Часть вторая О КАЛИБРАХ

Глава I. ДО МЕТРИЧЕСКОЙ СИСТЕМЫ

Королевские конечности и ячменные зерна

В древние времена человек довольствовался очень грубыми приближенными измерениями. Охотясь, человек глазом измерял расстояние, на которое необходимо было метнуть камень или копье, чтобы попасть в зверя или птицу.

Но жизнь усложнялась, обиход человека обогащался рядом предметов, к размерам и весу которых предъявлялись требования определенного постоянства. Так, например, еще древние стрелки и оружейники нуждались в том, чтобы длина стрел и некоторые размеры луков были одинаковыми. А для этого нужно было иметь какую-то постоянную меру и с ней сравнивать тот или другой размер.

В качестве такой «постоянной» меры человек использовал свои конечности. Толщина пальца, длина сустава, ширина кисти, длина локтя, длина ступни — все эти величины служили образцовыми линейными мерами. С помощью конечностей устанавливались также размеры новых, условных линейных мер: длина шага, расстояние между концами пальцев расставленных рук и т. п. Но размеры конечностей у разных людей неодинаковы. Такие меры были более или менее постоянными и точными только для того человека, который ими пользовался, и потому такой способ измерения мог удовлетворять людей лишь на ранней ступени развития общества.

С развитием торговли этот примитивный способ измерения предметов оказался совершенно неудовлетворительным. Возникла потребность в стабилизации {98} размеров линейных мер, в приведении различных размеров одной и той же меры к одному, обязательному для данной страны. Такая стабилизация проводилась по-своему в каждой стране, а зачастую и в отдельных местностях внутри страны. Так продолжалось почти до самого промышленного переворота, причем к стабилизуемым мерам предъявлялись требования все большей точности.

К середине XVIII века насчитывалось огромное количество стабилизированных мер, их основой служили величины человеческих конечностей.

Распространенная в восточных странах «натуральная» мера — локоть (длина части руки от локтя до конца среднего пальца) — проникла почти во все страны. Первый стабилизированный в Англии при короле Эдуарде I (1272—1307) английский ярд так и назывался: «железный локоть». Его подразделения — фут и дюйм — также представляли собой стабилизированные размеры конечностей — ступни и последнего сустава большого пальца руки.

Старая русская линейная мера — аршин — равнялась 1,5 локтя. Старая русская сажень представляла собой стабилизированный размер расстояния между концами средних пальцев расставленных рук, либо расстояния от пяты левой ноги до конца пальцев правой поднятой руки (косая сажень); само слово «сажень» произошло от слова «досягать» (руками или ногами). Кроме того, в древней Руси измеряли «пальцем» (толщина пальца) и «пядью» (длина ладони). А в Англии правильная сажень отмерялась длиной соприкасающихся левых ступней, шестнадцати поставленных друг другу в затылок специально выбранных мужчин. Такие меры применялись в старые времена во всех странах.

Наиболее развитые в торговом и промышленном отношениях страны уже в средние века испытывали большие неудобства из-за огромного разнообразия мер. Каждая из этих стран стала стремиться к введению у себя единой системы мер. Эта система должна была быть построена, исходя из меры, принятой за основу всей системы и хранящейся в условиях, препятствующих искажению ее размера. В наше время такая мера называется эталоном; она представляет собой образец основной меры, изготовленный из металла с наибольшей достижимой точностью. Основными эталонами называются {99} те, которые составляют основу мерительного дела в стране.

Правительства некоторых западноевропейских стран зачастую объявляли основной мерой величину какой-либо конечности государя или принадлежащего ему предмета. Так, франкский король Карл Великий (768—819) объявил основной мерой длину своей ступни, которая и была названа «королевским футом». А английский король Генрих I (1100—1135) объявил основной мерой расстояние от его собственного, королевского, носа до конца среднего пальца при горизонтально вытянутой руке; он же впоследствии объявил основной мерой длину своего скипетра. Эта величина была названа «элл».

Исходя из такого рода условных величин основной меры, изготовляли металлические стержни — эталоны, которые с древнейших времен для обеспечения их сохранности и неизменяемости размеров хранились в важнейших государственных зданиях, особо оберегаемых. Так, например, римляне хранили свою основную меру в главном храме.

По древней Руси проходили два великих сухопутно-речных торговых пути мирового значения. Первый — «из варяг в греки»: с севера — из скандинавских стран — на далекий юг — в страны, расположенные на берегах Черного и Средиземного морей; второй — из западной Европы в страны Азии. Поэтому еще в X столетии, раньше чем это произошло в других странах, в древней Руси начались попытки установления единства и сохранности мер и их точного применения. Хранение мер поручалось духовенству — ведь в те времена только церковь располагала наиболее надежными местами хранения — в монастырях. В церковном уставе князя Владимира имеется запись, смысл которой сводится к тому, что с давних времен веса и меры установлены богом; и с тех же пор епископам поручено блюсти эти веса и меры «без пакости, ни умножати, ни умалити» и за все это держать ответ перед богом в день великого суда, как и «о душах человеческих».

А в грамоте Новгородского князя Всеволода в XII столетии даны такие же указания, но предусмотрены суровые наказания за уклонение от точности измерения товаров. {100}

И все же в разных местностях, в разных городах еще очень долго продолжали «мерить на свой аршин».

В 1550 году для установления единых мер в Московском государстве были изготовлены «печатные медные меры». Их разослали царским людям для применения по всей Руси. Это были первые единые образцовые государственные металлические меры — первая попытка установить единообразие мер в стране.

Но короли и другие властители, конечности которых служили образцовыми мерами, умирали или их свергали, скипетры или другие металлические меры изнашивались и исчезали. Когда встречалась необходимость снова воспроизвести основную меру, это оказывалось невозможным. Приходилось создавать новый образец основной меры, только приближенно равный старому.

Отсюда и возникла необходимость в установлении такого рода эталона основной меры, величину которого всегда можно было бы точно воспроизвести.

Уже после введения Эдуардом 1 «железного локтя» в Англии в 1324 году был издан закон, гласивший, что три ячменных зерна (круглые и сухие), сложенные рядом по длине, составляют один дюйм, двенадцать дюймов составляют один фут, а три фута — один ярд. Принятие длины ячменного зерна в качестве исходной, относительно неизменной основной величины для образования системы мер было уже попыткой установить какой-либо природный образец основной меры. Выбор для этой цели зерен злачных растений был сделан не впервые в истории человечества. Еще за 2690 лет до нашей эры в Китае при богдыхане Хоанг-ли была принята в качестве основной меры длина звуковой трубы, величина которой составлялась из 90 пшеничных зерен, уложенных плотно одно за другим. В поисках неизменяющейся меры применяли в качестве «эталона» длину пшеничного зерна и древние арабы. Индусы также пользовались в древнейшие времена ячменными зернами для определения измеряемой длины или веса.

В 1496 году в соответствии с законом о ячменных зернах был изготовлен в Англии основной эталон ярда из латунного стержня восьмиугольного сечения. Этот эталон служил до 1588 года. При королеве Елизавете его заменили новым, также латунным стержнем, но прямоугольного сечения. {101}

Второй ярд, изготовленный в 1588 году, служил до 1824 года. И первый и второй эталоны ярда были концевыми мерами — точный размер ярда определялся расстоянием между поверхностями концевых срезов стержня. Развитие техники оптических измерений позволило изготовить новый ярд в 1824 году в виде штриховой меры — стержня, на котором длина ярда была очень точно отмечена двумя параллельными штрихами. Этот точный ярд — основная мера всей системы измерений — погиб в 1834 году при пожаре в парламенте, где он хранился. Пришлось делать новый эталон в сущности «наощупь», так как его изготовили на основе сравнения нескольких существующих копий ярда 1824 года, Если бы ярд представлял собой меру, равную по величине какому-либо неизменному предмету окружающей нас природы, всегда имелась бы возможность восстановить его с необходимой степенью точности или проверить его величину. Но таких предметов тогда еще не знали.

Туаз и метр

Многообразие и непостоянство основных мер были устранены лишь метрической системой мер и весов, возникшей во время Французской революции.

Введение метрической системы мер само по себе знаменовало переворот в мировой измерительной системе; этот переворот начался во Франции, так как революция дала толчок развитию уже ранее зародившихся мыслей ученых о необходимости создания единого и международного природного эталона постоянной линейной меры длины.

Французские ученые измерили одну четверть земного меридиана, проходящего через Париж, и в качестве природной неизменяемой меры выбрали одну десятимиллионную часть четверти этого меридиана, назвав ее метром. Свои измерения меридиана ученые произвели с помощью старой французской меры — туаза. Историческая заслуга этой меры в том, что она послужила основой создания метрической системы.

Еще в конце XVI века на наружной стене одного старинного замка в Париже, около тяжелых ворот, был укреплен железный стержень с двумя выступами на концах. Получилось нечто вроде современной измерительной скобы, о которой речь будет дальше. Расстояние между выступами выражало собой величину туаза, основной в {102} те времена французской меры длины. Туаз делился на 6 футов, фут — на 12 дюймов, дюйм — на 12 линий. Каждый желающий мог проверить величину своего туаза по эталону на стене.

Правильным считали туаз, который более или менее туго проходил между выступами эталона. Полагали, что проверка обеспечивает точность около 0,05 линии (около 0,1 миллиметра). В действительности такая точность не достигалась: стержень прогибался, величина расстояния между выступами искажалась, поверхности изнашивались, ржавчина съедала металл. В 1668 году размер стержня настолько исказился, что пришлось изготовить новый эталон. Внешне он был сходен со старым, но размер между выступами на этот раз был выбран меньше старого на 5 линий. Достоверных данных о причине такого изменения нет. Существует мнение, что расстояние между выступами нового эталона соответствовало половине ширины наружных ворот замка, полная ширина которых равнялась 12 футам.

По размеру нового туаза было изготовлено несколько копий. Двумя из них воспользовались, когда в 1735—1737 годах было предпринято в Перу (Южная Америка) и на севере Европы, в Лапландии, измерение длины дуги меридиана, соответствующей одному градусу, с целью определения величины диаметра земного шара. Туаз, которым производили измерения в Перу, был назван «перуанским», а туаз, которым производили измерения в Лапландии, — «северным».

Во время перевозки северного туаза корабль потерпел крушение. Туаз спасли, но величина его претерпела такие изменения, что им уже нельзя было пользоваться как образцовой мерой. Перуанский же туаз был благополучно доставлен в 1747 году во Францию. К этому времени французский эталон туаза, изготовленный в 1668 году, пришел в негодность. И вот 16 мая 1766 года перуанский туаз был провозглашен основным эталоном французских линейных мер.

Новый туаз служил эталоном французских линейных мер до введения метрической системы и явился ее основой. Именно этой мерой французские ученые произвели измерения длины меридиана. Длина эта, выраженная в туазах, будучи разделена на 40 000 000, давала величину {103} метра или 0,51307407 туаза. Таким образом, туаз оказался равным 1,9490363 метра, приближенно 1,95 метра.

Измерение было произведено точными способами, которыми располагает специальная наука — геодезия. Способ этот называется триангуляцией. Для простоты представим себе, что наша земля — правильный шар. Практически невозможно измерить меридиан земного шара путем укладывания на всем его протяжении специальных измерительных стержней — жезлов, которыми пользовались французские ученые. Горы, леса, реки, моря, пропасти и, наконец, огромная величина земного шара — все это исключает возможность непосредственного измерения. Небольшую же часть меридиана (от 5 до 15 км), выбрав наиболее ровный участок, можно измерить непосредственно, укладывая вдоль него точно вымеренные стержни. Такой участок называют «базисом». Его конечные точки тщательно отмечаются. Дальше измерение идет уже расчетным путем с помощью геометрических и тригонометрических вычислений.

Земной шар представляет собой тело вращения особой формы, носящее название «геоид». По форме это тело вращения весьма близко к сфероиду (шару). Наибольшая разность расстояний от двух точек на поверхности геоида до его центра не превышает 100 метров. Величина эта, разумеется, весьма мала по сравнению с поперечником земли. Все же, чтобы устранить влияние на расчет даже этого незначительного отклонения, измерение дуги меридиана произвели дважды, выбирая базу на разных участках меридиана. Одна была выбрана по возможности ближе к экватору, другая — к полюсу. Среднее значение полученных измерений было принято в качестве правильной величины дуги меридиана. Когда в 1735—1737 годах производили измерение градуса меридиана, то наряду с одним измерением от базы, выбранной в Перу, произвели и второе измерение от базы, выбранной в Лапландии (на том же меридиане).

Пользуясь таким способом, французские ученые Мешен и Деламбр измерили дугу парижского меридиана между городом Дюнкирхеном (Франция) и городом Барселоной (Испания). Одна база была выбрана около города Мелюн, а другая — в районе города Перпиньян. Для измерения были использованы новейшие достижения {104} измерительной техники и геодезии, все возможности науки того времени. В результате этого измерения, длившегося шесть лет (1792—1798), была получена новая единица длины — метр (от греческого слова, означающего «мера»), величина которого, как тогда были уверены ученые, всегда может быть восстановлена путем нового измерения длины парижского меридиана.

Таким образом, основной эталон метра являлся как бы копией природного неизменного образца. Метр стал основной мерой новой, метрической, системы линейных мер.

Метрическая система

Французская комиссия мер и весов во времена Французской революции так отзывалась о новой системе: «Определение этих мер и весов, взятое из природы и тем самым освобожденное от всякого произвола, будет ныне устойчивым, непоколебимым и неизменным...»

Права ли была комиссия? Не совсем. И в самом главном, пожалуй, вовсе неправа, а именно в том, что основная единица новой системы — метр — будто бы освобождена от всякого произвола. Когда французские ученые измерили меридиан, они определили метр, как 1/40 000 000 его часть. Следовательно, длина земного меридиана, проходящего через Париж:, равнялась по их расчету 40 000 000 метров. Но позднейшие измерения Парижского меридиана показали, что его длина несколько больше, а именно — на 3423 метра. Таким образом, первый основной эталон метра, изготовленный по результатам первого измерения и утвержденный в 1799 году, оказался фактически меньше 1/40 000 000 части меридиана. Переделывать его не стали. Результаты новых измерений меридиана могли оказаться отличными от первых двух.

Величина первого метра, так называемого «архивного прототипа» (от греческого слова, означающего «первообраз»), изготовленного из платины, осталась международным эталоном. Но он потерял значение «природной» меры и оказался такой же условной мерой, как и английский ярд.

Огромным достоинством новой системы мер явилась ее десятиричность. Каждая величина этой системы образуется путем деления или умножения основной меры на число, кратное 10. Основная мера — метр, — деленная на 1000, 100, 10, дает соответственно миллиметр, сантиметр {105} и дециметр, а умноженная на 1000 — километр (умножение метра на 10, 100, 10 000, 1000 000 дает соответственно декаметр, гектометр, миниаметр и мегаметр, но эти величины, вернее наименования, неупотребительны). Все вычисления по новой системе производятся очень легко.

Заслуга французских ученых заключалась в том, что они ввели в систему мер десятиричную систему исчисления, которая зародилась еще в древние времена, когда человек считал по пальцам рук (десять пальцев). Индусы вооружили эту примитивную, но удобную систему счета изобретенными ими цифрами от 0 до 9. В XIII веке эта система проникла в Европу.

Вторым преимуществом новой системы явилось установление твердой зависимости между линейными и весовыми мерами. Вообразите себе куб чистой дестиллированной воды со стороной, равной одному сантиметру, и при температуре в 4 градуса (температура воды наибольшей плотности). Вес этого куба и был принят за основную весовую единицу метрической системы и назван граммом. Умножая грамм на 1000, на 100 000 и на 1 000 000, мы соответственно получаем килограмм, центнер и тонну, а разделив на 1000,— миллиграмм, наиболее употребительные наши весовые величины. У вавилонян еще задолго до нашей эры весовые меры тоже были связаны с линейными мерами и с единицами времени. Вавилонская весовая единица — «талант» (большой талант = 60,6 кг, малый талант = 30,3 кг) представлял собой вес воды, заполняющей сосуд определенного объема и вытекающей из него при постоянных условиях в определенный промежуток времени.

7 апреля 1795 года — день объявления Национальным конвентом французской республики закона о введении метрической системы мер и весов — следует считать днем рождения метра как эталона длины, выступившего в качестве кандидата на звание международного прототипа. К этому времени в мире господствовал английский ярд, насчитывавший уже несколько сот лет существования. Подразделения ярда — дюйм и фут — прочно утвердились в промышленности и торговле ряда передовых стран. Дюймовая система укрепилась на занятых позициях, и метр был встречен враждебно. Именно то, что метрическая система упрощала технику отсчетов и {106} была призвана к созданию единого мерительного языка во всем мире, сообщало новой системе революционный интернациональный характер.

Метр имел много врагов в самой Франции. Французский император Наполеон в 1809 году отменил метрическую систему. Но преимущества ее все же были слишком очевидны. К этому времени метр, как сказано выше, уже потерял свое значение природной меры, но стройность системы и легкость практического ее применения благодаря десятиричности обезоруживали противников. Только что нарождавшееся производство взаимозаменяемых деталей машин уже настоятельно требовало в качестве условия своего развития единой измерительной базы.

В 1836 году метрическая система была восстановлена во Франции и с этого времени шаг за шагом отвоевывала позиции у ярда.

И все же к новой, прогрессивной системе мер многие относились недоброжелательно.

Но вот в 1868 году с трибуны Первого съезда русских естествоиспытателей (в Петербурге) на весь мир прозвучали страстные, проникновенные слова «Заявления о метрической системе» великого русского ученого Д. И. Менделеева:

«Объединение народов останется мечтою мира и прогресса, пока не подготовлены к тому пути. До сих пор, кроме стихий, только печатное слово, торговля и науки скрепляют интересы народов. Это крепкие связи, но не всесильные. Подготовлять же связь крепчайшую обязан каждый, кто понимает, что настанет, наконец, желанная пора теснейшего сближения народов... Воздухоплавание, попытки отыскать мировой язык и всеобщие письмена, международные выставки, даже самые стачки — маяки на этом долгом пути.

Есть между этими попытками одна, не стоящая ни миллионов, как выставки, ни громадных усилий опыта и ума, как воздухоплавание, — это попытка склонить народы к единству мер, весов и монет.

Число, выраженное десятичным знаком, прочтет и немец, и русский, и араб, и янки одинаково, но живое значение цифр для них чересчур разнообразно, даже одно слово часто имеет неодинаковое значение у разных народов. Так, фунт неодинаков — английский, {107} валахский, русский, испанский, китайский, даже рижский, ревельский, курляндский.

Давно стремятся установить однообразие в этом отношении. Побуждает к тому польза, очевидная для каждого.

Система, пригодная для этой цели, должна быть прежде всего десятичная, потом все меры в ней должны одна от другой происходить...

