретом рассказал, что он выучился па разведчика и что, если я тоже хочу выучиться ходить в разведку через линию фронта, я должен обратиться в облуправление госбезопасности. Конечно, я туда тотчас же помчался. То ли фигурой своей им не показался, то ли еще что, но меня не взяли. И вот по дороге в Воронеж — по методу «язык до Киева доведет» — нашел я уже далеко за городом облуправление КГБ. И даже подполковника того встретил, звали его Василий Васильевич Юров. Напомнил ему о себе, и тем же вечером в машине мы поехали в сторону Воронежа (в городе уже были немцы). Было это 6 июля, и вез Юров, как мне показалось из разговоров, знаменитый сталинский приказ «Ни шагу назад!». В небольшом лесу перед самым городом на полянке нашли что-то вроде штаба.
Здесь я получил первое задание: пробраться в город и уяснить, что там происходит. Дело в том, что четкой линии фронта вблизи города не было и в городе — было слышно — шел бой. Последним инструктировал меня очень молодой генерал в кожаной куртке, кажется, танкист: «Посмотри, есть ли в городе танки, где они, сколько. На случай встречи с немцами придумай легенду». Совсем недавно я прочитал одну книжку и подумал: вполне возможно, что это был Черняховский! Впрочем, может, я ошибаюсь.
— Черняховский как раз в эти дни командовал на Воронежском фронте 18-м танковым корпусом, а с июля — 60-й армией. Так что вполне возможно… Вас зачислили в часть?
— Наверное, хотя как и кем я там числился — не интересовался. На довольствии я был в разведгруппе при Воронежском гарнизоне.
— Итак, навстречу врагу… Страшно было?
— Поначалу совсем нет. Было раннее, очень ясное утро, но город, лежащий на высоком правом берегу реки, горел, и над ним пелена дыма. Зрелище было необычным, жутковатым. Километра четыре прошел я по пойме, дошел до излучины против Архиерейской рощи, снял сапоги и куртку и спрятал их на берегу в кустах, заприметил место. Поплыл. Ширина реки была метров двадцать-тридцать. Вблизи берега немцы меня, очевидно, заметили и стали стрелять, но сбоку, с горы и издалека — с километр до них было примерно. Попасть, конечно, никак не могли.
У самого берега пули довольно близко ложились. Выскочил на берег и залег. Потом побежал, но опять началась стрельба. До откоса, на котором начинался город, было еще далеко. Сделал несколько перебежек. Пока лежал, смотрел вверх, на город — видел Архиерейскую рощу и железнодорожную насыпь. Вдруг вижу танки — несутся прямо по рельсам, от центра города к окраине. Скрылись за деревнями, и там, куда они умчались, сразу же началась артиллерийская стрельба. Смотрю — возвращаются танки, два из них горят. Наши! Не удалось им прорваться из города! Сердце прямо сжалось от обиды. И потом уже на улицах города увидел я несколько подбитых и подожженных наших танков… Постепенно, перебежками приближался к городу. Вдруг слышу: «Хенде хох!» Три немца с автоматами вышли навстречу. Повели меня наверх, в рощу, а там уже сплошь немцы. Один по-русски меня спрашивает: «Куда идешь?» Выдаю ему придуманное заранее: «Вернулся в город, чтобы разыскать мать». Посадили меня в коляску мотоцикла и повезли. Места все знакомые. Привезли в городской парк, вижу — штаб и вокруг машины всякие («Смотри, — говорю себе, — и все запоминай!»). Стали допрашивать. Но я свое гну: «Шел домой, на Рабочий проспект, ищу мать». Снова посадили в мотоцикл и повезли в Бритманский сад — там оказался еще какой-то штаб. Тот же вопрос и тот же ответ. Приказали: «Ждать!» Потом дали ведро: «Принести воды!» Пошел к колонке, там никого вокруг не было, оставил ведро и, не торопясь, чтобы не привлекать внимания, ушел…
— Откуда выдержка?!
— Какая выдержка? Как было иначе вести себя? Сделал круг по городу. Немцев всюду было много. Но кто они? Каких частей? Знаков различия не знаю. Неважный был я разведчик! Приметил только самое простое: где штабы (много машин, подъезжают и отъезжают), где батарея стоит, где танки. Прошел мимо своего дома, снова пошел в центр и напротив него вышел к реке. Спрятался в кустах н стал дожидаться темноты. Только хотел к воде сойти — патруль! Переждал. Потом немцы еще раз прошли. После этого я подполз к берегу и переплыл на ту сторону. Бегом через пойму на Придачу. Долго штаб свой искал, не нашел, попал в какую-то часть, куда за мной машину прислали и отвезли к своим. Все я им рассказал — где что видел. Хвалили меня, кто-то даже пообещал к ордену представить.
— Интересно, насколько командование могло доверять столь непрофессиональному, хотя и бесстрашному, разведчику?
— Доверие, конечно, само по себе возникнуть не могло. Наверное, разведчиков вроде меня посылали не раз. Если данные сходились и были полнее предыдущих — так, видимо, было у меня — значит, хорошо, доверять можно. Но были ведь, наверное, — чего греха таить — разведчики и незадачливые.
— Ну, хорошо, в первый раз все удачно обошлось. Но в следующий раз пострашнее должно бы быть.
— О страхе снова ничего сказать не могу. Был он, наверное, не могло без него быть. Но подавлялся он как-то — то ли по несознательности мальчишеской, то ли азартом каким-то, то ли, наоборот, расчетливостью в действиях, которая у меня тогда вдруг ясно прорезалась.
В следующий раз нас послали вдвоем с одним стариком, с которым я раньше не был даже знаком. Я поначалу решил, что он опытный разведчик, но потом увидел, что ведет он себя как-то странно, на мой взгляд, Даже глупо. Кончился бы мой поход в город с ним печально, но перейти фронта нам не удалось — там, куда мы пришли (кажется, это был поселок сельхозинститута), начался бой. Наткнулись мы на какую-то нашу часть — оказалось, разведчики. В штабе, куда нас привели, и понятия не имели, что существует Воронежский гарнизон со своей группой разведки. Но нам-то в тыл врага надо. Командир группы объявил: «Скоро в атаку на танках пойдем и вас туда забросим». Но вдруг появился другой офицер, побеседовал с нами, и… нас задержали. Отпустили только через четыре дня.
Через десять дней меня снова послали на ту сторону, и все прошло удачно. А вот в третий раз дело обернулось трагически. Началось с того, что объявился вдруг Валька Выприцкий. Был он где-то в тылу немцев, с трудом выбрался и теперь был, как заявил, на отдыхе. Неожиданно нас обоих вызвали к командиру и предложили пойти в город вдвоем. План перехода мы разработали хорошо и на рассвете оказались в городе. Ночью полковые разведчики проводили нас в дом, стоящий на нейтральной полосе, между нашими частями и немцами.
Дом стоял на окраинной улице, вблизи городского парка (незадолго перед этим наши пытались там наступать, и им удалось зацепиться на окраину), и, когда наступило утро, мы с Валькой спокойно вышли из этого дома и направились в сторону немцев. Походили по улицам, немало интересного увидели. В частности, развешанные всюду листки немецкого приказа об эвакуации мирного населения из города (внизу — «За неповиновение — расстрел!»). Это могло означать, что немцы собираются оставить Воронеж.
Валька меня слегка раздражал ненужным ухарством. Подойдет вдруг к немцу и попросит прикурить. Зачем это разведчику? Пытаюсь его образумить, а он только ухмыляется — знай, мол, наших. Надо возвращаться. Я за свой привычный маршрут — ночью через реку, Валька же настаивает вернуться тем же способом, что и пришли. Я стал его убеждать: одно дело, когда в город шли, — немцы легко пропустили мальчишек, не опасны, да и не до нас им было, и совсем другое, когда к своим будем пробираться, — могут задержать. Но Валька уперся, и я ему подчинился — он же старшим был. Долго я потом за это смирение укорял себя — все случилось, как я и опасался.
Только вышли на ту улицу перед парком, как тут же на нас выскочили немцы, схватили за руки, что-то кричат, — кто такие, мол, и куда идете? У нас за пазухами яблоки — показываем их, говорим — рвать ходили. Повели нас на холмик небольшой, там пулемет стоит, дали две лопаты — копайте! Только начали — вдруг с той, нашей стороны раздается выстрел. Я оборачиваюсь — Валька лежит с пробитым виском. Мертвый. Началась перестрелка, и я ушел. Дождался ночи и через реку вернулся к своим.
Смерть Вальки была для меня первым сильным потрясением. До этого я уже повидал немало трупов людей, но то были чужие, незнакомые люди, а тут лежал свой, близкий парень…
На следующий раз город встретил меня странной пустотой — местных жителей не видно, одни немцы бродят. Вспомнил о том приказе немецком и понял, что теперь будет очень трудно — просто так по улицам не походишь. Пришлось дворами идти, сквозь заборы посматривать. Что надо, все-таки увидеть удалось, и направился я назад. Перелезаю через очередной забор, прыгаю в какой-то дворик и с ужасом вижу перед собой двух здоровенных немцев. Ну, думаю, все, попался. Но что такое — они как-то странно, вроде бы виновато даже на меня смотрят и ничего не предпринимают. А в руках у каждого по мешку. Тут я смекнул — так это же мародеры, меня за хозяина приняли и слегка растерялись. В какой-то момент неясно было, кто из нас попался. Но и бежать мне было некуда. Тут же выяснилось, что попался все же я. Потащили они меня через весь город, привели к зданию (похоже, комендатура), посадили у входа на скамейку — жди, мол, — и ушли. Немцев вокруг множество — входят, выходят… Ждать я не стал, поднялся со скамейки и ушел.
— Все у вас как-то легко получается, никаких почти проблем и волнений. А между тем — это очевидно — каждый ваш поход в город на грани жизни и смерти.
— Не знаю, может быть, но рассказываю так, как вижу сейчас, и лишнего страха нагнетать не хочется. Следующий мой, пятый, поход в разведку оказался последним. Дали мне на этот раз с собой мальчишку лет четырнадцати — теперь вроде я был как бы инструктором. Сначала мы тоже шли дворами. Потом устали с ним по заборам лазать — ростом мал он, подсаживать приходилось. И пошли мы прямо по улице, один за другим на расстоянии метров сто. Выхожу на перекресток — с двух сторон патрули. Мальчик успел юркнуть в подворотню. А мне было явно не успеть. Через миг стало ясно: бежать бесполезно, пристрелят как миленького. Подходят, один из них, высокий, с эсэсовскими стрелками в петлицах, хватает меня за руку, что-то кричит и ведет меня в соседний двор. Толкает меня чуть от себя, достает из кобуры пистолет (отчетливо запомнилось: почему-то не вальтер, не парабеллум, а наш, советский ТТ), снимает с предохранителя и, продолжая орать, размахивает им перед моим лицом. Начинаю различать слова «русс шпион», «партизан», «откуда пришел» и понимаю: пахнет жареным, дело плохо, наверное, даже совсем плохо, пожалуй, на этот раз не вывернуться. С таким грозным немцем, эсэсовцем я еще не сталкивался (с патрулями было проще — они почти приучили меня к мысли, что убить немцы меня, мальчишку, запросто так не могут). Но страха и в этот момент не было. В какой-то миг промелькнуло: выбить из руки пистолет и дать деру, но тут же понял: бредовая мысль — слишком здоров немец. Подтолкнул он меня к какой-то яме. Испугаться я не успел — увидел только мушку на стволе пистолета, когда немец вытянул руку и выстрелил мне в лицо. Чувствую будто удар в челюсть и лечу в яму. Упал удачно, перевернулся на живот и не разбился — а грунт там был твердый. На какой-то момент потерял я сознание, но тут же очнулся — и до сих пор понять не могу, как это мне удалось — сообразил: не шевелиться и ни звука! Так и есть — немец (слышу — их уже двое) столкнул в яму кирпич, но в меня не попал. Потом, громко разговаривая, оба ушли со двора. Лежу, чувствую сильную боль в подбородке и слабость во всем теле. Встал на дно ямы — глубокая, метра два, как выкарабкаться? Вдруг слышу — возвращаются немцы! Я тут же рухнул лицом вниз, мгновенно приняв прежнюю позу. Подошли к яме, обменялись фразами и не торопясь ушли.
Полежал я еще немного, поднялся и быстро выбрался наружу. Время было около полудня. Побрел дворами осторожно, прислушиваясь (тишина в городе была удивительная). Чувствую себя худо — крови много потерял. Нашел какой-то большой деревянный ящик, забрался в него и решил дотемна отсидеться. В темноте вылез и опять пошел в сторону реки, но вскоре снова почувствовал — не добраться мне до нее, сил не хватает. В каком-то саду забрался в кустарник и уснул. Утром слышу немецкую речь, что-то непонятное происходит вокруг. Ну и везет же! Пришлось целый день просидеть в этих кустах. Жарко, хочется есть и пить, но выйти никакой возможности не было. Даже шевелиться нельзя было — не дай бог сучок какой-нибудь треснет. Откуда только терпенье взялось. Под вечер стихло, ушли немцы. Вылез осторожненько из кустов и к ночи добрался до реки. Снова переждал патрулей и тихо, без зсплесков, переплыл на левый берег.
Перешел пойму и в первой же деревне (между Придачей и Отрожками) попросил пить. Вид у меня, окровавленного, был, надо полагать, жалкий, говорил я с трудом. Хозяйка поглядела на меня с сочувствием и притащила полную кружку воды. Но, чувствую вдруг, вода в горло не проходит. Пуля, как выяснилось, прошла через подбородок и шею, навылет. Пошел я в свою разведгруппу, рассказал, что и как было, что видел. Отвезли меня в медсанбат, а там мне сказали: пищевод у меня перебит. Направили в госпиталь, а оттуда решили было еще дальше куда-то переправить (кажется, в Борисоглебск самолета ждали). Но потом дали мне воды, и она вдруг прошла — впервые за двое суток в желудок ко мне попала вода. Стало ясно, что пищевод не поврежден. Очень трогательно обо мне в госпитале заботились, но недели через две я оттуда сбежал и явился в свою часть. Меня, однако, снова отправили в медсанбат лечиться, и снова через пару недель я оттуда ушел. Однако на этот раз группу свою на месте не застал, куда-то она перебазировалась. Очень мне было обидно, что меня об этом не известили. Пришлось возвратиться в медсанбат.
— Я убежден, что работа эта ваша военная — проявление истинного, без малейших оговорок, героизма. Поражает, что все это проделал шестнадцатилетний юноша. Конечно, примеров юношеского героизма в годы Великой Отечественной войны мы знаем немало. Но, что греха таить, были случаи, когда мальчишка на фронте становился баловнем части — в серьезных делах не участвовал, носил форму, оружие, даже награды получал. А потом возникал романтический рассказ о его подвигах. Мне в первые послевоенные годы немало довелось познакомиться со своими сверстниками и ребятами чуть постарше, которые называли себя «сынами полка» и грудь которых была украшена медалями. Были среди них — по рассказам старших — истинные герои, трудяги войны. Помню, один из них, партизан и солдат маленького росточка Юра Кораблев, испытавший на себе все возможные и невозможные боевые ситуации, к тому же потерявший родителей и сестру, получивший ранение, «посеяв» вдруг свой гвардейский значок… рыдал как простой мальчишка. Встречались и розовощекие, хорошо откормленные мальчики в суконных офицерских гимнастерках с офицерскими портупеями… То, что совершили вы, достойно высочайшего уважения и восхищения. Кстати, у вас есть боевые награды?
— Ваши слова в мой адрес я считаю преувеличением и уж, во всяком случае, излишним употреблением высоких слов… Тогда, в 42-м, представили меня, как говорили, к ордену Красной Звезды. И выдали бумагу о том, что я отличился в действующей армии. После войны получил я медаль «За победу над Германией». Уже после космического полета, в 1965 году, наградили меня орденом Отечественной войны I степени.
— Итак, ваша воинская жизнь завершилась. Кстати, получается, что отвоевали в школьные каникулы. Мы знаем: для многих война, фронт длились вот так же — месяц-два, а потом госпитали, лечение и в тыл. Солдатская судьба вашего отца (всю войну без ранений!) действительно удивляет. А что с вами было дальше?
— В медсанбате вдруг появилась моя мать. Надо жо — нашла! Бросила свое хозяйство, корову, сумела проехать в прифронтовую полосу, узнала о моей судьбе, нашла госпиталь, где меня уже не было, и наконец нашла меня. Попался я ей, одним словом. И повезла она меня в тыл, в Коканд. Я особенно и не сопротивлялся. Шел сентябрь — надо было учиться. Успел только захать в свою разведгруппу. Тепло попрощались со мной, выдали мне ту самую бумагу… Недели две мы добирались в Среднюю Азию, дорога была очень тяжелой и длинной, Там я поступил в десятый класс.
— Воевал человек, ранен был и даже года в учебе не потерял. Поразительно!.. Для меня ваш рассказ о своем коротком военном лете, кроме всего прочего, убедительное подтверждение того, что человеческая личность обладает огромными резервами психологической устойчивости, которая проявляется в поступках, требующих решимости, воли, смелости. Не каждый человек способен проявлять эти качества в повседневной жизни, но также не каждый, кто демонстрирует их обычно, способен проявлять их в условиях крайних, экстремальных, подобных тем, которые предложила война.
