C появлением компьютеров, которые, как следует из названия, были задуманы исключительно для математических расчетов, возникли попытки, основанные исключительно на интуиции, приспособить их к решению более интеллектуальных задач, например, играть в шахматы, переводить с естественного языка, доказывать теоремы, вступать в диалог с человеком и даже писать музыку.
Идея, руководившая создателями первых шахматных программ, предельно проста – играя в шахматы, человек думает, значит и машина станет мыслящей, если мы обучим этой игре. С нынешних позиций ясно, что они совершали тривиальную ошибку – в шахматы играла не машина, а они сами, воплотившие свои представления о шахматах и свое знание игры в программе. Машина не играет, она выполняет эту программу и никакого собственного машинного разума! Судьба этого увлечения напоминает то, что случилось с тестом Тьюринга – сначала безграничный энтузиазм, потом медленное угасание и, в конечном итоге остается хобби, объединяющее энтузиастов-любителей.
А начало компьютерных шахмат было громким – первым в 1948 году Норберт Винер в своей «Кибернетике» упомянул, что, по его мнению, можно создать играющую программу. Вскоре Клод Шеннон опубликовал статью «Программирование компьютера для игры в шахматы» и, наконец, в 1951 Алан Тьюринг разработал на бумаге программу, способную по его замыслу играть в шахматы. Что еще нужно для старта, если трое великих дали добро? В среде авторов шахматных программ возникло стойкое убеждение, что они создают не просто программу, а нечто важное, что в последующем можно будет использовать и в иных целях. Они заразили этой идеей общественность и с тех пор и до десятых годов нынешнего века средства массовой информации периодически сообщали на весь мир о громких победах, одержанных шахматными программами, внушая преклонение перед умным компьютером.
Достаточно вспомнить как в масс-медиа подавались поражения, нанесенные компьютерами гроссмейстерам Михаилу Талю, Бенту Ларсену, Гарри Каспарову, Владимиру Крамнику и другим. Однако во втором десятилетии XXI века успехи Слабого AI показали, что шахматные программы – это всего лишь обычные программы, как тут ни вспомнить Эффект AI. Они работают на мощных компьютерах, поэтому опережают человека по скорости перебора вариантов и не более того. Кто-то сказал, что человек против машины на шахматной доске – это то же самое, что человек против погрузчика в подъеме штанги. Шахматы не сделали компьютеры ни на йоту умнее, следовательно с точки зрения AI пользы от них нет и быть не может. Однако как хобби компьютерные шахматы имеют полное право на существование, причем поединки между программами гораздо полезнее, чем машины с человеком. Примером может стать матч, состоявшийся в 2019 году, между свободными шахматными движками Leela Chess Zero и Stockfish. Что же касается игровых систем типа Alpha Zero, основанных на машинном обучении, то для них игра не самоцель, испытательный полигон.
70 лет назад в компьютерной области на равных с американцами конкурировали англичане с их наработками по проекту ULTRA. Под руководством Морриса Уилкса (Maurice Wilkes, 1913–2010) они смогли раньше американцев построить компьютер с хранимой программой EDSAC, а в 1951 году кондитерская компания J. Lyons (!) построила первый специализированный компьютер для бизнес-приложений Lyons Electronic Office (LEO I). На протяжении нескольких лет между двумя странами сохранялся паритет, но в последующем Британия уступила из-за несравнимо меньших по своим масштабам инвестиций в исследования и разработки, а главное в производство.
Имея такую базу, за пять лет до Дартмутского семинара, группа под руководством Кристофера Стречи (Christopher Strachey, 1916–1975), куда вошли ученые из Манчестерского и Кембриджского университетов, задалась целью написать программу, способную на первых порах играть в шашки и решать простейшие шахматные задачи. Сначала они намеревались воспользоваться компьютером ACE (Automatic Computing Engine), создаваемым при участии Тьюринга, но в силу ряда технических причин он не был введен в эксплуатацию. С задержкой на год определенный успех был достигнут, когда та же программа была запущена на Mark I компании Ferranti. Позже Стречи первым попытался научить компьютер Mark II Manchester Electronic Computer исполнять музыку. Алан Тьюринг совместно с Дэвидом Чамперноуном пытался запустить на том же Ferranti Mark I свою программу Turochamp, способную сыграть полную шахматную партию, но по тем временам это оказалось технически невозможно.
В Америке первой игровой была шашечная программа для первого серийного мэйнфрейма IBM 701, ее написал сотрудник IBM Артур Самуэль (Arthur Samuel, 1901–1990), опираясь на результаты, опубликованные Стречи. По примеру Самуэля и в ряде университетов вскоре были созданы шашечные программы, на соревновании между ними в 1962 году победило детище Самуэля.