Такова метрическая система...

Облегчим же и на нашем скромном поприще возможность всеобщего распространения метрической системы и через то посодействуем в этом отношении общей пользе и будущему желанному сближению народов. Не скоро, понемногу, но оно придет. Пойдем ему навстречу».[1]

А через год — в 1869 году — действительный член Российской Академии Наук Б. С. Якоби от имени русских ученых представил в Парижскую Академию Наук обоснованный доклад о необходимости сделать метрическую систему мер международной. Именно эта инициатива русских ученых и послужила фундаментом, на котором удалось через несколько лет возвести здание международной метрической конвенции — соглашения о введении единой международной системы мер длины и массы.

В 1872 году в Париже собралась Международная метрическая комиссия из представителей двадцати стран. Комиссия предложила изготовить новый прототип метра по размеру первого прототипа (архивного). Первый прототип метра был изготовлен в виде концевой меры, его размер точно выражался расстоянием между срезами стержня. Это вело к искажениям вследствие износа поверхности срезов, соприкасавшихся с контактами держателя.

Новый прототип изготовили в виде штриховой меры — точный размер метра выражался расстоянием между двумя штрихами на поверхности стержня, вся длина которого равнялась 102 сантиметрам. Он был изготовлен из сплава платины с иридием. Этот материал (90% платины и 10% иридия) отличается высокой твердостью, неокисляемостью и стойкостью против изменений размеров {108} с течением времени. Новый прототип был провозглашен комиссией международным прототипом мер длины. В 1888 году под Парижем, в Севре, было организовано Международное бюро мер и весов — место хранения эталона линейных мер — метра и эталона веса — килограмма.

Международный прототип метра


Здание бюро, по соглашению с правительством Французской республики, было объявлено международным, В 1891 году были изготовлены 34 копии международного метра и распределены между странами — участницами Международного бюро. По жребию Россия получила две копии: № И и № 28. Первый хранится во Всесоюзном научно-исследовательском институте метрологии (ВНИИМ) в Ленинграде и является государственным эталоном СССР, а второй хранится как запасная копия.

Великому русскому ученому Д. И. Менделееву принадлежит заслуга в организации и научной постановке хранения и поверки мер и весов в России. Пятнадцать последних лет своей жизни (1892—1907) он посвятил этому важному для отечественной науки, и техники делу и своими исследованиями создал основу научного развития точных измерений в нашей стране.

Начиная с этого времени метр как эталон постепенно проник во все страны Европы, а также в Японию, Турцию и в США. В Англии, в США и в некоторых других странах на основании точно установленных соотношений между метром и ярдом допускается и применение дюймовой системы. У нас метрическая система была объявлена обязательной и единственной декретом Совнаркома от 14 сентября 1918 года.

Международный прототип метра представляет собой платино-иридиевый стержень с сечением Х-образной формы. Длина стержня, как уже было сказано, равняется 102 см. На верхней поверхности полки стержня, на каждом конце, нанесено по три поперечных штриха. Расстояние между двумя средними штрихами определяет {109} длину метра. Толщина каждого штриха 6—8 микронов (микрон = 0,001 миллиметра). Промежутки между штрихами равны 0,5 миллиметра.

Ось метра обозначена двумя нанесенными также на концах полки стержня продольными штрихами с промежутком между ними в 0,2 миллиметра. Из 34 образцовых метров, изготовленных Международным бюро мер и весов, метр № 6 оказался при нуле градусов по термометру Цельсия точно равным архивному метру и поэтому был Признан международным прототипом.

Он хранится в Международном бюро в Севре, в специальном помещении, огражденном от сотрясений и влияния температурных изменений. По международному метру производится проверка прототипов, находящихся в центральных мерительных учреждениях других стран.

Мы уже знаем, что величина метра определяется расстоянием между двумя определенными штрихами, нанесенными на стержень прототипа. Но такое определение, как мы это увидим дальше, недостаточно. Всякий материал изменяет свои размеры вместе с изменением температуры среды (расширяется при нагревании и сжимается при охлаждении). С материалом прототипа метра происходит то же самое, а по этой причине при различных температурах меняется расстояние между штрихами. Эти изменения отнюдь не маловажны. Так, например, имеющаяся у нас в Советском Союзе копия международного метра (№ 28) при 0 градусов имеет длину 1 метр плюс 0,71 микрона, а при 20 градусах — 1 метр плюс 180,24 микрона. Таким образом, при изменении температуры от 0 до +20 градусов длина этого метра увеличивается почти на две десятых миллиметра, а это довольно заметная величина. Поэтому условились основной величиной метра считать его длину при температуре тающего льда — 0 градусов.

Платино-иридиевый сплав устойчивее других материалов, но очень дорог. Из него изготовлены только международный прототип и его национальные копии. Меры, к которым предъявляются менее строгие требования в отношении точности, изготовляются из других материалов, также сравнительно устойчивых против температурных влияний, но изменяющихся в большей степени, чем платино-иридиевый сплав. Стальной метр при изменении температуры на 1 градус изменяет длину на 11 {110} микронов, медный или бронзовый — на 18 микронов, алюминиевый — на 24 микрона. Нетрудно подсчитать, что алюминиевый стержень длиной в 1 метр при нагревании от 0 до 100 градусов увеличит свою длину на 2,4 миллиметра, что уже недопустимо для измерений, даже не требующих особо высокой точности.

В конце XIX века начали применять сталь с содержанием 36% никеля. Этот материал (названный «инвар») хорошо сопротивляется температурным влияниям; однометровый стержень изменяет длину на 1 микрон при изменении температуры на 1 градус. Таким образом, метр, изготовленный из инвара, при нагревании от 0 до 100 градусов удлиняется только на 0,1 миллиметра. Но и этот материал подвержен значительному искажению размеров с течением времени — в результате внутренних изменений. В новейшее время начали применять плавленный кварц; однометровый стержень из этого материала изменяет длину всего на 0,4 микрона при изменении температуры на 1 градус. Широкому использованию этого материала мешает его хрупкость.

Форма сечения прототипа также выбрана не произвольно. Если стержень положить на какую-либо, даже точно обработанную плоскость, то нижняя его поверхность не всеми точками совпадет с этой плоскостью. Вследствие этого стержень потеряет свою прямолинейность. Если на верхней поверхности такого стержня нанесены на концах штрихи, расстояние между которыми выражает, допустим, длину метра, то в результате (пусть микроскопически малого) провеса стержня это расстояние увеличится. Если штрихи нанесены на нижней поверхности стержня, то соответствующее расстояние уменьшится.

Между верхней и нижней поверхностями существует так называемый нейтральный слой, в плоскости которого расстояние между штрихами настолько мало изменяется, что этим изменением можно пренебречь. Расположение нейтрального слоя зависит от расположения опор, на которых покоится стержень. Чтобы избежать произвола в этом вопросе, ученые исследовали его и установили, что наивыгоднейшие две точки опоры расположены на расстоянии 2/9 длины стержня от каждого его конца. При таком расположении опор изменение длины стержня в результате провеса бывает наименьшим. Нейтральный же слой располагается в средней продольной части стержня. {111} Поэтому международному прототипу придали Х-образную форму, штрихи перенесли на его среднюю полку (нейтральный слой) и уложили его на две правильно установленные опоры. Такая форма обеспечила наименьшую величину изменений длины стержня. Первый французский «архивный» метр был изготовлен из платинового стержня прямоугольного сечения высотой, равной 1 миллиметрам. Когда стержень укладывали на опоры (по краям), величина его изменялась приблизительно на 0,4 миллиметра.

Мы все время толкуем о величине метра, приводим данные его сравнительных измерений и при этом оперируем даже долями микрона. Как же производится измерение длины какого-либо эталона метра? Проверка производится способом сравнения проверяемого эталона с одним из образцовых и осуществляется с помощью очень точного прибора.

Два сравниваемых эталона помещаются рядом и подводятся под окуляры двух микроскопов, неподвижно укрепленных на таком расстоянии друг от друга, которое равно номинальному размеру длины между штрихами метра. Разность, подлежащая проверке, улавливается путем регистрации отклонения штриха сличаемого эталона от штриха образца. При этом необходимо соблюсти одинаковую температуру обоих эталонов с точностью до 0,1 градуса. Даже человеческое дыхание, повышающее температуру на 0,1 градуса, способно повлиять на точность измерения.

Ванна с двойными стенками наполнена дестиллированной водой. Пространство между стенками также наполнено водой, которая служит для регулирования температуры воды в ванне. Внутри на специальных опорах покоятся оба сличаемых эталона. Ванна укреплена на тележке, позволяющей осуществлять передвижения в направлении, перпендикулярном длине сличаемых мер. По обеим сторонам ванны на каменных опорах укреплены в вертикальном положении два микроскопа. Оба эталона по очереди подводят под окуляры этих микроскопов и производят два отсчета для двух штрихов образцового метра. Затем подводят проверяемый метр и производят такие же два отсчета для его штрихов. Результаты сравнивают и определяют фактическую длину проверяемого метра. {112}

На протяжении нескольких десятилетий усилия науки направлены были к тому, чтобы добиться предельной точности в установлении величины метра — этой всеобщей международной единицы длины.

Но лишь в конце XIX века ученые получили возможность, используя длину световых волн, производить измерения с настолько высокой степенью точности, что многократные измерения одной и той же величины не показали какого-либо существенного различия. Метр, выраженный в длинах этих волн, получил ту устойчивость, к которой стремились ученые на протяжении многих лет.

Глава II. НЕИЗМЕННАЯ МЕРА

Немного физики

Чтобы понять, в чем состоит способ измерения с помощью длины световых волн, кратко напомним некоторые сведения из физики света.

Представим себе темную комнату с небольшим круглым отверстием в одной стене и белым экраном на противоположной. Если в отверстие направить пучок параллельных солнечных лучей, то на экране появится световое круглое пятно. На пути этого пучка лучей поместим стеклянную призму. Лучи, проходя через призму, изменят свой путь и упадут на стену уже в другом месте. Это явление носит название преломления лучей света. Призму следует поставить так, чтобы преломившиеся лучи шли внутри призмы параллельно ее основанию. На экране мы отметим еще одну странность — на нем не будет уже белого круглого пятна; вместо него появится разноцветная полоса. Верхний край полосы будет фиолетового цвета, нижний — тёмнокрасного. Между этими цветами будет еще много разных цветов, но главных, наиболее резко отличимых будет еще шесть: синий, голубой, зеленый, желтый, оранжевый, красный. Вся разноцветная полоса носит название солнечного спектра; его появление вызвано разложением луча белого солнечного света на составляющие его разноцветные лучи.

Для более четкого воспроизведения спектра существуют специальные приборы — спектроскопы. С помощью такого прибора ученый Фраунгофер открыл в 1814 году, что солнечный спектр пересечен множеством темных линий. Они получили название фраунгоферовых линий. Их положение в спектре неизменно. Наиболее заметные из {113} фраунгоферовых линий (всего их насчитывают несколько тысяч) разделяют спектр на уже известные восемь частей: тёмнокрасную, светлокрасную, оранжевую, желтую, зеленую, голубую, синюю, фиолетовую.

Отдельные, четко окрашенные полосы порождаются одноцветными лучами, которые в физике света называются монохроматическими. Это слово составлено из двух греческих слов: «монос» — один и «хрома» — цвет.

Арифметика световых волн

Всякое вещество, находящееся в раскаленном состоянии, излучает в окружающее пространство энергию. Распространение энергии происходит волнообразно со скоростью 299 800 километров в секунду. Эти волнообразные колебания создают в человеческом глазу ощущение света.

Установлено, что каждый одноцветный луч имеет постоянную, только ему свойственную длину волны. Именно от длины волны и зависит восприятие глазом того или иного цвета.

Внутри каждого из восьми основных участков спектра, разделенных линиями, существует огромное количество оттенков данного цвета со свойственной каждому оттенку характерной длиной волны. Но так как внутри одного цвета разница между длинами волн различных оттенков ничтожно мала, то для практических целей ею пренебрегают и принимают для каждого из восьми цветных участков по одной характерной длине волны, выраженной в метрических единицах.

Длина волн очень незначительна и для средних светлых линий (желтый, зеленый) ее величина равна приблизительно 0,0005 миллиметра.

Всякое физическое тело дает особый спектр, состоящий из свойственных только этому телу линий, всегда одинаково расположенных. Длина волн, соответствующая каждой линии спектра определенного физического тела, есть величина постоянная, не изменяющаяся со временем и не зависящая от каких-либо условий. Эти свойства световых волн и натолкнули на мысль использовать их длину в качестве природного эталона линейных мер. Но световые волны невидимы! Как же можно с их помощью производить измерения? Ученые сделали их видимыми, воспользовавшись явлением интерференции света.

В чем это явление заключается? {114}

Представим себе, что два одноцветных (следовательно, имеющих одинаковую длину волны) луча действуют одновременно. Из возможных в данном случае положений обоих лучей нас интересуют два: первый — когда одинаковые по длине волны таких двух лучей как бы налагаются друг на друга, совпадая началом и концом волны. Такие два луча дают увеличенную яркость; второй — когда волны как бы направлены друг против друга. Если проследить одинаково расположенные точки этих волн (например, высшие точки верхних гребешков каждой волны), то видно, что они взаимно смещены на половину длины волны. (Стоит «передвинуть» один луч на половину волны, и они снова будут как бы наложены один на другой.) Такие два луча дают пониженную яркость и даже ощущение темноты, если величины колебаний волны одинаковы. Волны как бы уничтожают друг друга. В физике это явление называется интерференцией. Практически оно может дать следующий очень интересный эффект. {115}

Одинаковые по длине волны как бы налагаются друг на друга и дают увеличенную яркость (слева на рисунке); их „работу” можно сравнить с работой пильщиков, — в то время, как один из них тянет пилу на себя, другой „позволяет” ей уйти и этим как бы усиливает ее движение. Те же волны, смещенные одна относительно другой на половину своей длины, как бы противостоят друг другу (справа на рисунке) и дают поэтому затемнение; такой эффект можно сравнить с работой тех же пильщиков, если оба они одновременно тянут пилу на себя.

Из двух исходных точек начинается волновое движение двух пучков лучей, направленных на экран


Два плоских зеркала поставлены под весьма малым углом друг к другу. На расстоянии нескольких сантиметров от линии соприкосновения зеркал расположена узкая щель, которая освещается сзади сильным источником света (солнце, вольтова дуга). Пучок света падает на зеркала и отражается вниз на экран.

Каждое зеркало можно рассматривать как отдельный источник того же света. Из этих двух исходных точек как бы начинается волновое движение двух пучков лучей, направленных на экран, на котором можно наблюдать следующее явление.

В середине экрана расположена точка, по которой волны обеих исходных точек проходят одинаковый путь. Длины этих волн одинаковы, и гребень одной волны накладывается на гребень другой; провалы обеих волн также совпадают. Поэтому участок будет усиленно освещен. По обеим сторонам от него расположены две точки, расстояние до которых от исходных точек будет таким, что гребень одной волны совпадает с провалом другой. Это значит, что в данном случае длина пути, проходимого светом от одной исходной точки, на половину длины волны короче, чем длина пути от второй исходной точки.

В обеих точках, расположенных по обеим сторонам освещенного участка, получается затемнение экрана — темная полоса.

Идя дальше в обе стороны от середины экрана, мы придем в такие два участка, до которых длины путей света от обеих исходных точек будут разниться на целую длину волны. Опять гребень одной волны совпадает с гребнем другой, провал одной — с провалом другой, и эти участки будут усиленно освещены. Далее мы придем к двум точкам, расстояния до каждой из которых от источников света будут разниться на 1,5 длины волны; снова получится затемнение и появится темная полоса. В результате мы получим освещенный экран, пересеченный рядом темных, равноотстоящих друг от друга полос, Расстояния между полосами зависят исключительно от длин волн.

Из этого опыта легко понять, что каждому промежутку между темной полосой и серединой светлого участка соответствует половина длины волны, а расстояние между двумя последовательными темными полосами или одинаково расположенными точками двух последовательных {116} световых участков соответствует полной длине волны и имеет неизменную величину.

На место экрана можно поместить любой измеряемый предмет и подсчитать, сколько на его длине уложится полос. Если мы определим таким путем длину волны, как долю этой длины, то две величины — проверяемая длина и волна данного одноцветного луча света — будут связаны неизменным соотношением. Благодаря этому длина волны может быть использована как точнейшая мера. Это и было сделано для выражения длины международного прототипа метра в длинах световых волн.

Метр — в длинах световых волн

Еще в первой половине XIX столетия ученые предлагали использовать длину световой волны какого-либо определенного цвета в качестве эталона линейных мер. Но требования, предъявляемые к точности, не вызывали тогда еще необходимости в таком эталоне.

Только в конце XIX века, когда бурно развивающееся машиностроение потребовало высокой точности измерительных средств, предложение ученых было осуществлено.

Чтобы получить четкое воспроизведение явления интерференции, необходимо соблюсти два условия.

1. Так как интерферируют не любые два луча одного цвета, а только взаимозависимые одноцветные лучи, то либо первоначальный луч должен быть разложен на два, либо два луча должны исходить из одного источника света.

2. Лучи должны иметь строго определенную длину волны. Большинство световых лучей не удовлетворяет этому требованию: они слагаются из лучей с различными, правда, весьма близкими друг к другу длинами волн. Каждый из этих лучей интерферирует по-своему, результаты накладываются друг на друга и на экране либо вовсе ничего не получается, либо получается очень нечеткая картина. Особенно важно это условие в тех случаях, когда длины путей двух интерферирующих лучей разнятся на много тысяч или миллионов длин волн. Существует очень немного источников света, лучи которых имеют настолько четкую длину волны, что ими можно пользоваться для точных измерений.

Ученые нашли такой источник света: это оказался свет гейслеровой трубки, наполненной парами металла кадмия (белый металл, химически сходный с цинком). {117}

Спектр кадмия состоит из четырех резко выделяющихся цветных линий: красной, которой соответствует длина волны, равная 0,044 микрона, зеленой — 0,509 микрона, синей — 0,480 микрона и фиолетовой — 0,468 микрона. Лучи, порождающие эти линии, правильно интерферируют на пространстве до 20 сантиметров. Позднее ученые нашли, что гейслерова трубка, наполненная газом неоном, позволяет получать четкий интерференционный эффект и на большем расстоянии.

В 1892 году был сконструирован специальный прибор — интерферометр, основанный на интерференции света. А в 1893 году в Международном бюро мер и весов была решена чрезвычайно трудная задача определения длины метра в длинах световых волн. Посредством исключительно точных, кропотливых исследований, измерений и сравнений удалось успешно закончить измерение метра в длинах волн красного света кадмия.

Длина одного метра равняется 1 553 163,5 длины волн красного света кадмия, а обратное соотношение такое: длина волны красного света кадмия равна 0,64 384 696 микрона.