— Во время войны я убедился, что люди, внешне соответствующие моим представлениям о человеке смелом и мужественном и вроде бы действительно не боящиеся опасности, нередко к этой опасности на самом деле близко никогда не подходят. Всегда находят обстоятельства, оправдывающие сохранение некоторой дистанции. И наоборот, бывают люди, казалось бы, не претендующие ни на какие подвиги, в ситуации предельно острой, требующей немедленного принятия, решения, идут навстречу опасности, входят с нею в контакт без видимых сомнений.
— Без видимых сомнений, это понятно. Но иногда говорят: не задумываясь. То есть не зная уровня грозящей опасности или пренебрегая ею и не чувствуя риска. Мне лично такая способность человека, не вооруженного оценкой ситуации, к импульсивным действиям очень импонирует, во всяком случае, она в тысячу раз лучше любого подобия нерешительности и трусости. Но умом я понимаю: такая способность граничит с безрассудством и нередко ведет — увы! — к неудаче, проигрышу ситуации. А на войне, может быть, даже к гибели. Не хотелось бы показаться псевдотеоретиком и схоластом, поэтому снова возвращаюсь к вашему военному опыту. Поскольку трудно представить более веские обстоятельства для выявления человеческих качеств, чем война. Мне кажется, ваше поведение являло собой пример как раз сознательного риска, внутренней готовности к встрече с опасностью, расчета в лучшем смысле этого слова. Решимость, даже порой безрассудная, всегда прекрасна, но опять же я понимаю, что решимость должна быть эффективной. А такое чаще бывает, когда человек видит, понимает, откуда ему грозит опасность, и может держать себя в руках, уберечься от безрассудства и действовать с необходимой осторожностью.
— Я бы добавил: владея своими эмоциями и телом. Если умом человек себя сознает готовым к действию, а тело ему не подчиняется, входит в «автоколебания», дело безнадежно.
— Есть в обиходе такое не очень благозвучное слово «мандраж». Я под ним понимаю разновидность cтpaxa, расслабляющего тело. Вам это чувство, наверное, незнакомо?
— Да, мандраж, возможно, это то самое. Я действительно его никогда не испытывал. Но наблюдать приходилось не раз. И вот еще. Мужественность и решительность свою одни люди способны проявлять только в более или менее привычных условиях, а другие способны сохранить их на все случаи жизни или даже вообще проявлять только в условиях крайнего стресса. На мой взгляд, подтверждение этому легко найти в среде летчиков. Первые — это обычные летчики, а вторые — те, которые становятся хорошими летчиками-испытателями. Наблюдал я не раз Сергея Николаевича Анохина. В обычной жизни это скромный, незаметный человек. Но ведь это он оказался способен, попав в аварию и потеряв глаз, выбраться из кабины падающею самолета, пройти по фюзеляжу, держась за провод антенны, а затем прыгнуть с парашютом. Таким был и Юрий Александрович Гарнаев, погибший во Францки на испытаниях вертолета с огнетушащими средствами, — чем горячее ситуация, тем поведение его становилось расчетливее и решительнее.
— В проблеме подвига, Константин Петрович, меня волнует еще один вопрос. Бывают ситуации «открытые», публичные, когда сама обстановка, отчетливое видение социальных последствий поступка ведут человека к проявлению высоких качеств — смелости, мужества, героизма. А бывают «закрытые», когда нет доказательств тому, что о твоем поступке узнают и оценят его по достоинству. Одному моему приятелю ничего не стоило, преодолев страх, прыгнуть — и не раз — в море с пятнадцатиметровой скалы в присутствии друзей и вообще публики, но как-то он пытался «репетировать» в одиночку в ранний утренний час и не смог прыгнуть ни разу. Не смог преодолеть страха. Не так давно мне довелось прыгнуть с парашютом из самолета. На земле, перед посадкой в самолет, был уверен, что перед прыжком меня посетит естественный страх. Не дай бог, думаю, если вдруг «расхочется» прыгать. Но, когда взлетели, вдруг поймал себя на мысли, что, конечно же, прыгну, — смешно даже сомневаться, рядом же люди. Даже мандража не испытал. Это, конечно, слишком простенький случай, и аналогия здесь не слишком корректна, но, мне кажется, проявить мужество и даже совершить подвиг в бою, когда рядом товарищи, это совсем не то, когда рядом только враг и нет уверенности, а иногда и надежд, что о твоей стойкости узнают свои. «На миру и смерть красна» — я это понял еще мальчишкой: вчитавшись в строчки о подвиге Юрия Смирнова, а позже — генерала Карбышева, я выделил их для себя из многих героев войны, о которых тогда узнавал из газет. И был просто потрясен, когда прочитал обо всем этом у В. Быкова в «Сотникове».
— Все это так. Но испытание физической болью — это особое испытание. Мне трудно судить — я его не проходил, и статистики, как говорится, никакой нет, но здесь критерии совсем иные. Такое испытание переносят люди только великого мужества. Во всех других случаях можно говорить о каких-то закономерностях. Хотя и «на миру», бывает, не каждый способен проявить себя достойно, даже когда, как говорится, ставка велика. Если честно, то и среди космонавтов бывало такое — пропадали куда-то хладнокровие и выдержка, срывались нервы. И это у всех на глазах. Не много случаев, два-три, может быть, но были.
— Переплыть речку Воронеж среди бела дня на сторону немцев — это ведь не «на миру», можно и повернуть, попробовать переждать, а то и совсем отказаться и уйти в тыл.
— Повторю, что ничего героического я в той своей работе не вижу. Замечу, кстати, что «социальный фактор» действует не только в экстремальных условиях. Любое обязательство или обещание для меня, например, условие непременного их выполнения. К сожалению, приходится сталкиваться с людьми, для которых собственное слово, даже «на миру» сказанное — я говорю о служебных делах, — ничего не означает. Но это я к слову. Мне кажется, многие не хотят вдуматься в высокий смысл таких понятий, как «подвиг» и «героизм», и употребляют их тогда, когда необходимо всего лишь достойно и по существу оценить хорошо проделанную работу. Я уже говорил о летчиках-испытателях. У них, на мой взгляд, самая опасная работа. Не у каждого, конечно, и не в каждом полете. Но в целом это наиболее «расходуемая» профессия — далеко не все из ее обладателей доживают до пенсии…
Космонавты тоже рискуют своей жизнью, причем в каждом полете, и не только в полете. Вспомним трагическую смерть трех американцев — Гриссома, Уайта и Чаффи, сгоревших заживо при наземных испытаниях «Аполлона».
В последнее десятилетие разработчикам, испытателям и эксплуатационникам космической техники удалось добиться от техники пилотируемых полетов высокой надежности. И в то же время эта техника остается и еще долго будет иметь экспериментальный и опытный характер, а значит, полеты в космос будут чреваты всевозможными отказами и аварийными ситуациями.
Всегда будут существовать такие сложные, с немалой долей риска операции, как выведение на орбиту (космонавт — он ведь сначала «ракетонавт», пилот ракеты—машины, работающей в крайне напряженных условиях, обладающей способностью к мгновенному взрыву), стыковка и расстыковка, выход космонавта в открытый космос, возвращение на Землю, когда корабль буквально становится огненным шаром. Все эти операции проходят на огромных скоростях и высотах полета. А сам полет — это постоянное соседство с враждебной средой, два-три миллиметра толщины стенки станции отделяют космонавтов от бездны, вакуума, наполненного метеорами и радиацией. Конечно, по мере накопления опыта создателями космической техники она становится все более надежной, и степень риска в полете снижается. И все же не стоит забывать, что отказ при любой, даже самой малой, вероятности может быть в любой момент. Пусть их должно быть на тысячу раз один. Но этот один может быть и первым, и пятым, и двадцатым. Нет сомнений, что популярность космонавтов и уважение к их профессии не только от ее романтического характера (небожители!), но и от отчетливо сознаваемого риска в их работе.
— Кажется иногда, что космонавтам, которые отлично знают свою технику, условия работы на ней и точно чувствуют степень риска, неведомо чувство страха, что ко всему этому они привычны. И даже мы, журналисты, вроде бы к этому привыкли и пишем об этом нередко как о чем-то обычном.
— Наверное, если это происходит уже далеко не в первый раз, а в тридцатый, сороковой, пятидесятый, трудно об этом писать каждый раз как о чем-то уникальном. К тому же страх у человека может возникнуть, по моему представлению, при столкновении с чем-то неожиданным, незнакомым, явно угрожающим жизни или здоровью. Космонавты же долгое время готовят себя ко всему, с чем потом встречаются или могут встретиться в космосе, в том числе с разными неожиданностями и опасностями. Действия в этих ситуациях отрабатываются на Земле в условиях имитации. Кроме того, космонавты летают теперь не в одиночку. Так что о страхе говорить вроде бы не приходится…
И все же это чувство, во всяком случае, ощущение опасности космонавтам знакомо. Хорошее знание «предмета», понимание возможных последствий того или иного отказа лишь способствуют этому. Но недаром космонавтов тренируют столь упорно — возникает психологическая устойчивость ко всякого рода угрозам и неожиданностям. Как говорил Георгий Михайлович Гречко, нечего «вибрировать», если не можешь повлиять на ситуацию. Поэтому и в сложных операциях космонавты действуют уверенно и спят спокойно, прильнув со своим мешком к тонкой стенке станции. Даже снотворное принимают очень редко. И все же эти люди не супермены из западных кинобоевиков: они хорошо знают, что такое опасность, и готовят себя к встрече с ней.
Особый характер имеет работа космонавтов при выходах за пределы корабля, на его наружной поверхности: ни с чем не сравнимые условия и такие же наверняка ощущения.
Знаменитая операция по освобождению наружной антенны телескопа, которую выполнили Ляхов и Рюмин, — выдающийся факт. И не потому, что эта работа была рискованной (всегда есть, скажем, опасность пробоя скафандра метеоритом). А потому, что в условиях завершения утомительного полугодового полета они безупречно проделали свою работу. А диаметр параболической антенны более чем вдвое превышал диаметр станции.
В будущем предстоят еще более сложные работы. Космонавты будут перемещаться за пределами станций совершенно свободно и подолгу, выполняя различные технологические операции.
Принято считать, что профессия накладывает отпечаток на психологию ее обладателя. Космонавт — это профессия. Но ведь космонавтами становятся задолго до первого полета. Сначала многотуровый отбор — из многочисленной группы подобных себе летчиков и инженеров. Потом из менее широких контингентов тех, кто реально претендует быть зачисленным в отряд космонавтов. Далее — жизнь и работа, общая подготовка в отряде, тренировки перед полетом в качестве дублера.
И наконец, назначение на полет в основной экипаж. При этом по разным причинам отсеивается немало вполне достойных и подготовленных людей.
— Вот вы рассказывали — с детства стремились к профессии создателя космических кораблей. То же рассказал мне Георгий Михайлович Гречко. Но могло ведь и не сложиться у вас или у него.
— Конечно, было бы очень обидно. Отбор в космонавты — процедура сложная и тонкая, и на каждой его ступени тебя может постигнуть неудача. Здоровья, которого от тебя гребуют медики, может вдруг и не оказаться.
Каждого претендента руководители комиссий с самого начала настраивают: ничего страшного, если не пройдете. Стать космонавтом — это должно быть всегда лишь желанием, но никак не целью жизни. Тогда и неудача воспримется не так тяжело. Впрочем, для летчиков совсем другое дело (получается иногда своего рода игра ва-банк: на комиссии может вдруг выявиться такое заболевание, что и к легной работе потом опять не допустят). Все-таки это совсем разные вещи — стремиться к овладению той или иной профессией или к конкретному событию — мы имеем в виду космический полет — как цели жизни. Это второе, по-видимому, бессмысленно. Для первого же практически нет преград.
Конечно, конкурсный отбор — это не прерогатива космонавтики, он существует везде и всюду, начиная с детских олимпиад. Так что каждый, наверное, прошел через неудачу в том или ином отборе.
— И все же чем-то отбор в космонавты не имеет аналогий. Если говорить о детских олимпиадах или конкурсах в институты, то и в том и в другом возрасте, как говорится, все впереди. Даже баллотирование в академики почтенного ученого может при неудаче быть повторено. Поэтому можно понять ваших космических медиков, которые настраивают не бояться провала в отборе. В других случаях подход бывает иной. Доводилось мне наблюдать приемную страду в театральный вуз. Так там честолюбивого абитуриента родственники и близкие постоянно уверяют (да и он сам себя): ты самый лучший, ты непременно пройдешь. А если вдруг неудача — виноваты все вокруг, но только не сам абитуриент.
— Инженер или летчик со стажем понимают, что пройти отбор в космонавты это еще не значит полететь. Масса обстоятельств может помешать этому. И неизвестно, на сколько лет и во имя чего ты будешь оторван от своей профессии. Есть ведь космонавты, которые дожидаются своего полета по десять-пятнадцать лет. Многие, впрочем, не просто так дожидаются, а овладевают новыми специальностями, защищают диссертации.
— Я понимаю, что полет в космос сам по себе не может быть жизненной целью и тем более жизненной установкой. И тем не менее я всегда радуюсь за тех, кто отправляется в первый полет, — их мечта, замыслы наконец воплощаются в жизнь. Им не только удалось пройти через отбор, но и в ходе подготовки доказать свою пригодность к большому делу. За многие годы ожидания не каждому удается сохранить здоровье или работоспособность. Для иных все жертвы оказываются напрасными. Человек вроде бы обрел новую профессию, но реализовать ее в действии так и не сумел.
— Драмой это можно считать только в одном случае. Если человек, пришедший в отряд космонавтов, оставил за порогом свою профессию и полет в космос сделал главным смыслом жизни. Но таких, думаю, немного. Те, кого я знаю — инженеры из промышленности, ставшие космонавтами, — видят в этой профессии естественное продолжение своей работы в КБ. Если слетать в космос не удается, это не просто досадно, это до боли обидно, огорчение надолго. Но эта неудача «нормальная» в цепи событий профессиональной деятельности инженера. И кроме того, годы в отряде космонавтов — это не просто ожидание, это получение разнообразных и интересных знаний, это приобщение к современной технике, это, наконец, участие в подготовке, проведении и анализе результатов космических полетов. Такое «ожидание» многого стоит.
— Всегда будут люди, для которых мало только любимой профессиональной работы. Им нужно еще постоянно испытывать свои физические и психические возможности. Для одних необходимым становится спорт, для других альпинизм и туризм, третьим хочется летать и прыгать с парашютом. Но вот еще что интересно: подготовка и осуществление космического полета требуют от человека много терпения, мобилизованности, физических и душевных сил. Отсюда по логике вещей вытекает, что после полета должно вроде бы возникнуть такое ощущение, что желанная цель достигнута и вторично такое перенести невозможно. Что же заставляет космонавтов стремиться в новые полеты — во второй, даже третий, четвертый? В «Литературной газете» как-то было опубликовано интервью с американским астронавтом Майклом Коллинзом, совершившим два полета, один из которых на Луну (он был пилотом основного модуля и оставался на окололунной орбите, когда Армстронг и Олдрин высаживались в специальном модуле на поверхность Луны). На вопрос советского журналиста, не хотел бы он совершить еще один космический полет, Коллинз ответил: «Ни за что!»
— Почему?
— Нервное напряжение и физические нагрузки в рискованном космическом полете были столь велики, что Коллинз, по его словам, отходил от них чуть ли не десять лет. К тому же он, бывший летчик-испытатель, после космических полетов не сразу нашел свое новое место в жизни. В связи с этим мне вспоминаются романы Ремарка — в них всегда поражало, как долго герои живут с воспоминаниями невзгод самых черных дней давно прошедшей войны.
— Ответ Коллинза меня удивляет. Может быть, в нем действительно что-то надломилось. Но вернее всего, что это типичный для американца рекламный ход. Скажешь: хочу, очень хочу, это не привлечет ничьего внимания, никого не взволнует. А так хоть маленькая, но сенсация. Вообще, насколько я знаю, американские космонавты мужественные, откровенные и вполне скромные люди.
— Армстронг, первый человек, шагнувший на Луну, преподает сейчас в каком-то провинциальном университете и не имеет никакого «паблисити». А между тем это был выдающийся летчик и космонавт. Ему очень «везло» на аварийные ситуации. То на летающей платформе, имитирующей полет лунного посадочного модуля, возник пожар, и ему пришлось катапультироваться с небольшой высоты. А в первом своем космическом полете на «Джемини-8» (вместе с У. Скоттом) в 1965 году, осуществив первую орбитальную стыковку, он вынужден был тут же совершить аварийную посадку. Мастерски он посадил и «Аполлон-11» на Луну: в выбранной на Земле точке оказалось очень много крупных камней, и Армстронг провел корабль, так сказать, на бреющем полете почти до израсходования топлива, но выбрал отличное место для посадки… Он приезжал в Москву.