В СССР первая шахматная программа была создана 1963 году в Институте теоретической и экспериментальной физики (ИТЭФ) под руководством Александра Семеновича Кронрода (1921–1986), опрометчиво определявшего роль компьютерных шахмат так: «шахматы – это дрозофила искусственного интеллекта». Специалисты из Института Проблем Управления (ИПУ) занялись шахматами, когда в их распоряжении оказались купленные в Великобритании мэйнфреймы ICL, содержательных приложений для них не было, оставались шахматы, таковы гримасы плановой экономики. В 1972 году состоялся матч с участием написанной ими «Каиссы» и подписчиков «Комсомольской правды», в нем победили читатели. Больше против людей она не играла, однако с переменным успехом соревновалась с другими шахматными программами, в том числе весьма именитыми, в 1980 году состоялось последнее выступление «Каиссы» на чемпионате мира. Была еще и программа «Пионер», создававшаяся под руководством гроссмейстера и ученого М. М. Ботвинника. На этом советская шахматная эпопея закончилась, тому были еще и серьезные политические причины. Многие из создателей «Каиссы» оказались в числе нежелательных для партийной верхушки диссидентов и эмигрировали. Но главное, к тому времени шахматы перестали относить к AI, в то время в этой области вся надежда была на экспертные системы.
С появлением компьютеров у нескольких ученых одновременно возникло желание применить их к автоматизированному переводу с одного естественного языка на другой (Machine Translation, MT). Но задача оказалась сложнее, чем они предполагали, только через полвека, когда MT стал одним из направлений в AI, бесплатные сервисы условно справляются с переводом текстов на уровне, достаточном для ознакомления с содержанием, но делают они это чисто формально и не имеют ничего общего с теми первыми системами.
У задачи МТ есть своя давняя предыстория. В IX веке арабский криптограф Аль-Кинди хотел упростить процесс перевода, он применил методы, которые мы сегодня отнесли бы частотному анализу, теории вероятностей и статистике. В последующем, в XVII–XIX веках предпринимались и теоретические, и даже практические попытки упростить перевод с помощью разного рода механических устройств. За редчайшим исключением все они заканчивались провалом, относительного успеха добился лишь Жорж Арцруни, француз армянского происхождения, эмигрант из России, получивший образование в Санкт-Петербургском университете. Он смог в 30–40-е годы прошлого века создать механизм помогавший переводчику. В СССР механизацией перевода занимался Петр Петрович Смирнов-Троянский (1894–1950), его машина представляла собой фотоаппарат, синхронизированный с печатной машинкой, автор получил на нее патент, но она была слишком сложной и осталась невостребованной.
Первенство в использовании электронного компьютера для MT принадлежит математику Уоррену Уиверу (Warren Weaver, 1894–1978). В 1947 году он выразил свой замысел в форме письма, адресованного Норберту Винеру, а позже в 1949 году оформил его, как тогда было приято, в виде пространного меморандума. В нем Уивер обосновал целый ряд подходов к решению задачи MT, в том числе ориентацию на нейронные сети. Идеи Уивера были приняты, он продолжил исследования в Массачусетском технологическом институте. В начале 50-х им была написана программа MT, работавшая на компьютере SWAC (Standards Western Automatic Computer), одном из двух уникальных компьютеров, разработанных в 1950 году Гарри Хаски (Harry Huskey, 1916–2017) для Национального бюро стандартов США. В 1954 году удалось перевести несколько предложений с русского на английский, но дальше дело не пошло, однако работа стимулировала исследования в области MT.
Более громкую и куда менее заслуженную известность получил другой эксперимент по МТ, известный как Джорджтаунский. Если работа Уивера была глубоким исследованием, то это начинание – ни чем иным, как типичным примером «наивного» MT. Его авторы стремились побыстрее решить актуальную на тот момент задачу – перевод технической документации с русского на английский. В эксперименте участвовали представители IBM и Джорджтаунского университета. А отличие от Уивера авторы пошли к цели в лоб – они загрузили в мэйнфрейм IBM 701 программу, оперировавшую 250 словами и 6 грамматическим правилами. Русские и английские слова и правила хранились на магнитных барабанах, переводимые предложения вводились с перфокарт, а результат выводился на принтер. Алгоритм перевода заключался в формальном подборе маски из английских слов, которая накладывалась на последовательность русских слов. Избранный метод неплохо подходил для перевода тривиальных фраз типа «качество угля определяется калорийностью» транслитерированной в «kachyestvo uglya opryedyelyayetsya kaloryiynostjyu», именно эта фраза почему-то оказалась первой из переведенных. Для более сложных фраз этот метод явно не годился. Если учесть только стоимость IBM 701, составлявшую порядка 1 миллиона долларов того времени, когда автомобиль стоил около 1000, то рациональным все, что было сделано в Джорджтаунском университете, нельзя признать никак. Тем не менее этот эксперимент, невзирая на примитивность по-своему интересен, он остался в истории как редкий для пятидесятых случай применения компьютера не по прямому назначению.