Исключительное по своему значению для техники измерительного дела исследование потребовало невероятного упорства и настойчивости в преодолении больших трудностей. Зато работа была исполнена настолько точно, что повторное измерение метра, произведенное через семь лет уже другим способом, дало те же результаты.

С тех пор, с 1893 года, длина прототипа метра из произвольной меры, только приблизительно равной 1/40 000 000 длины земного меридиана, превратилась в величину, которую всегда можно восстановить с достаточной степенью точности, зная число укладывающихся на ней длин волн одноцветного луча света.


* * *

Научно устанавливаемая и научно проверяемая точность линейных измерений понадобилась не потому, что ученые поставили перед собой теоретически отвлеченную задачу, а потому что машинное производство, основанное на взаимозаменяемости, с определенного момента не могло развиваться без единой международной базы точных измерений.

{118}

Глава III. ЗАВОДСКИЕ «ПРЕДСТАВИТЕЛИ» МЕТРА

«Лестница» точности

Основной эталон метра признан безусловно точной мерой.

Можно понять это так, что все «ниже стоящие» меры должны проверяться по эталону, сравниваться с ним. Но такой порядок проверки разрушил бы всю систему точности. Самые ничтожные воздействия на эталон, если бы они повторялись часто, меняли бы его — пусть на столь же ничтожно малые величины. Накладываясь друг на друга, эти изменения довольно быстро исказили бы первоначальную степень точности основной меры и нарушили бы всю строгость системы мер.

Чтобы только изредка привлекать самый эталон к проверкам, изготовлены еще его копии — вот их-то очень редко и проверяют по основному эталону. Но ведь и копий не может быть много — слишком часто приходилось бы «беспокоить» основной эталон для проверки. Копий всего несколько и степень их точности также приходится очень и очень беречь. Поэтому существует еще одна группа образцовых мер — «рабочие эталоны». Их сверяют с копиями, но не со всеми. Копии делятся в свою очередь на две группы. Одна из них служит для проверки рабочих эталонов, а другая, особая, в таких проверках не применяется — она как бы выжидает своего «часа». А этот час наступает тогда, когда почему-либо одну из действующих копий «заподозривают» в потере должной степени точности. Тогда эту копию сравнивают с одной из особой группы. Копии, входящие в нее, называются «свидетелями» эталона.

Значит ли это, что рабочих эталонов так много, что по ним можно проверять измерительные приборы и инструменты на каждом заводе? Конечно нет. Если бы их было много, как бы точно они ни были изготовлены и измерены, был бы неизбежен разнобой в степени точности между отдельными эталонами. Поэтому существуют следующие по точности образцовые меры первого разряда — их проверяют по рабочим эталонам. Затем — образцовые меры второго и третьего разряда.

Все это — образцы меры, хранящиеся в научно-метрологических учреждениях страны, ведающих важнейшим {119} делом хранения и соблюдения точности. Они, эти меры, образуют, по выражению одного советского научного работника-метролога, как бы лестницу точности, спускающуюся от основного эталона до тех измерительных приборов, которые служат для лабораторных и технических измерений вне метрологических учреждений — на предприятиях промышленности. Эти приборы занимают последние ступени лестницы точности.

Замечательные плитки

Представители метра на заводе, заводские эталоны для линейных измерений, — это измерительные плитки. Именно с их помощью улавливаются разности между двумя размерами, выражаемые иной раз несколькими микронами. Эти же плитки помогают «уличить в неточности» и отрегулировать износившийся заводской измерительный инструмент или прибор.

Еще пятьдесят лет назад, в поисках таких мер длины, которые в условиях заводских лабораторий и даже в цеховой обстановке служили бы в качестве образцовых, ученые пришли к следующему выводу: если бы удалось изготовить набор различных стальных плиток с очень точными размерами между мерительными плоскостями, обеспечить относительную неизменность этих размеров и, наконец, путем комбинирования плиток получать любые размеры в пределах определенного размерного промежутка (например, от 1 до 100 миллиметров), то такой набор мог бы служить достаточно точным заводским эталоном длин.

Но создать такой набор было трудной задачей. Прежде всего надо было найти подходящий материал для плиток, такую сталь, высокие качества которой обеспечили бы неизменность размеров после тепловой обработки и в то же время большую износоупорность. Надо было далее найти способы изготовления плиток с идеально плоскими зеркальными мерительными поверхностями. Наконец, надо было установить, каковы должны быть размеры отдельных плиток набора, чтобы с их помощью получать любые размеры внутри заданного размерного промежутка.

Все эти задачи были успешно решены.

Наиболее распространенный набор состоит из 83 плиток, уложенных в специальный ящик. Две {120} противоположные мерительные поверхности каждой плитки отшлифованы и притерты с высокой тщательностью. На каждой плитке обозначено расстояние между мерительными плоскостями. Набор состоит из четырех серий плиток. В первую серию входит 50 плиток, в том числе 49 плиток, имеющих размеры от 1,01 до 1,49 миллиметра (каждая последующая плитка больше предыдущей на 0,01 миллиметра), и одна плитка размером в 1,005 миллиметра. Вторая серия состоит из 49 плиток размерами от 1,6 до 1,9 миллиметра; здесь каждая последующая плитка больше предыдущей на 0,1 миллиметра. Третья серия состоит из девятнадцати плиток размером от 0,5 до 9,5 миллиметров (через 0,5 миллиметра). И, наконец, четвертая серия — из десяти плиток размером от 10 до 100 миллиметров (через 10 миллиметров). Соединив несколько имеющихся в наборе плиток, можно в известных пределах получить любой размер с точностью до 5 микронов.

Представители метра на заводе — измерительные плиты — получили специальное название — «концевые меры длины».

«Клей-невидимка»

Известно, что склеивание бумаги, дерева и других материалов — задача несложная. Канцелярский, столярный и всякий другой клей — достаточно надежные средства. Существуют даже клеи для более или менее прочной склейки двух кусков металла.

Все это — видимые, легко ощутимые средства склеивания. Но ученые-машиностроители нашли невидимый «клей» для соединения воедино двух или нескольких измерительных плиток. Это «склеивание» плиток выполняется следующим образом. Сблизив мерительные плоскости плиток, начинают притирать их друг к другу. Для этого верхнюю пластинку двигают поступательно по нижней и одновременно вращают ее по плоскости скольжения в обе стороны. В результате такого комбинированного движения плитки соединяются настолько крепко, что образуют как бы единое целое.

Вскоре научились так притирать две плитки, что они не разъединялись даже под действием силы в 100 килограммов. Такой притиркой можно «склеить» не только две, но и несколько плиток и получить набор, размер которого равен сумме размеров притертых плиток. {121}

Свойство точно шлифованных поверхностей крепко приставать друг к другу давно уже известно ученым. Уже больше шестидесяти лет назад заметили это свойство у поверочных плит, поверхности которых смазаны тонким слоем масла или другой жидкости. Для разъединения таких плит приходилось иной раз сдвигать их одну по другой, так как отделить их обычным путем оказывалось невозможным.

Притирка двух плиток


Чем тоньше пленка жидкости между поверхностями, тем труднее, даже путем сдвигания, разъединять плиты. Некоторые ученые предположили, что прочное соединение вызывается силой атмосферного давления. Однако выяснилось, что если притирать плитки в безвоздушном пространстве, то свойство сцепления сохраняется полностью.

Тогда решили, что между притираемыми плитками остается настолько ничтожное пространство, что начинают действовать силы молекулярного притяжения.

Это предположение давало очень правдоподобный ключ к разгадке прочного соединения стальных плиток. Молекулярное притяжение начинает проявляться при наибольшей близости между поверхностями, обусловленной исключительной точностью изготовления мерительных плоскостей и тщательным притиранием их друг к другу.

При дальнейшем исследовании «слипания» обнаружилась любопытная подробность: если перед притиравшем переусердствовать в очистке поверхностей, {122} применив для этой цели спирт или керосин, и этим уничтожить все следы жира на поверхности, то прилипание значительно ослабляется. Но если нанести на мерительные поверхности тончайший слой жира или водяного пара, они снова «склеиваются». Сила сцепления, равная силе, которую надо приложить, чтобы разъединить плитки, зависела от того, какая жидкость нанесена на притираемые поверхности.

Площадь притираемых поверхностей плиток, которыми пользовались в опытах, равнялась 4,5 квадратных сантиметра. На эту поверхность попеременно наносили слои различных жидкостей. Сначала это были слои так называемых «тяжелых масел» (масла, получаемые при переработке нефти). На ощупь они кажутся липкими. В этих случаях для разъединения плиток необходима была сила около 14 килограммов. При введении парафина понадобилась для разъединения сила в 20 килограммов, а при нанесении слоя обыкновенной водопроводной воды — даже в 30 килограммов. Так было доказано, что для притираемых поверхностей «клеем» служит жидкость, и лучшим «клеем» является простая вода — «клей-невидимка».

Почему же жидкости, которыми нельзя склеить и двух картонок, оказались таким чудесным «клеем» для зеркально плоских поверхностей мерительных плиток?

Причину этого явления исследовали многие ученые. Их труды в этой области основаны на законах физики. Приведем здесь только вывод, к которому они пришли.

Чем тоньше слой жидкости, тем крепче сцепление.

В центре круглой, диаметром в 23 миллиметра, мерительной поверхности стального стержня помещалась капелька жидкости. К этой поверхности притирали, прижимая к капельке, стеклянную пластинку с особо точной плоской поверхностью. Стеклянную пластинку брали для того, чтобы можно было сквозь стекло наблюдать, как ведет себя жидкость. Площадь, покрытая жидкостью, нее увеличивалась и, наконец, достигла неизменной величины, когда стеклянная пластинка хорошо притерлась.

После этого притертые калибр и пластинку оставили в покое, чтобы можно было наблюдать за изменениями размера диаметра жидкостного пятна. Измерения показали, что пятно продолжает расти, правда, очень медленно. Увеличение диаметра продолжалось в течение двух часов, шло все медленнее и, наконец, прекратилось. {123} При этом сила сцепления возросла в сравнении с первым моментом после притирки, а толщина слоя жидкости, так крепко «склеивающей» притертые поверхности, как показали специальные, очень тщательные измерения, выражалась в тысячных долях миллиметра. Ученые доказали, что при таких именно толщинах слоя молекулы определенных жидкостей весьма прочно сцепляются с притертыми поверхностями и оказывают высокое сопротивление попыткам разъединить их. Бывали случаи, когда для разделения притертых калибров, оставленных на несколько дней в покое, необходимо было, зажав один в тиски, отбивать второй резким ударом.

Если поверхности плиток обработаны с необходимо высокой точностью (до трех или пяти десятитысячных миллиметра), то плитки выдерживают своего рода притирочную самопроверку. Контрольная плитка длиной хотя бы в 20 миллиметров «склеивается» по своим мерительным поверхностям с двумя другими плитками. Затем в получившуюся скобу укладывается с помощью притирки ряд плиток, длина которых в сумме также равна 20 миллиметрам. Еще показательнее другая проверка: скобой, составленной из плиток, проверяется размер мерительной «пробки». Эти опыты проходят успешно только при пользовании высококачественными неизношенными плитками. Легко понять, что сумма даже микроскопических погрешностей на поверхностях плиток не позволила бы осуществить сборку плиток в обоих этих случаях.

Глава IV. ВЗАИМОЗАМЕНЯЕМОСТЬ И ТОЧНОСТЬ

Что такое взаимозаменяемость?

В 1856 году в Лондоне происходил очередной между народный съезд деятелей промышленности. Один из участников съезда поставил вопрос: нельзя ли добиться того, чтобы любая нормальная свеча № 1 всегда точно соответствовала гнезду нормального подсвечника № 1. так, чтобы ее нижний конец не нужно было ни подстругивать, ни обертывать бумагой. Конечно, в данном случае речь шла не только о свечах в подсвечниках. Этот вопрос был значительно более широк и важен. Свеча и подсвечник, о которых заботился участник съезда, просто {124} послужили наиболее показательным примером повседневного соединения двух «родственных» предметов. В нашем обиходе таких предметов множество.

Возьмем, к примеру, хотя бы мужскую сорочку и воротничок или ботинки и калоши.

В самом деле, приходилось бы тратить много времени и испытывать большие неудобства, если бы для подбора воротничка в каждом случае обмеряли шею покупателя. То же самое относится к обуви. Примерять десятки пар калош, чтобы подобрать себе одну пару, — дело хлопотное. Но мы избавлены от этой заботы: существуют определенные номера калош, которые всегда подойдут к определенному размеру ботинок.

Взаимозаменяемость бывает возможна там, где при соединении есть охватывающая часть (в наших примерах — воротничок, калоши) и охватываемая (ворот рубашки, ботинки).

Приведем еще несколько характерных примеров взаимозаменяемых изделий. Цоколь любой электролампочки, купленной где-нибудь в Австралии или в любом другом месте земного шара, всегда ввернется в любой патрон, приобретенный хотя бы в магазине «Электросбыта» в Москве. Лезвие безопасной бритвы, изготовленное в любой стране и на любой фабрике, всегда легко сядет своими тремя отверстиями на три штифта держателя и уложится в его размер.

До сих пор мы приводили для иллюстрации взаимозаменяемости так называемые стандартные изделия. Когда для широко распространенных изделий, вроде патрона и лампочки или винта и гайки, мы устанавливаем один из нескольких типов, характеризующихся определенным материалом, весом, размером, то такие изделия или детали называются стандартными. Если два стандартных изделия предназначены для соединения, то их размеры определяются таким образом, чтобы обеспечить их взаимозаменяемость.

Детали машин также могут быть изготовлены взаимозаменяемыми. Это имеет огромное значение для потребителя. Если бы, ремонтируя, автомобили и тракторы, нельзя было легко и скоро заменять износившиеся части запасными, сколько лишнего времени, труда и средств затрачивали бы городские гаражи, машинно-тракторные станции, ремонтные мастерские. А заводы, {125} изготовляя части машин взаимозаменяемыми, имеют возможность выпускать машины в массовом количестве и в короткий срок.

Взаимозаменяемость и нужды массового производства заставляли и заставляют машиностроителей непрерывно улучшать не только станки и превращать их во все более и более чудесные машины, но и средства измерения в металлообработке. Как шло это улучшение? С чего оно началось?

Пушки и снаряды

Когда шестьсот лет назад, в начале XIV века, появилось огнестрельное оружие, первые пушки стреляли шаровидными снарядами — ядрами. Вначале их обтесывали из камня, а затем, уже в конце XV века, отливали из чугуна. Заводов и фабрик тогда еще не было. Пушки и ядра изготовлялись отдельными мастерами-оружейниками. Каждый из них придавал своей продукции, пушкам, те размеры, которые ему лично казались лучшими. Ядра обтесывались или отливались по размеру дула.

Специальных, более или менее точных измерительных инструментов не было и, чтобы обеспечить ядрам нужный размер, пользовались обычно самой пушкой. Изготовленное ядро закладывали в канал ствола. Если ядро свободно входило и катилось по каналу, оно считалось годным. При таком способе измерения ядро часто оказывалось меньше нужного размера. Поэтому промежутки или зазоры между ядром и стенками канала затыкали всякими материалами. Но почти никогда не случалось, чтобы ядра одной пушки подходили для другой, особенно, если пушки изготовлялись разными мастерами. Конечно, войска очень сильно ощущали на себе вред такого «достоинства» артиллерии.

Количество огнестрельного оружия в армиях увеличивалось. Пушки и ружья, изготовленные вручную, стоили очень дорого. Правители европейских стран, не имея достаточных средств для содержания войск, обязывали каждый город готовить для себя крепостные стены, артиллерию, вооруженную охрану. В средние века города и даже отдельные организации обычно имели свои пушки. Когда начиналась война, то все население облагалось особой податью: отдельные города, села, организации, {126} а также богатые люди — дворяне, купцы — должны были поставлять государству артиллерийское снаряжение.

На определенные сборные пункты свозился этот артиллерийский «налог». Один привозил пушку, другой — ядра, третий — лафеты. И тут оказывалось, что ни ядра, ни лафеты не подходили к пушкам, и вообще все снаряжение отличалось таким разнообразием в размерах, что приходилось тут же устраивать мастерскую по сборке оружия. Все это послужило толчком к организации производства взаимозаменяемых частей пушек и ружей. Осуществить же это было невозможно: не было ни станков, ни инструмента, которые позволили бы достаточно точно изготовлять детали огнестрельного оружия.

В течение XVIII века потребность во взаимозаменяемых частях была еще не настолько велика, чтобы подвинуть технику на следующий этап своего развития. Только в начале XIX века производство взаимозаменяемых частей начало ощутительно развиваться.

Растущие армии капиталистических стран предъявляли повышенный спрос на ручное огнестрельное оружие. Потребность в ружьях исчислялась сотнями тысяч. Во время войны огромные запасы оружия быстро уничтожались. Отдельные государства загружали свою молодую металлообрабатывающую промышленность крупными военными заказами, но при этом предъявлялось требование — быстро и дешево изготовить ружья, а также обязательно добиться взаимозаменяемости одноименных деталей.

Происшествие на Тульском заводе

20 сентября 1826 года оказалось, пожалуй, самым тяжелым и хлопотным днем в многотрудной жизни механика Тульского оружейного завода Павла Дмитриевича Захавы.

Вот уже 16 лет работал он на этом заводе. Им было создано много таких станков, которых еще не знали за границей; много поработал он и над более совершенной организацией труда рабочих и всего производства. Недаром гремела в те годы слава завода, недаром и механики-иностранцы, побывавшие в то время в России, в один голос утверждали, что в западной Европе не знают таких искусных мастеров-станочников и нет там столь отличного завода. {127}

В последнюю неделю Захаве не каждую ночь приходилось поспать. Сегодня ждали на заводе посещения Николая I. Царь-жандарм узнал о том, что на Тульском заводе достигли столь высокого уровня в производстве ружей, что научились изготовлять части ружейного замка взаимозаменяемыми, а ведь еще нигде в мире не удалось этого добиться. Николай хотел и сам убедиться в достоверности этого чуда и постращать им своих высокопоставленных гостей, немецких владетельных принцев. Ведь в те времена уже было ясно, что та страна, которая овладеет искусством массового изготовления взаимозаменяемых частей огнестрельного оружия, приобретет большую силу, может скорее и полнее вооружать свои войска.

Вот почему Захаве пришлось особенно потрудиться в последние дни. Очень уж хотелось, чтоб эти надутые принцы-иностранцы узнали русскую техническую силу, да и боязно было — жестокий царь может «наградить» за конфуз по-своему. Пришлось еще раз тщательно, с пристрастием проверить все станки, всех мастеров, каждый отдельный участок работы. Хоть и уверен был в своем деле талантливый русский механик, но все же придирчиво вглядывался в детали ружейных замков, снова и снова проверял их размеры.