— Мне приходилось здесь с ним встречаться и беседовать. Он произвел на меня хорошее впечатление. Прежде всего редким сочетанием скромности, спокойствия и рассудительности, с одной стороны, и какой-то отчаянностью, решимостью — с другой. В этом они очень похожи с нашим Анохиным, о котором я уже говорил.
— Большинство космонавтов с готовностью отправляются в новые полеты повторно. Что все же влечет их в космос вновь?
— Опытный космонавт, который уже побывал в полете и способен совершить новый, очень ценный для космонавтики человек. Важен его опыт знакомства с невесомостью и процессом адаптации, с особенностями функционирования на борту. Все это трудно постичь лишь путем изучения инструкций. В очередном полете у него уходит значительно меньше времени и сил на привыкание. Неоценимую помощь бывалый космонавт способен оказать своему коллеге-новичку.
— Вы, Константин Петрович, один из первых советских космонавтов — вместе с Комаровым и Егоровым делили номера с седьмого по девятый, а в мировом списке с одиннадцатого по тринадцатый, — очевидно, на себе ощутили то время, когда имя каждого побывавшего в космосе человека было окружено ослепительным ореолом славы. Слава эта, буквально сваливающаяся на космонавта после полета, оказалась, наверное, на два порядка больше, чем непревзойденная до того слава киноартистов и футболистов. На мой взгляд, это здорово, что двадцатый век сумел разобраться, что к чему, и поставил детей научно-технического прогресса на самую высокую ступень престижной иерархии. Хотя, конечно, кое-кто пытался «сопротивляться» этому: дескать, отобрали по здоровью, посадили в кабину и с помощью автоматики свозили на орбиту. И не надо для этого ни интеллекта, ни таланта. Как же это все было неверно! И все же послеполетная слава космонавтов — удивительный феномен нашего времени. Когда-то, в 30-е годы, подобная слава обрушилась на героев-летчиков. Но если летчиков и тогда уже было много тысяч, то летавших космонавтов во всем мире еще и сегодня немногим более ста. Поэтому неудивительно, что популярность космонавтов носит совершенно исключительный характер. Анализ этого явления, пожалуй, интереснейшая задача для социологов и психологов. Интересно, как вы, Константин Петрович, относитесь к своей славе.
— Я считаю, что настоящая слава, то есть народное признание, было только у Юрия Гагарина, первого из первых. По отношению ко всем другим — это лишь «стресс внимания», происходящий не только из уважения и интереса, но и из чистого любопытства и не без влияния прессы. Обычно ведь как люди живут? Сравнительно узкий круг близких людей интересуется твоими обстоятельствами и деталями жизни, мнением и суждениями. Широкая известность — это естественно для актеров и спортсменов, поскольку работа их публична. И вдруг на твою голову обрушивается лавина внимания. Начинается сногсшибательная круговерть: всем ты интересен и нужен, все хотят слушать тебя и общаться с тобой. Каждый на эту лавину реагирует по-своему. Кого-то, быть может, она ошарашивает настолько, что пропадает чувство реальности. Начинает много выступать, порой десятки раз повторяя одно и то же. Меняется вдруг самооценка, человек на глазах начинает «раздуваться», появляется каприз, завышенные требования к жизни и условиям работы. Такое наблюдается с очень немногими, а главное — быстро проходит. Берут верх здоровая натура и влияние окружения — тех же товарищей по работе. Большинство же сразу к своей популярности относятся с достаточной долей юмора, что позволяет сохранить чувство меры. Никто, наверное, не будет отрицать, что у послеполетной известности есть свои большие достоинства.
— Ничего худого, одним словом, в повышенном внимании к человеку нет. Вам лично слава летчика-космонавта СССР не мешает?
— Скажем так: не слава, а некоторая известность. Для меня, если быть откровенным, стало легче решать служебные вопросы. Стали легче налаживаться деловые контакты. Как это ни странно, но мне показалось даже, что Сергей Павлович стал относиться ко мне чуть-чуть по-иному, чаще стал вызывать меня к себе. Стало проще и в обыденной жизни. Все это приятно. Есть, конечно, и издержки. Трудновато бывало, особенно в первые после полета годы, просто на улицах, в магазинах, в театрах, на отдыхе — чуть ли не пальцем показывали. И уж конечно, всюду приглашали, а я ведь человек не очень открытый. Нередко приходилось выступать с докладами и беседами. Отказывать было очень трудно, хотя иногда сил или желания совсем не было. Постепенно мне удалось сократить количество публичных встреч. Вообще-то я люблю общение с аудиторией, особенно молодежной, любознательной, люблю отвечать на вопросы. Да вы и сами знаете — мы с вами вместе «работали» в «диалогах» в МГУ и в Центральном Доме литераторов. Вечера эти, по общему признанию, как будто вполне удались.
Но наши проблемы этого рода я не стал бы даже сравнивать с теми проблемами, которые стоят перед американскими космонавтами. Ведь у них известность — это самый главный двигатель карьеры и источник обеспеченности. Америка просто принуждает их взять максимум возможностей от своей славы. Ковать железо, пока горячо. Вот, например, Фрэнк Борман, очень умный и симпатичный парень (с ним мы общал сь во время его приезда к нам в страну и в США, куда я ездил вместе с Г. Т. Береговым), очень хотел в свое время сделать политическую карьеру.
— Подобно Джону Гленну, первому американскому космонавту, который стал сенатором?
— Вроде того. Борману, думаю, хотелось добиться не только высокого положения в обществе, но и возможности серьезного политического влияния даже на президента США. Он и в Советский Союз первым из деятелей американской космонавтики приехал, по моему мнению, не без этого умысла. Но что-то у него там не вышло. Потом, слышал я, была у него мысль создать банк, но тоже, по-видимому, не получилось. Наконец, он занял пост вице-президента в одной из авиакомпаний. Очень неплохое положение для американца. Но удовлетворен ли Борман, не знаю. Куда труднее получилось все у Олдрина. У него судьба не сложилась. После полета по разным причинам он много переживал, пришлось даже обратиться к психиатрам. Хотя для американца это дело нормальное, об этом много писала пресса. Из ВВС ему пришлось уйти, так и не став генералом. Потом как будто он тоже стал во главе небольшой фирмы. А сейчас его след почти затерялся.
— Любопытная деталь: отец Олдрина в 30-е годы, будучи морским офицером, очень способствовал деятельности американского пионера в области ракет и космонавтики Роберта Годдарда. А сын его через 30 лет среди первых полетел на Луну.
— Сурово судьба отнеслась и ко многим другим американским космонавтам. Это цена и результат их большой популярности. У нас же каждый либо остался при своем деле, либо нашел себя в новой сфере. Почет и внимание сограждан гарантированы каждому, при условии, если работаешь по-прежнему хорошо…
Более четырех десятков космических кораблей семейства «Союз» стартовали с космонавтами на орбиту. Заметим, что пилотируемых «Востоков» и «Восходов» было лишь 8, «Меркуриев» — 4, «Джемини» — 10, «Аполлонов» — 15.
Таким образом, «Союзы» составляют больше половины всех космических кораблей, на которых летали космонавты. Если к этим цифрам добавить беспилотные модификации всех этих машин, то соотношение это еще больше возрастет в пользу «Союза». Факт совершенно удивительный в условиях быстрого прогресса космонавтики.
Эта конструкция начала создаваться летом 1959 года. В разгаре еще были работы по «Востоку», в цехах шел первый «металл» спускаемых аппаратов, на полный ход работали конструкторские отделы, готовилась техническая документация, электрики заканчивали выпуск схем… Уже в это время в КБ возникли споры: куда идти дальше? Одни считали — нужно создавать большие орбитальные корабли и станции, другие — готовить лунную экспедицию, третьи вообще замахивались на Марс.
Всем, однако, было ясно, что, прежде чем решать любую из этих задач, нужно научить орбитальные корабли встречаться и соединяться в космосе. Без этого бессмысленно даже задумывать сколь-либо сложные космические предприятия. Исходя из этого, в секторе К. П. Феоктистова была сформирована группа для исследования проблемы сближения и стыковки. Она должна была выявить технические сложности этой проблемы, наметить варианты ее решения, найти организации, которые смогли бы разработать нужную аппаратуру.
— Задача была очень непростой. Как сближаться? Как измерять параметры сближающихся объектов? Какое необходимо иметь оборудование? Как осуществлять причаливание и соединение кораблей и их коммуникаций? Вот далеко не полный перечень поставленных тогда вопросов. К началу 1962 года был получен основной теоретический задел, и на его базе мы приступили к проектированию. Многим у нас эта тема казалась не очень перспективной. Кое-кто был даже обижен, что пришлось отойти от непосредственной работы по «Востоку» и заняться задачей встречи.
— Почему было не попробовать создать новые средства для «Востоков»?
— Поначалу вопрос так и ставился. Мы, проектанты, считали, что важно решить проблему — научиться сближаться и стыковаться. Быстрее это можно было сделать, используя модификацию «Востока». Но Бушуев на одном из совещаний, посоветовавшись, очевидно, с Королевым, выступил с предложением — решать эту проблему сразу на новом, специально спроектированном корабле. Мы сначала оспаривали эту идею, нам казалась она преждевременной. Не хотелось терять, как минимум, два-три года на новый проект, за это время, как нам казалось, можно было бы вполне решить задачу встречи на «Востоках». Но СП высказался за новую разработку, и решение было принято.
— Вы считали возможности «Востока» по усовершенствованию достаточными? Ведь он проектировался как самый первый в мире корабль и делался очень быстро.
— Это верно: мы действительно сделали его за два года и на далекую перспективу не рассчитывали. Новый же корабль решили делать универсальным, предназначенным для решения самых различных космических задач. Хотя, конечно, очень скоро выяснилось, что сложность его на порядок, а то и два выше «Востока» и времени на создание и отработку уйдет намного больше. Только к 1969 году «Союз» был полностью отработан.
— Сближение кораблей на орбите — это прежде всего задача баллистики. Наверное, в вас заговорила ваша прежняя специальность?
— Хотя я отвечал за общее проектирование, компоновку, весовые расчеты, состав оборудования, сама задача сближения и стыковки очень привлекла меня. Трудились над ней в тесном содружестве, взаимно дополняя и критикуя друг друга, самые разные специалисты: баллистики, управленцы, «логики», компоновщики. Разумеется, и я и как проектант, и как бывший баллистик попытался внести свой вклад в «идеологию» решения этой задачи.
Я не буду здесь подробно рассматривать все те методы сближения космических объектов, которые были тогда известны и прорабатывались теоретиками. Задача эта непростая не только сама по себе (корабли на орбитах в отличие, скажем, от самолетов не могут сколь угодно круто менять направление и скорость своего полета — на них действуют неумолимые законы движения в поле тяготения при существенных ограничениях по энергетике), но и с точки зрения обеспечения оптимального расходования бортовых запасов топлива, а также приемлемых средств и методов управления процессом сближения. Между теоретически наилучшим решением всех вопросов и проектным решением была здесь изрядная дистанция.
Итак, нужно было выбрать метод сближения, то есть те параметры относительного положения и сближения объектов, которые нужно было измерять и корректировать, и последовательность включения двигателей коррекции.
Наиболее выгодным представлялся метод «свободных траекторий». При использовании этого метода измеряются параметры относительного движения объектов, по которым, в свою очередь, вычисляется по величине и направлению скорость, необходимая для прямого попадания одного объекта («активного») в другой («пассивный»). Конечно, с одного раза попасть не удастся — вследствие неточностей в измерениях, ориентации и отработке двигательного импульса. Поэтому необходимо эту операцию повторить два-четыре раза. В результате можно сблизиться настолько, что останется произвести лишь причаливание одного объекта к другому.
Метод этот казался чуть ли не идеальным, если бы не одно важное условие: необходимые вычисления в ходе сближения очень сложны, и без ЭВМ на борту их провести практически невозможно. Но в те годы малогабаритной легкой и надежной ЭВМ еще не было. Пришлось применить другой метод — «параллельного сближения», известный из теории зенитных управляемых ракет.
Суть метода в том, что двигатель «активного» объекта при своих включениях гасит, сводит к нулю угловую скорость «линии визирования», связывающую два объекта. Замерить составляющие относительной скорости (одна перепендикулярна «линии визирования», другая — вдоль нее), как и расстояние между объектами, сравнительно нетрудно с помощью радиолокатора. Вычисления при этом оказываются также достаточно просты, с ними могли справиться небольшие аналоговые счетно-решающие устройства.
Метод «параллельного сближения» решено было применить, начиная с расстояния между кораблями около 20 километров, а до этого осуществлять сближение на основе наземных радиоизмерений. Прежде всего предстояло создать устройство, которое бы замеряло все нужные параметры: угловую скорость линии визирования, дальность и радиальную скорость, а также выдавало сигналы на взаимную ориентацию сближающихся объектов. Причем сразу было решено автоматизировать весь процесс сближения и стыковки и в то же время предусмотреть возможность ручного управления на расстоянии менее 200–300 метров.
Далее предстояло решить задачу причаливания а создать стыковочный узел. И здесь было много вариантов, вплоть до самых фантастических. Специалисты по системам управления во главе с Виктором Павловичем Легостаевым предложили, например, установить на одном из кораблей («пассивном») большую петлю, а на другом крючок, который бы цеплял за петлю и подтягивал корабль. Точность сближения действительно требовалась при этом небольшая (и это нравилось самим управленцам), но проектанты это посчитали не просто технически неубедительным, но даже несерьезным.
Однако легостаевцы настаивали на своей идее. Обсуждалась она едва ли не на каждом совещании по проблеме стыковки. Проектанты же называли эту петлю «удавкой» и доказывали, что захват и стягивание таким способом очень сложная конструкторская задача. Нужно придумать механизм раскрытия петли, создать специальные лебедки для стягивания объектов и в конце концов все равно сделать стыковочный узел для обеспечения жесткого контакта. К тому же реализация этой идеи непроста с точки зрения динамики: нужно демпфирование объектов после сцепления тросом и стабилизация их вокруг него.
Значительно проще и надежнее, считали проектанты, осуществить сближение объектов до контакта, а затем жесткую стыковку. Необходимой точности сближения вполне можно было достигнуть. Споры между проектантами и управленцами по этому поводу шли долго и иногда были очень острыми.
Еще в 1961 году проектантами прорабатывался узел жесткой стыковки по схеме «штырь — конус» с винтовой системой стяжки. Конкретный вариант конструкции позже предложил ветеран КБ Александр Михайлович Коновалов. Это был очень изобретательный человек, не имевший, кстати, даже инженерного диплома. После того как эту схему исследовали специалисты по механизмам, к ее окончательной разработке приступила группа конструкторов во главе с В. С. Сыромятниковым.
Намного труднее на этот раз было с весами, хотя теперь проектанты исходили из существенно большей грузоподъемности ракеты-носителя — 6,5 тонны вместо 4,5 (была создана более мощная третья ступень). Ведь решено было создать принципиально новый корабль, на котором можно было бы не только осуществлять сближение и стыковку, но летать двум-трем космонавтам в течение нескольких недель (если помните, предел «Востока» был 10 дней), а в условиях совместной работы со станцией (подразумевалось, что на базе этого корабля позже будет создано транспортное средство для обслуживания долговременных орбитальных станций) до нескольких месяцев.
Существенно должны были быть лучше условия жизни и работы экипажа, значительно больше возможности для проведения исследований и экспериментов, а также улучшены условия возвращения и посадки на Землю — снижены перегрузки, повышена точность приземления и т. д.
Задача на проектирование будущего «Союза» была поставлена в самых общих чертах Королевым и Бушуевым, а в деталях прорабатывалась проектантами при постоянном контроле и уточнениях со стороны руководства. Важнейшей задачей было создание и отработка средств измерения параметров движения двух космических аппаратов относительно друг друга, управления процессом сближения и причаливания, механической и электрической стыковки двух кораблей, создание маршевых и координатных двигателей, обеспечивающих процессы сближения и стыковки, а также систем ориентации и управления, спуска на Землю с использованием подъемной силы и мягкой посадки.
На «Востоке» спускаемый аппарат имел форму сферы, которая при движении в атмосфере не имеет подъемной силы, и поэтому спуск его идет по довольно крутой, баллистической траектории. В результате при входе в плотные слои атмосферы возникают большие перегрузки — до 8—10 единиц. Для космонавтов, недолго пробывших на орбите, это не страшно. Но при длительных полетах ослабленному невесомостью организму космонавта большие перегрузки противопоказаны.
Если у корабля есть хотя бы небольшая подъемная сила, еще лучше регулируемая, корабль идет в атмосфере по более пологой траектории, тормозится медленнее, перегрузки снижаются. Кроме того, регулирование подъемной силы позволяет менять по необходимости точку приземления в диапазоне плюс-минус несколько сот километров с точностью до нескольких километров.
Для возвращаемых космических аппаратов возможно несколько способов получения подъемной силы: жесткое крыло, крылоподобная форма самого аппарата, авторотирующие винты, надувное крыло типа дельтаплана, специальные реактивные двигатели. Нужно было выбрать наиболее выгодный, исходя из условий выведения, полета и возвращения корабля, а также его компоновки.