Несмотря на очевидную ограниченность решения, внимание к Джорджтаунскому эксперименту оказалось колоссальным, практически вся американская пресса писала о достигнутом успехе, используя самые восторженные эпитеты. Как только ни называли компьютер IBM: и «машиной-билингвой», и «вундеркиндом-полиглотом», и «электронным мозгом, переводящим с русского». Впрочем, можно предположить, что Джорджтаунский эксперимент потребовался корпорации IBM, скорее всего, для поднятия реноме, она задержалась на старте компьютерной гонки. На первых порах в ней лидировала компания UNISYS, прославившаяся тем, что ее компьютер UNIVAC 1 помог предсказать победу Дуайта Эйзенхауэра на президентских выборах 1952 года. Во многом благодаря рекламе машинного перевода за короткий срок IBM удалось стать монополистом на рынке мэйнфреймов. И еще стоит учесть, что эксперимент с переводом имел явно выраженный политический характер, коммунистическая угроза рассматривалась как вполне реальная со всеми вытекающими выводами.
Аллен Ньюэлл (Allen Newell, 1927–1992) и Герберт Саймон (Herbert Simon, 1916–2001) на несколько лет опередили Минского и Маккарти, попытавшись реализовать еще не названный так символьный подход к AI. Оба, и Ньюэлл, и Саймон именитые ученые, первый признанный авторитет в когнитивной психологии, второй экономист, удостоенный Нобелевской премии. Их объединило общее желание воспроизведение человеческую логику машинными средствами. Оно возникло в начале пятидесятых, когда оба работали в корпорации RAND (Research ANd Development), этом «мыслительном танке», находящемся с 1948 года на службе правительства США и призванном решать стратегически важные концептуальные проблемы. Например, Пол Бэран, работая там, стал автором сетей с коммутацией пакетов, ставший ключом для передачи сообщений в интернете. Под руководством Ньюэлла и Саймона были созданы две работающие программы Logic Theorist (1956) и GPS (General Problem Solver, 1957). По замыслу GPS должна была работать со знаниями, для этого она разделена на две подсистемы: одну можно считать прототипом баз знаний и онтологий, она хранит передаваемые в машину знания, а вторая реализует методы работы с ними. GPS оказалась способной решать некоторые формальные задачи, например головоломку о ханойских башнях, но она не могла справиться с реальными задачами.
О прозрении Ньюэлла, приведшем к работе со знаниями, есть байка, напоминающая легенду о Ньютоне и яблоке. Якобы мысль о возможности представить знания в виде символов пришла ему в голову в момент когда он наблюдал за работой алфавитно-цифрового печатающего устройства (АЦПУ). В АЦПУ, одном из немногих существовавших тогда периферийных устройств, главной деталью был вращающийся барабан, состоящий из одинаковых дисков. На каждом из размещались печатаемые знаки, а между барабаном и бумагой располагалась красящая лента, а под бумагой располагалась линейка, состоящая из молоточков. В тот момент, когда нужная литера на дорожке оказывалась в нужной позиции, по ленте ударял молоточек, она соприкасалась с бумагой, как в пишущей машинке, так за один оборот барабана печаталась целая строка. В 50-е годы еще не было каких-либо графических устройств, поэтому АЦПУ использовали не только для печати текстов, но и для вывода графики в виде мозаики из букв, цифр и других печатных знаков. В порядке развлечения на длинных полосах АЦПУшной бумаги печатали портреты разных персонажей, а на одну страницу прекрасно укладывалась пулька для популярного в те годы преферанса. Сугубо техническое решение, заложенное в печать на АЦПУ, в силу странной аллюзии вызвало у Ньюэлла мысль о возможности по образу и подобию таких вот тривиальных мозаичных картинок создать символьное представление знаний. И что только он мог увидеть в простой как апельсин мозаике из печатных знаков? Но Ньюэлл допустил банальную ошибку – отождествил простой код литеры с тем символом, которым оперирует мозг. Как можно было соотнести простое механическое устройство с мозгом?
В основу Logic Theorist легла иная формализованная процедура, опробованная ими в эксперименте по механизации принятия решений, где элементами модели служили дети, снабженные специальными карточками, они механически поднимали их в нужные моменты. Для переноса этой процедуры в компьютер был разработан язык программирования IPL (Information Processing Language). Кроме Logic Theorist (1956), на нем были написаны еще две программы General Problem Solver (1957) и шахматная NSS (1958). С помощью Logic Theorist удалось доказать 38 из первых 52 теорем опубликованных в трехтомнике «Принципы математики») Альфреда Уайтхеда и Бертрана Рассела, о результатах двух других неизвестно.