Николай приехал в разгар рабочего дня, а с ним увешанные орденами, звездами, лентами немецкие принцы — Карл Прусский и Филипп Гессен-Гамбургский. Заводское начальство распорядилось принести из арсенала в приемные палаты два изготовленных на заводе ружья, а из цеха — несколько только что собранных замков. От ружей отвернули замки, затем все замки разобрали на части. Одноименные части смешали в одну кучу — сколько частей в замке, столько получилось кучек одинаковых деталей.

Принцы спесиво глядели на все это с чуть заметным смешком в углах губ, переглядываясь, презрительно щурясь. Сам Николай, нет-нет, а взглянет на своих гостей и уже недоверчиво и грозно смотрит на трясущееся заводское начальство.

Спокоен Захава. Теперь, когда он руководит привычной работой, когда с ним его лучшие ученики — отличные мастера металлообработки, он уверенно распоряжается своими рабочими, знает наперед, что успех {128} обеспечен и что этот успех не подстроенный фокус, что он прочно завоеван умением и опытом туляков-оружейников. А если так, нечего волноваться, нечего и бояться вылупленных глаз царя-жандарма.

И так же, как и механик, деловито спокойны мастера-сборщики. Уверенными, точными движениями начали они сборку замков. Одна за другой прилаживались на свои места части из куч на полу. Ни разу не пришлось прикоснуться к ним напильником, подправить размеры, профиль. Еще немного времени — и «растаяли» кучи частей, снова превратились они в собранные замки. И всем видно, понятно, что части замков, принесенных в эту комнату, поменялись «адресом». Теперь многие из них попали в «чужой» замок и все же сборка прошла без единой подгонки, а вновь собранные замки действуют безотказно.

Исчезли, сбежали смешки из уголков поджатых губ обоих принцев. Снова переглянулись они, на этот раз с тревожным недоумением. Что-то промычал один из них, и услужливые придворные из свиты Николая быстро перевели Захаве процеженные сквозь зубы немецкие слова — пожелание гостя. Механик распорядился — один из сборщиков тут же ушел и вскоре принес обычную мишень для ружейной стрельбы. Ее укрепляют на дальней стене палаты.

Захава ждет. Один из принцев подходит к столу, на котором лежат вновь собранные замки, несколько минут пытливо вглядывается в них, затем по очереди берет в руки каждый замок, осматривает его, наконец, выбирает два, откладывает их в сторонку, что-то опять цедит сквозь зубы. И снова Захаве перевели немецкую речь. Механик кивнул сборщику и тот быстро приладил оба отобранных замка к двум ружьям, принесенным из арсенала, и зарядил их. Теперь ружья готовы к стрельбе.

Гость берет одно из них, прицеливается в близкую мишень, стреляет. Рядом с «яблочком» мишени появляется след от пули. Свита угодливо, одобрительно загудела. Но на лице стрелка не видно никакого удовольствия. Наоборот, оно помрачнело. Нервным движением почти вырвал он второе ружье из рук сборщика. Быстро приложил его к плечу, выстрелил — пуля разорвала мишень. Стрелок так и замер на несколько секунд с ружьем, приложенным к плечу. Затем отдал ружье. {129} На вытянувшемся лице появилась кривая улыбка; он что-то сказал по-немецки Николаю, отчего лицо царя расплылось от удовольствия.

Заводское начальство увело гостей. Захава и его помощники убрали ружья и замки. Они были довольны. Как же, ведь грозу-то, царский гнев, пронесло, да и спесивым немцам нос утерли.

В этом и заключалась вся награда, которую получили мастера-новаторы металлообработки за достижение мирового значения, за организацию производства взаимозаменяемых деталей машин. Это достижение русских оружейников предопределило весь дальнейший путь развития машиностроения, массового производства машин.

Взаимозаменяемость достигалась не подгонкой вручную всех одноименных деталей под форму и размеры одной образцовой детали. Такая работа была бы кропотливой, малопроизводительной, а достигнутая «взаимозаменяемость» ненадежной. Самое главное в успехе Захавы и его мастеров было то, что они изготовляли детали на созданных ими наиболее совершенных по тому времени станках и по калибрам — с помощью примененного ранее чем в других странах специального мерительного инструмента, обеспечивавшего строгое постоянство размеров частей замков. Благодаря этому можно было включать в производственный процесс много рабочих, не только высококвалифицированных мастеров, но и менее искусных. Только такая работа и могла привести к производству подлинно взаимозаменяемых деталей.

Царь-жандарм, занятый больше всего подавлением всего передового в России, довольно поздно узнал об огромных достижениях механиков Тульского завода. Намного раньше просочились сведения о них за границу. Уже в 1806 году в Париже была издана книга французского инженера Коти. Вот, что он писал: «...я видел на Тульском заводе, как из находившегося в приемной палате большого количества замков несколько было разобрано, части их перемешаны, а потом из этих частей вновь собраны замки; при этом все части приходились с такой точностью, будто их намеренно пригоняли одну к другой». B те времена книги печатались долго, по несколько лет, не менее долго их и писали и готовили к печати. Поэтому следует считать, что Коти писал свою {130} книгу в последнее десятилетие XVIII века и изложил в ней свои впечатления, полученные, вероятно, еще раньше — во второй половине того же столетия. Это значит, что туляки-машиностроители решили труднейшую задачу взаимозаменяемости лет на 50 раньше, чем об этом дознался царь-жандарм, в семидесятых годах XVII столетия.

Великое дело, осуществленное тульскими оружейниками, имело глубокие корни в нашей стране. Еще в 1715 году, на заре русского машиностроения, по приказу Петра I была составлена своего рода инструкция для оружейных заводов, которая гласила: «На оружейных тульских и олонецских заводах делать фузеи и пистолеты калибром против присланных от его Царского Величества медных образцов...»

А в 1761 году на Тульский же завод пришло распоряжение:

«На каждую оружейную вещь порознь мастерам иметь меры..., по которым каждый с пропорциею всякую вещь при делании приводить мог, без того вещи одна с другою во всем точного равенства не имеют...».

Вот почему уже к 1770—1780 годам можно отнести возникновение в России налаженного производства взаимозаменяемых частей ружейных замков.

И так велико было значение этого важнейшего технического новшества, что американцы постарались присвоить себе творческое первенство в достижении взаимозаменяемости в машиностроении. Они пустили в ход версию, что будто американский машиностроитель Уитней первый в 1798 году таким же способом доказал возможность производства взаимозаменяемых деталей машин. До последнего времени эта ложная версия была очень распространена, проникла она и в нашу страну.

В очень многих случаях западные историки техники, особенно американцы, пытались и пытаются таким способом отнять у нашего народа заслуженное им творческое первенство в научных и технических достижениях. Но остается фактом, что американские машиностроители несомненно узнали о достижениях тульских оружейников в то же время, что и Коти. Это значит, что Уитней, если даже он действительно чего-то добился в области взаимозаменяемости, лишь пытался повторить то, чего достигли туляки. И вся шумиха, поднятая американской {131} печатью, оказалась рекламным обманом. Но даже из американских источников известно, что по условиям заказа Уитней должен был изготовить 10 000 ружей: 4000 в первый год и 6000 — во второй. На самом же деле он в первый год изготовил лишь 500 ружей и еще семь долгих лет понадобилось ему для того, чтобы изготовить остальные 9500. Взаимозаменяемость достигалась благодаря мастерству и кропотливой работе немногих искусных рабочих, которые вручную подгоняли все одноименные части под размер образцовой детали. Это было очень похоже на долго и трудно выполнявшийся фокус, трюк. Это также значит, что Уитней повторил не тульский способ производства взаимозаменяемых частей, а лишь его результат, но сделал это за огромный срок и с большим трудом.

А Тульский завод уже в начале Отечественной войны 1812 года производил те же 10 000 ружей в один только месяц. Это значит, что производительность труда на Тульском заводе оказалась почти в 100 раз больше.

Образцовые медные меры Петра I и тульские «на каждую... вещь, порознь... меры...» и послужили родоначальниками калибров, тех мерительных инструментов, которые легли в основу закона машиностроения и нашего времени — взаимозаменяемости деталей машин. Первые такие инструменты — нормальные калибры — появились уже через 12 лет после того, как стало известно достижение Тульского завода, около 1838 года, и довольно быстро распространились по всему миру.


* * *

В самом начале производства калибров получилось нечто вроде «чуда».

Мастера-станочники замечали, что обыкновенный калибр-пробка, нормально изготовленный по калибру-кольцу (об этих калибрах рассказано в следующей главе), через некоторое время «отказывался» входить в это самое кольцо. Когда обмеряли пробку, оказывалось, что она «пополнела» на какую-то, пусть очень малую, долю миллиметра. Выяснилось, что после закалки в металле калибра остаются так называемые внутренние напряжения, от которых он сжимается. Когда эти напряжения с течением времени исчезают, металл как бы разжимается, калибр «растет», и его приходится вновь шлифовать, {132} чтобы привести к правильным размерам. Пришлось изменить порядок изготовления калибров: после закалки их сдавали на несколько месяцев на склад. Калибры там вылеживались и при этом «росли» или «старели». Когда процесс старения прекращался, калибры «доводились» до окончательного размера.

Процесс изменения размеров при вылеживании длился четыре-шесть месяцев, и это было неудобно для заводов.

Когда автор этой книги работал в Туле, местный мастер, глубокий старик из числа ветеранов металлообработки, рассказал следующую историю.

В середине XIX столетия один из мастеров Тульского оружейного завода нашел способ в течение одних суток приводить калибры в состояние, годное для окончательной доводки.

Получив партию закаленных калибров, он уносил их домой, а на другой день возвращал, и после доводки эти калибры не «росли». Мастер долго скрывал секрет, стремясь «заработать» на своем открытии. «Гости», заглядывавшие к нему по вечерам, чтобы застать врасплох, обычно наблюдали мирную картину: на столе кипел самовар, семья мастера ужинала, калибров и не было видно.

Секрет же оказался именно в кипящем самоваре. Там, на дне, вокруг трубы лежали стальные пробки, кольца, скобы. Кипячение уничтожало внутренние напряжения в металле. С тех пор туляки-металлисты начали применять кипячение для искусственного старения калибров во всех случаях, когда необходимо было обеспечить неизменяемость размеров после тепловой обработки.

Эта история показалась интересной, но не очень уж достоверной — ведь никаких имен и дат не было названо, никакими документами она не была подтверждена. Но в последнее время отечественные исследования в области истории техники подтвердили, что именно тульские мастера первые открыли законы искусственного старения металла.

Впоследствии ученые с помощью точных исследований обосновали приемы тульских мастеров.

Было установлено, что при искусственном старении необходимо кипятить калибры около 10 часов при температуре в 110°.

{133}

Глава V. ИНСТРУМЕНТЫ ТОЧНОСТИ

Кольцо и пробка

Устройство нормальных калибров не заключало в себе ничего сложного или особо нового. Просто было предложено измерять цилиндрические детали постоянными для данного наружного или внутреннего размера калибрами. Для измерения диаметров отверстий таким калибром служит очень точно изготовленный валик, так называемая пробка, а для измерения внешних диаметров — кольцо или скоба. Само собой разумеется, что для каждого размера должен быть изготовлен набор этих инструментов, которые и были названы нормальными калибрами. На каждом из них, будь то кольцо, пробка или скоба, отмечался номинальный размер, для определения которого данный калибр предназначен. Изготовляя калибры, старались как можно точнее подогнать их под этот размер.

Нормальные калибры явились значительным шагом вперед в области техники измерений в машиностроении. До этого на большинстве заводов для изготовления данного изделия или детали определенной машины служил шаблон — образцовое изделие. Это вызывало необходимость в большом количестве шаблонов. Пользование так называемым универсальным мерительным инструментом (о котором речь будет впереди) для достижения необходимой точности требовало высокой квалификации рабочего, много времени и обходилось дорого. Нормальный калибр, общий для имеющих один и тот же размер деталей всех машин и не требовавший высокой квалификации рабочего, значительно удешевил, ускорил производство и вместе с тем обеспечил более высокую точность изготовления деталей.

Но промышленность последней четверти прошлого века уже не могла удовлетворяться этими достижениями.

Если изготовить одну деталь — валик — по нормальному калибру-кольцу — и вторую деталь с внутренним цилиндрическим отверстием по нормальному калибру-пробке, то первая деталь должна войти в отверстие второй плотно, но без усилия рабочего. Понятно, что для обеспечения этого условия валик должен входить в кольцо-калибр не менее плотно. Насколько можно {134} допустить отступление от идеальной плотности, должен решить сам рабочий при изготовлении и контролер при приемке деталей. И тот и другой для такого решения располагают только собственным опытом и чутьем. В результате и здесь вставал вопрос о необходимости более или менее высокой квалификации рабочих и о повышении темпов производства, об экономической выгодности нормальных калибров. Кроме того, были неизбежны нескончаемые споры между рабочим и приемщиком, и во многих случаях без специальных измерений трудно было решить, кто прав.

Так как у каждого работника на производстве могла быть своя собственная (субъективная) оценка ощущения «болтания» валика в кольце, то определенного мерила «дозволенного» и «недозволенного» отклонения от размера нормальный калибр не давал. Поэтому нормальные калибры для конца XIX и начала XX веков уже не могли служить мерительной базой производства взаимозаменяемых деталей машин. Экономически их применение по указанным уже причинам было невыгодно.

Выход из трудного положения был найден в применении предельных калибров, с введением которых связан резкий скачок вперед в развитии и повсеместном распространении производства взаимозаменяемых частей машин. Так как предельные калибры являются детищем «теории допусков», рассмотрим, что она собой представляет.

Что такое допуск?

В нашей стране часто бывает, что завод, которому поручено изготовление сложной машины с большим количеством входящих в нее трудоемких деталей, нуждается в помощи других заводов. Эти заводы-«помощники» непосредственно не связаны ни с основным заводом, ни между собой. Их связывают только чертежи заказанных деталей. И все же, когда чуть ли не с 10–15 заводов детали приходят на основной завод, из них легко собирают сложную машину. Такая сборка может быть осуществлена только благодаря тому, что размеры частей на чертежах снабжены «допусками». Что же такое «допуск»?

В повседневной жизни, определяя значения каких-либо величин (возраст, цена, размер, вес), мы часто {135} употребляем слово «около». Например: «Ему около сорока лет». Говоря так, мы заранее допускаем возможность ошибки в определении. Обычно в таких случаях подразумевается и допускается некоторое отклонение. Это отклонение не является строго определенным.

В технике же граница допускаемого отклонения устанавливается очень жестко. Делается это так.

В результате расчета получают размер нужной детали какой-либо машины. Это и есть номинальный размер. Изготовить деталь точно с помощью нормального калибра по номинальному размеру невозможно. Размер всегда получится несколько больше или меньше номинального. Чтобы отклонение не вышло из пределов, допускаемых в каждом отдельном случае, мы сами обычно назначаем допускаемые пределы отклонений в обе стороны. Зная верхний и нижний пределы данного размера, мы можем соответственно назначить и допуска для размера сопрягаемой детали и этим обеспечить взаимозаменяемость.

Если для размера валика диаметром в 15 миллиметров мы назначили допускаемые отклонения +0,05 миллиметра и –0,05 миллиметра, то это значит, что годными будут все валики, диаметры которых уложатся в промежуток между 14,95 и 15,05 миллиметра. Остальные попадут в брак, так как они либо не войдут в отверстие сопрягаемой детали, либо будут «болтаться» в нем больше, чем это позволяют условия удовлетворительной работы машины. Размеры «15,05» и «14,95» называются предельными размерами валика. Разность между двумя предельными размерами (а также сумма величин отклонений) называется «допуском» (общим). В нашем случае допуск равен: 15,05–14,95 = 0,1 миллиметра (или 0,05 + 0,05 = 0,1 миллиметра), а это значит, что можно позволить колебания в точности изготовления валика в пределах одной десятой миллиметра. Записывают размер так:

15 +0,05 –0,05

Учение о допусках не так уж молодо. Оно насчитывает около 60 лет своего существования. Постепенно стройная система допусков стала внедряться в промышленность. Но только с начала империалистической войны (1914–1918 годов) вместе с ростом производства на военных заводах внедрение работы по допускам пошло быстрыми темпами. У нас в СССР введена своя {136} система допусков, основанная на учете всего большого отечественного опыта.

Каким же образом «поймать» заданный в пределах допуска размер? Вот тут-то и приходит на помощь предельный калибр — измерительный инструмент, позволяющий «ловить» размер в пределах допускаемых отклонений даже в тех случаях, если эти отклонения выражаются в микронах.

Допуск в действии

Представим себе инструмент, похожий на букву X. В средней части этого инструмента обозначено 40,0 у одной из дуг — 0, а у другой минус 0,050. Это и есть предельный калибр — «скоба» — для измерения диаметров, номинальный размер которых равен 40 миллиметрам, допускаемое верхнее отклонение равно нулю, а нижнее — минус пятьдесят тысячных миллиметра, или 50 микронов. Весь допуск, таким образом, равен: 40,0 – 39,950 = 0,050 миллиметра, или 50 микронов. Расстояние между губками скобы с той стороны, где помечено 0, равно 40 миллиметрам, а с другой стороны — 39,950 миллиметра. Первая сторона называется проходной, вторая — непроходной, или браковочной. Валик годен, если скоба, повернутая к изделию проходной стороной, легко под тяжестью собственного веса надвигается сверху на валик, а повернутая непроходной стороной не надвигается, а только «закусывает» и не идет дальше (если скоба надвигается не сверху, необходимо очень легкое усилие). С помощью такой скобы рабочий и контролер имеют возможность, не обладая особой квалификацией, легко и быстро проверять размеры деталей. Если очень точно измерить забракованные с помощью предельной скобы изделия, то окажется, что их диаметры либо «полнее» 40, либо меньше 39,950 миллиметра.

Двусторонняя предельная скоба


Внутренний диаметр отверстий также проверяется предельным калибром-пробкой. Этот калибр состоит из двух измерительных пробок, насаженных на один {137} стержень-рукоятку. На средней части рукоятки нанесен номинальный размер, а на концах — допускаемые отклонения. Диаметр одной из пробок равен наибольшему предельному размеру кольца, диаметр второй — наименьшему предельному размеру. И здесь годными окажутся только те кольца, в которые первая (непроходная пробка) под тяжестью собственного веса калибра не войдет, а вторая (проходная) при тех же условиях войдет свободно.