Изучив все известные методы, специалисты по аэродинамике и проектанты пришли к выводу, что наиболее выгодно… не применять никаких средств, а использовать способность любого несферического тела развивать подъемную силу при определенных углах атаки. Говоря о «Востоке», мы упоминали различные формы тел, оптимальных с точки зрения объема, веса, теплозащиты и подъемной силы. На этот раз все эти формы были исследованы заново и выбор пал на бочкообразный усеченный конус с небольшим, в несколько градусов, углом раскрытия. Подобную форму имеет автомобильная фара. Такая форма при смещении центра тяжести от оси симметрии позволяет при движении в атмосфере получить подъемную силу. Вообще-то спускаемый аппарат с подъемной силой прорабатывался на предприятии еще с 1960 года и проектанты имели в своем распоряжении результаты обширного анализа.
— Спускаемые аппараты всех американских кораблей имели форму конуса — «Меркурий» и «Джемини» с углом около 55 градусов, а «Аполлон» — более 60 градусов. У «Союза» форма иная, это дало какие-нибудь преимущества?
— В целом, мне кажется, да. У «Аполлона» было несколько выше аэродинамическое качество. Но, с другой стороны, у «Союза» лучше использовался объем, меньше потребный запас топлива на ориентацию при спуске, проще задача размещения оборудования.
— У «Востока» и всех американских космических кораблей спускаемые аппараты перед стартом располагались в головной части комплекса носитель — корабль. И это понятно. На случай аварийной ситуации так легче отделить аппарат с космонавтами и увести его в сторону. Почему у «Союза» впереди спускаемого аппарата располагается еще орбитальный отсек? Чем это вызвано и как при этом решается задача аварийного спасения?
— В свое время мы очень много думали над этим. И вот какие у нас возникли доводы в пользу такой, в общем, вы правы, не очень удобной с точки зрения аварийного спасения компоновки. Все корабли, созданные до «Союза», были рассчитаны на сравнительно кратковременные полеты — до двух недель. В этом случае космонавты, когда их два-три человека, вполне могут потерпеть друг друга в одном объеме, однако комфорта при этом немного. Попробуйте втроем сесть в «рафик» и провести в нем безвыходно даже недельку — и работать, и есть, и спать все время в маленьком салоне. Здесь же, разумеется, должен быть и туалет. Мы решили сделать «Союз» «двухкомнатным». Один отсек — спускаемый аппарат — для выведения и возвращения космонавтов, другой — орбитальный отсек — для научной работы. Здесь же туалет. Естественно, орбитальному отсеку не нужна теплозащита — он будет отделяться после входа в атмосферу вместе с приборно-агрегатным отсеком.
— Конечно, «двухкомнатная квартира» удобнее, это понятно. Но ведь так сложнее устроить аварийное спасение. Я говорю уже не о «рафике», а о космическом корабле. Почему бы орбитальный отсек не разместить между спускаемым аппаратом и приборно-агрегатным отсеком? Ведь если спускаемый аппарат разместить впереди, система аварийного спасения легко устанавливается прямо на спускаемый аппарат.
— Думали мы об этом варианте. Но в этом случае возникает необходимость сделать переходной люк-лаз в теплозащитном экране, а это приводит к всевозможным техническим и технологическим сложностям. Например, космонавтам пришлось бы лазать под креслами.
— Кресла можно сделать сдвижными, как в «Жигулях».
— Но дело в том, что именно здесь, возле экрана, в целях обеспечения центровки аппарата должна располагаться основная масса оборудования.
— А перевернуть спускаемый аппарат было нельзя?
— А где тогда будет стыковочное устройство? Опять же в теплозащитном экране?
— Сделать его сбоку того или другого отсека!
— Опять не годится. Стыковочный узел можно было бы поставить только на боковую стенку орбитального отсека (у спускаемого аппарата это резко бы нарушило аэродинамику), но тогда очень усложнилось бы оборудование сближения и причаливания и совсем неудачным оказался бы с точки зрения динамики конструкции весь комплекс из двух состыкованных кораблей. И потом, если спускаемый аппарат перевернуть, космонавты на старте будут не лежать в креслах, а висеть на ремнях и перегрузки будут действовать не в самом благоприятном направлении: спина — грудь.
— Сделать поворотные кресла очень сложно?
— Да, это усложнение чрезмерное — понадобится специальный механизм, да и дополнительное пространство. Можно было бы просто не «сажать» космонавтов в кресла вниз животом, а подвесить в специальных ложементах. Но некомфортно все это, и вообще не годится. Одним словом, только экраном вниз и только в середине между двумя блоками.
— Еще вопрос бывшего конструктора: разве вас не смутило, что космонавтам будет трудно наблюдать визуально за сближением и причаливанием кораблей — ведь впереди орбитальный отсек?
— Смущало, конечно. Но во-первых, наблюдение можно было бы вести и из орбитального отсека, а во-вторых, мы решили применить перископическую систему. Обзор через нее несколько хуже, но работа с ней сложности не представляет. Каждая проектная задача — это выбор оптимального решения. Хочешь иметь преимущества — «плати» какими-то недостатками. Без этого не бывает.
— Ну и наконец, как вы все-таки решили спасать космонавтов при аварии на начальном участке — отрывать спускаемый аппарат вместе с орбитальным блоком?
— В общем, решили именно так, с последующим их разделением. Но в этом решении есть одна тонкость. «Тянуть» корабль за орбитальный отсек нехорошо, тогда нужно делать его очень прочным. И мы смонтировали стойку с двигателями системы спасения на головном обтекателе, который крепится к месту соединения орбитального отсека со спускаемым аппаратом и при аварии тянет их оба.
— Ага! Корабль как бы подхватывался под мышки. Красивое решение! А кстати, как все же было с весами?
— Очень быстро мы в наших проектных прикидках добрались до предела. Так уж получалось — тому накинешь с десяток килограммов, другому чуть уступишь…
— Речь идет о смежниках, делающих оборудование?
— Да. Теперь мы уже в отличие от «Востока» стремились к установке самой современной аппаратуры. И, требуя лучших характеристик, вынуждены были уступать в весах. В результате регулярно возникали проблемы. Однажды один из моих сотрудников вдруг заявил: «У нас ничего не получится, нет никакого резерва весов, и нам не выпутаться; это все вы (я то есть) виноваты, добренький очень, всем уступаете». И так далее и тому подобное. В общем, на мой взгляд, сдался. А был хороший, толковый проектант. Мне пришлось его перевести с работ по «Союзу» на текущие работы по «Востоку» — «Восходу». Но он, этот сотрудник, был не одинок в своем скепсисе. Многие тогда считали, что «Союз» не получится. Я же и многие наши ребята верили: справимся. Верили в это дело и Сергей Павлович и Константин Давыдович, которые занимались «Союзом» очень активно.
Уже в середине 62-го были подготовлены первые исходные данные на разработку технической документации и началась работа над эскизным проектом. Трудности сразу возникли очень большие. Особенно при разработке системы определения параметров относительного движения двух кораблей при сближении и средств наземного контроля работы этой системы (как, впрочем, и всех других систем корабля). Непросто далось макетирование внутренней компоновки отсеков.
Но больше трудов было положено на обеспечение возвращения и посадки корабля. Детально исследовались аэродинамические и тепловые характеристики, как и характеристики устойчивости и управляемости спускаемого аппарата. Много хлопот доставило теплозащитное покрытие, оно тоже теперь было другое по составу и конструкции. А следовательно, нужны были новая технология и оснастка для нанесения теплозащиты и проверки ее работоспособности. Работы по новой системе приземления потребовали создания специальных макетов спускаемого аппарата, сбрасываемых с самолетов. Пришлось заказать новую двигательную установку, систему управляющих двигателей и массу других новых агрегатов. Нелегко было добиться нужной надежности и точности от всей этой аппаратуры.
Мы уже говорили о сложности электрических цепей «Востока», которая открылась, когда их впервые разложили на столах. Здесь же создателей корабля охватил просто ужас: сотни приборов, тысячи деталей, десятки километров кабелей. И все это должно быть воссоединено в работающее целое. Только описание логики работы, программ автоматики составило целый том. И это при том, что эту логику старались сделать максимально простой и надежной.
Кое-кто опять засомневался: удастся ли вытянуть всю эту автоматику? Занимался ею Шустин со своими товарищами, проявили они буквально виртуозность, ведь дорабатывать логику им пришлось множество раз.
Все было выверено, казалось, предельно, но все же на первом летном испытании системы объявились три «креста». То есть в трех случаях команды сработали наоборот. Правда, в двух из них команды компенсировали друг друга, так что остался один «крест». Для первого раза это было совсем неплохо.
Объем работ был огромным. Только конструкторская документация составила несколько тысяч листов чертежей, схем и инструкций. Постепенно испытатели начали включать аппаратуру. Оказалось, работает! И постепенно, шаг за шагом пришли к тому, что все стало включаться и выключаться, когда надо.
Почти пять лет шли проектирование, разработка, постройка и испытания систем. Все чувствовали, что корабль получился очень сложный. Не так уж много людей знали все особенности его работы. Подготовка космонавтов к его пилотированию была очень напряженной.
Первый пилотируемый полет состоялся в апреле 1967 года. Первым космонавтом-испытателем «Союза» был командир «Восхода» Владимир Комаров, и полет его, как известно, закончился трагически.
Вспоминать лишний раз об этом очень тяжело. Но иногда надо. Наверняка каждому, кто причастен к созданию и полетам космических кораблей, это служит нелишним подтверждением необходимости постоянней и предельной тщательности в работе над техникой пилотируемых полетов. Хотя в этом случае, как и в другой трагедии — гибели экипажа корабля «Союза-11», невозможно кого-либо винить за нерадивость, беспечность или низкий профессионализм.
Полет должен был завершиться через сутки после старта. Перед возвращением было решено перейти на ручную систему ориентации. Комаров отлично сориентировал корабль, включил двигатель, все прошло штатно. Разделились отсеки, спускаемый аппарат пошел к Земле. Все было в норме. Но нервы у всех на Земле были напряжены до предела — все-таки первый «Союз» с человеком садится. Потом какое-то время в центре управления не было никакой информации — и вдруг это сообщение…
Что же произошло? Из контейнера не вышел основной парашют. Из-за этого не отделился тормозной парашют, и началось вращение аппарата. Когда же по сигналу автоматики был выпущен запасной парашют, он закрутился вокруг строп тормозного.
Почему не вышел основной парашют? Однозначно ответить на этот вопрос трудно. На испытаниях системы приземления, предшествующих полету Комарова — самолетных и беспилотных космических, — все работало нормально. Возможно, каким-то образом в контейнере образовалось разрежение и парашют был в нем зажат. Во всяком случае, при доработках контейнер расширили и усилили его стенки, доработали также систему запасного парашюта.
К сожалению, мы ничего не знаем и никогда не узнаем, как провел последние секунды жизни Владимир Комаров, что он успел почувствовать и подумать. Обычно космонавт при спуске ожидает резкого рывка и замедления полета, когда раскрывается купол парашюта. Рывка этого не последовало, и падение продолжалось около минуты. Наверное, это слишком мало, чтобы успеть понять, что произошло и что тебя ждет…
Полтора года после этого шли доработки и дополнительные испытания всех систем «Союза». В октябре 1968 года вновь начались пилотируемые полеты корабля.
Первым, кто испытывал доработанный корабль, был летчик-испытатель Георгий Тимофеевич Береговой. Звание Героя Советского Союза он заслужил, совершив 185 боевых вылетов на штурмовике. Войну закончил командиром эскадрильи. Он же был первым космонавтом, пришедшим в отряд с летной испытательной работы, имея к тому же звание заслуженного летчика-испытателя.
К концу 1969 года корабль можно было считать отработанным, а проблему сближения и стыковки на орбите практически решенной. По своим возможностям, насыщенности оборудованием и характеристикам корабль отвечал современным требованиям. Так, спуск корабля был управляемым и разброс точек приземления не превышал нескольких десятков километров и мог быть в принципе снижен до нескольких километров (у «Востока» рассеяние достигало 250–300 километров). Управление достигалось изменением вертикальной составляющей подъемной силы спускаемого аппарата за счет поворота его вокруг продольной оси. Перегрузки при спуске были 3–4 единицы (у «Востока» — 8—10). Система посадки включала парашют и твердотопливные двигатели, которые, включаясь на высоте 1–2 метра, гасилн скорость до 2–4 метров в секунду.
Оборудование корабля обеспечивало возможность проведения полностью автономного полета без участия наземного командного комплекса. Для обеспечения сближения и стыковки с другими объектами на орбите корабль был снабжен разнообразным радиотехническим оборудованием, а также оптическим визиром-ориентатором.
Приборно-агрегатный отсек на этот раз был сделан из двух частей — герметичной, с различной аппаратурой, и негермегичной, с двигательной установкой, предназначенной как для маневрирования на орбите, так и для торможения перед возвращением на Землю. Было решено установить два двигателя — основной и дублирующий, а в системе управления ориентацией — группы двигателей малой тяги со своими топливными баками и прочей аппаратурой.
В цикл создания новой техники входят, как известно, кроме проектирования и разработок, испытания корабля и его систем. Блоки корабля с установленным на нем оборудованием испытывались в барокамерах — на вакуум и герметичность, при перепадах давлений, на вибростендах, в лабораториях прочности. На специальных наземных стендах многократно проверялись системы разделения блоков корабля, механизмы раскрытия антенн и солнечных батарей, система сброса головного обтекателя и другое. Специальные стенды были созданы для отработки и проверки функционирования системы сближения и стыковки.
Наиболее сложные и волнующие испытания систем корабля те, которые проходят в натурных условиях. Так, работа системы приземления проверялась при сбросах экспериментальных объектов с самолета, плавучесть спускаемого аппарата — на водных акваториях, система аварийного спасения — на специальных установках. Каждое из этих испытаний приводило к необходимости уточнений в конструкции и доработкам.
В итоге всей этой огромной работы была получена возможность использовать новый корабль как в автономных многодневных полетах, так и в качестве транспортного средства для снабжения орбитальных станций.
Проектные работы над такой станцией были начаты еще в конце 1969 года. В 1970 году началось изготовление первого летного образца, а также наземные испытания отдельных систем. Неоценимые данные для этой работы были получены в результате рекордного тогда по длительности полета — в течение 18 суток — Андрияна Николаева и Виталия Севастьянова на «Союзе-9» в июне 1970 года.
Предварительная работа проектантов показала, что имеется возможность создать (в соответствии с мощностью и размерами располагаемой ракеты-носителя) долговременную орбитальную станцию с максимальным диаметром 4,15 метра, массой около 19 тонн. При этом, исходя из условия, что на станции должен работать экипаж из двух-трех человек в течение нескольких месяцев, на научное оборудование оставалось около полутора тонн массы, что было, конечно, замечательно.
Однако реализовать эти возможности было непросто. Путь к этому лежал через ряд этапов. На первом этапе было решено создать орбитальную лабораторию для проверки основных принципов создания и функционирования станций, чтобы в ходе полетов космонавтов и проведения ими научных и технических экспериментов исследовать возможности длительной работы человека на орбите в условиях замкнутого и ограниченного объема.
После первой стыковки двух «Союзов» космонавты Е. В. Хрунов и А. С. Елисеев перешли из корабля в корабль через открытый космос в скафандрах. Очевидно, для работы корабля в совместном полете со станцией такой способ не подходил. Поэтому при создании модификации «Союза» как транспортного корабля конструкторами была решена задача перехода непосредственно через стыковочный узел, для чего пришлось разработать новую конструкцию узла. Он был совмещен с крышкой люка-лаза.
Всю документацию на доработки «Союза» удалось создать одновременно с документацией на станцию — к весне 1970 года. Очень скоро появились чертежи на корпус станции, и к весне следующего года станция, названная «Салютом», была готова.
Запуск ее состоялся 19 апреля 1971года с помощью мощной ракеты-носителя «Протон». Пробыла первая станция на орбите 175 дней. При этом с ней были осуществлены две стыковки — кораблей «Союза-10» и «Союза-11». В обоих случаях сближение шло автоматически, а причаливание с расстояния менее 200 метров вручную. Экипаж первого корабля — В. А. Шаталов, А. С. Елисеев и Н. Н. Рукавишников — осуществил проверку всех систем транспортного корабля, а второго — Г. Т. Добровольский, В. Н. Волков и В. И. Пацаев — также успешно состыковался со станцией и проработал на ее борту рекордное тогда время, более 23 суток, проведя большое количество научных исследований и экспериментов.
Этот экипаж трагически погиб при возвращении со станции. Специальные исследования показали, что произошел отказ в одной из вспомогательных систем спускаемого аппарата — преждевременное вскрытие клапана, связывающего герметичный отсек спускаемого аппарата с наружной средой (обычно он срабатывает уже в плотных слоях атмосферы, на высоте около 5 километров). Потом, после полета, клапан этот был проверен бесчисленное количество раз и ни разу не отказал. Так же безотказно до того случая и впоследствии работали многие десятки подобных клапанов на других кораблях и аппаратах, но в этом случае открытие его произошло намного раньше положенного времени, задолго до раскрытия парашюта. В результате произошла мгновенная разгерметизация корабля. Космонавты погибли от взрывной декомпрессии.