Эти программы следует признать первыми попытками создания еще не названного так AI. Саймон и Ньюэлл выдвинули много позже гипотезу о возможности осуществления разумных действий (general intelligent action) средствами физической символьной системы (Physical Symbol System, PSS). Под системой класса PSS они понимали набор сущностей, названных ими символами, из которых можно составлять другие сущности, названные ими символьными структурами. Согласно гипотезе, PSS может обладать необходимыми и достаточными способностями для воспроизведения интеллектуальных действий вплоть до сильного AI. В формулировке гипотезы Ньюэлла – Саймона содержится следующее утверждение: «Физическая символьная система имеет необходимые и достаточные средства для произведения основных интеллектуальных операций». Гипотеза так и осталась гипотезой, с момента публикации она подвергалась резкой критике со стороны специалистов, среди них: Нильс Нильсон, профессор Стэнфордского университета, ближайший коллега Джона Маккарти, философы Хьюберт Дрейфус и Джон Серл и основоположник современной робототехники Родни Брукс.
Первые диалоговые системы были созданы в шестидесятые, то есть после Дартмутского семинара, их создатели не были связаны с его организаторами и с тем представлением об AI, которое там сложилось, более того они и не претендовали на наличие AI программах. Из этих систем наибольшую известность приобрела программы ELIZA, способная имитировать диалог. Название программы адресует нас к Элизе Дулиттл, героине «Пигмалиона» Бернарда Шоу. Самим «Пигмалионом» стал Джозеф Вейценбаум (Joseph Weizenbaum, 1923–2008), профессор MTI, еще один эмигрант из Германии. Он задумывал прототип ELIZA как универсальный симулятор, в который могут быть «загружены» разные личности в соответствии сценарием их поведения, но все ограничилось одной ELIZA, воспроизводящей поведение психотерапевта. Вейценбаум подчеркивал, что ELIZA не «понимает» вопросов, которые ей задают, что это всего лишь некий движок, способный разбирать текст на входе и генерировать по определенным правилам ответный текст на выходе. В основе программы лежит простейший алгоритм, который ищет во введенном тексте совпадения с теми или иными наперед заданными последовательностями символов. Найдя такие совпадения, программа подбирает из них ответ, она, конечно же, не имеет никакого понятия о содержании – она тривиально заменяет одни последовательности символов другими.
Естественно, что Вейценбаум предпринял неудачную попытку пройти тест Тьюринга, поскольку изначально задумывал ELIZA как средство для демонстрации возможности имитационного диалога. Выставить простой генератор ответов в качестве претендента на обладание AI – это ни что иное, как шикарный академический розыгрыш. Однако туповатая ELIZA Тест не прошла, но случилось то, что уже было и с творениями Герона, и с Аналитической машиной Бэббиджа, оказалось, что к «разговору с компьютером», в основе которого лежала примитивная пародия, основанная на принципах клиент-центрированной психотерапии Карла Роджерса, многие, в том числе и именитые специалисты, отнеслись всерьез с далеко идущими выводами. Для неоправданного доверия профанов программе, способной всего лишь имитировать диалог, было предложено название Эффект ELIZA (ELIZA Effect), так называют психологический феномен антропоморфизации компьютерной программы.
В противовес Марвину Минскому и Джону Маккарти Вейценбаум был убежден, что человеческий интеллект сопряжен с чувствами и интуицией, поэтому воспроизвести его на компьютере невозможно. В своем главном труде – «Возможности вычислительных машин и человеческий разум» он назвал «цифровым утопизмом» состояние умов, царившее в среде математиков слепо верящих в свои возможности и потенциал компьютеров, и подверг его жесточайшей критике.
Через несколько лет после Вейценбаума свою диалоговую программу Parry написал психиатр Кеннетом Колби (Kenneth Colby), работавший тогда в Стэнфордском Университете. Его программа PARRY стала зеркальным отражением ELIZA. Если ELIZA симулировала поведение врача психотерапевта, то в PARRY Колби пытался реализовать модель поведения больного, страдающего параноидальным расстройством личности. Модель оказалась настолько удачной, что PARRY стала первой прошедшей тест Тьюринга, более половины экспертов-психиатров приняли ее участие в диалоге за человеческое. Прохождение PARRY теста свидетельствует лишь о способности Кеннета Колби найти способ для имитации поведения параноика. Есть сведения, что PARRY и ELIZA в 1972 году «были на свидании», организованном через посредство ARPAnet, сети, предшествовавшей интернет, можно предположить, что свидетели изрядно повеселились.