Измерение предельной скобой; справа—проходная сторона скобы под тяжестью своего веса надвинулась на валик; слева—непроходная сторона скобы лишь „закусила” поверхность валика и дальше не пошла

Для каждого номинального размера с определенными допускаемыми отклонениями необходим специальный калибр (скоба или пробка), который уже не годится для того же номинального размера, но с другими допускаемыми отклонениями. В отличие от универсального инструмента (штангенциркуль, микрометр) эти калибры относятся к жестким измерительным инструментам. Первыми можно измерять большое количество разных по размеру деталей — они универсальны, вторыми же — детали одного размера, да еще с определенными допускаемыми отклонениями. Если рабочий, даже малоквалифицированный, пользуясь этим инструментом, точно выполняет правила обращения с ним, он не наделает ошибок.

Но существуют и нежесткие, переставные калибры-скобы и так называемые внутренние калибры, заменяющие пробки (их еще называют «регулируемые» калибры). {138} Переставные скобы широко применяются и дают возможность измерять несколько номинальных размеров (правда, в небольших пределах). Мерительные стерженьки этих скоб могут быть отрегулированы (переставлены) с помощью очень точных микрометрических винтов. Установочными винтами можно перемещать каждый мерительный стержень для получения нужного размера. Чтобы не допускать самовольной перестановки стерженьков, все устройство закрепляется таким образом, чтобы нельзя было сдвинуть винт.

Предельные калибры появились приблизительно между 1895—1900 годами. Примерно в это же время работа по новым калибрам была внедрена в России одним из крупнейших русских инженеров А. П. Бородиным.

Точность в 0,5 миллиметра

Мы уже знаем, что существуют не только «жесткие» мерительные инструменты — скобы и пробки, но и «универсальные», такие, которыми можно измерять различные размеры.

Размеры, проверяемые в изделиях различной формы


Такие инструменты нужны станочнику в цеховой обстановке на каждом шагу. В работе ему приходится проверять много различных по величине промежуточных размеров, а ведь калибры преимущественно служат {139} только для проверки окончательных размеров. Кроме того, жесткие калибры удобны, когда изготовляются в большом количестве одни и те же детали. Если же приходится в небольшой мастерской изготовлять единичные и различные изделия, удобнее пользоваться универсальным инструментом.

В зависимости от необходимой при этом степени точности применяется и разный универсальный измерительный инструмент.

* * *

Первым и простейшим таким инструментом еще в глубокую старину была линейка. В дальнейшем общая длина линейки стала все точнее соответствовать представляемой ею мере, а наносимые на нее деления становились мельче. Этим инструментом пользовались для измерения длины на протяжении многих веков. Применяют его и в наши дни.

Но линейка обладала недостатками, которые делали ее не вполне пригодной даже для нужд примитивной техники средних веков. Измерение с помощью линейки требовало очень кропотливой работы: нужно было очень тщательно прикладывать ее к измеряемому предмету, чтобы сколько-нибудь точно установить расстояние между предельными точками. Еще более трудно было измерять линейкой наружный и внутренний диаметры цилиндрического тела.

Эти затруднения послужили толчком к изобретению (в помощь линейке) кронциркуля и нутромера — двух мерительных инструментов, которыми уже располагали и древние мастера. Обе ножки кронциркуля подвижны вокруг общего шарнира и могут быть закреплены винтом в определенном положении одна относительно другой. Для измерения толщины или диаметра применяют кронциркуль, у которого ножки изогнуты вовнутрь. А нутромер развился из кронциркуля путем изгиба концов обеих ножек в противоположные стороны.

В настоящее время эти инструменты даже в усовершенствованном виде используются только для грубых измерений.

Доступная точность измерения с помощью линейки ограничивается величиной наименьшего ее деления — миллиметра. Если конечная точка измеряемой длины

{140}










Измерение линейкой: а — линейку следует прикладывать ребром, а не плоскостью (под прямым углом); б — при измерении внутреннего диаметра цилиндрической детали ребро линейки должно пересечь центр окружности и край ее не должен при этом „уходить” ниже кромки отверстия; в — при измерении длины цилиндра — приложить линейку точно параллельно его оси; г — измерение малых толщин (буртиков, заплечиков, фланцев) производится с помощью линейки, снабженной скобой; д — для измерения глубины выемок, отверстий, пазов линейку соединяют со скользящей по ней колодкой

{141}

оказывается между двумя соседними делениями линейки, то приходится пренебречь неточностью и принять какое-нибудь одно из двух соседних показаний, или «на глаз» решить, какую часть деления следует учесть для более точного определения искомого размера. Обычно удается таким образом повысить точность линейки до половины величины ее наименьшего деления — до 0,5 миллиметра. Это и есть характерная степень точности современной линейки. И все же удается применить ее, пусть для грубых, но самых разнообразных измерений.

а

б

в

Измерение кронциркулем и нутромером: а — одну ножку кронциркуля прикладывают к начальному срезу линейки и отмечают штрих, которого коснулась другая ножка; б — чтобы установить нутромер на проверяемый размер, упирают одну ножку в плоскость у конечного среза линейки (приставленную под прямым углом), затем вращают установочный винт до тех пор, пока другая ножка не попадет на штрих того деления, которое отмечает заданный размер; в — при измерении диаметра отверстия разводят ножки нутромера до легкого касания со стенками


* * *

Самолеты и автомобили, тепловозы и корабли, тракторы и комбайны, турбины и двигатели внутреннего {142} сгорания, текстильные, обувные и другие рабочие машины — все они зарождаются и живут в воображении конструкторов до тех пор, пока их очертания не нанесены на бумагу в виде точно выполненных чертежей. Эти чертежи служат руководством и модельщику, который изготовляет модели для будущих отливок — заготовок деталей машины, и для самого литейщика, который по моделям будет отливать эти детали, и наконец, для рабочего-станочника, который обработает заготовку, превратит грубо намеченные в ней очертания будущей детали в точный ее профиль, соответствующий чертежу и проставленным на нем размерам. Этот профиль, соотношения размеров частей детали и их взаимное расположение — все это может быть выражено каким-то количеством проставленных на чертеже размеров. В цех к станку спускается рабочий чертеж — он служит руководством к обработке поданной заготовки или материала. На чертеже для некоторых изделий указывается не только их величина, но и степень точности допуска. Если размер выражен целым числом миллиметров или целым числом с половиной, его можно проверить линейкой.

Этот инструмент представляет собой узкую и тонкую стальную пластину. На одной из ее поверхностей — измерительная шкала, разделенная на миллиметры. Линия начального среза линейки принимается за нуль. Далее, через 10 делений, проставлены в последовательном порядке числа, обозначающие количество сантиметров.

Обычно пользуются линейками со шкалами в 20, 30 и 50 сантиметров (200,300 и 500 миллиметров). Бывает, что на них наносится и вторая такая же шкала, но в помощь глазам станочника ее миллиметровые деления разбиты средним штрихом на две половины по 0,5 миллиметра.

Точность в 0,1 миллиметра

В древние и средние века измерительная техника улучшалась очень медленно. Только в период мануфактур требования к точности измерительных инструментов несколько повысились. То, что не существовало такого инструмента, с помощью которого можно было бы непосредственно измерять величины, меньшие, чем самые малые деления линейки, очень задерживало развитие металлообработки. Нужда в таком инструменте ощущалась {143} остро. В первой половине XVII века появилось для этой цели очень простое и в то же время очень остроумное приспособление. Его назвали «нониус» по имени португальского монаха Нуньеса. Вне Португалии это имя произносилось — Нониус. Этот монах — ученый XVI столетия — предложил способ разделения на части угловой меры — градуса. Ничего общего этот способ не имеет с тем приспособлением, которое впоследствии позволило измерять доли наименьшего деления. Но... так случилось, что за этим приспособлением осталось название «нониус».

Штангенциркуль: 1 — основная линейка; 2 и 3 — губки линейки; 4 — рамка с нониусом; 5 и 6 — губки рамки; 7 — нониус; 8 — зажим рамки; 9 — микрометрическая подача рамки


В конце XVII века удалось создать усовершенствованную измерительную линейку — штангенциркуль. В те времена этот инструмент был еще очень грубым по своему устройству и изготовлению. Но он оказался предком современного штангенциркуля, с помощью которого машиностроители овладели точностью до 0,1 миллиметра.

На основной стержень штангенциркуля — линейку — нанесены сантиметровые и миллиметровые деления. Когда понадобилась еще большая точность, то по закону десятичности метрической системы пришлось разделить миллиметр на его десятые доли. Эта задача и решена путем соединения штангенциркуля с нониусом.

В чем же заключается способ измерения с помощью нониуса? {144}

Нагляднее всего его можно усвоить из примера измерения длины с помощью простейшего штангенциркуля с нониусом. Сначала ознакомимся с устройством этого инструмента. На стальной масштабной линейке с неподвижной губкой на конце скользит подвижная рамка, так называемый «движок», со второй губкой. В движке имеется прорезь или четырехугольное окошечко, которое позволяет видеть основную шкалу линейки. На краю нижней кромки окошечка (прорези) нанесена вторая маленькая шкала, состоящая всего из 10 делений; каждое из них по длине равно 9/10 миллиметра, а длина всей шкалы, следовательно, равняется девяти миллиметрам. Это и есть нониус. Первый же штрих — нулевой — нанесен таким образом, что при сомкнутых губках он точно совпадает с нулевым штрихом основной шкалы и, следовательно, десятое деление нониуса совпадает с девятым делением основной шкалы. Вообще, если нулевое деление нониуса поставить против одного из любых штрихов линейки, то десятое его деление совпадает с девятым по счету от этого штриха делением линейки.

Если определяется размер какого-нибудь предмета, предположим, диаметр валика, то губки раздвигаются, валик вводится в просвет между ними; после этого подвижная губка подводится к валику до легкого соприкосновения с его поверхностью. Стопорный винт движка закрепляет губки в этом положении. Нулевая отметка нониуса укажет на основной линейке величину диаметра валика. Если эта отметка точно показывает целое количество миллиметров, то она и является результатом измерения.

Допустим, что нулевая отметка нониуса точно совпадала с восьмым миллиметром по основной шкале. Это значит, что диаметр валика равен 8 миллиметрам. Но если нулевая отметка нониуса окажется где-то между восьмым и девятым делением, то для установления размера приходится обратиться к помощи нониуса. Очень легко доказать, что все же какая-либо другая из десяти отметок нониуса обязательно совпадет с одной из отметок основное линейки.

Предположим, что размер валика нам известен и равен 8,6 миллиметра. Значит, первый (после нулевого) штрих нониуса отметит на основной линейке 9,5 миллиметра, второй — 10,4, третий — 11,3, четвертый — 12,2; пятый — 13,1 и, наконец, шестой — 14 миллиметров. Это {145} значит, что штрих шестого деления нониуса совпадет со штрихом 14-го деления основной шкалы. Если бы диаметр валика равнялся 8,8 миллиметра, то с каким-либо из делений основной шкалы совпало бы именно восьмое деление нониуса.

При сомкнутых губках штангенциркуля нулевое деление нониуса совпадает с нулевым делением основной шкалы


Отсюда вывод: если нулевая отметка нониуса не совпадает с целым числом миллиметров, то количество десятых долей миллиметра, входящих в измеряемую длину, определяется порядковым номером того деления шкалы нониуса, которое совпадает с каким-либо из делений основной шкалы. Измерив валик и установив, что нулевая отметка нониуса пришлась между 8-м и 9-м миллиметрами основной шкалы, определяем, какое деление нониуса совпало с делением основной шкалы, и, если таким делением нониуса оказалось именно шестое, говорим что диаметр валика равен 8,6 миллиметра. Справедливость этого можно доказать очень просто. Мы произвели наше примерное измерение и установили (для данного случая), что шестое деление нониуса совпало с 14-м делением линейки. Можно утверждать что «14» больше искомого диаметра валика на шесть делений нониуса. Но 6 × 0,9 = 5,4 миллиметра, следовательно, искомый размер равен: 14—5,4 = 8,6 миллиметра.

После того как глаза привыкают быстро читать показания инструмента, следует овладеть еще одним мастерством: когда опытный станочник или слесарь окончательно устанавливает подвижную губку с помощью регулировочного винта, он выполняет это легким движением большого и указательного пальцев. Как только подвижная ножка коснется поверхности измеряемой детали, пальцы чувствуют это и как бы сигнализируют мозгу: «стоп, довольно, дальнейшая подача ножки не только не нужна, но может исказить показание инструмента и даже повредить его». Развитие такого чувства меры — дело практики.

Штангенциркуль с нониусом — очень распространенный универсальный измерительный инструмент и в наши дни. С его помощью можно получить и большую степень точности — до сотых долей миллиметра, разбив шкалу нониуса на большее число делений. Но в основном историческая роль нониуса в развитии измерительной техники сводится к тому, что с его помощью мир приобрел возможность получать точность измерений до 0,1 миллиметра.

Точность в 0,01 миллиметра

Если усовершенствованная масштабная линейка измеряет с точностью до 0,5 миллиметра, а обычный штангенциркуль с нониусом — до 0,1 миллиметра, го точность в 0,01 миллиметра достигается измерением с помощью микрометра. Это — измерительный инструмент, в конструкции которого используется микрометрический винт — винт с очень точно изготовленной нарезкой и очень малым шагом (расстояние между вершинами двух последовательных витков резьбы). Если гайка делает полный оборот по винту, она совершает линейное перемещение вдоль оси винта, равное его шагу; если же гайка повертывается, к примеру, только на 1/50 долю полного оборота, она продвинется по оси на 1/50 долю шага. При большой точности изготовления такого винта обеспечена и высокая точность соответствия между долей оборота гайки и линейным его перемещением. Этим и воспользовались машиностроители. Примерно в середине прошлого столетия они создали новый измерительный инструмент — микрометр, оказавшийся настолько совершенным, что его высокая точность даже опередила потребности машиностроителей того времени. {147} Этим, а также и трудностью его изготовления следует объяснить, что в течение 25 лет им почти не пользовались. Только с последней четверти прошлого века этот инструмент нашел широкое применение в измерительной технике. В значительной степени это было обусловлено теми требованиями, которые выдвигались развитием производства взаимозаменяемых деталей машин.

Измерение микрометром


Как устроен и работает микрометр? На одном конце стальной жесткой скобы вмонтирована закаленная «пятка» с очень точно обработанной мерительной поверхностью. Другой конец скобы переходит в цилиндрическую втулку — ее называют «стебель» микрометра. На внутренней поверхности стебля нарезаны витки очень точной мелкой резьбы. Стебель служит гайкой для микрометрического винта, который и перемещается внутри него. Таким образом, в микрометре гайка неподвижна, а винт вращается и перемещается по прямой линии. Ненарезанная часть этого винта (в виде цилиндрического стержня) проходит сквозь стебель и может передвигаться или по направлению к неподвижной пятке или, наоборот, уходить от нее. Срез стержня также представляет собой очень точно обработанную закаленную мерительную поверхность. Другой конец винта несет на себе жестко скрепленную с ним втулку; ее называют «барабан». Эта деталь вращается вместе с микрометрическим винтом.

Измеряемую деталь помещают в скобу микрометра между мерительной пяткой и торцом подвижного стержня. Вращая барабан, передвигают стержень к измеряемой детали до соприкосновения с нею.

Один оборот винта передвигает мерительный стержень на длину шага микрометрической резьбы — на 0,5 миллиметра. Всего на винте 50 витков такой резьбы: это значит, что мерительная поверхность стержня может переместиться на 25 миллиметров от своего исходного положения (такое положение бывает или тогда, когда микрометр раскрыт на полную величину своего предела измерения — 25 миллиметров, — или, когда мерительные поверхности стержня и пятки правильно сомкнуты). Чтобы можно было видеть, на сколько оборотов винта стержень удален от пятки, поверхность стебля разделена продольной горизонтальной чертой, а по ее обеим сторонам нанесены две шкалы. Одна из них — основная — состоит из 25 делений ценою каждое {148} в 1 миллиметр; другая — из 24 таких же делений, но ее штрихи смещены относительно делений первой шкалы на 0,5 миллиметра. Получается так, что каждый штрих второй шкалы разбивает на две половины каждое деление основной шкалы. За один оборот винта стержень перемещается на длину его шага — на 0,5 миллиметра — или на половину деления основной шкалы. На этой шкале первый штрих обозначен нулем. Далее (последовательно) обозначен своим порядковым числом конечный штрих каждого пятого деления; получается ряд цифр: 0—5—10—15—25.

Микрометрический винт (справа) и устройство круговой шкалы (слева)


Если представить себе полный виток резьбы микрометрического винта в развернутом виде, мы получим прямую линию; ее можно разделить на 50 равных частей. Один оборот винта — его вращение по одному витку резьбы — передвигает стержень на всю длину шага (на 0,5 миллиметра); если же повернуть винт только на 1/50 оборота или на 1/50 часть развернутой линии витка, то и перемещение стержня окажется в 50 раз меньше, оно будет равно 0,5:50 = 0,01 миллиметра.

50 делений окружности одного витка резьбы нанесены в виде шкалы на скосе барабана. Каждый из штрихов этой шкалы может быть совмещен с продольной линией на стебле микрометра. После этого поворот барабана на одно деление собственной шкалы передвинет стержень на 0,01 миллиметра. Теперь можно приступить к отсчету показаний микрометра. {149}

С продольной линией на стебле совпал один из штрихов круговой шкалы барабана. Начинаем с чтения показания шкалы на стебле: срез барабана как бы отсек определенную часть шкалы. Допустим, что ближайшее к срезу число на основной шкале «10»; затем на ней же видно еще два целых деления. Значит, уже ясно, что данный размер содержит 10 + 2 = 12 миллиметров. После 12-го деления, еще ближе к срезу барабана, едва виден штрих второй шкалы — значит, надо прибавить еще 0,5 миллиметра.

На глаз могло бы показаться, что это и есть точное показание микрометра — линия среза барабана как будто совпадает с линией штриха второй шкалы на стебле. Но... круговая шкала барабана во-время подсказывает станочнику, что глаза его обманывают. (Ведь тот штрих круговой шкалы, который отмечен нулем, не совпал с продольной линией на стебле. На сколько? На одно деление! Вот, если мы повернули бы барабан по часовой стрелке на это одно деление, тогда получилось бы полное совпадение линии среза барабана со штрихом второй шкалы. При этом отсеченный участок шкалы на стебле уменьшился бы на длину, соответствующую вращению микрометрического винта на 1/50 его оборота — на 0,01 миллиметра. Тогда и можно было бы считать, что результат измерения — 12,5 миллиметра. И во всех случаях, когда нулевой штрих круговой шкалы совпадает с продольной линией на стебле, результат измерения выражается или целым числом миллиметров или целым числом с половиной.

Но в нашем случае это не так: налицо несовпадение на одно деление, а это значит, что к величине 12 + 0,5 миллиметра следует прибавить еще 0,01 миллиметра; получится конечный результат: 12 + 0,5 + 0,01 = 12,51 миллиметра.