Хотя, в общем-то, безотказная система была вновь тщательно доработана и надежность ее стала близка к абсолютной, было решено с тех пор, что космонавты должны надевать скафандры при всех операциях, связанных с выведением, посадкой, стыковкой и расстыковкой кораблей.
Что же представляет собой станция «Салют»?
Станция «Салют» создавалась таким образом, чтобы она могла работать не только с космонавтами на борту, но и как автоматический орбитальный аппарат. В пилотируемом режиме она превращается в научный комплекс, состоящий из двух основных блоков — орбитального (собственно станция) и транспортного (корабль) с постоянно открытым между ними люком, размещенным в стыковочном узле. Так что космонавты могут работать и отдыхать во всем объеме комплекса, который составляет около 100 кубических метров. Длина всего комплекса более 23 метров, из них 14 метров — орбитальный блок. Общая масса 25,6 тонны.
Для проведения экспериментов, наблюдений, кино- и фотосъемки в различных отсеках станции имеется 27 иллюминаторов. Как и на всех предыдущих кораблях, на станции поддерживается атмосфера с нормальными, земными составом и давлением.
Известно, что почти на всех американских космических кораблях, начиная с «Меркурия», применялась чисто кислородная атмосфера с давлением 0,4 атмосферы. Почему не земная? Как мы уже говорили, ракеты-носители у них первое время обладали сравнительно небольшой грузоподъемностью, и это требовало от создателей кораблей строжайшей экономии веса. Естественно, все оборудование для однокомпонентной атмосферы было проще и легче.
Однако кислород, как известно, среда пожароопасная. Каждый авиационный специалист, например, знает, что соприкосновение кислорода с маслом может вызвать пожар. И американцы в полной мере столкнулись с этим недостатком атмосферы своих кораблей. В январе 1967 года на корабле «Аполлон» при очередных наземных проверках возник пожар от случайного короткого замыкания. Пламя бушевало в кабине всего несколько секунд, но три космонавта — В. Гриссом, Э. Уайт и Р. Чаффи — погибли, не успев открыть люк корабля. Гриссом был одним из тех, кто совершил суборбитальный полет на «Меркурии», а Уайт был первым американцем, вышедшим в открытый космос в полете на «Джемини-3». И все же тогда американцы отступить уже не могли и, проведя тщательный анализ и доработку всех систем на пожаробезопасность, летали на своих «Аполлонах» на Луну в той же кислородной атмосфере.
Но вернемся к компоновке «Салюта». Задачей было обеспечить максимальный комфорт для экипажа, чтобы внутреннее помещение было достаточно просторно, а места для работы, отдыха и сна удобны. Нужно было добиться оптимального размещения оборудования, приборов и пультов управления, имеющих самые разные габариты и условия. Было рассмотрено несколько вариантов компоновки, в каждом из которых по-своему увязывались все противоречивые требования конструкторов, технологов, ученых, космонавтов и многих других специалистов.
Одним из условий, которое поставили себе сами проектанты, была возможность ремонта и замены аппаратуры в полете силами экипажа. Нужно было не только снабдить космонавтов инструментом и приспособлениями, но обеспечить доступ к местам возможных неисправностей и к расходуемым материалам. А это оказалось очень непросто. Сложности возникали и оттого, что станция должна была работать в различных режимах ориентации по отношению к Земле (например, орбитальной или инерциальной), а значит, надо было особым образом компоновать размещение бортового оборудования и пультов. При этом не забывать об удобствах для космонавтов.
Может, например, показаться, что в интерьере орбитальной станции не должно быть «верха» и «низа» — невесомость ведь. С одной стороны, так оно и есть, а с другой — понятие «комфорт» включает в себя привычные, то есть земные, удобства. Но на Земле для нас естественно всегда чувствовать верх и низ. Поэтому не стоило и космонавтов лишать этой привычки. И еще надо было помнить, что при подготовке на Земле в макете-тренажере станции от этих понятий освободиться трудно и, следовательно, у космонавтов вырабатываются стереотипы, которые нельзя полностью разрушать на орбите. С этой целью каждую плоскость интерьера станции было решено выкрасить в свой цвет.
Размеры и форма орбитального блока (собственно станции) были определены из условий выведения на орбиту. Со сложенными в гармошку и прижатыми к корпусу панелями солнечных батарей станция должна вписываться в обводы конуса-обтекателя ракеты. И нагрузки на ее корпус при этом, а также расход топлива на преодоление аэродинамического сопротивления должны быть минимальными. Как бы само собой возникли три отсека: носовой (переходной), средний (рабочий) и кормовой (агрегатный). Первые два из них сделали герметичными.
Немало задач ложится на стыковочный узел. Он должен обеспечивать компенсацию отклонений при причаливании, амортизацию соударений объектов и механический захват в момент их контакта, гашение относительных колебаний, возникающих из-за того, что направление движения корабля не проходит через центр масс станции, выравнивание осей двух объектов, стягивание их до плотного контакта по всей торцовой плоскости узла, герметизацию стыка, соединение электроразъемов и гидромагистралей. Кроме того, узел должен обеспечивать быструю и надежную расстыковку объектов.
Система «штырь — конус», при которой объекты имеют разную конструкцию стыковочных узлов, хотя и исключает возможность соединения объектов с одинаковыми узлами, тем не менее достаточно проста и надежна. Как известно, в программе «Союз» — «Аполлон» в 1975 году были испытаны универсальные («андрогинные») стыковочные узлы, позволяющие любому из двух объектов играть как активную, так и пассивную роль. Однако, как выяснилось, такая схема требует пока большей массы конструкции и более высокой точности сближения и причаливания.
— Константин Петрович, что же определяет время активного существования станции в космосе?
— Пока на станциях не существует замкнутого круговорота веществ (работы над решением этой проблемы ведутся, и на Земле уже удалось добиться некоторых успехов), продолжительность пилотируемого полета на станции определяется запасами средств жизнедеятельности и возможностями длительного хранения расходуемых материалов — кислорода, воды, пищи, различных бытовых принадлежностей.
Кроме того, к постоянно расходуемым материалам относятся запасы топлива, необходимого для управления ориентацией станции, для коррекции орбиты при встречах с кораблем, а также для борьбы с ее притормаживанием за счет сопротивления атмосферы. Она, хотя на больших высотах и сильно разрежена, при космических скоростях заметно сказывается. Учитывая это, высоту орбиты при длительном полете выгоднее иметь повыше. Однако, начиная с 450–500 километров, заметно возрастают дозы радиации, которые при длительном пребывании могут оказаться выше допустимых. При высотах 200–250 километров станция будет сильно тормозиться, и для поддержания орбиты потребуются частые включения двигателей. Соответственно возрастет расход топлива.
Таким образом, высота 350–400 километров оказалась оптимальной — вполне приемлемой с точки зрения радиационной безопасности, удобств наблюдения Земли и обслуживания транспортными кораблями, а также исходя из продолжительности естественного существования на ней и, следовательно, требуемого для коррекции расхода топлива. Расчеты показывают, что при высоте орбиты 280 километров на ее поддержание нужно около двух с половиной тонн топлива в год, при высоте 350 километров — около полутонны, а 400 километров — около 200 килограммов.
Что касается расхода топлива на ориентацию и изменения орбиты, а также расхода материалов, связанных с пребыванием на станции экипажа, то они не могут быть ниже определенных достаточно высоких норм. Так, для обеспечения потребностей одного человека в сутки требуется сейчас до 10 килограммов материалов. Для двух человек на два года плюс топливо получается около 20 тонн. То есть больше, чем масса всего орбитального блока. Следовательно, без транспортного обслуживания в пилотируемом режиме станция могла бы функционировать на орбите максимум несколько месяцев.
Станция «Салют-6» была запущена 29 сентября 1977 года. То же название, тот же вес, те же очертания, тот же, по существу, интерьер. И все же «Салют-6» относят к новому поколению орбитальных станций. Что же дает на это право?
Самое главное, что станция теперь действительно долговременная. Она рассчитана на многократную смену экипажа и длительность экспедиций до нескольких месяцев. Для этого в комплекс станции впервые в мировой практике были включены грузовые транспортные корабли типа «Прогресс». При этом конструкцию орбитального блока пришлось существенно модифицировать и в первую очередь установить еще один причал со стыковочным узлом в кормовой части, со стороны агрегатного отсека (соответственно и второй комплект аппаратуры сближения). Иначе снабжать станцию практически было бы невозможно.
Однако агрегатный отсек уже был сформирован, до отказа забит оборудованием. А пришлось мало того, что «просверлить» в нем отверстие и, следовательно, что-то куда-то перенести, но и установить здесь дополнительно аппаратуру управления сближением и стыковкой. Просто так сделать это не позволяла двигательная установка, и с ней, прежней, пришлось расстаться. Тем более что нельзя было просто перенести двигатели на периферию торца станции. Пришлось сконструировать новую двигательную установку, конструктивно «размазав» ее по наружному контуру агрегатного отсека, чтобы освободить место для второго стыковочного узла.
Заодно было решено сделать топливные баки общими для всех двигателей станции, включая двигатели ориентации. По этой причине новая двигательная установка получила название «объединенной». Назначение ее — изменять скорость и направление движения станции при коррекциях орбиты и создавать управляющие моменты для ориентации или стабилизации. В центре кормового торца теперь возникло пространство для промежуточной шлюзовой камеры с двумя люками. Один в стыковочном устройстве, а другой в сферическом днище рабочего отсека.
Когда создавалась тормозная двигательная установка «Востока», возникла необходимость разделить в баках полости топлива и газа, чтобы в двигатель при включении не поступал газ или эмульсия. В качестве разделителя были применены тогда гибкие полиэтиленовые пленки. «Салют-6» рассчитан на многократную дозаправку топливом и длительное его хранение, поэтому проблема эта теперь была решена иначе. Были применены металлические гофрированные разделители.
На станции было бы трудно применить то же самое топливо, что и на ракетах-носителях (с жидким кислородом в качестве окислителя). Было бы невозможно избежать потерь его на испарение. Поэтому было применено «долгохранимое» топливо: горючее — несимметричный диметилгидразин, окислитель — азотный тетраксид.
Космонавты, летавшие на станциях прежних конструкций, нередко говорили о естественном желании ополоснуться струей воды. Но возможности такой у них не было. Для «Салюта-6» была сконструирована душевая установка. Как она выглядит? В трансформируемую кабину из оргпленки через рассеиватели подается под напором подогретая вода. Отсасывается она из влагосборника потоком воздуха. Мыться в таком душе, наверное, непросто.
На новой станции установлен велоэргометр — велосипед без колес с дозируемой нагрузкой на педали. Вместе с бегущей дорожкой, набором резиновых эспандеров, нагрузочными костюмами он входит в комплекс средств профилактики для борьбы с влиянием невесомости. В переходном отсеке, который одновременно служит шлюзовой камерой, устроен люк для выхода в открытый космос. Здесь же размещается гардероб со скафандрами нового, полужесткого типа с продолжительностью автономной работы до пяти часов и аппаратура для их проверки.
На «Салюте» имеется телевизионный приемник, так что космонавты теперь поддерживают двустороннюю телесвязь с Землей.
Корабль «Союз» для использования в транспортном варианте заметных изменений не претерпел. Были сняты солнечные батареи — на корабле, летающем автономно менее пяти дней, они необязательны.
20 января 1978 года стартовал первый грузовой автоматический корабль «Прогресс-1». Почему это средство не появилось раньше? Дело в том, что самый длительный полет до того составлял чуть больше двух месяцев. На это вполне хватило ресурсов станции без их возобновления. Но вот был запланирован трехмесячный полет, и стало ясно, что пора. Чтобы обеспечить космонавтам комфорт, насыщенную программу экспериментов, а также прием на станции экспедиций посещения, необходимы были дополнительные ресурсы — воздух, продовольствие, вода, пылесборники, фото- и кинопленка, регенераторы, запасные блоки аппаратуры, приборы, инструмент и, что особенно важно, топливо для двигателей.
Может возникнуть и такой вопрос. А нельзя ли перед запуском «наполнить» станцию до отказа всем необходимым для будущих экспедиций и обойтись без грузовых кораблей? Отработанные же материалы шлюзовать за пределы станции.
Нет, нельзя. Во-первых, вес станции очень бы возрос, едва ли не в два раза. Во-вторых, некоторые ресурсы трудно запасти впрок. Скажем, кассеты с фотопленкой могут находиться в космосе ограниченное время из-за воздействия космических лучей. Большинство пищевых продуктов можно хранить не более полугода, лишь немногие — до года. Существуют и другие ограничения по ресурсу оборудования и расходуемых запасов. В-третьих, целый ряд идей по исследованиям и экспериментам возникает уже в ходе полета, для них может понадобиться новая аппаратура.
«Прогресс» создан на базе корабля «Союз» и его систем, поэтому, естественно, похож на него своими внешними очертаниями и конструкцией. Главные отличия обусловлены тем, что «грузовик» работает только в автоматическом режиме и не предназначен для возвращеия на Землю.
— Нельзя ли было, Константин Петрович, сделать транспортный корабль многократного использования?
— В принципе можно. Но в заданных массовых пределах (а они такие же, как у корабля «Союз», — около 7 тонн) он был бы неэффективен по массе доставляемых грузов. Обычный «Союз» с экипажем может взять не более 50 килограммов груза, при одном космонавте — около 150 килограммов, без пилотов — до 500.
— Возможно сделать «Прогресс» хотя бы возвращаемым?
— Посадка «грузовика» «стоила» бы еще дороже. Спускать только средний блок, который на «Союзе» снабжен теплозащитой и парашютом, не имеет смысла. А для спуска корабля целиком потребовались бы дополнительные теплозащита и парашюты, что увеличило бы вес конструкции в полтора-два раза. Пришлось бы применить ракету-носитель примерно той же мощности, какую имеет «Протон». Отсутствие космонавтов позволило не устанавливать систем обеспечения жизнедеятельности, систему связи и некоторое другое оборудование. В результате масса всех грузов на «Прогрессе» составила около 2,3 тонны.
— Телевидение не раз показывало нам процесс разгрузки «Прогресса» экипажем станции. Никакой механизации не требуется. Огромные регенераторы и блоки аппаратуры плывут куда надо от легкого толчка рукой. Впечатляющее зрелище!
— Легкость этого процесса обманчива. Веса блоки действительно не имеют, но масса, а следовательно, момент инерции у них остается. Следовательно, зевать нельзя, иначе блок может травмировать космонавта или врезаться в приборную панель.
— Не менее удивительным достижением мне представляется решение задачи дозаправки станции топливом на орбите. В авиации дозаправка в воздухе из одного самолета в другой была впервые осуществлена в 1923 году, но то был рекордный полет, едва ли не акробатический трюк. А практическое разрешение эта задача получила лишь лет через 30. Дозаправка же в космосе работает вдруг сразу и безотказно!
— Добиться этого было непросто. Потребовалась тщательная наземная отработка всего оборудования системы…
Одним из последних достижений в развитии космической техники стало создание нового транспортного корабля «Союз Т», в пилотируемом варианте впервые запущенного летом 1980 года. Нововведения, отличающие эту модификацию «Союза», позволили дать космонавтам более совершенное средство. Главное, что отличает новый корабль, — наличие на борту электронного вычислительного комплекса. Машина стала намного сложнее, но труд космонавтов заметно упростился. Теперь они не должны постоянно «играть» на клавишах пульта управления. Можно следить по дисплею за работой автоматики и быть готовым вмешаться в ее действия в случае необходимости.
Перед стартом и во время полета в вычислительный комплекс закладываются программы всех предстоящих динамических операций. Во время сближения со станцией комплекс обрабатывает поступающую информацию и сам определяет, какой импульс тяги и в каком направлении нужно выдать двигательной установке, а затем включает нужные двигатели на нужное время. При этом машина обладает свойством самоконтроля и «принимает решения» оптимальные. Быстродействие ее — сотни тысяч операций в секунду.
Космонавты и Земля могут запросить у нее на дисплей самую разную информацию. Теперь нет нужды заполнять столь дорогое время телефонной связи передачей цифровой информации. Вся она либо хранится в памяти машины, либо передается прямо в нее по командной радиолинии. При необходимости космонавты могут ввести информацию в ЭВМ сами. Все динамические операции проводятся теперь быстрее и надежнее.
Кроме того, на «Союзе Т», как и на станции, появилась объединенная двигательная установка с общими топливными баками для двигателей ориентации, причаливания и корректирующего. Топливо теперь используется в полете более рационально и экономно.
Вспоминается в связи с этим полный неожиданных трудностей полет Зудова и Рождественского на «Союзе-23» осенью 1976 года. Тогда произошел перерасход топлива в системе ориентации. И хотя баки тормозного двигателя были полны и сближение шло нормально, на расстоянии нескольких сот метров пришлось его прекратить, так как топлива в системе ориентации оставалось только на спуск. Теперь решение могло бы быть иным.
Было решено снова вернуться к использованию на корабле солнечных батарей. На первых «Союзах», предназначавшихся для сравнительно длительных полетов, они были. Транспортные корабли их не имели. В последнее время были созданы новые, более легкие и компактные панели. Установка их на «Союзе Т» позволила увеличить время его автономного полета и возможности по изменению программы полета при различных отклонениях.
На новом корабле установлено новое радиотехническое оборудование. И еще одна особенность: тормозной импульс на возвращение с орбиты дается у «Союза Т» после отделения орбитального отсека от спускаемого аппарата, соединенного с приборно-агрегатным отсеком.
Это ведет к выигрышу в расходе топлива на торможение, то есть повышает транспортные возможности корабля. Новый корабль с начала 1981 года стал основным нашим пилотируемым кораблем, пришедшим на смену отслужившему свой век «Союзу».
Как представлялось развитие пилотируемых космических полетов, когда они только должны были начаться и начинались, то есть в конце 50-х — начале 60-х годов? Как последовательная цепь решений технических задач с возрастающей сложностью: полет одного космонавта, полет нескольких космонавтов, станция на 5–6 человек, станция на 50—100 человек, полет на Луну, полет к Марсу, к Венере и так далее.
Вопрос о длительности полетов обсуждался мало. Несовместимость казалась отнюдь не эшелонированной обороной противника, а неким барьером. Преодолеть его, то есть убедиться в возможности человека переносить невесомость, а далее уже все проще. Увеличение длительности пребывания в космосе уже после полета Титова казалось проблемой чисто технического развития.
Два прошедших десятилетия характеризуются неуклонным приростом максимальной продолжительности космического полета. Вот рекордные вехи:
апрель 1961 года, Гагарин («Восток») — 1 час 48 минут;
август 1961 года, Титов («Восток-2») — 25 часов;
август 1962 года, Николаев («Восток-3») — 4 дня;
июнь 1963 года, Быковский («Восток-5») — 5 дней;
август 1965 года, Купер и Конрад («Джемини-5») — 8 дней;
декабрь 1965 года, Борман и Ловелл («Джемини-7») — 14 дней;
июнь 1970 года, Николаев и Севастьянов («Союз-9-») — 18 дней;
июнь 1971 года, Добровольский, Волков и Пацаев («Союз-11» — «Салют») — 24 дня;
май—июнь 1973 года, Конрад, Вейц и Кервин («Аполлон» — «Скайлэб») — 28 дней;
июль — сентябрь 1973 года, Бин, Гэрриот и Лусма («Аполлон» — «Скайлэб») — 59 дней;
ноябрь 1973 года — февраль 1974 года, Карр, Поуги Гибсон («Аполлон» — «Скайлэб») — 84 дня;
декабрь 1977 года — март 1978 года, Романенко и Гречко («Союз-26» — «Салют-6») — 96 дней;
июнь — ноябрь 1978 года, Коваленок и Иванченков («Союз-29» — «Салют-6») — 140 дней;
февраль — август 1979 года, Ляхов и Рюмин («Союз-32» — «Салют-6» — «Союз-34») — 175 дней;
апрель — октябрь 1980 года, Попов и Рюмин («Союз-35» — «Салют-6» — «Союз-37») — 185 дней.
Как видим, прирост действительно неуклонный, но не такой уж и быстрый. В среднем менее 10 суток в год. Если посмотреть по пятилетиям, го получаются довольно любопытные цифры: в первое после 1961 года — 2,8 суток в год, второе — 0,8, третье — 13, последнее — 20 суток в год. То есть сначала было быстрое увеличение, потом период почти незначительного прироста, затем скачок и наконец очень резкий скачок.
— Как вы считаете, Константин Петрович, можно ли из этого сделать какие-нибудь выводы? Нет ли здесь очевидной тенденции на будущее?
— Цифры эти действительно интересные. Хотя, думаю, едва ли они могут привести к выявлению каких-то закономерностей. Всему было свое время, и прирост длительности полета связан не с какими-то объективными законами, а с принятием соответствующих решений. Как пойдет дальше, сказать трудно.
— Вот первый полет Юрия Гагарина называют шагом в неизвестное. До этого писали, что, только отправив человека космос, можно выяснить, выживет ли он в условиях невесомости. Не было ли в этом преувеличения?
— Ко времени запуска «Востока» уже многое было ясно и ни у кого не вызывало сомнений, что космонавт выживет и никаких физиологических осложнений не должно произойти. Если и боялись, то больше за психологическую устойчивость космонавта. Все-таки условия полета были совершенно необычные.
— Попросту говоря — не разволнуется ли космонавт чрезмерно в этих условиях?
— Все дело было в слабой изученности явления невесомости. Ни один человек до Гагарина не испытывал ее длительно. Даже летчики-истребители и испытатели. Все научные знания о ее последствиях сводились к результатам экспериментов с собаками на высотных ракетах и наших кораблях-спутниках. Результаты были обнадеживающими, но психологических данных, разумеется, не было.
— Но человек ведь как высокоорганизованное существо на невесомость мог прореагировать совсем неожиданно. Помнится, в литературе 50-х годов встречались описания кратковременных опытов по определению реакции летчиков на невесомость при полете на самолетах по параболе. И реакции эти были самыми различными: от ощущения радости (почти по Циолковскому — «блаженства») до признаков нарушения физиологических и психологических функций. Правда, Гагарин до полета в космос с удовольствием реагировал на невесомость: «…легкость, свобода движений, приятно. Висишь в воздухе, руки и ноги висят, голова работает четко». И Титов тогда тоже хвалил ее: «…очень приятная штука. Дышится легко… Чувствую себя очень хорошо». В полете же, судя по рассказам Юрия Алексеевича, эмоциональные нагрузки у него были столь высоки, что длительная невесомость не показалась серьезным испытанием.
— Зато ее в полной мере вкусил Герман Степанович. Самочувствие его в полете, как известно, не было безупречным — отмечались поташнивание и головокружение, особенно при резких движениях головой.
— Кстати, академик Олег Георгиевич Газенко отнес откровенный рассказ Титова об этих своих ощущениях к проявлению настоящего мужества и интеллигентности.
— Да, мы получили важную информацию, и это дало возможность уточнить программу подготовки следующих космонавтов. Впрочем, первые сутки на орбите и сейчас даются космонавтам нелегко, иногда еще хуже, чем тогда Титову. Но все уже знают: на третий-пятый день наступит адаптация и состояние придет в норму.
— В дальнейшем медики столкнулись с интересной загадкой. Было известно, что Борман и Ловелл после 14 суток в космосе чувствовали себя как будто неплохо. А между тем их корабль «Джемини» был очень маленьким и тесным, космонавты провели две недели как бы в стареньком «Запорожце». Да и дел у них там особых не было, все эксперименты завершились в первую неделю. Скучно… Николаев и Севастьянов в 1970 году были совершенно иначе подготовлены для борьбы с невесомостью в рекордном по длительности 18-суточном полете. Летали они в роскошном по сравнению с американским кораблем двухкомнатном «Союзе» и при этом были постоянно заняты исследованиями. А между тем после полета их состояние было если не угрожающим, то очень нелегким…
— Да, это было большой неожиданностью. Космонавты не могли сами выйти из корабля, практически не могли стоять, с трудом сидели. Пульс и кровяное давление у них были высокими, они постоянно ощущали повышенную тяжесть.
— Так вот, в результате возникло сомнение: нет ли в районе 15–16 суток непреодолимого барьера невесомости и не опасно ли вследствие этого человеку летать в космосе дольше двух недель? Я помню горячие дискуссии медиков по этому поводу.
— Тут надо отдать медикам должное: они быстро разобрались в проблеме и поняли, что трудное состояние Николаева и Севастьянова — следствие чисто физической детренированности сердца и организма в целом в результате отсутствия привычной силы тяжести. Еще говорили о большой потере влаги организмом, выходе вместе с ней минеральных солей и ослаблении в результате этого костно-мышечной структуры.
— Разумеется, все это требовало осмысления, и на него ушло время. Когда же были выработаны рекомендации для повышения сопротивляемости организма к невесомости, произошел тот самый первый скачок в длительности полетов. На мой взгляд, закономерность вполне просматривается.
— Да нет же! Какая тут закономерность! Просто, пока не была создана станция «Салют», не на чем было совершать более длительные полеты.
— Однако станция станцией, но нужно было иметь соответствующую стратегию увеличения длительности полетов, в которой медико-биологическое обеспечение играет не последнюю роль. Нельзя же было допустить, чтобы послеполетное самочувствие экипажа «Союза-9» стало нормой.
Что же конкретно помогло так успешно выиграть сражение с вредным воздействием невесомости? Это был комплекс различных мер, среди которых главная — регулярные физические упражнения на орбите, которые, нагружая различные группы мышц и сердечно-сосудистую систему, не позволяют организму терять свой привычный тонус. С этой же целью космонавты почти постоянно носят специальные нагрузочные костюмы (снимают их только на время сна) и периодически надевают «вакуумные штаны» для повышения притока крови к нижним конечностям. Применяется также специальный электростимулятор мышечного тонуса. Кроме того, на борту выполняются рекомендации по несколько повышенному потреблению воды. Появились новшества и в методах предполетной подготовки. Так, для лучшего протекания периода адаптации космонавты перед полетом спят на наклонной — в сторону головы — плоскости, привыкая к повышенному притоку крови к голове.
— На мой взгляд, Константин Петрович, весь этот комплекс средств дал результаты просто сказочные. Сравните, с каким трудом Виталий Севастьянов двигался и улыбался после своего первого полета и как замечательно он выглядел летом 1975 года после двухмесячного полета вместе с Петром Климуком на станции «Салют-4».
— Немалую роль здесь сыграли рабочий объем и общий комфорт на борту станции. Ведь в первый раз Севастьянов летал на «Союзе».
— Несомненно. Однако мне хотелось бы напомнить здесь об одном нюансе. Ту самую разницу в самочувствии экипажей «Джемини-7» и «Союза-9» медики объясняли, в частности, именно различием в объемах кораблей. Американцы, будучи стесненными малым объемом, сидели тихо и мало двигались, а наши ребята имели возможность плавать и совершать разные эволюции в сравнительно емком пространстве «Союза». Похоже, правда, на парадокс.
— Если парадокс, то кажущийся. Действительно, к условиям невесомости организм лучше привыкает при ограниченности движений. В результате этого опыта и возникли рекомендации на период адаптации: передвижения после выхода па орбиту наращивать постепенно, не торопясь. В полной мере перемещения в пространстве станции рекомендуются космонавтам не ранее конца второй недели.
— Я понимаю, что процесс адаптации очень индивидуален и показатели его субъективны. Но многое здесь, по-моему, выглядит приблизительным, неточным.
— Думаю, близится время, когда ход адаптации, во всяком случае некоторые реакции, будут анализироваться на ЭВМ. А пока, к сожалению, мы этого не умеем, и все, что касается знаний о психологии и физиологии человека в космическом полете, не выходит за рамки чистой эмпирики. А надо бы попробовать описать человека как машину со всеми его функциональными подсистемами, элементами и связями. Конечно, медикам в этом без инженеров и кибернетиков не обойтись. Но пора, я считаю, за эту задачу взяться.
— Сейчас, при быстром увеличении продолжительности орбитальных полетов, складывается впечатление, что это действительно дело лишь техники в прямом и переносном смысле. И вроде бы не видно принципиального предела. Между тем академик Газенко в интервью, которое он мне дал летом 1977 года, с уверенностью говорил о полугодовом и с осторожностью о годовом рубежах как вероятных пределах, а через два с половиной года все так же осторожно называл годовой рубеж, а больший предел пообещать не решился.
— Это понятно. Для особого оптимизма оснований по-прежнему немного. Экстраполировать здесь пока невозможно — недостаточно данных. Кстати, результаты некоторых биологических экспериментов на борту «Салюта» по развитию живых организмов в невесомости настораживают. Вполне возможно, рубеж все-таки существует. Но, повторяю, статистики пока маловато.
— Я очень далекий от медицины человек, поэтому могу вполне безответственно высказать свое интуитивное суждение о рубеже продолжительности. Если говорить о полете без необратимых явлений в организме человека, едва ли этот период составит хотя бы два года. И это мое предчувствие рубежа вызывает досаду за столь несовершенную природу человеческого организма. Всю свою жизнь, несколько десятков лет, космонавт проводит в условиях силы тяжести, но через какие-то пусть даже год или два полета в невесомости его организм вдруг станет чужим для родной планеты. Обидно!
— Не нужно забывать, что вся биологическая эволюция человека прошла в условиях земной гравитации, причем на Земле не возникло никаких аналогов условиям невесомости. Разве что — далеко не в полной мере — подводное плавание.
— Меня отчасти смущают и нынешние достижения — два полугодовых полета с участием Валерия Рюмина. Какой высокой ценой дается хорошее самочувствие после космоса! Каждый день (пусть три дня из четырех, как это было в его последнем полете) более двух часов довольно утомительных, однообразных физических упражнений — на бегущей дорожке, велоэргометрах и эспандерах. Это и на Земле-то было бы невероятно трудно. Такое могут вынести только одержимые высокой целью спортсмены, да и то их тренировки скрашиваются куда большим разнообразием в упражнениях, проходящих к тому же в совершенно иной окружающей среде. Спортсмены тренируются во имя вполне конкретных честолюбивых целей и притом постоянно видят конкретные результаты от своих занятий в виде спортивных показателей. А космонавты по целому часу перебирают ногами на месте, имея перед носом все время один и тот же участок стенки. Меня терпение космонавтов просто восхищает. Мне кажется, в этом проявляется их великое мужество.
— Насчет мужества — это преувеличение. Наверное, дело это нелегкое и, совершенно точно, нудное. Но ведь это бег во имя собственного здоровья, даже, можно сказать, жизни.
— Видите ли, далеко не каждому удается мобилизоваться даже в тех случаях, когда речь идет об угрозе собственному здоровью. Возьмите простейший случай — курение. Все теперь знают, что оно подтачивает организм и, не исключено, способствует раковым заболеваниям. Но далеко не все способны, исходя из этого, заставить себя расстаться с сигаретами. А космонавты бегают «только лишь» во имя здоровья, впрок. Не всякий человек даже лекарства может впрок принимать.
— Здесь сказывается высокая дисциплина в выполнении всего того, что предусмотрено программой полета. Такая дисциплина — безусловное требование к космонавтам. Но главное, что в этих «только лишь» заключено очень многое, большее, чем любые спортивные призы.
— Но ведь физические упражнения отнимают в полете много времени и сил и их остается очень немного для выполнения исследовательской работы.
— Тут пока ничего не поделаешь. Хотя действительно время на это приходится тратить.
— Ну хорошо, а может быть, эта борьба за все более длительное выживание человека в невесомости ненужная затея? Ведь дорастет же техника когда-нибудь до создания на кораблях и станциях искусственной силы тяжести. Разговоры о ней идут давно. Помнится, в 1966 году американцы даже проводили полетный эксперимент на орбите: соединяли тросами корабль «Джемини» с ракетной ступенью и раскручивали. Получалась сила тяжести в полтора-два процента земной.
— Такой эксперимент не имел большого смысла. То, что тяжесть при вращении возникает, известно школьникам. А вот как почувствует себя человек в условиях более значительной искусственной тяжести, если радиус вращения будет не очень велик, менее, скажем, 25 метров, — это еще неясно. Дело в том, что при определенных видах движения в условиях вращения всей системы, как известно из механики, возникают так называемые кориолисовы ускорения. Особенность их в том, что при изменении направления движения меняется и направление этих ускорений. А следовательно, при любых перемещениях в условиях искусственной силы тяжести человек будет испытывать что-то вроде качки. Наземные опыты подтверждают это. Так что жить с искусственной гравитацией будет не очень-то приятно.
— Медики (в частности, академик Газенко) считают, что при достаточно большом радиусе вращения никаких проблем не будет. Сейчас на биоспутниках «Космос» уже применяются центрифуги, правда, пока с очень небольшими радиусами.
— Думаю, что в принципе могут быть выявлены оптимальные радиусы и скорости вращения и, следовательно, величина силы тяжести (совсем ведь нет нужды делать ее равной земной), которые будут более или менее приемлемы.
— А как лучше решать эту проблему технически: с помощью тросов или жесткого соединения?
— Тросы для создания такой системы — вещь не лучшая. Очень сложно обеспечить постоянную их натяжку, стабилизацию и ориентацию всей системы в пространстве, коррекцию орбиты или траектории. Лучше, чтобы система была жесткой. Например, связи между рабочими объемами могут быть в виде телескопических штанг.
— А может быть, все-таки столь любимый художниками-фантастами «бублик»? То есть тор, колесо со ступицей и спицами. И станция окажется похожей на то великолепие, которое мы видели в кинофильме «Одиссея: 2001 год»?
— Может быть, и бублик. Но тут есть еще один важный момент. С постоянно вращающейся станции невозможно вести наблюдение небесных объектов, поскольку астрономические инструменты требуется точно ориентировать в нужных направлениях. При этом нужна очень высокая точность наводки — до нескольких угловых минут, а в некоторых случаях до долей секунды. Невозможно также вести наблюдения поверхности Земли, которые требуют постоянной ориентации, и технологические эксперименты, для которых нужна невесомость.
— Но ведь в каждой вращающейся системе есть ось, и она может быть неподвижна. В ступице колеса можно иметь невесомость. А разве нельзя и в других компоновках сделать станцию так, чтобы вращались только некоторые ее блоки — жилые, бытовые?