Бывают случаи, когда нужно измерить микрометром деталь, размер которой больше 25 миллиметров. Кроме того, приходится измерять иногда две и больше деталей в совмещенном виде, а их общий размер больше 25 или даже 50 миллиметров. Во всех таких случаях применяются микрометры с большим пределом измерения. Если деталь больше 25, но меньше 50 миллиметров, применяется микрометр с расстоянием в 50 миллиметров между пяткой и исходным положением стержня. Если деталь больше 50, но меньше 75 миллиметров {150} соответствующее расстояние равняется 75 миллиметрам. Могут, конечно, применяться микрометры и с большими пределами измерения. Но во всех случаях остаются только 50 витков резьбы с шагом в 0,5 миллиметра, и стержень выдвигается по направлению к пятке лишь на 25 миллиметров. Получается так: в обыкновенном малом микрометре мерительная поверхность стержня перемещается от 0 до 25 миллиметров; в микрометре с пределом измерения до 50 миллиметров и больше — га клее от 0 до 25, но к результату добавляется то чисто миллиметров, на какое величина предела измерения больше 25.

В устройстве современных микрометров предусмотрена на конце рукоятки стопорная гайка — небольшая накатанная деталь с пружинным и зубчатым механизмами внутри. Эту деталь называют «трещоткой». Вращая барабан, доводят мерительный стержень до наибольшего приближения к поверхности измеряемого предмета, но без контакта с нею; затем прекращают вращение барабана и начинают вращать трещотку, которая продвигает стержень ровно настолько, чтобы произошло правильное касание с измеряемым предметом. Как только усилие прижима стержня к этому предмету достигнет допускаемой величины, трещотка, сколько бы ее ни вращали, не продвинет дальше винта — она будет вращаться вхолостую.

Для того чтобы можно было закрепить мерительный стержень в каком-либо одном положении, служит особая деталь микрометра — зажимное кольцо.

Бывают микрометры для измерения ширины пазов или диаметра внутренних размеров деталей, для измерения глубины отверстий и пазов. Но устройство и способы применения всех разновидностей этого инструмента в основном очень схожи. С помощью микрометра можно «уловить» даже 0,001 миллиметра.

Но в цеховой обстановке для отдельных измерений такая точность редко может понадобиться; кроме того, для такой точности существуют другие, более совершенные, измерительные средства — приборы, о которых речь будет впереди. Поэтому микрометр был и остается основным инструментом для измерения с точностью до 0,01 миллиметра.

{151}

Точность в 0,001 миллиметра

Если мы располагаем неравноплечим рычагом с соотношением плеч 1 : 10, то перемещение конечной точке меньшего плеча на 0,1 миллиметра вызовет перемещение конечной точки большего плеча на 1 миллиметр. Легко представить себе, что таким путем можно получить и большие точности отсчета.

Внешний вид индикатора


Этот принцип был использован в конце XIX века для изготовления особого измерительного прибора — индикатора. Усовершенствование индикатора привело к созданию миниметра; этот прибор позволил проверять размеры с точностью до тысячных долей миллиметра. Он не указывает прямо размера той или иной измеряемой детали, а показывает лишь, насколько ее размер отклонился от заданного по чертежу, или отмечает совпадение размеров.

Измерение с помощью индикатора производится следующим образом. Индикатор закрепляют на стойке и под его мерительный шрифт подводят набор мерительных плиток с общим размером, равным размеру измеряемой детали, и путем регулировки устанавливают стрелку на нулевое деление шкалы. Затем плитки убирают и на их место устанавливают измеряемую деталь. Отклонение стрелки индикатора вправо или влево на определенное число делений показывает, насколько размер детали отклоняется от заданного.

Шкала миниметра имеет 20 либо 60 делений, которые нанесены черными штрихами на белом поле на расстоянии одного миллиметра друг от друга. В зависимости от условий работы, для которой предназначен прибор, «цена {152} деления» на шкале колеблется. Цена деления — это значение (в миллиметрах) отклонения величины измеряемого изделия от заданной, соответствующее передвижению указателя шкалы на промежуток между двумя соседними штрихами. Если цену одного деления прибора умножить на общее количество делений шкалы, то получается наибольшая величина отклонения, отмечаемая прибором. Для прибора с 20 делениями цена деления может равняться 0,02; 0,01; 0,005; 0,002 и 0,001 миллиметра. Соответственно величина отклонений размеров составляет 0,4; 0,2; 0,1; 0,04; 0,02 миллиметра. Для прибора с 60 делениями цена деления может равняться 0,01; 0,005; 0,002 миллиметра, а наибольшая величина отмечаемых отклонений размеров соответственно 0,6; 0,3 и 0,12 миллиметра.

Конструкция прибора основана на принципе использования рычажной передачи. Металлическая колодка снабжена У-образными канавками на верхней и нижней поверхностях, смещенными в отношении друг друга. В эти канавки сверху упирается неподвижная призма, а снизу — верхний конец мерительного стержня. Если мерительный стержень движется кверху, то происходит перекос колодки, и величина подъема стерженька будет показана на шкале движением стрелки, причем передвижение ее будет во столько раз больше передвижения стерженька, во сколько ее длина больше расстояния между осями мерительного стержня и неподвижной призмы. Все детали мерительного механизма отличаются высокой твердостью.

Шкала прибора не имеет нулевого деления, и исходным может быть любое положение стрелки на шкале. Прибор устанавливается по размеру проверяемого изделия с помощью калибра или образцового, точно {153} изготовленного изделия.

Схема устройства миниметра


Затем при проверке уже других, изготовленных по калибру изделий отклонение стрелки от начального положения показывает, на сколько фактический размер изделия отклонился от заданного. Как уже было сказано, наименьшая цена одного деления шкалы миниметра (может равняться 0,001 миллиметра. Фактический размер деления равняется одному миллиметру, поэтому легко отмечать отклонения, равные половине деления. Это дает точность измерения отклонения до 0,0005 миллиметра.

Наиболее употребителен в практической работе миниметр на колонке с плоской поверхностью установочного столика. Он служит для проверки призматических и цилиндрических деталей. Работа выполняется следующим образом. Контрольную плитку или калибр кладут на столик прибора. Держатель миниметра с мерительной головкой передвигают по колонке до тех пор, пока мерительный стерженек подойдет почти вплотную к калибру. Тогда держатель жестко закрепляется. После этого подают столик кверху с помощью нижнего микрометрического винта до тех пор, пока стрелка миниметра не установится на определенном делении шкалы. Специальный рычаг служит для приподымания мерительного стерженька перед установкой проверяемого объекта. Делается это осторожно. Когда прибор отрегулирован на определенное деление, калибр удаляют, и на столик устанавливают проверяемую деталь. Если деталь изготовлена точно, стрелка указателя покажет то же деление, на которое прибор отрегулирован. Если деталь «полнее», стерженек поднимется кверху, и стрелка отклонится вправо; если деталь меньше заданного размера, стерженек опустится, л стрелка отклонится влево. Если у данного прибора цена деления равняется 0,002 миллиметра, а стрелка отклонилась в ту или иную сторону, скажем, на десять делений, то это значит, что размер детали отклоняется от основного на плюс или минус 0,02 миллиметра. Если эти отклонения не выходят за пределы заданных отклонений, деталь годна; в противном случае деталь бракуется. Пределы отклонений от заданного размера обозначаются по обе стороны от деления шкалы специальными стрелками — указателями.

Цилиндрические детали просто прокатываются под стерженьком по столику, причем наибольшее отклонение {154} стрелки показывает, насколько диаметр изделия отклонился от заданного.

Для измерения листового металла применяется установочный столик шаровой формы, а для измерения проволоки применяется столик цилиндрический. Кроме того, в этом случае стерженек оканчивается не шариком, а правильной плоской поверхностью.

Ортотест — рычажный прибор с ценой деления 0,001 миллиметра


Этот прибор и другие, устроенные по такому же принципу, предназначены для наиболее быстрой и точной проверки, насколько правильны размеры массовой партии одноименных деталей.

Для деталей малых размеров применяются измерительные приборы, основанные большей частью на использовании и принципа рычага и оптического способа отсчета показаний.

Таким прибором, в котором использован оптический принцип измерения, является так называемый оптиметр. Источник света через сферическую линзу освещает шкалу с делениями. Отразившись, лучи проходят через призму, преломляются книзу и попадают на поверхность поворотного зеркала. В зависимости от передвижения стерженька прибора угол установки зеркала меняется, и лучи света возвращаются тем же путем в объектив, неся с собой изображение шкалы. Если поворотное зеркало находится в исходном положении, нулевое деление шкалы совпадает с контрольной меткой на окуляре. Если же поворотное зеркало качнется вокруг своей оси и займет новое положение, нулевое деление шкалы окажется где-нибудь вправо или влево от метки, а сама метка отложит на шкале величину (количество делений) отклонения.

Величина плеча рычага между опорной точкой мерительного стержня и осью качания зеркала и расстояние шкалы от зеркала подобраны таким образом, что перемещение мерительного стержня на один микрон {155} вызывает перемещение луча на шкале на одно деление, А это деление, в свою очередь, благодаря увеличительному приспособлению, представляется наблюдателю равным одному миллиметру. В результате микрон — одна тысячная доля миллиметра — отсчитывается по шкале с той же четкостью, с какой производится отсчет миллиметров. Наблюдатель может с достаточной точностью производить на глаз отсчет между миллиметровыми делениями. Поэтому на оптиметре доступна точность в одну пятую часть микрона или в две десятитысячных миллиметра.



Схема устройства и общий вид оптиметра


Существуют оптиметры с дополнительным проекционным приспособлением, которое позволяет наблюдать результат измерения на открытой шкале невооруженным глазом благодаря еще большему увеличению размеров делений шкалы. Прибор производит измерения деталей размером до 200 миллиметров. Для измерения деталей больших размеров тот же оптический принцип применяется в специальной мерительной машине с приспособлением для сравнения двух длин между собой. {156}

Следует отметить еще один прибор, применяемый главным образом для сравнительных измерений (как миниметр) и тоже соединяющий в себе два принципа — и механический рычажный и оптический. Этот прибор пригоден не только для лабораторных измерений, но и для обычного производственного контроля деталей в массовом производстве, например в автомобильном в том случае, когда необходимо соблюсти особо высокую степень точности обработки.

Схема устройства и общий вид микролюкса


Деталь устанавливается на специальную сменную подставку, которая меняется в зависимости от формы изделия. Мерительный стержень при подъеме или опускании действует на устройство, состоящее из системы рычагов, оптического стекла и вогнутого зеркала. Электролампочка слабого напряжения служит источником света, лучи которого собираются оптическим стеклом, направляются на вогнутую поверхность зеркала, отражаются от нее и попадают на матовый экран, «рисуя» на нем круглый яркий «зайчик», разделенный в середине черной горизонтальной чертой. «Зайчик» может «играть» и по всей длине экрана. На экране устанавливаются два указателя, которые на специальной шкале отмечают пределы допускаемых отклонений. Мерительный стерженек так отрегулирован, что при проходе под ним годные по размерам {157} детали вызывают игру «зайчика» в поле между указателями, а негодные — вне этого поля.

При контроле однородных по типу и размерам деталей даже малоквалифицированный рабочий в состоянии вести проверку со значительной быстротой. Система рычагов и оптических приспособлений обеспечивает тысячекратное увеличение показаний мерительного стерженька. Это значит, что движение стерженька вверх на 0,001 миллиметра отражается передвижением черты «зайчика» на полный миллиметр по шкале. Так как по ней также можно отсчитывать части миллиметра, то и на этом приборе доступно достижение точности, выражаемой десятитысячными долями миллиметра.

Новые средства точности

Но и на этом не остановилось развитие измерительной техники, особенно в нашей стране. Там, на крайнем западе Европы и в США капиталист-хозяин прикидывает, выгодно или невыгодно лично ему улучшить измерительную технику на своем предприятии. А наши машиностроители, наращивая темпы производства, озабочены тем, чтобы уже в процессе изготовления достигалась необходимая степень точности, чтобы на конечных участках была обеспечена самая надежная проверка готового изделия. Поэтому они требуют и получают от отечественной науки и техники все новые и новые средства точнейших измерений.

В столице нашей Родины успешно работает научное учреждение станкостроительной промышленности — «Научно-исследовательское бюро взаимозаменяемости». Оно чутко прислушивается к нуждам советского машиностроения и следит за тем, чтобы точность измерения не отставала от точности обработки. Пусть еще больше возрастут скорости резания, еще больше увеличится производительность автоматических линий станков, еще более разительны будут при этом требования к точности изготовления — и все же измерительные устройства должны «успевать ловить» малейшие отклонения от чертежа, точно определять их величину и с неумолимой строгостью отправлять в брак те изделия, размеры которых вышли за пределы допусков.

«Враг» точности — мерительная поверхность инструмента или прибора. В процессе измерения она изнашивается. {158} Приходится тщательно следить за тем, чтобы в какой-то момент инструмент или прибор не начал пропускать брак.

Но ведь как будто не существует неизнашивающихся поверхностей. Можно лишь уменьшить, замедлить процесс их износа, изготовив конечную часть мерительного стержня из наиболее твердого материала (алмаза или сверхтвердого сплава). Так обычно и поступают, если необходимо обеспечить длительную и надежную работу измерительного устройства.

Но оказалось, что можно вовсе устранить вредное влияние износа мерительной поверхности. Советские машиностроители создали прибор, в котором мерительная поверхность заменена... воздушной струей.

Все измерительные приборы обязательно располагают; пожалуй, самой главной своей частью — той, которая «ощупывает» измеряемые детали. Ее и называют иногда «щупом». Таким прибором невозможно измерять какой-нибудь размер во время работы детали или деталей, например, вала во время его вращения. Ведь движение детали через щуп будет в какой-то мере передаваться измерительному прибору, сотрясать его, результат измерения получится искаженным. Особенно недопустимо такое искажение, когда измеряется очень малая величина, выраженная всего лишь единичными микронами — самое ничтожное искажение превысит величину допускаемой неточности. Поэтому и в таких случаях лучше отказаться от прибора со щупом и воспользоваться той же воздушной струей. Вот почему машиностроители создали своего рода «воздушный микрометр».

Мы уже знаем, что в нашей стране для небольших машин с особо быстро вращающимися валами созданы «воздушные» подшипники — вал вращается в воздухе, между ним и стенками подшипника — тончайшая воздушная прослойка, зазор, своего рода воздушная «смазка». Толщина воздушной прослойки меняется во время работы вала и колеблется в пределах между 3 и 15 микронами. Допустим, что нам надо измерить эту толщину в тот момент, когда она достигла наименьшей величины — 3 микрона. Возможная ошибка, неточность измерения должна быть меньше одной десятой части этой величины, меньше 0,3 микрона. Вот с какой точностью должен работать воздушный микрометр при измерении зазора между валом и подшипником. {159}

Еще не так давно, когда хотели изобразить разительно малую длину, сравнивали ее с толщиной человеческого волоса. Это сравнение потеряло всякую убедительность. Ведь величина зазора в нашем подшипнике почти в 20 раз меньше толщины человеческого волоса, а величина допускаемой при измерении неточности — в 200 раз.

Как устроен воздушный микрометр?

Схема работы микрометра с воздушным поплавком: 1 — подвод воздуха; 2 — воздушный поплавок; 3 — конический сосуд; 4 — шкала


Представьте себе стеклянный сосуд в виде усеченного конуса.

Сосуд расширяется кверху. Снизу через систему регулирующих устройств подводится воздух под определенным и постоянным давлением. В сосуде струя воздуха расширяется и теряет давление — оно тем меньше, чем выше и больше каждое сечение конического сосуда. Внутри сосуда может перемещаться своего рода воздушный поплавок — он напоминает парашют: струя подведенного воздуха «дует» под его купол и заставляет «плавать» на каком-то определенном уровне без касания к стенкам сосуда.

Сверху от сосуда отходит трубка, которая через последующую систему регуляторов подводит воздух к измерительной головке и сквозь нее до выходного отверстия — сопла.

Предположим, нам надо проверить размер изделия в 5 миллиметров; верхний допуск — плюс 5 микронов, а нижний — минус 10 микронов. Из притертых мерительных плиток составляется сначала размер 5,005 миллиметра. Блок этих плиток подводится под измерительную головку таким образом, чтобы остался малый зазор определенной величины (например, в 1 миллиметр).

Теперь начинается подача воздуха от компрессора, и открывается отверстие выходного сопла. Расход воздуха через это сопло и зазор уменьшают величину давления воздуха в коническом сосуде и поплавок устанавливается на каком-то другом определенном уровне. Рядом с {160} коническим сосудом, параллельно его оси, расположена измерительная шкала и можно отметить то ее деление, на котором поплавок «замер».

После этого набор плиток убирается; составляется другой набор размером в 4,990 миллиметра и подводится под измерительную головку. Теперь зазор между срезом сопла и верхней поверхностью набора плиток увеличился на 10 микронов — значит, и скорость истечения воздуха из сопла увеличилась, а поэтому еще раз изменится давление в коническом сосуде; оно уменьшится, поплавок опустится еще ниже и «замрет» на другом уровне, а на шкале отметится соответствующее деление.

Получилось так, что на шкале отмечены пределы допусков измеряемой величины. Осталось убрать второй набор плиток и вместо него ввести под измерительную головку проверяемую деталь. Зазор между соплом и ее верхней поверхностью изменится в какую-то сторону — уменьшится или увеличится — и поплавок немедленно «почувствует» это, он переместится по оси конического сосуда и «замрет» на новом уровне. Если соответствующее деление измерительной шкалы окажется между двумя ранее отмеченными ее штрихами,— все в порядке, деталь правильно изготовлена; если же поплавок «подскочит» выше верхней отметки или «нырнет» ниже другой отметки, деталь неправильно изготовлена: в первом случае она «полнее» и ее еще можно «довести» до правильного размера, а во втором — она «запорота» и пойдет в брак.

Машиностроители научились сопоставлять величину перемещения поплавка по шкале с размерами измеряемых деталей (такое сопоставление называется «градуировкой» шкалы). Благодаря этому шкала воздушного микрометра не только показывает, насколько правильно, по допускам, изготовлена деталь, но и дает ее прямой размер. И, самое главное, этот размер указывается с удивительной точностью.

Вспомните, как работают рычажные и рычажно-оптические измерительные приборы. Они так устроены, что ничтожное изменение размера проверяемой детали вызывает в 50, 100, 200, 500 и даже в 1000 раз большее передвижение стрелки указателя по измерительной шкале. Поэтому легко отсчитываются изменения размеров даже в 0,5 микрона. Существуют и такие рычажно-оптические {161} приборы, в которых перемещение указателя в 16 000 раз больше величины изменения размера проверяемой детали Это значит, что можно отсчитывать изменение размера с точностью до 0,000025 миллиметра (до 1/40 доли микрона, или до 25 миллимикронов).