— Если вращается все колесо, то неподвижна всего-навсего его геометрическая ось. Сами понимаете, с ней не разгуляешься. Сделать же вращающейся лишь часть станции — это очень сложная техническая проблема. Нужны гигантские подшипники, трудно реализовать шлюзование из одной части в другую. Кроме того, неподвижная часть будет постоянно испытывать возмущения, и точно ориентировать ее будет очень трудно. И наконец, космонавтам, по моему мнению, будет нелегко функционировать, постоянно переходя из зоны невесомости в зону тяжести и обратно.
— Вот это последнее не очень убеждает. Кратковременные полеты показывают — вы лично в этом убедились, — что переход из тяжести в невесомость и наоборот переносится без осложнений. При соответствующей тренировке человек, наверное, сможет делать это неоднократно. Пилоты станции смогли бы в основном находиться в условиях гравитации, а в зону невесомости переходить ненадолго, на рабочую смену, допустим… Вас, Константин Петрович, можно понять так, что искусственная тяжесть в космосе не нужна?
— Я этого не говорил, а лишь отметил, что на станциях создание и применение ее нецелесообразно. Совсем другое дело в межпланетных полетах. Там скорее всего искусственная сила тяжести будет необходима.
— Значит, искусственную силу тяжести сделать будет можно?
— Можно.
— Тогда снова стоит вернуться к прежнему вопросу. Может быть, поиски предела пребывания человека в невесомости не такая уж и актуальная задача? На сегодня вроде бы можно считать освоенным по крайней мере полугодовой цикл работы на станции. Разве этого недостаточно? Зачем нужны более длительные полеты? Не придумана ли задача увеличения их продолжительности искусственно?
— Ни в коем случае! Во-первых, нельзя считать полугодовой уровень освоенным. Пока только три человека летали по полгода. Это еще не статистика. А вдруг один из десяти или даже из ста человек окажется после такого полета с патологическими изменениями? Ведь этого допустить нельзя. Во-вторых, необходимо найти оптимум в периодичности смены экипажей на борту станции. Даже если он составляет около полугода, то есть уже достигнутый уровень, это не значит, что не нужно совершать более длительные полеты. Итак, одно из двух: или много полугодовых полетов, или несколько существенно более длительных. А вернее всего, необходимо и то и другое. Есть еще одно доказательство необходимости длительных — до года и более — полетов. Представьте себе, что при межпланетном полете вдруг откажет система искусственной силы тяжести…
— Неизвестно еще, полетит ли когда-нибудь человек на Марс. А в орбитальных полетах можно почаще сменять экипаж.
— О Марсе мы, видимо, еще поговорим. А на станции чем чаще сменяется экипаж, тем менее эффективно она используется. Не так-то просто будет менять экипажи на станциях, которые будут выводиться на геостационарные орбиты, то есть в плоскость экватора на высоту около 36 тысяч километров. Так что в первую очередь это требование экономики освоения космоса. Кроме того, наука не может остановиться в своем проникновении в неизвестное, располагая для этого техническими возможностями. А возможности таковы, что станции в будущем могут появиться даже на окололунных или гелиоцентрических орбитах.
— Эти аргументы достаточно убедительны. Но если вернуться к не слишком далекому будущему, то в космос, я надеюсь, будут летать не только пилоты и инженеры, но и ученые из разных областей науки. Им будет непросто совмещать свою работу с ежедневной длительной физподготовкой. Да и готовить их нужно будет по иным принципам, так сказать, ускоренно.
— На вращающейся станции ученым, я уже говорил, делать нечего. Так что, хочешь не хочешь, если ты претендуешь на исследования в космосе, должен быть способен перенести все условия полета. И потом я не считаю два с половиной часа физических занятий такой уж потерей даже в земных условиях. Хотя, конечно, может быть, со временем удастся найти другие профилактические средства в борьбе с невесомостью и сократить затраты времени на эту борьбу.
— Пожалуй, вы правы. В полярную экспедицию тоже не любого гляциолога пошлешь — есть специфические требования. И вообще, может быть, профессия космонавта так и не станет обычной, уникальность ее сохранится навсегда.
— Насчет навсегда не скажу. Думаю, что когда-нибудь в космосе понадобятся сотни, тысячи людей, и, значит, профессия станет массовой.
— Я убежден, Константин Петрович, что тысячи людей, во всяком случае в обозримом будущем, в космосе не понадобятся. На мой взгляд, быстрее, чем в космическое пространство проникает человек, совершенствуется автоматика. Пока же в космосе одновременно не было и десяти человек, а на борту одного объекта — более пяти человек. Вследствие этой «малолюдности» и возник еще один специфический фактор профессии космонавта. Я имею в виду психологическую совместимость членов экипажа, работающих в условиях замкнутого, ограниченного объема. Об этом факторе много пишут. Очень интересно рассказывали о флюидах этой самой совместимости после своего полета Климук и Севастьянов.
— Два любых человека в долгом совместном житье-бытье рождают подобные флюиды, а чаще просто споры и даже конфликты.
— До сих пор с крупными конфликтами внутри космического экипажа мы как будто не сталкивались. Кстати, придумали фактор совместимости совсем не космонавты. Он хорошо знаком тем же полярникам, подводникам, геологам. Но вот что интересно. Однажды в Москву из США приезжал руководитель медицинского обеспечения космических полетов Чарльз Берри. Ему был задан вопрос: «Как вы решаете проблему подбора экипажа по признаку психологической совместимости?» Ответ оказался неожиданным: «Я не знаю такой проблемы». Уровень мотивации в космическом полете, то есть желание хорошо выполнить задачу, подкрепленное высокой честью и послеполетной славой, считал он, столь высок, что полностью компенсирует возможное несходство характеров. Берри, впрочем, говорил это во времена полетов сравнительно кратковременных. Корабли «Аполлон» вообще летали не более 12 дней. В таких полетах и даже более длительных, до месяца, скажем, проблемы действительно не было видно. Когда же экипажи стали работать на орбите по нескольку месяцев, проблема эта для медиков стала интересной. Космонавты — люди со всеми своими индивидуальными склонностями и слабостями. К тому же далеко не педагоги и не психологи по образованию. Поэтому в их взаимоотношениях как на Земле, так и в космосе в принципе возможно всякое.
Раньше медики, точнее, психологи, хотя и уделяли внимание составу экипажей, решающего влияния на него не оказывали. Не было в их руках для этого точного инструмента. Сейчас эта область науки заметно продвинулась вперед, психологи оказывают существенную помощь в формировании и подготовке экипажей. Они разъясняют космонавту особенности его характера и характера партнера, выявляют их привычки и наклонности, подсказывают способы управления своими эмоциями и регулирования отношений.
Впрочем, психологические собеседования нужны далеко не каждому. Есть люди, от природы легкие отношениях. Хотя, конечно, пока еще выбор готовых полету космонавтов не столь велик, чтобы можно было исходить из особенностей их характеров, а не из их профессиональной подготовленности, морально-волевой закалки и здоровья.
— И все же это удивительная загадка: два человека в течение нескольких месяцев в небольшом «автобусе», из которого ни на шаг нельзя выйти, в условиях напряженной работы остаются дружным, спаянным коллективом. Где объяснение этому феномену? Ведь не идеальные же они люди, это ясно.
— Не идеальные, разумеется. Хотя, конечно, добродушие, терпимость да и просто ум играют здесь не последнюю роль. Тем не менее не такая уж идеальная атмосфера на станции, как это может показаться. Конечно, в первую очередь срабатывает та самая мотивация. Не менее важны такие качества, как ответственность, дисциплинированность, высокий моральный заряд. И все же мы знаем случаи возникновения некоторых трений между членами экипажей. Они никогда не перерастали в серьезные распри или ссору, но в какой-то мере сказывались на уровне отношений после полета. Но, кроме трений, бывает еще просто не очень сердечная атмосфера.
— Наверное, это нормальное дело, во всяком случае нестрашное.
— В связи с этим вспоминается мне один случай. Сидел я как-то за столом с двумя летавшими вместе космонавтами, обедали. Бывший командир говорит: «Мы здорово дополняли друг друга в полете характерами. Я человек общительный, люблю поговорить, рассказать всякое, а вот мой бортинженер человек молчаливый, неразговорчивый. От этого у нас и проблем никаких не было». А другой вздохнул, слегка улыбнулся и рассказал анекдот. Приходит женщина к врачу и жалуется на мужа: «Я ему говорю, говорю, рассказываю, а он как глухой, ничего не слышит, никак не реагирует. Что за болезнь у него, доктор?» А врач ей отвечает: «Это не болезнь, милая, это дар божий!»
— Ну и как вы думаете, Константин Петрович, причина столь «дружеских» отношений действительно лежит в области заведомой психологической несовместимости, не выявленной до полета?
— Трудно сказать. Все наши земные взаимоотношения окрашены огромным количеством полутонов, и никогда нельзя сказать, что лежит в их первооснове. То же самое в космосе.
Говоря о космических полетах настоящего и будущего, трудно уйти от вопросов психологии. Тем более что такая наука — космическая психология — уже заявила о себе. Изучает она, правда, больше работоспособность и двигательную активность космонавтов в полете, работу их органов чувств и общее психологическое состояние. Но отчасти и взаимоотношения членов экипажа. Кстати, при подготовке первых космонавтов немало внимания уделялось анализу их поведения в условиях полного одиночества и изоляции от внешнего мира.
Многие космонавты провели в сурдокамере по нескольку дней. Выяснялась их психологическая устойчивость на случай потери радиосвязи (вплоть до отсутствия всякого шумового фона). Опыты показали, что чем выше интеллектуальный багаж космонавта, тем он легче переносит одиночество.
Хотя, конечно, такой вывод нетрудно было предсказать. Недаром эти испытания быстро отменили. Ни в одном полете, как известно, не возникла ситуация полной и длительной потери связи с Землей. К тому же одиночных полетов уже давно нет. За космонавтами на орбите почти постоянно следит недремлющее око Центра управления, и переговоры с Землей — важный элемент содержания полета. Они тоже определяют психологический климат на борту.
Радиопереговоры, а теперь и телесеансы связи — нормальные условия обычного полета. Посредством этих переговоров на борту поддерживается деловое, хорошее настроение. Не только с помощью шуток и обмена дружескими репликами, но даже просто посредством тона и эмоциональной окраски речи оператора (так называют человека, непосредственно ведущего связь из Центра с бортом, чаще всего им является один из космонавтов). Если позволяет время, с Земли рассказываются разные интересные, по возможности смешные, истории.
Раньше космонавты иногда жаловались после полета на неудачную манеру общения со стороны того или иного оператора. Манера могла быть чуть-чуть суховатой, жестковатой, чрезмерно деловой. Но уже это, оказывается, могло раздражать тех, кто был «наверху». В последнее время подобных претензий не было.
Не стоит, впрочем, думать, что на Земле видят каждый шаг космонавтов в полете. Возможности техники пока еще далеки от этого. Был, например, такой факт: Попов и Рюмин, встретив своих гостей Малышева и Аксенова, «засиделись» с ними до поздней ночи (по московскому времени, конечно). Земля узнала об этом от них только наутро. Так что некоторая толика «свободы» выпадает на долю долгожителей космоса. Космонавтам, как они сами признаются, очень нравятся те периоды полета, когда станции находятся вне зоны радиовидимости наземных средств.
То, что на борт станции пришло телевидение, огромный скачок в психологическом обеспечении полетов. На Земле люди уже не мыслят свою жизнь без телевидения, даже если не без снобизма любят повторять: «Я вообще не смотрю телевизор». Одно дело не смотреть, а другое — не иметь для этого возможности. Что люди видят, что и когда они узнают, как растут знания и кругозор детей — все это ставится во главу угла и влияет на выбор места жительства, а значит, места работы, то есть на профессиональную ориентацию.
Полгода видеть перед собой только стены и пульты станции, одно и то же лицо — невеселое испытание, которое до конца не может скрасить и пробегающая в иллюминаторах Земля до 52-й параллели (в соответствии с углом наклонения орбиты). И часто Земля эта оказывается сплошным океаном или закрыта облачностью. Но с некоторых пор на борту «Салюта» есть свой телевизор, по которому в короткие периоды прямой радиовидимости можно посмотреть репортажи с Земли, включая Олимпиаду, увидеть лица родных и знакомых, а также прокрутить видеозапись кинофильма или концерта.
Когда шел первый сеанс двухсторонней телесвязи «Земля — борт» в рамках сеанса психологической поддержки, все обратили внимание на взволнованность обеих сторон и прямо-таки осязаемую эффективность в создании хорошего настроения у экипажа.
Однако то, что журналисты и ученые-медики называют психологической поддержкой, это пока еще просто развлечение космонавтов, находящихся на орбите. Все больше эмпирика, без серьезного анализа потребностей, склонностей и настроения каждого космонавта. Хотя учесть все это, конечно, очень непросто.
К сожалению, периоды двухсторонней телесвязи пока невелики, до 10 минут. Тут трудно что-либо поделать. Все телевидение Земли работает в диапазоне волн, которые не способны огибать Землю. Вот когда для связи со станцией удастся использовать стационарные спутники-ретрансляторы, тогда космонавты смогут смотреть телевизор хоть весь день. Впрочем, времени у них на это, разумеется, не будет.
И все же самые продуманные сеансы связи, самые веселые артисты на телеэкране не могут, нам кажется, вызвать у экипажа удовлетворение, равное тому, которое люди получают от по-настоящему творческой работы. Но можно ли говорить о творческой работе на орбите, если космонавты ведут исследования едва ли не в десятке совершенно различных областей науки и техники и, кроме того, выполняют множество вспомогательных операций?
Пока космонавты выполняют на орбите больше операторскую работу: включить, настроить, описать результаты, выключить и снова включить. В чем-то, конечно, это работа механическая, многократно повторяемая и потому утомительная. И в то же время операторская работа постоянно требует размышлений, выбора и принятия решений.
Сталкиваются космонавты с ремонтной работой и с разного рода неожиданностями в поведении техники — она, как известно, умеет вдруг вести себя непонятно. В таких случаях космонавтам приходится немало поломать голову, прежде чем удается понять, что ведет-то она себя нормально, просто включили ее не так, как следует. Постоянная мобилизация ранее полученных знаний и размышление требуются при ведении наблюдений поверхности Земли и океана. Так что в целом работу космонавтов можно считать, пожалуй, вполне творческой. Во всяком случае, не менее творческой, чем некоторые из тех, которые носят это название.
Часто и всюду мы слышим: творчество — это там, где искусство, а искусство—это творчество. Но, может быть, мы преувеличиваем творческий характер некоторой работы в искусстве.
Но ведь даже в искусстве — будь то кино, театр, живопись, музыка — масса технических (ремесленных), даже производственных операций. Многое в искусстве — и без этого нельзя — проделывается на чисто моторной, рутинной основе, без затрат интеллектуальной и творческой энергии, по заранее запрограммированным схемам.
И наоборот, значение творческого начала мы преуменьшаем в таких областях, как научные исследования и технические разработки. А между тем в них нередко мобилизуется мощный заряд истинно творческой духовной энергии. Особенно когда рождается нечто ранее не существовавшее, не имевшее аналогов. Спектр таких случаев огромен — от научного открытия до создания, скажем, схемы работы аппаратуры, ведущей к повышению надежности и экономичности работы какой-либо конструкции. И в деятельности проектантов и конструкторов несметное число больших и малых интуитивных решений.
Жаль, что во времена, которые называют эпохой НТР, никто не возьмется привести понятие «творческая работа» в соответствие с реалыюй практикой. Быть может, это помогло бы восстановить утерянное уважение к инженерным профессиям и не создавало бы ореола вокруг едва ли не каждого кинематографиста или художника.
Мы много говорили о проблеме невесомости. Но ведь эту проблему человек в значительной степени создал себе сам. Не было бы человека на борту космического аппарата, не было бы нужды бороться с невесомостью (некоторые чисто технические проблемы не в счет). Напрашивается вопрос: может быть, не надо посылать людей в космос?! Ну, не в том смысле, чтобы совсем им туда не летать, а чтобы заменить его в основном автоматикой. Человек же чтобы летал в космос кратковременно — для смены оборудования, профилактических и ремонтных работ.
Полтора десятка лет назад широко обсуждался такой вопрос: «Автоматика или человек плюс автоматика?» Без особых усилий было доказано тогда преимущество второго.
Сейчас дилемма усложнилась: «Человек плюс автоматика или автоматика плюс человек?» То есть что правильнее: постоянное присутствие на борту экипажа, работающего с помощью автоматизированного оборудования, или полностью автоматизированная станция с периодическим обслуживанием ее человеком.
Понятно, что в том или другом случае потребность в космонавтах — количественная и качественная — будет совершенно различной. Характер подготовки и работы их будет отличаться очень сильно. По существу, речь здесь идет о значимости профессии космонавта в будущем, о, так сказать, перспективах ее развития, а может быть, даже существования.
— Мы часто и уверенно говорим о космонавтах как представителях новой профессии. Помнится, в опубликованной когда-то в «Комсомольской правде» беседе журналиста Я. Голованова с Юрием Гагариным оба соглашались на том, что космонавт — это не профессия, а лишь определение сферы и условий деятельности, подобно работе полярника. Как вы относитесь к такому суждению, Константин Петрович?
— Доля истины в нем есть. Все зависит от того, с какой стороны подойти к понятию «профессия». Со времени этой беседы много воды утекло. Общее количество наработанных человеко-часов за 20 лет, по моим прикидкам, составляет около 58 тысяч (это почти 6,5 человеко-года). В мире чуть более ста летавших космонавтов. Представления наши не могли не измениться.
— Мне тоже кажется, что космонавт — это профессия. Причем с самых первых полетов, когда резко проявилась специфика требуемых знаний, умения и подготовки. Начиная с «Восхода» в этой профессии стали различаться разные специальности: пилот, бортинженер, бортврач, исследователь. Что же касается количества профессионалов космонавтов, то ведь и летчиков-испытателей, летающих на опытных и экспериментальных самолетах, во всем мире, наверное, не более двухсот-трехсот, но никто не сомневается, что это профессия.
— Деление на эти специальности у космонавтов, как и на «должности» на борту станции, пока весьма условно — подготовка и работа двух или трех космонавтов в одном экипаже отличается мало.
— Мне кажется, что со временем специализация начнет все более сужаться, а количество специальностей еще более возрастет. Появятся, например, исследователи-астрофизики и исследователи-геологи, инженеры по энергоустановкам и по научному оборудованию. На борту будут работать люди действительно разные. Вот тогда, по-видимому, понятие космонавт само по себе перестанет означать профессию, а будет соответствовать лишь сфере деятельности.
Итак, каковы же перспективы использования человека в космосе? Прежде чем попытаться ответить на этот вопрос, давайте посмотрим, чем занимаются космонавты на борту сегодняшнего орбитального комплекса.
Первая группа задач связана с управлением станцией, с обеспечением ее надежности и безопасности самого экипажа.
Управление, как мы уже говорили, может производиться по командам с Земли с помощью бортовой автоматики. Находящиеся в Центре управления специалисты контролируют работу бортовых систем по информации, поступающей с борта по каналам телеметрии через наземные командно-измерительные пункты. Однако текущий контроль возможен только в зоне непосредственной радиовидимости наземных (включая океанские) пунктов. Создание сети таких пунктов, как постоянных, так и временных (имеются в виду специальные суда), — дело сложное и дорогостоящее. Пока удается «закрыть» этими средствами лишь 20–30 процентов от общего времени полета.
Таким образом, большую часть времени станция находится только под контролем экипажа. Контроль этот заключается в просмотре выводимой на пульты управления информации о функционировании бортовых систем, анализе этой информации, сравнении ее с ожидаемой и оценке правильности работы систем.
При необходимости, а также если обнаружатся тревожные или недопустимые отклонения, космонавты берут на себя управление ориентацией и стабилизацией станции, включение и выключение аппаратуры и корректирующего двигателя, управление процессом сближения с другим космическим объектом.
В этом случае человек является как бы звеном в системе управления. Он выполняет функции резервного чувствительного элемента, а также логического, счетно-решающего и командного устройств. Таким образом, в этой своей роли дублера автоматических систем человек существенно повышает надежность орбитального комплекса. Стоит добавить, что человек чувствительнее многих приборов к отказам и неисправностям, связанным с нарушением безопасности полета.
Вторая группа задач человека на борту станции — проведение работ, непосредственно связанных с научными исследованиями и экспериментами. Работы эти состоят из большого количества разнородных операций. Например, проведение исследований с помощью звездного телескопа требует сначала сориентировать станцию так, чтобы ось телескопа была направлена на заданный участок неба. Потом подготовить станцию и телескоп к работе: включить питание, гироприборы, компрессоры холодильной машины, приводы. Подготовить и включить систему регистрации параметров и контроля работы аппаратуры. Наконец, выбрать экспозицию и включить телескоп. При проведении измерений и их регистрации может возникнуть необходимость подстройки телескопа и уточнение нужной ориентации станции, а затем переориентации ее на новый объект наблюдения.
Изучение природных ресурсов Земли ведется с помощью избирательной фотосъемки в различных частях спектра. Что значит избирательная? Это не только выбор объектов на поверхности Земли, определение плана и масштаба съемки ко времени пролета над исследуемым районом. Это учет характера освещения объекта и наличия над ним облачного покрова. Это, наконец, наблюдение динамики многократно снимаемых объектов. Космонавты все это (как, разумеется, и включение камер) делают либо сами, либо консультируясь с наземными специалистами.
Может быть, чуть-чуть более просты с точки зрения набора и последовательности операций технологические эксперименты. Выполняются они с подготовленными на Земле образцами в автоматизированных установках, почти не требуя контроля, причем полученные результаты анализируются уже на Земле.
А вот биологические исследования требуют, наоборот, регулярного визуального наблюдения и непосредственной оценки хода эксперимента, поскольку к одному и тому же результату здесь можно прийти разными путями.
Третья группа задач связана с наладочными, ремонтно-профилактическими и другими работами по обслуживанию станции. Это может быть замена вышедших из строя или исчерпавших свой ресурс приборов, агрегатов и отдельных блоков, установка и настройка нового оборудования, прибывшего с «грузовиком», освобождение станции от ненужных элементов оборудования (отходов) путем их шлюзования. Не стоит здесь говорить о них более подробно, поскольку это как раз те задачи, которые, как видно из первоначальной постановки вопроса, сохранятся за человеком в любом случае.
Совсем другое дело — задачи, связанные с непосредственным обеспечением пребывания человека на борту станции, тем более длительного. Сюда относятся, кроме уже обсуждавшихся профилактических мероприятий по борьбе с последствиями невесомости, регулярный медицинский контроль (с помощью специальной аппаратуры), а также санитарно-гигиенические процедуры (вплоть до принятия душа). Все это тоже «операции», а иногда даже «эксперименты». Но в то же время все они носят вспомогательный характер, не связанный с решением основных функциональных (научно-исследовательских) задач станции. То есть это те самые проблемы, которые порождены самим присутствием человека на борту.
Теперь посмотрим на весь этот объем деятельности космонавтов с точки зрения возможностей современной и будущей автоматики.
Вспомним прежде, что уже сейчас созданы и функционируют разнообразные по задачам полностью автоматические космические аппараты. «Полностью» — это значит лишь, что на борту у них отсутствует человек, и не более того. Все-таки контроль за работой такого аппарата осуществляется всегда с Земли с помощью телеметрии и командных линий. С другой стороны, оборудование этих аппаратов максимально автоматизировано, с тем чтобы управление ими с Земли сводилось к как можно меньшему количеству управляющих сигналов.
Автоматические средства работают круглосуточно, без отдыха и выходных дней в течение длительных сроков. Иногда в течение трех, пяти и более лет. В принципе за счет глубокого резервирования систем можно получить ресурс и в 10 лет. Но сейчас это, пожалуй, не нужно — за такой срок аппарат устареет «морально».
По такому принципу работает огромное количество спутников — радиоретрансляционных, метеорологических, навигационных, геофизических и прочих — и межпланетные аппараты. Достаточно вспомнить наши «Луны» и «Луноходы» или американские «Маринеры» и «Вояджеры».
По такому же принципу функционирует орбитальный комплекс «Салют» при отсутствии на нем экипажа.
Заметим, однако, что все автоматические объекты носят узкоспециализированный характер (в некоторых случаях это две-три основные функции), а такую технику автоматизировать намного легче, чем крупные станции, предназначенные для комплексных исследований.
Здесь можно поставить множество вопросов (если не бояться напоминания о некоем индивидууме, способном много спрашивать и не получать ответов от десятка даже очень компетентных лиц). Приведем эти вопросы, а заодно и некоторые «антисоображения» все вместе, сразу.
Если хорошо и по многу лет работают спутники, которые к тому же проще по конструкции, поскольку не имеют системы обеспечения жизнедеятельности, и если станция может работать в автоматическом режиме, то зачем туда посылать человека на длительный срок? Разве что только для изучения его самого в условиях космического полета?
Человек все же не безошибочное счетно-решающее устройство, он способен ошибаться. Особенно в весьма напряженных условиях космического полета. Достаточно ли надежна такая дублирующая система, и не следует ли считать ее «временно исполняющей обязанности» до создания более совершенной автоматики?
Не усложняет ли технику присутствие человека на борту космического аппарата чрезмерно, ведь обеспечение безопасности полета от старта до возвращения — сложнейший и дорогостоящий комплекс мероприятий?
Мы говорим «человек», как будто это тот же человек, который работает на Земле, за пультом экспериментального стенда, в кабине экскаватора или на борту морского судна. Но ведь это далеко не так. При подборе и подготовке космонавтов пропускной ценз весьма высок. Как бы ни хороша была станция, комфорт на ней существенно ограничен — и отдыхать не очень удобно, «загородов» никаких (наверное, и поэтому космонавты на орбите сейчас так рвутся к работе), и развлечений немного, и коллектив небольшой. Вспомним те два-три часа, которые космонавты почти ежедневно тратят на физические упражнения. Учтем еще затраты времени на связь с Землей, медицинские обследования, разгрузки «Прогрессов», некоторые бытовые обязанности. А ведь все эти функции на Земле распределяются между разными людьми по их профессиям. В итоге у космонавтов остается очень и очень немного времени, не более пяти-шести часов в день на собственно научные и технические эксперименты. И увеличить это время практически нет никакой возможности. КПД космонавта оказывается невелик. Выгодно ли это?
Разве нельзя алгоритмизировать и, следовательно, автоматизировать большую часть ныне выполняемых человеком в космосе операций? Применить при этом робототехнику, манипуляторы?
Если специализированные средства создавать легче, то не стоит ли отказаться от многоцелевых космических средств, то есть от станций?
И, наконец, «крамольный» вопрос: а не стоит ли отказаться от ориентации в будущем на третью группу нынешних задач — ремонтно-профилактические операции? Может быть, проще и дешевле (к тому же менее рискованно) будет посылать в космос объекты «одноразового использования», то есть работающие до первой поломки, которую нельзя исправить по командам с Земли? А может быть, выгоднее создавать, наоборот, возвращаемые спутники, чтобы при необходимости ремонтировать их на Земле?
Все эти вопросы правомочны, но ответить на них сегодня исчерпывающе трудно. Опыта в создании и использовании космической техники накоплено для этого пока недостаточно.
В общем и целом ответ, как говорится, даст время. И все же попробуем…
Прежде всего можно высказать такое соображение: если человек может летать в космос и приносить своими полетами большую пользу науке и польза эта бесспорна, то почему бы ему туда не летать?
Трудно? Ну что ж! Трудно было и первым мореплавателям, и покорителям воздушного пространства, трудно и по сей день летчикам-испытателям, полярникам, водолазам, шахтерам, металлургам. Трудно, но с точки зрения гуманного отношения к человеку вполне в допустимых пределах.
Да, конечно, автоматика может очень многое. Но, как уже было замечено, автоматизировать можно сравнительно простые операции и процессы. Но прежде чем создать автомат того или иного назначения, нужно иметь полное представление о том, как задачу можно-решать самым эффективным, надежным, экономичным способом.
Ставится, к примеру, задача исследования природных ресурсов Земли — нужно выявить оптимальные участки спектра (инфракрасный, ультрафиолетовый, видимый?) для решения различных задач, найти оптимальный вид (многоспектральные или обычные фотоаппараты, телевидение?) и состав оборудования, отработать специальные фотопленки (очень тонкие или, например, для многократного экспонирования) и т. д. Очень сложная, требующая глубокого изучения проблема — накопление на борту и передача на Землю полученной информации (и в какой мере ее уплотнять, обрабатывать, передавать?).
Какой круг вопросов ни возьми, всюду нужны многочисленные эксперименты, нужны испытания оборудования в натурных условиях. И для каждого такого эксперимента (или небольшой их группы) можно создать и запустить автомат. Но когда таких экспериментов нужно провести сотни и тысячи, возникает вопрос: а выгодно ли, да и реально ли иметь такое количество автоматов?
Многоцелевые орбитальные станции с человеком на борту — отличный экспериментальный испытательный полигон, необходимый для создания оптимальных автоматических спутниковых систем будущего.
Конечно, многие операции, осуществляемые сегодня человеком, в принципе можно алгоритмизировать. Например, работу с телескопом, фотографирование, проведение технологических и биологических экспериментов. Большинство операций не вызовет затруднений. Проблемы возникнут в каждом случае с одной-тремя (из десятка-двух) операций.
Но каковы эти операции? Самые простые! Например, перезарядка фотоаппаратов, технологических печей. Или смена отказавшего блока, а то и просто предохранителя. Для человека нет ничего проще. А для автомата сложные кинематические механизмы-манипуляторы, мощные вычислительные устройства с большой памятью, десятки датчиков… сложнейшая для достижения надежной работы схема.
Можно также создать оборудование, которое следило бы за облаками над объектами съемки. Но какая это должна быть сложная оптическая и механическая система! Человеку ничего не стоит, обнаружив разрыв в облаках и увидев сквозь него нужную зону, направить туда объектив и нажать спуск. А автомату? Вообще обнаружение и мгновенное опознание предметов — задача, в которой пока даже представить трудно, что человека в космосе можно будет заменить автоматикой или дистанционным управлением с Земли.
Спрашивается, что же во всех этих случаях будет надежнее: автоматика или человек? Ответ напрашивается сам собой. Добавьте сюда, что человек может в ходе полета расширять и менять программы экспериментов.
Да, временный КПД космонавта-исследователя пока невысок. Но это не значит, что этот КПД нельзя поднять. Например, за счет полного освобождения человека от функций контроля и управления станцией и бортовой аппаратурой. Каким образом?
Напрашивается такой путь: передать все эти операции Земле. Трудное, но вполне реальное решение, только не стоит, по-видимому, рассчитывать на резкое увеличение наземных командных пунктов (не менее 40–50 таких пунктов смогли бы решить эту проблему). Этот способ неэкономичен, да и сложен технически. Куда выгоднее использовать спутники-ретрансляторы, находящиеся на стационарных орбитах, подобных «Экрану» и «Интелсату». Такой способ уже применялся в программе «Союз» — «Аполлон». Однако этот путь в целом малоэффективен. Станция при этом едва ли не полностью лишена автономии. Линии связи предельно перегружены «сырой», необработанной информацией. И наконец, на Земле, в сфере управления, постоянно должно быть задействовано большое количество людей.
Более эффективный путь — освободить космонавтов от функций управления за счет оборудования станций комплексом мощных и надежных бортовых вычислительных машин, способных обрабатывать и анализировать всю информацию прямо на станции и результирующие данные передавать непосредственно на исполнительные органы или на Землю.
Во всех этих случаях за экипажем должна остаться возможность вмешиваться в управление в неожиданных и нештатных ситуациях.
Нет пока методов, с помощью которых можно было бы точно определить оптимальное сочетание таких факторов, как характер операций, проделываемых человеком, общие условия его функционирования и длительность пребывания на борту. Здесь опыт, как ни досадно, идет впереди теории. Тем не менее можно сказать, что сейчас автоматики и «человека» на борту ровно столько, сколько позволяет располагаемый уровень этой самой автоматики при тех задачах, которые ставятся, причем имеется стремление к экономичной оптимальной системе.
Вполне возможно, что оптимум здесь будет сдвигаться в сторону снижения доли участия человека в функционировании космических средств в целом. Однако — это очень важно отметить — средств сегодняшнего дня. На каждом новом средстве эта доля может быть снова Достаточно высокой. Лет через 10–15 на борту долговременных орбитальных станций производительность труда космонавтов будет существенно выше. Два человека, скажем, будут управляться со значительно большим комплексом аппаратуры и программой исследований.
Разумеется, современные орбитальные станции с экипажем на борту работают не только на будущие автоматические спутники или межпланетные системы. Если исходить из того, что в будущем в космосе понадобится много людей, а основания для такого утверждения имеются (хотя и не бесспорные — об этом мы поговорим немного позже), то, следовательно, нужно уже сегодня интенсивно выяснять космические возможности человека, накапливать статистику и отрабатывать элементы будущих систем и средств обеспечения жизнедеятельности и функционирования людей в космосе, включая космос открытый.
Подведем некоторые итоги нашим размышлениям. Сейчас мы уже имеем в своем распоряжении средство для длительных полетов космонавтов — комплекс «Салют» — «Союз» — «Прогресс». Он предоставляет нам возможность решения большого количества задач научных и народнохозяйственных. От этого богатства отказываться пока нет никакого резона. С другой стороны, на сегодня автоматические средства в космосе дешевле пилотируемых. Однако применять их можно эффективно лишь там, где имеется достаточная ясность путей и методов решения задач. И еще там, где присутствие человека по каким-либо причинам невозможно.
Там же, где нужно искать — экспериментировать и испытывать, — участие человека резко повышает и эффективность, и, как ни парадоксально, экономичность. Во многих случаях, при многих операциях участие человека еще долгое время будет дешевле создания и применения автоматики. Тем не менее процесс вытеснения человека автоматикой в решении космических задач будет идти вечно.
Сегодня же человек продолжает эффективно трудиться в космосе и для настоящего и для будущего.