Воздушный микрометр с окрашенным водяным столбиком (вместо воздушного поплавка): 1 — головка с выходным отверстием для воздушной струи; 2 — универсальная стойка; 3 — душный микрометр и проверяемый предмет; 4 — столик для проверяемых деталей; 5 — шкала; 6 — трубка с водяным столбиком


Воздушный микрометр отличается тем, что его поплавок также перемещается по шкале на расстояние, в 10—12 тысяч раз большее, чем величина, на которую изменился зазор между срезом сопла измерительной головки и поверхностью проверяемой детали. Поэтому и этот прибор измеряет с такой же точностью.

Бывают и такие воз душные микрометры, в устройстве которых поплавок заменен подкрашенной водой в тонкой трубке. Эта трубка соединена с сосудом, в котором меняется давление подаваемого воздуха; уровень воды — в зависимости от этого давления — понижается или повышается. Рядом с трубкой — градуированная шкала. Величина перемещения уровня воды в трубке отмечается делениями шкалы. Именно такой воздушный микрометр и применяется, когда необходимо измерить величину той тончайшей воздушной прослойки, которая служит «смазкой» в подшипнике машины, о которой шла речь. {162}

Еще в начале XX столетия для тончайших измерений в физике понадобилась единица измерения пространства, с помощью которой можно было бы выражать величины расстояний между атомами внутри вещества, длины световых волн и, особенно, рентгеновых лучей. Такая единица измерения была установлена размером в одну десяти-миллионную миллиметра — ее назвали «ангстрем». Так, например, длину волны красного света кадмия, равную 0,644 микрона, удобнее выразить в ангстремах: 6,44 ангстрема. Казалось, что применяемые в технике измерительные приборы никогда не «дойдут» до такой точности. Однако в наше время показания наиболее чувствительных рычажно-оптических приборов и воздушных микрометров можно выразить и в ангстремах. В самом деле, ведь 0,000025 миллиметра — это 250 ангстремов.

Остановилась ли на этом техника измерительного дела в (машиностроении? Практически, да! Даже для самых тонких измерений в промышленности нет нужды в большей точности. Но возможности измерительной техники позволяют еще и еще увеличивать степень точности.

Как-то недавно в американских газетах и журналах появилась крикливая реклама одной фирмы, занимающейся производством измерительных приборов для промышленности. На все лады расхваливался новый рычажно-оптический прибор, в котором изменение проверяемого размера отмечалось перемещением указателя по шкале на расстояние, которое было в 6 000 000 раз больше. Так как глаз опытного наблюдателя-контролера довольно легко мог «отметить» перемещение указателя на 1/4 миллиметра, то это означало, что можно было осуществлять измерения с точностью до 1/24 000 000 миллиметра, или до 0,4 ангстрема (приближенно).

Но так случилось, что и у нас в СССР понадобился прибор такого же назначения, но еще более точный. И в научно-исследовательском бюро взаимозаменяемости было создано измерительное устройство, в котором каждому микроскопическому изменению размера соответствовало перемещение указателя по шкале на расстояние в 12 000 000 раз большее. Американская сверхточность была превзойдена в два раза. Если бы возникла практическая необходимость, советский прибор мог бы измерять с точностью до 1/48 000 000 миллиметра, или до 0,2 ангстрема. Величина этой точности в 1 500 000 раз меньше толщины человеческого волоса. {163}

Так наступило время, когда возможная точность измерения не только не отстает от точности изготовления деталей машин, но и намного опережает ее.

Машиностроители искали и находили много других способов точного измерения, особенно для затруднительных случаев, когда измеряемая величина трудно доступна или вовсе недоступна с помощью обычных инструментов и приборов. Они применяют для этой цели электрические и электромагнитные способы измерения и даже рентгеновские лучи и технику ультразвука. Рассказа обо всех этих чудесах измерительной техники нет в этой книжке. Автор не ставил перед собой цель описывать все виды измерительной техники или подробно растолковывать устройство тех приборов, о которых шла речь. Исключение сделано лишь для очень распространенных измерительных инструментов и приборов, которыми приходится пользоваться на каждом шагу в цехе, в мастерской.

Но о роли электричества в измерительной технике машиностроителей следует рассказать подробнее. Электричество оказалось наибольшей силой в деле создания высокопроизводительных автоматических линий станков. И оно же наилучшим образом приспособило к этим линиям измерительную технику, позволило создать «автоматических контролеров», сверхбыстрых и сверхточных.

Автоматические контролеры

Еще 200 лет назад понадобилось ускорить процесс проверки весов и размеров таких массовых изделий, как снаряды-ядра или монеты. Здесь нельзя было допускать выборочную проверку — надо было взвесить каждую монету или обмерить каждое ядро. А для этого нужно было много контролеров и много времени.

К XVIII столетию относится появление специального станочка для проверки размера ядер с постоянным кольцевым калибром и двумя наклонными поверхностями: если ядро проходило сквозь кольцо, оно тут же скатывалось по одной поверхности в кучу годных, принятых снарядов; если ядро не проходило сквозь кольцо,— легкое движение контролера скатывало его по другой поверхности в кучу негодных, непринятых снарядов. Такое приспособление намного ускоряло работу контролеров. {164}

А в XIX столетии появились проверочные машины для сортировки монет по весу. К этому времени один рабочий контролер сортировал вручную только 8 000 монетных кружков в день, а с помощью машин удалось поднять производительность его труда до 30 000 монет в день.

Чем больше совершенствовался и ускорялся процесс металлообработки, тем острее становилась потребность в ускорении и повышении точности проверки изделий. Чаще появлялись все более удачные самодействующие механические устройства для проверки массовых металлических изделий, таких, например, как шарики, гильзы ружейных патронов.

В XX столетии, когда появились станки-автоматы, положение стало еще более трудным. Ведь контролер, «вооруженный» предельным калибром или каким-нибудь универсальным измерительным инструментом, никак не мог справиться с измерением быстро накапливающихся изделий, требующих придирчивой точной проверки. Но дело не только в скорости проверки, но и в ее точности. Даже самый квалифицированный контролер может ошибиться — ему и зрение изменит, и рука дрогнет, и усталость скажется. Нет-нет, а проскочит в партию годных негодная деталь и повлечет за собой заторы в сборке или — еще хуже — перебой, аварию в работе машины. И тогда наиболее остро понадобились автоматические контролеры.

Чисто механические устройства уже не могли решить задачу — столь быстрая и точная работа требовалась от автоматических контролеров. На помощь таким устройствам пришла мгновенная и точная чувствительность, электрического тока. Электромеханические измерительные автоматы были поставлены рядом со станками-автоматами и полностью решили задачу быстрого и точного контроля.

Так, например, при изготовлении снарядных стаканов важно проверить не только размеры готового изделия, но и его вес: лишний грамм или нехватка одного-двух граммов отразится на качестве выстрела. Снаряд даст перелет или недолет, и выстрел будет сделан напрасно.

И тут на помощь пришли автоматические контролеры, работающие с такой же скоростью, как и автомат-станок.

За последним станкам, участвующим в обработке снарядов, стоит автомат-контролер веса снарядов. По {165} внешнему виду эта машина напоминает обыкновенную карусель. Вокруг центральной, неподвижной стойки карусели вращаются коромысла весов. На внешнем конце каждого коромысла длинная «люлька». Коромысло снабжено указателем, острие которого входит в спиральные направляющие канавки на центральной стойке карусели. Таких канавок три. Они-то и заменяют гири весов.

Вот внешний конец коромысла проходит мимо питателя. В этот миг из жолоба в люльку коромысла падает готовый снаряд. Люльки следуют безостановочно друг за другом и в каждую из них автоматически подается очередной снаряд.

Почти одновременно второй конец коромысла входит в одну из трех канавок. Если вес стакана не больше и не меньше заданной величины, указатель коромысла выбирает среднюю канавку-«гирю»; если вес превышает норму, указатель поднимется выше и войдет в верхнюю канавку; если же вес стакана окажется ниже, указатель опустится в нижнюю канавку.

Что же происходит после того как острие указателя войдет в спиральную канавку? Теперь уже коромысло полностью подчинено «гирям»-канавкам: указатель скользит по ним, и угол наклона коромысла зависит от того, куда указатель направлен. Там, где кончаются канавки, находится и место разгрузки люлек от стаканов.

В нижней части каждой люльки торчит стержень-палец. На конечном участке канавок этот палец встречает на своем пути три механических сбрасывателя. Они расположены в нижней части карусели. Первый — ниже двух следующих, и тут же под ними пристроен жолоб для приемки снарядов слишком большого веса. Второй слегка выше первого, и именно под ним находится жолоб, принимающий годные снаряды. Третий слегка выше второго, а под ним — жолоб для приемки снарядов слишком малого веса.

Предположим, что указатель скользит по верхней канавке. Это значит, что внешний конец коромысла опустит люльку в самое нижнее положение. На полной скорости палец споткнется о первый сбрасыватель, люлька повернется книзу, стакан выпадет... в жолоб для изделий, бракуемых по слишком большому весу. Если указатель скользит по средней канавке, палец пронесется над «первым сбрасывателем, но споткнется о второй: годный {166} стакан упадет в главный жолоб и покатится к следующей контрольной машине. Если же указатель скользит по нижней канавке, палец не заденет ни первый, ни второй сбрасыватели, но споткнется о третий и вывалит стакан из люльки в жолоб для изделий, бракуемых по малому весу.

Стакан, принятый по правильному весу, продолжает свое путешествие к следующей «умной» машине — контролеру-автомату, проверяющему размеры.

Автомат проверяет диаметры стакана в четырех местах, затем длину и расстояние от задней кромки ведущего пояска до переднего среза — всего шесть размеров. Поэтому на машине шесть контрольных позиций, и каждая из них обслуживается механическим «посыльным». Особый рычаг захватывает изделие и после проверки передает его на следующую позицию. Стакан задерживается на 2—3 секунды. За это время автоматические измерительные калибры успевают сделать свое дело. Если размер неправилен, калибры включают электрическое реле; оно приводит в действие специальный механизм и тут же бракует изделие, сбрасывая его в приемник брака.

Такие приемники устроены под каждой позицией, поэтому всегда известно, какие изделия по какому размеру забракованы. Больше этого, каждый приемник разделен на две части, и стаканы, забракованные по слишком большому размеру, падают в одну часть приемника, а забракованные по слишком малому размеру — в другую часть приемника.

Если же стакан благополучно прошел через все шесть позиций, он поступает в приемник годных изделий.

Такие автоматические контролеры идут в ногу с наиболее производительными станками-автоматами. Но появились в нашей стране агрегатные станки, еще более производительные и точные; затем они выстроились в автоматические линии и их производительность увеличилась. Непрерывно возрастают требования и к степени точности изготовления. Скоростная проверка размеров огромных партий деталей с точностью до единичных микронов и даже до долей микрона — вот какие задачи были поставлены именно перед советскими учеными и инженерами-специалистами измерительной техники. И они быстро и точно решили эту задачу путем еще {167} большего привлечения разнообразных электрических устройств в конструкции контрольных механизмов.

Так, например, еще перед Великой Отечественной войной советские изобретатели из Научно-исследовательского бюро взаимозаменяемости откликнулись на появление совершенных станков и поточных линий столь же производительным электромагнитным контрольным автоматом для проверки массовых партии деталей-валиков. Эти детали попадают со станка в магазин, откуда они быстро по одной подаются под головку — щуп измерительного устройства. Если размеры валика остаются в пределах допусков, специальный электрический сортировочный механизм сбрасывает его в приемник годных деталей. А если нет, если допуски не соблюдены? Чтобы ответить на этот вопрос, следует получше вникнуть в устройство автомата. Цилиндрический стержень мерительной головки соединен с опорой качающейся детали, напоминающей коромысло весов. Когда валик проходит под щупом, стержень в зависимости от величины изменения диаметра, детали совершает ничтожные перемещения по своей оси. При этом он «качает» коромысло то в одну, то в другую сторону и оно перекашивается. Пока размер валика остается в пределах допусков, это перекашивание происходит «вхолостую», и валики катятся из-под головки в приемник годных изделий. Но вот диаметр одного из валиков оказался больше допустимого — один край коромысла качнулся побольше и при этом коснулся одного из двух сортировочных контактов. Немедленно срабатывает электромагнитное устройство, открывается заслонка приемника валиков, бракованных по признаку превышения размера, куда и скатывается негодное изделие. Если диаметр валика меньше допустимого, другой край коромысла качнется настолько, что произойдет соприкосновение со вторым сортировочным контактом — откроется другая {168} заслонка, куда скатится изделие, забракованное по» признаку заниженного размера. Получается как будто картина взвешивания на весах с коромыслом, но взвешиваются не граммы или миллиграммы, а миллиметры или микроны. И эта точная сортировка происходит со скоростью в 20 000 валиков за 8 часов — автоматический контролер заменяет нескольких рабочих, не допуская при этом ни одной ошибки. Такой контролер не отстанет от любого станка-автомата или даже от автоматической линии станков, обеспечит их бесперебойную и точную работу.

Мерительная головка автоматического контролера: 1 — контактные винты; 2 — рычаг-коромысло; 3 — мерительный шрифт; 4 — изделие


А вот другой пример. Несколько лет назад, вместе с другими контрольными автоматами, наши машиностроители стали применять созданный советскими изобретателями прибор для проверки 13 размеров поршня двигателя. Сколько размеров — столько же пар световых сигналов на панели прибора. И сколько размеров, столько же подвижных измерительных штифтов «торчат» из своих гнезд. Эти гнезда так расположены по отношению к измеряемому поршню, что когда изделие устанавливается в прибор, оно нажимает на штифты всеми проверяемыми поверхностями.

Если допуски соблюдены, сигналы на панели «молчат». Но вот один из штифтов глубже «дозволенного» ушел в свое гнездо. Это значит, что данный размер недопустимо «полнее» назначенной чертежом величины. Немедленно вспыхивает тот из соответствующей пары сигналов, который как бы предупреждает: «внимание, этот размер больше верхнего допуска!». А если контрольный штифт под «нажимом» проверяемого размера недостаточно «ушел», это значит, что данный размер меньше нижнего допуска; тогда вспыхнет другой из пары сигналов и предупредит, что поршень забракован. Такой прибор заменяет 10—15 контролеров.

До сих пор речь шла о таких автоматических контролерах, которые проверяют уже изготовленную деталь. Они уличают станки в плохой работе уже после того, как эта работа завершена, и недостатки бывает либо трудно, либо вовсе нельзя устранить. Но советские конструкторы измерительных автоматов особенно потрудились над тем, «чтобы создать более «разумных» автоматических контролеров, которые обеспечивали бы точность соблюдения {169} размеров в процессе обработки на станках, чтобы исключить брак готовых изделий.

Существует металлообрабатывающий станок узко специального назначения — на нем шлифуется канавка-жолоб на поверхностях колец для шариковых подшипников. Такой станок так и называется жолобошлифовальный. Точность размеров готового изделия — в пределах до 5 микронов. Очень важно поэтому, чтобы станок, на котором выполняется и начальная «черновая» и отделочная «чистовая» обработка, точно выполнял каждую операцию, не снимая лишнего, пусть самого ничтожного слоя металла. Советские изобретатели приспособили к этому станку контрольный прибор-автомат, который управляет обработкой, «зорко следит» за инструментом, в надлежащее мгновение автоматически переключает станок с черновой обработки на чистовую и выключает его, как только достигнута наилучшая степень точности изготовления.

И когда после этого проверяются размеры кольца, оказывается, что желоба обработаны с поражающей воображение точностью — до 2 микронов.

В 1951 году группа советских инженеров была удостоена высокой награды — Сталинской премии — за создание автоматических контролеров для проверки размеров и сортировки конических роликов.

Плитки — «ловцы» микронов

Строжайшие контролеры всех измерительных средств машиностроителей, инструментов и приборов,— это мерительные плитки.

Для примера возьмем случай проверки переставной предельной скобы.

Двумя наборами плиток составляем оба предельных размера: верхний и нижний. Если скоба правильно отрегулирована, то оба набора плотно войдут в пространство между мерительными стержнями и удержатся в нем. Если промежуток между губками скобы недостаточен, соответствующий набор не пройдет, а если, наоборот, промежуток велик, то набор не удержится и выпадет. С помощью соответствующего набора плиток и специального держателя можно «составить» для пробки точную проверочную скобу, а для кольца — радиусный калибр.

Плитками можно также проверить точность микрометра, миниметра, оптического прибора, воздушного микрометра и контрольных автоматов. {170}

При изготовлении очень точных изделий встречается необходимость в такой же точной их разметке. Для этого изготовляют специальные чертилки. Их опорные поверхности обработаны так же, как и мерительные поверхности калибров. Разметку производят на специально точной плите с помощью набора из тех же плиток.

Получается, что именно мерительные плитки служат машиностроителям, как самые надежные «ловцы» микронов. Как обеспечивается такая высокая надежность?

Мерительные плитки еще больше, чем калибры, боятся колебаний температуры. Специальными нагревательными и охлаждающими установками температура помещений, где изготовляются плитки, регулируется с отклонением не более чем в 1 градус от принятой в качестве нормальной (при производстве точных измерений) температуры в 20 градусов. Но и этого бывает недостаточно для особо точных измерений, так как колебания температуры, меньшие 1 градуса вызывают изменения размеров. В таких случаях приходится определять температуру изделий с точностью до 0,01 градуса и путем расчета вносить поправки в результаты измерения. Даже теплота человеческого тела, передающаяся плиткам во время их изготовления, тоже оказывает заметное влияние на их размеры. Если не принять этого во внимание, то изготовленная плитка пойдет в брак.

Освоение производства плиток высшей точности является огромным достижением металлообрабатывающей и измерительной техники XX века. В нашей стране успешно решена задача машинного изготовления плиток.

Мерительные плитки обеспечивают достижение в производстве точностей, выражаемых долями миллиметра, до микронов включительно. Из этого следует, что сами плитки должны отличаться исключительно высокой точностью размеров. При их изготовлении допускаются лишь отклонения, которые выражаются десятыми долями микрона или десятитысячными долями миллиметра. Но те измерительные приборы, которые могут улавливать такие отклонения, в свою очередь должны отличаться еще более разительной точностью. Тут уже нужно располагать точностями порядка стотысячных долей миллиметра. В следующем рассказе мы познакомимся с устройством измерительных приборов, применяемых для измерения мельчайших долей миллиметра. {171}

Как проверяются измерительные плитки

Для проверки правильности размеров и гладкости плоскостей особо точных калибров, в частности, плиток, недостаточно точности, обеспечиваемой рычажными и обыкновенными оптическими приборами. Здесь нужна точность до 0,00001 миллиметра и выше. Эта исключительная точность достигается с помощью приборов, в устройстве которых также использованы законы оптики, а именно законы интерференции световых волн. Такие приборы называются интерферометрами.

Из тех сведений об измерительных плитках, которые приведены выше, мы уже знаем, что мерительные поверхности плиток должны представлять собой правильные плоскости, и фактическое расстояние между мерительными поверхностями должно точно равняться проставленному на плитке числу, выражающему величину этого расстояния в миллиметрах.

На практике, однако, редко удается удовлетворить все эти требования. Всегда случаются отклонения от идеальной точности. Величина допускаемых отклонений рассчитывается заранее. Производство плиток налаживается таким образом, чтобы не выходить за пределы этих отклонений, величины которых выражаются десятитысячными долями миллиметра.

100-миллиметровая плитка может иметь отклонение от размера в одну или в другую сторону не больше чем на 0,6 микрона, т. е. это отклонение должно приближаться к длине волны красного луча света из солнечного спектра. Чем меньше размер плитки, тем меньше и допускаемое отклонение. В плитках длиной в 70 миллиметров допускается отклонение не больше 0,45 микрона, т. е. примерно на величину длины волны фиолетового луча света. Самое малое отклонение для наименьших размеров не превышает 0,2 микрона. Наряду с допусками на неточность размера существуют еще допуски на отклонение от параллельности. Эти допуски еще меньше. Наибольший равен 0,4 микрона, наименьший — 0,1 микрона.

Для улавливания таких микроскопических длин применяют различные системы интерферометров.

Устройство промышленных интерферометров основано на той же схеме, что и прибор, которым измеряли длину метра в длинах световых волн. Но вместо волны какого-либо {172} одного одноцветного луча света (как красный цвет спектра кадмия) в промышленных интерферометрах используется весь спектр определенного источника света. Это значит, что на измеряемой длине наблюдаются интерференционные полосы от каждого одноцветного луча, участвующего в спектре данного источника света. Расстояние между каждой соседней парой одноцветных полос соответствует известной нам длине волны данного одноцветного луча света.

Измеряемые плитки устанавливаются одной мерительной поверхностью на переставной столик интерферометра таким образом, чтобы интерференционные полосы наблюдались на проверяемой поверхности. Получается ряд строго параллельных и прямых или криволинейных световых полос со свойственным каждой полосе особым цветом. При проверке плиток на неровность поверхности их устанавливают, регулируя положение столика прибора таким образом, чтобы кромка испытуемой поверхности воспринимала какой-либо один из лучей, окрашивалась в один цвет, например в фиолетовый. Тогда все точки поверхности испытуемой плитки, находящиеся на этом же уровне (или весьма близкие к нему в пределах длины волны фиолетового луча), будут тоже окрашены в фиолетовый цвет.

Все приподнятые точки будут последовательно окрашены полосами следующих за фиолетовым спектральных цветов. Если поверхность имеет неровности, то возвышения и впадины рельефно выделяются вследствие окраски их в разные цвета.

Полосы располагаются по кругу, по точкам поверхности, находящимся на одном и том же уровне; им соответствуют одинаковые длины волн и эти точки одинаково удалены от источников света. Поэтому все они и окрашиваются каким-либо одноцветным лучом.

При контроле готовых плиток встречается необходимость установить факт полной гладкости (плоскостности) поверхности плитки. Для этого достаточно слегка приподнять на подставке край плитки, чтобы испытуемая поверхность освещалась пучком разных одноцветных лучей под некоторым углом. Если поверхность плоска, то полосы будут прямыми и параллельными друг другу, в противном случае полосы будут в большей или меньшей степени искривлены. Этим способом контроля улавливаются отклонения, выражаемые долями микрона.

{173}






{174}

Проверка плиток на параллельность ее поверхностей: а — плитка установлена так, что плоскость одной из испытуемых поверхностей совпадает с одним из одноцветных лучей и окрашивается им; б — окраска той же поверхности после поворота плитки на 180° вокруг ее вертикальной оси изменилась: поверхность окрасилась не одним (тем же) цветом, а рядом различных одноцветных и параллельных полос; это означает, что испытуемая поверхность не параллельна нижней поверхности плитки, расположенной в плоскости стола; в и г — поверхности плитки параллельны друг другу — после поворота плитки окраска поверхности не изменилась

Проверка поверхности плиток на неровность и плоскостность: а — световые одноцветные круги на выпуклой поверхности; б — световые одноцветные круги на вогнутой поверхности; в — световые одноцветные круги на неровностях поверхности; г и д — прямые и параллельные одноцветные полосы на правильных плоских поверхностях

Пользуясь интерферометром, легко также установить, отклоняются ли мерительные поверхности плитки от взаимной параллельности. Плитка устанавливается на столик прибора, положение которого регулируется таким образом, чтобы одна из испытуемых поверхностей располагалась в плоскости направления одного из лучей.

Проверка плиток на правильность размера: а — образцовая плитка установлена так, что плоскость ее верхней поверхности совпадает с каким-либо одним лучом; б — проверяемая плитка устанавливается на том же столе рядом; если размер плитки правилен, верхняя ее поверхность будет окрашиваться тем же лучом; если размер плитки больше (или меньше), чем размер образцовой, то верхняя поверхность окрасится другим лучом. Величина отклонения определяется числом параллельных полос на боковой поверхности проверяемой плитки (если она больше) или образцовой плитки (если проверяемая плитка меньше); в и г — размер проверяемой плитки равен размеру образцовой


После этого плитка поворачивается на 180 градусов вокруг своей вертикальной оси. Если испытуемая поверхность параллельна нижней, расположенной в плоскости стола, то после поворота окраска ее не изменится. Если же поверхности непараллельны, то после поворота на испытуемой поверхности образуется ряд параллельных полос. Число этих полос дает возможность определить в долях микрона величину отклонения мерительных поверхностей от параллельности.

Для проверки правильности размера пользуются интерферометром, но уже с помощью образцовой плитки.

Образцовая плитка устанавливается так, чтобы ее верхняя поверхность лежала в плоскости направления одного какого-либо луча, {175} а сравниваемая плитка устанавливается на том же столе рядом. Если размер ее правилен, то верхняя поверхность будет находиться в той же плоскости и окрашиваться тем же лучом. Если же размер проверяемой плитки больше, чем размер образцовой, то верхняя поверхность окажется окрашенной в другой цвет. По числу полос на боковой поверхности плитки определяют величину разности размеров. Если бы испытуемая плитка оказалась меньше образцовой, то в этом случае величину разности размеров можно было бы определить по числу полос на боковой поверхности образцовой плитки.

Создание интерферометра явилось еще одной ступенью на пути к завоеванию точности, так как дало возможность определять длины, выражаемые в миллимикронах, в миллионных долях миллиметра.


* * *

Много побед одержано советскими учеными-специалистами измерительной техники. Их высокие достижения и послужили тем фундаментом, на котором удалось создать еще более удивительные автоматические контрольные устройства и включать их сначала в автоматические линии станков, а вскоре после этого в строй чудесных установок завода-автомата.

Завод-автомат (вместо заключения)

Как-то одному из капиталистов-заводчиков в США задали вопрос, — можно ли автоматизировать производство любых деталей машин. Он ответил: «Да, можно. Если только спрос настолько велик, что сбыт огромного количества изделий будет обеспечен». Иными словами «овчинка стоит выделки», если «дело» сулит наибольшую прибыль.

Наибольшая прибыль, стремление обеспечить ее любыми средствами—лишь это может заставить капиталистов пойти на затраты для автоматизации производства. Но там, где они начинают ее осуществлять, обнаруживается их стремление еще к одной важной цели, к всемерной замене людей у станков механическими рабочими — «роботами», такими, которые никогда не предъявляют ни экономических, ни политических требований, не устраивают забастовок, не объединяются на своих заводах и фабриках в мощные боевые отряды классово-революционной {176} армии труда, борющейся за социальную справедливость. Капиталисты страшатся своих рабочих и, автоматизируя свои предприятия, лелеют надежду заполучить в цехи своих заводов армии «роботов» — механических рабов капитализма.

В нашей стране не эти низменные, а возвышенные благородные цели вдохновляют организаторов социалистической промышленности, ученых, изобретателей и рационализаторов.

Человек, его творческие возможности — это самая большая ценность и сила в Советской стране. Освободить как можно больше этой силы от тяжелого физического труда, переключить ее на более высокую ступень созидательного труда — вот одна из основных целей автоматизации наших промышленных предприятий.

В странах капитала людей физического и умственного труда разделяет глубокая, непроходимая пропасть.

В Советской стране каждая новая машина, особенно автоматическая, освобождает руки человека, сберегает и облегчает его труд, требует от него меньше физического и больше умственного труда — управления ее работой. А предоставленная каждому трудящемуся самая широкая возможность учиться, совершенствовать свои знания, повышать свой культурно-технический уровень до уровня инженерно-технического персонала приводит к постепенному уничтожению существенных различий между умственным и физическим трудом.

Самая же главная, самая основная цель автоматизации производства в нашей стране — содействовать обеспечению наибольшего удовлетворения постоянно возрастающих материальных и культурных потребностей всего общества путем непрерывного роста и совершенствования социалистического производства на базе высшей техники.

Потребности свободных людей первой в мире страны социализма увеличиваются с каждым днем. Приближаются еще более счастливые времена коммунизма, когда каждый из нас, отдавая стране все свои трудовые возможности, будет получать от общества все блага по своим потребностям.

Отдельные совершенные автоматические машины или даже автоматические линии таких машин уже не смогут удовлетворять эти растущие потребности Нам нужны фабрики-автоматы, заводы-автоматы, такие промышленные {177} предприятия, которые в кратчайшие сроки обеспечат советским людям изобилие предметов потребления. Только такие фабрики и заводы смогут справиться с изготовлением миллионов и миллионов различных вещей и предметов, облегчающих труд и жизнь, делающих ее еще более счастливой.

В нашей стране уже существуют такие предприятия, как, например, в пищевой промышленности — автоматические хлебозаводы, консервные заводы, кондитерские фабрики. И в других отраслях промышленности постепенно создаются такие отдельные рабочие машины и линии машин, которым рука человека только подает начальный продукт и принимает от них готовые изделия, но ни разу не вмешивается в процесс изготовления.

В наши дни созданы и работают даже такие автоматические машины, которые в ничтожные доли времени производят за нас расчеты, экономя месяцы и годы тяжелого умственного труда. Все больше и больше совершенных машин жизненно необходимо нам в годы, когда страна быстрыми шагами идет к коммунизму.

И чтобы эта важнейшая потребность нашей страны была удовлетворена наилучшим образом и в кратчайшие сроки, необходимо как можно больше увеличить производительность металлообрабатывающих станков, с помощью которых изготовляются все машины, и объединить их не только в отдельные автоматические линии, но и в цехи-автоматы, в заводы-автоматы.

Новейшие достижения советских станкостроителей и специалистов измерительной техники — высокопроизводительные автоматические линии станков и всевозможные контрольно-измерительные автоматы еще несколько лет назад вплотную приблизили советскую технику к решению труднейшей задачи — к созданию машиностроительных заводов-автоматов.

Это почетное дело было возложено правительством на Экспериментальный научно-исследовательский институт металлообрабатывающих станков (ЭНИМС), и человек, который в свое время начал прокладывать новые пути и советском станкостроении, член-корреспондент Академии наук СССР Владимир Иванович Дикушин и его сотрудники, в тесном творческом содружестве с деятелями смежных областей науки и техники, уже дали первое решение этой большой и важной технической задачи — создали {178} завод-автомат для производства поршней двигателя грузового автомобиля ЗИС-150.

Почему была выбрана именно эта деталь двигателя автомобиля? Среди деталей всех машин есть такие, потребность в которых уже теперь исчисляется десятками миллионов штук в год. Это — сменные запасные части сельскохозяйственных машин, тракторов, автомобилей. Сотни тысяч этих машин работают на полях нашей Родины, мчатся по ее дорогам. Их рабочие детали изнашиваются, требуют частой замены. В каждой машине на протяжении года по нескольку раз приходится менять отдельные части. И если умножить сотни тысяч грузовых автомобилей на годовое количество заменяемых поршней для каждого из них, получится потребность, которая выразится в миллионах штук.

Чтобы своевременно и полностью удовлетворить эту потребность и понадобился в первую очередь завод-автомат для производства поршней.

Можно подумать так: ведь и в этом случае речь идет об обработке лишь одной детали двигателя, пусть более сложной в изготовлении. Почему же понадобился целый завод-автомат, а не одна только более или менее длинная автоматическая линия станков?

Действительно, «сердце» этого завода-автомата такая же, по существу, связанная линия разнообразных по назначению и совершенных по устройству станков-автоматов, на которых и выполняются многочисленные тонкие и точные операции механической обработки заготовки поршня. Чтобы подробно описать ход обработки деталей в этой линии, пришлось бы повторить рассказ об изумляющих наблюдателя чудесах «разумной» автоматики, о тех чудесах советской передовой техники, с которыми мы уже познакомились, когда речь шла о «линиях великой пятилетки». Но на станках тех линий выполнялось сравнительно мало не очень сложных операций обработки отверстий и плоских поверхностей в корпусных деталях жесткой коробчатой формы, — они легче поддаются установке и передаче с одной позиции на другую. Другое дело — поршень двигателя. Это — цилиндрическая деталь с очень сложно оформленной внутренней поверхностью, с горизонтальными и вертикальными канавками и прорезями, с очень точными по диаметру отверстиями. Пришлось создать и ввести в автоматическую линию еще небывалые {179} в ней токарные агрегатные станки, включить в нее шлифовальные станки, обеспечить такое устройство рабочих механизмов линии, чтобы в процессе обработки не были нарушены требования разительной точности, которые предъявляются к форме и размерам отдельных частей поршня. Все это поставило перед станкостроителями новые многочисленные трудные задачи. Их успешное решение привело к созданию еще более совершенной и удивительной автоматической линии станков — «сердца» завода-автомата, его механического цеха, в котором заготовка-отливка превращается путем обработки режущими инструментами в полностью оформленное, но еще не окончательно отделанное изделие.

Заготовка-отливка рождается в других «цехах» завода-автомата, — в литейном, термическом и подготовительном, а затем лишь поступает в станки автоматической линии. Там, где начинается изготовление поршня, алюминиевые чушки автоматически подаются в печь, металл правится, очищается, точными дозами подается в отливочную машину, превращается в пока еще грубую отливку, очень мало напоминающую форму изделия. Эта отливка также автоматически перемещается по линии рабочих установок, проходит все операции грубой механической и тепловой обработки, затем проверку твердости металла, пока не превратится в исходную заготовку, которая через промежуточную «кладовую» поступает на первый станок автоматической линии. А когда она уже превратилась в поршень, нуждающийся только в окончательной отделке, изделие автоматически перемещается по следующей линии замечательных рабочих установок. Одни из них взвешивают изделие и подгоняют его вес, отрезая точно взвешенные излишки материала. Другие — шлифовальные станки — окончательно отделывают поверхности и передают поршни в лудильную установку, где нижняя часть изделия — «юбка» поршня — покрывается тонким слоем олова. Еще дальше окончательно обрабатываются — с точностью до 10 микронов — отверстия под палец кривошипа. Затем полностью готовые поршни поступают в моечную установку, а из нее — в контрольный автомат. Здесь придирчиво и точно проверяются размеры изготовленных изделий. И, наконец, поршни скатываются в установку, которая «заботливо» смазывает их, аккуратно завертывает в бумагу и укладывает по шесть штук в картонные коробки. {180}

Но где же люди? Неужели их вовсе нет здесь и они не принимают участия во всем этом сложнейшем процессе?

Нет, люди есть. Но их очень немного. Работой всех станков, всех линий, всех передаточных и транспортных приспособлений, всех контрольных автоматов управляет один человек. Это — диспетчер завода, «дирижер» огромного «оркестра» машин-автоматов.

Его пост — пульт управления заводом — находится в стороне от машин и станков. От пульта ко всем действующим механизмам протянуты электропровода. По этим «щупальцам» управления диспетчер отдает свои приказы и по ним же станок, машина, автомат рапортуют о выполнении распоряжений диспетчера.

Пульт управления — это стол с панелью-экраном и с множеством различных кнопок и световых сигналов, выстроившихся строгими рядами. У пульта — телефонные аппараты, радиорепродуктор и микрофон.

Только в трех местах длинной линии производственного процесса рука человека помогает машинам выполнять свою работу: в самом начале этой линии рабочий укладывает алюминиевые чушки на подающий транспортер. Первый станок «механического цеха» обслуживается вторым рабочим, который только устанавливает изделия в приспособлении и извлекает их после окончания операции. Такая же работа (установка в приспособление и выемка изделия) выполняется третьим «оператором» у станка для окончательной доводки отверстия под палец кривошипа.

Вдоль линий завода расставлено еще несколько человек, но они не вмешиваются в работу машин, а только-стерегут возможные неполадки. Тогда эти люди — наладчики машин — приходят на помощь, быстро устраняют неполадку, восстанавливают нормальный ход производства.

Наладчики, которым подведомственны отдельные группы и участки, — это, по существу, те же многостаночники, поднявшиеся на более высокую ступень своего мастерства. Они внимательно приглядываются к работе каждой установки, прислушиваются к ее «голосу», к шуму механизмов и готовы прийти на помощь машине. Для этого рабочий, разумеется, должен в совершенстве знать не только механизмы отдельных устройств, но и взаимосвязь {181} между ними. Это уже не только физический труд, но и умственный.

Таков в общих чертах первый металлообрабатывающий завод-автомат, уже вступивший в строй предприятий автомобильной промышленности. Линии его рабочих машин во много раз увеличили производительность труда, ускорили темпы производства, дали стране миллионы рублей экономии в год только на узком участке изготовления поршней для двигателя ЗИС-150. Вот почему можно выразить уверенность в том, что металлообрабатывающие заводы-автоматы вскоре прочно займут большое место в советском машиностроении.

Роль станков в нашей жизни первостепенна. Теперь мы знаем это.

Вот почему растет, развивается, опережает технику капиталистического мира советское станкостроение, станкостроение коммунизма.

Станкостроители и станочники стали одним из славных отрядов великой армии трудящихся, идущей за товарищем Сталиным вперед к овладению вершиной человеческого счастья, к коммунизму.

Сталинский план развития СССР на 1951—1955 гг. поставил перед этим отрядом боевую задачу — примерно в два раза увеличить производство чудо-станков, мощных, точных, высокопроизводительных, и тех приборов, которые помогают управлять этими станками и обеспечивать высокую точность, чтобы за пятилетие примерно вдвое возросло количество машин, выпускаемых советскими заводами.

Решая эту задачу, советские люди, советские инженеры и ученые-станкостроители, руководимые гением великого Сталина, создадут в числе других промышленных предприятий коммунизма замечательные творения освобожденного труда — машиностроительные заводы-автоматы, выпускающие целиком собранные и надежно испытанные двигатели и рабочие машины.

{182}

Загрузка...